Articles | Volume 20, issue 23
https://doi.org/10.5194/bg-20-4875-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-4875-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Single-celled bioturbators: benthic foraminifera mediate oxygen penetration and prokaryotic diversity in intertidal sediment
Univ. Lille, CNRS, IRD, Univ. du Littoral Côte d'Opale, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, Station Marine de Wimereux, 59000, Lille, France
Evolution, Cell Biology, & Symbiosis Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
now at: Univ Brest, CNRS, Ifremer, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds, 29280, Plouzané, France
Florian Mermillod-Blondin
Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, 69622, Villeurbanne, France
Noémie Deldicq
Univ. Lille, CNRS, IRD, Univ. du Littoral Côte d'Opale, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, Station Marine de Wimereux, 59000, Lille, France
Arthur Bauville
Center for Mathematical Science and Advanced Technology, Japan Agency for Marine-Earth Science and Technology, Yokohama, 236-0001, Japan
now at: Axelspace Corporation, Tokyo, Japan
Gwendoline Duong
Univ. Lille, CNRS, IRD, Univ. du Littoral Côte d'Opale, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, Station Marine de Wimereux, 59000, Lille, France
Lara Konecny
Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, 69622, Villeurbanne, France
Mylène Hugoni
Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, INSA de Lyon, UMR 5240 MAP, Microbiologie, Adaptation et Pathogénie, 69622, Villeurbanne, France
Institut Universitaire de France (IUF), 75005, Paris, France
Lionel Denis
Univ. Lille, CNRS, IRD, Univ. du Littoral Côte d'Opale, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, Station Marine de Wimereux, 59000, Lille, France
Vincent M. P. Bouchet
CORRESPONDING AUTHOR
Univ. Lille, CNRS, IRD, Univ. du Littoral Côte d'Opale, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, Station Marine de Wimereux, 59000, Lille, France
Related authors
No articles found.
Vincent M. P. Bouchet, Silvia Helena de Mello e Sousa, Carla Bonetti, Leticia Burone, Pierre Belart, Wania Duleba, Fabio Francescangeli, Fabrizio Frontalini, Lazaro Laut, Débora S. Raposo, André R. Rodrigues, Sibelle Trevisan Disaró, Daniel Vicente Pupo, Fabrício Leandro Damasceno, Jean-Charles Pavard, and Maria Virgínia Alves Martins
J. Micropalaeontol., 44, 237–261, https://doi.org/10.5194/jm-44-237-2025, https://doi.org/10.5194/jm-44-237-2025, 2025
Short summary
Short summary
This study evaluates benthic foraminifera as indicators of environmental health in Brazil’s coastal waters and tests Foram-AMBI using a regional species list and criteria for ecological quality status (EcoQS). A total of 95 species were classified into five groups based on their response to total organic carbon. Data from Sepetiba Bay and Guanabara Bay validated these groups, showing that Foram-AMBI accurately reflects ecological conditions. The study highlights the importance of regional species lists for biomonitoring.
Goulwen Le Guevel, Fabrice Minoletti, Carla Geisen, Gwendoline Duong, Virginia Rojas, and Michaël Hermoso
Biogeosciences, 22, 2287–2308, https://doi.org/10.5194/bg-22-2287-2025, https://doi.org/10.5194/bg-22-2287-2025, 2025
Short summary
Short summary
This study explores the impact of environmental conditions on the chemistry of coccoliths, calcite minerals produced by marine algae, to better understand past climate changes. By cultivating different species of coccolithophores under various CO2 and pH levels, we have shown that the isotopic composition of certain species varies with CO2 concentration and quantified these variations.
Julien Richirt, Magali Schweizer, Aurélia Mouret, Sophie Quinchard, Salha A. Saad, Vincent M. P. Bouchet, Christopher M. Wade, and Frans J. Jorissen
J. Micropalaeontol., 40, 61–74, https://doi.org/10.5194/jm-40-61-2021, https://doi.org/10.5194/jm-40-61-2021, 2021
Short summary
Short summary
The study presents (1) a validation of a method which was previously published allowing us to recognize different Ammonia phylotypes (T1, T2 and T6) based only on their morphology and (2) a refined biogeographical distribution presented here supporting the putatively invasive character of phylotype T6. Results suggest that phylotype T6 is currently spreading out and supplanting autochthonous phylotypes T1 and T2 along the coastlines of the British Isles and northern France.
Yannick Colin, Rayan Bouchali, Laurence Marjolet, Romain Marti, Florian Vautrin, Jérémy Voisin, Emilie Bourgeois, Veronica Rodriguez-Nava, Didier Blaha, Thierry Winiarski, Florian Mermillod-Blondin, and Benoit Cournoyer
Hydrol. Earth Syst. Sci., 24, 4257–4273, https://doi.org/10.5194/hess-24-4257-2020, https://doi.org/10.5194/hess-24-4257-2020, 2020
Short summary
Short summary
Stormwater infiltration systems (SISs) are a source of pollution that may have adverse ecological and sanitary impacts. The incidence of a SIS on the coalescence of microbial communities from runoff waters and aboveground sediments with those of an aquifer was investigated. Aquifer waters showed lower coalescence with aboveground bacterial taxa than aquifer biofilms. These biofilms were colonized by bacterial hydrocarbon degraders and harboured undesirable human-opportunistic pathogens.
Cited articles
Afgan, E., Baker, D., Batut, B., van den Beek, M., Bouvier, D., Čech, M., Chilton, J., Clements, D., Coraor, N., Grüning, B. A., Guerler, A., Hillman-Jackson, J., Hiltemann, S., Jalili, V., Rasche, H., Soranzo, N., Goecks, J., Taylor, J., Nekrutenko, A., and Blankenberg, D.: The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update, Nucleic Acids Res., 46, 537–544, https://doi.org/10.1093/nar/gky379, 2018.
Aller, R. C.: Benthic fauna and biogeochemical processes in marine sediments: the role of burrow structures, in: Nitrogen cycling in coastal marine environments, edited by: Blackburn, T. H,, and Sørensen, J., Chichester, 301–338, 1988.
Aller, R. C. and Aller, J. Y.: Meiofauna and solute transport in marine muds, Limnol. Oceanogr., 37, 1018–1033, https://doi.org/10.4319/lo.1992.37.5.1018, 1992.
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J.: Basic local alignment search tool, J. Mol. Biol., 215, 403–410, https://doi.org/10.1016/S0022-2836(05)80360-2, 1990.
Anderson, M. J.: A new method for non-parametric multivariate analysis of variance, Austral Ecol., 26, 32–46, https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x, 2001.
Berg, P., Risgaard-Petersen, N., and Rysgaard, S.: Interpretation of measured concentration profiles in sediment pore water, Limnol. Oceanogr., 43, 1500–1510, https://doi.org/10.4319/lo.1998.43.7.1500, 1998.
Berner, R. A.: Early Diagenesis: A Theoretical Approach, Princeton University Press, 260 pp., 1980.
Bertics, V. J. and Ziebis, W.: Biodiversity of benthic microbial communities in bioturbated coastal sediments is controlled by geochemical microniches, ISME J., 3, 1269–1285, https://doi.org/10.1038/ismej.2009.62, 2009.
Bertics, V. J. and Ziebis, W.: Bioturbation and the role of microniches for sulfate reduction in coastal marine sediments, Environ. Microbiol., 12, 3022–3034, https://doi.org/10.1111/j.1462-2920.2010.02279.x, 2010.
Bonaglia, S., Nascimento, F. J. A., Bartoli, M., Klawonn, I., and Brüchert, V.: Meiofauna increases bacterial denitrification in marine sediments, Nat. Commun., 5, 5133, https://doi.org/10.1038/ncomms6133, 2014.
Bonaglia, S., Rämö, R., Marzocchi, U., Le Bouille, L., Leermakers, M., Nascimento, F. J. A., and Gunnarsson, J. S.: Capping with activated carbon reduces nutrient fluxes, denitrification and meiofauna in contaminated sediments, Water Res., 148, 515–525, https://doi.org/10.1016/j.watres.2018.10.083, 2019.
Bonaglia, S., Hedberg, J., Marzocchi, U., Iburg, S., Glud, R. N., and Nascimento, F. J. A.: Meiofauna improve oxygenation and accelerate sulfide removal in the seasonally hypoxic seabed, Mar. Environ. Res., 159, 104968, https://doi.org/10.1016/j.marenvres.2020.104968, 2020.
Bouchet, V. M. P., Debenay, J.-P., Sauriau, P.-G., Radford-Knoery, J., and Soletchnik, P.: Effects of short-term environmental disturbances on living benthic foraminifera during the Pacific oyster summer mortality in the Marennes-Oléron Bay (France), Mar. Environ. Res., 64, 358–383, https://doi.org/10.1016/j.marenvres.2007.02.007, 2007.
Bouchet, V. M. P., Sauriau, P.-G., Debenay, J.-P., Mermillod-Blondin, F., Schmidt, S., Amiard, J.-C., and Dupas, B.: Influence of the mode of macrofauna-mediated bioturbation on the vertical distribution of living benthic foraminifera: First insight from axial tomodensitometry, J. Exp. Mar. Biol. Ecol., 371, 20–33, https://doi.org/10.1016/j.jembe.2008.12.012, 2009.
Bradshaw, C., Kumblad, L., and Fagrell, A.: The use of tracers to evaluate the importance of bioturbation in remobilising contaminants in Baltic sediments, Estuar. Coast. Shelf S., 66, 123–134, https://doi.org/10.1016/j.ecss.2005.08.002, 2006.
Brodie, C. R., Leng, M. J., Casford, J. S. L., Kendrick, C. P., Lloyd, J. M., Yongqiang, Z., and Bird, M. I.: Evidence for bias in C and N concentrations and δ13C composition of terrestrial and aquatic organic materials due to pre-analysis acid preparation methods, Chem. Geol., 282, 67–83, https://doi.org/10.1016/j.chemgeo.2011.01.007, 2011.
Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C.: A Limited Memory Algorithm for Bound Constrained Optimization, SIAM J. Sci. Comput., 16, 1190–1208, https://doi.org/10.1137/0916069, 1995.
Cariou, M., Francois, C. M., Voisin, J., Pigneret, M., Hervant, F., Volatier, L., and Mermillod-Blondin, F.: Effects of bioturbation by tubificid worms on biogeochemical processes, bacterial community structure and diversity in heterotrophic wetland sediments, Sci. Total Environ., 795, 148842, https://doi.org/10.1016/j.scitotenv.2021.148842, 2021.
Cedhagen, T., Mamuaja, J. M., and Lund-Hansen, L. C.: The sediment reworking foraminiferan Ammonia cf. aomoriensis is a sediment destabilizer: Insights from an experiment with artificial removal of the pseudopods, Reg. Stud. Mar. Sci., 45, 101814, https://doi.org/10.1016/j.rsma.2021.101814, 2021.
Cesbron, F., Geslin, E., Jorissen, F. J., Delgard, M. L., Charrieau, L., Deflandre, B., Jézéquel, D., Anschutz, P., and Metzger, E.: Vertical distribution and respiration rates of benthic foraminifera: Contribution to aerobic remineralization in intertidal mudflats covered by Zostera noltei meadows, Estuar. Coast. Shelf S., 179, 23–38, https://doi.org/10.1016/j.ecss.2015.12.005, 2016.
Chmura, G. L., Anisfeld, S. C., Cahoon, D. R., and Lynch, J. C.: Global carbon sequestration in tidal, saline wetland soils, Global. Biogeochem. Cy., 17, 1111, https://doi.org/10.1029/2002GB001917, 2003.
Choquel, C., Geslin, E., Metzger, E., Filipsson, H. L., Risgaard-Petersen, N., Launeau, P., Giraud, M., Jauffrais, T., Jesus, B., and Mouret, A.: Denitrification by benthic foraminifera and their contribution to N-loss from a fjord environment, Biogeosciences, 18, 327–341, https://doi.org/10.5194/bg-18-327-2021, 2021.
Cullen, D. J.: Bioturbation of Superficial Marine Sediments by Interstitial Meiobenthos, Nature, 242, 323–324, https://doi.org/10.1038/242323a0, 1973.
Cuny, P., Miralles, G., Cornet-Barthaux, V., Acquaviva, M., Stora, G., Grossi, V., and Gilbert, F.: Influence of bioturbation by the polychaete Nereis diversicolor on the structure of bacterial communities in oil contaminated coastal sediments, Mar. Pollut. Bull., 54, 452–459, https://doi.org/10.1016/j.marpolbul.2006.12.008, 2007.
Deldicq, N., Seuront, L., Langlet, D., and Bouchet, V.: Assessing behavioural traits of benthic foraminifera: implications for sediment mixing, Mar. Ecol. Prog. Ser., https://doi.org/10.3354/meps13334, 2020.
Deldicq, N., Seuront, L., and Bouchet, V. M. P.: Inter-specific and inter-individual trait variability matter in surface sediment reworking rates of intertidal benthic foraminifera, Mar. Biol., 168, 101, https://doi.org/10.1007/s00227-021-03908-w, 2021.
Deldicq, N., Mermillod-Blondin, F., and Bouchet, V. M. P.: Sediment reworking of intertidal sediments by the benthic foraminifera Haynesina germanica: the importance of motion behaviour and densities, P. Roy. Soc. B-Biol. Sci., 290, 20230193, https://doi.org/10.1098/rspb.2023.0193, 2023.
Deng, L., Bölsterli, D., Kristensen, E., Meile, C., Su, C.-C., Bernasconi, S. M., Seidenkrantz, M.-S., Glombitza, C., Lagostina, L., Han, X., Jørgensen, B. B., Røy, H., and Lever, M. A.: Macrofaunal control of microbial community structure in continental margin sediments, P. Natl. Acad. Sci. USA, 117, 15911–15922, https://doi.org/10.1073/pnas.1917494117, 2020.
Dörries, M., Wöhlbrand, L., and Rabus, R.: Differential proteomic analysis of the metabolic network of the marine sulfate-reducer Desulfobacterium autotrophicum HRM2, PROTEOMICS, 16, 2878–2893, https://doi.org/10.1002/pmic.201600041, 2016.
Dray, S. and Dufour, A.-B.: The ade4 Package: Implementing the Duality Diagram for Ecologists, J. Stat. Softw., 22, 1–20, https://doi.org/10.18637/jss.v022.i04, 2007.
Escudié, F., Auer, L., Bernard, M., Mariadassou, M., Cauquil, L., Vidal, K., Maman, S., Hernandez-Raquet, G., Combes, S., and Pascal, G.: FROGS: Find, Rapidly, OTUs with Galaxy Solution, Bioinformatics, 34, 1287–1294, https://doi.org/10.1093/bioinformatics/btx791, 2018.
Fenchel, T. and Finlay, B.: Oxygen and the spatial structure of microbial communities, Biol. Rev. Camb. Philos., 83, 553–569, https://doi.org/10.1111/j.1469-185X.2008.00054.x, 2008.
Forster, S. and Graf, G.: Impact of irrigation on oxygen flux into the sediment: intermittent pumping by Callianassa subterranea and “piston-pumping” by Lanice conchilega, Mar. Biol., 123, 335–346, https://doi.org/10.1007/BF00353625, 1995.
Francescangeli, F., Quijada, M., Armynot du Châtelet, E., Frontalini, F., Trentesaux, A., Billon, G., and Bouchet, V. M. P.: Multidisciplinary study to monitor consequences of pollution on intertidal benthic ecosystems (Hauts de France, English Channel, France): Comparison with natural areas, Mar. Environ. Res., 160, 105034, https://doi.org/10.1016/j.marenvres.2020.105034, 2020.
Froelich, P. N., Klinkhammer, G. P., Bender, M. L., Luedtke, N. A., Heath, G. R., Cullen, D., Dauphin, P., Hammond, D., Hartman, B., and Maynard, V.: Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis, Geochim. Cosmochim. Ac., 43, 1075–1090, https://doi.org/10.1016/0016-7037(79)90095-4, 1979.
Geslin, E., Risgaard-Petersen, N., Lombard, F., Metzger, E., Langlet, D., and Jorissen, F.: Oxygen respiration rates of benthic foraminifera as measured with oxygen microsensors, J. Exp. Mar. Biol. Ecol., 396, 108–114, https://doi.org/10.1016/j.jembe.2010.10.011, 2011.
Geslin, E., Barras, C., Langlet, D., Kim, J.-H., Bonnin, J., Metzger, E., and Jorissen, F. J.: Survival, Reproduction and Calcification of Three Benthic Foraminiferal Species in Response to Experimentally Induced Hypoxia, in: Experimental Approaches in Foraminifera: Collection, Maintenance and Experiments, edited by: Bernhard, J. M. and Kitazato, H., https://doi.org/10.1007/978-4-431-54388-6_10, Berlin, 2014.
Green, A. S. and Chandler, G. T.: Meiofaunal bioturbation effects on the partitioning of sediment-associated cadmium, J. Exp. Mar. Biol. Ecol., 180, 59–70, https://doi.org/10.1016/0022-0981(94)90079-5, 1994.
Groß, O.: Influence of temperature, oxygen and food availability on the migrational activity of bathyal benthic foraminifera: evidence by microcosm experiments, Hydrobiologia 426, 123–137, https://doi.org/10.1023/A:1003930831220, 2000.
Groß, O.: Sediment Interactions of Foraminifera: Implications for Food Degradation and Bioturbation Processes, J. Foramin. Res., 32, 414–424, https://doi.org/10.2113/0320414, 2002.
Haegeman, B., Hamelin, J., Moriarty, J., Neal, P., Dushoff, J., and Weitz, J. S.: Robust estimation of microbial diversity in theory and in practice, ISME J., 7, 1092–1101, https://doi.org/10.1038/ismej.2013.10, 2013.
Heinz, P. and Geslin, E.: Ecological and Biological Response of Benthic Foraminifera Under Oxygen-Depleted Conditions: Evidence from Laboratory Approaches, in: Anoxia, edited by: Altenbach, A. V., Bernhard, J. M., and Seckbach, J., Springer Netherlands, 287–303, https://doi.org/10.1007/978-94-007-1896-8_15, 2012.
Heip, C. H. R., Goosen, N. K., Herman, P. M. J., Kromkamp, J., Middelburg, J. J., and Soetaert, K.: Production and consumption of biological particles in temperate tidal estuaries, edited by: Ansell, A. D. et al., Oceanogr. Mar. Biol. Ann. Rev. 33, Oceanography and Marine Biology: An Annual Review, 33, 1–149, 1995.
Hemleben, C. and Kitazato, H.: Deep-sea foraminifera under long time observation in the laboratory, Deep-Sea Res., 42, 827–832, https://doi.org/10.1016/0967-0637(95)00024-Z, 1995.
Jickells, T. D. and Rae, J. E.: Biogeochemistry of intertidal sediments, in: Biogeochemistry of intertidal sediments, edited by: Jickells, T. D. and Rae, J. E., Cambridge University Press, Cambridge, 1–15, https://doi.org/10.1017/CBO9780511524905.002, 1997.
Jones, C. G., Lawton, J. H., and Shachak, M.: Organisms as Ecosystem Engineers, Oikos, 69, 373–386, https://doi.org/10.2307/3545850, 1994.
Kristensen, E.: Oxygen and Inorganic Nitrogen Exchange in a “Nereis virens” (Polychaeta) Bioturbated Sediment-Water System, J. Coastal Res., 1, 109–116, 1985.
Kristensen, E. and Holmer, M.: Decomposition of plant materials in marine sediment exposed to different electron acceptors (O2, , and ), with emphasis on substrate origin, degradation kinetics, and the role of bioturbation, Geochim. Cosmochim. Ac., 65, 419–433, https://doi.org/10.1016/S0016-7037(00)00532-9, 2001.
Kristensen, E., Ahmed, S. I., and Devol, A. H.: Aerobic and anaerobic decomposition of organic matter in marine sediment: Which is fastest?, Limnol. Oceanogr., 40, 1430–1437, https://doi.org/10.4319/lo.1995.40.8.1430, 1995.
Kristensen, E., Penha-Lopes, G., Delefosse, M., Valdemarsen, T., Quintana, C. O., and Banta, G. T.: What is bioturbation? The need for a precise definition for fauna in aquatic sciences, Mar. Ecol. Prog. Ser., 446, 285–302, https://doi.org/10.3354/meps09506, 2012.
Lacoste, É., Piot, A., Archambault, P., McKindsey, C. W., and Nozais, C.: Bioturbation activity of three macrofaunal species and the presence of meiofauna affect the abundance and composition of benthic bacterial communities, Mar. Environ. Res., 136, 62–70, https://doi.org/10.1016/j.marenvres.2018.02.024, 2018.
Lagauzère, S., Pischedda, L., Cuny, P., Gilbert, F., Stora, G., and Bonzom, J.-M.: Influence of Chironomus riparius (Diptera, Chironomidae) and Tubifex tubifex (Annelida, Oligochaeta) on oxygen uptake by sediments. Consequences of uranium contamination, Environ. Pollut., 157, 1234–1242, https://doi.org/10.1016/j.envpol.2008.12.004, 2009.
Landa, M., Cottrell, M. T., Kirchman, D. L., Blain, S., and Obernosterer, I.: Changes in bacterial diversity in response to dissolved organic matter supply in a continuous culture experiment, Aquat. Microb. Ecol., 69, 157–168, https://doi.org/10.3354/ame01632, 2013.
Langenheder, S., Bulling, M. T., Solan, M., and Prosser, J. I.: Bacterial Biodiversity-Ecosystem Functioning Relations Are Modified by Environmental Complexity, PLoS ONE, 5, e10834, https://doi.org/10.1371/journal.pone.0010834, 2010.
Langlet, D., Geslin, E., Baal, C., Metzger, E., Lejzerowicz, F., Riedel, B., Zuschin, M., Pawlowski, J., Stachowitsch, M., and Jorissen, F. J.: Foraminiferal survival after long-term in situ experimentally induced anoxia, Biogeosciences, 10, 7463–7480, https://doi.org/10.5194/bg-10-7463-2013, 2013.
Langlet, D., Baal, C., Geslin, E., Metzger, E., Zuschin, M., Riedel, B., Risgaard-Petersen, N., Stachowitsch, M., and Jorissen, F. J.: Foraminiferal species responses to in situ, experimentally induced anoxia in the Adriatic Sea, Biogeosciences, 11, 1775–1797, https://doi.org/10.5194/bg-11-1775-2014, 2014.
Langlet, D., Bouchet, V. M. P., Riso, R., Matsui, Y., Suga, H., Fujiwara, Y., and Nomaki, H.: Foraminiferal Ecology and Role in Nitrogen Benthic Cycle in the Hypoxic Southeastern Bering Sea, Front. Mar. Sci., 7, 582818, https://doi.org/10.3389/fmars.2020.582818, 2020.
Laverock, B., Smith, C. J., Tait, K., Osborn, A. M., Widdicombe, S., and Gilbert, J. A.: Bioturbating shrimp alter the structure and diversity of bacterial communities in coastal marine sediments, ISME J., 4, 1531–1544, https://doi.org/10.1038/ismej.2010.86, 2010.
LeKieffre, C., Jauffrais, T., Bernhard, J. M., Filipsson, H. L., Schmidt, C., Roberge, H., Maire, O., Panieri, G., Geslin, E., and Meibom, A.: Ammonium and Sulfate Assimilation Is Widespread in Benthic Foraminifera, Front. Mar. Sci., 9, 861945, https://doi.org/10.3389/fmars.2022.861945, 2022.
Mahé, F., Rognes, T., Quince, C., Vargas, C. de, and Dunthorn, M.: Swarm: robust and fast clustering method for amplicon-based studies, PeerJ, 2, e593, https://doi.org/10.7717/peerj.593, 2014.
Maire, O., Barras, C., Gestin, T., Nardelli, M., Romero-Ramirez, A., Duchêne, J., and Geslin, E.: How does macrofaunal bioturbation influence the vertical distribution of living benthic foraminifera?, Mar. Ecol. Prog. Ser., 561, 83–97, https://doi.org/10.3354/meps11929, 2016.
Mayor, D. J., Thornton, B., Jenkins, H., and Felgate, S. L.: Microbiota: The Living Foundation, in: Mudflat Ecology, edited by: Beninger, P. G., Springer International Publishing, Cham, 43–61, https://doi.org/10.1007/978-3-319-99194-8_3, 2018.
Mermillod-Blondin, F., Rosenberg, R., François-Carcaillet, F., Norling, K., and Mauclaire, L.: Influence of bioturbation by three benthic infaunal species on microbial communities and biogeochemical processes in marine sediment, Aquat. Microb. Ecol., 36, 271–284, https://doi.org/10.3354/ame036271, 2004.
Meysman, F., Middelburg, J., and Heip, C.: Bioturbation: a fresh look at Darwin's last idea, Trends Ecol. Evol., 21, 688–695, https://doi.org/10.1016/j.tree.2006.08.002, 2006.
Michaud, E., Desrosiers, G., Mermillod-Blondin, F., Sundby, B., and Stora, G.: The functional group approach to bioturbation: The effects of biodiffusers and gallery-diffusers of the Macoma balthica community on sediment oxygen uptake, J. Exp. Mar. Biol. Ecol., 326, 77–88, https://doi.org/10.1016/j.jembe.2005.05.016, 2005.
Moodley, L., Chen, G., Heip, C., and Vincx, M.: Vertical distribution of meiofauna in sediments from contrasting sites in the adriatic sea: Clues to the role of abiotic versus biotic control, Ophelia, 53, 203–212, https://doi.org/10.1080/00785326.2000.10409450, 2000.
Muggeo, V. M. R.: segmented: An R Package to Fit Regression Models with Broken-Line Relationships, News, 8/1, 20–25, https://cran.r-project.org/doc/Rnews/ (last access: October 2023), 2008.
Nascimento, F. J. A., Näslund, J., and Elmgren, R.: Meiofauna enhances organic matter mineralization in soft sediment ecosystems, Limnol. Oceanogr., 57, 338–346, https://doi.org/10.4319/lo.2012.57.1.0338, 2012.
Oguri, K., Kitazato, H., and Glud, R. N.: Platinum octaetylporphyrin based planar optodes combined with an UV-LED excitation light source: An ideal tool for high-resolution O2 imaging in O2 depleted environments, Mar. Chem., 100, 95–107, https://doi.org/10.1016/j.marchem.2005.11.005, 2006.
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E., and Wagner, H.: vegan: Community Ecology Package,R package version 2.6-4, https://CRAN.R-project.org/package=vegan (last access: October 2023), 2020.
Papaspyrou, S., Gregersen, T., Kristensen, E., Christensen, B., and Cox, R. P.: Microbial reaction rates and bacterial communities in sediment surrounding burrows of two nereidid polychaetes (Nereis diversicolor and N. virens), Mar. Biol., 148, 541–550, https://doi.org/10.1007/s00227-005-0105-3, 2006.
Pelegrí, S. P. and Blackburn, T. H.: Bioturbation effects of the amphipod Corophium volutator on microbial nitrogen transformations in marine sediments, Mar. Biol., 121, 253–258, https://doi.org/10.1007/BF00346733, 1994.
Pinheiro, J. and Bates, D.: Mixed-Effects Models in S and S-PLUS, Springer-Verlag, New York, https://doi.org/10.1007/b98882, 2000.
Piot, A., Nozais, C., and Archambault, P.: Meiofauna affect the macrobenthic biodiversity–ecosystem functioning relationship, Oikos, 123, 203–213, https://doi.org/10.1111/j.1600-0706.2013.00631.x, 2014.
Politi, T., Barisevičiūte, R., Bartoli, M., Bonaglia, S., Cardini, U., Castaldelli, G., Kančauskaitė, A., Marzocchi, U., Petkuviene, J., Samuiloviene, A., Vybernaite-Lubiene, I., Zaiko, A., and Zilius, M.: A bioturbator, a holobiont, and a vector: The multifaceted role of Chironomus plumosus in shaping N-cycling, Freshwater Biol., 66, 1036–1048, https://doi.org/10.1111/fwb.13696, 2021.
Prast, M., Bischoff, A., Waller, U., Amann, R., and Berninger, U.: Effect of ciliates on nitrification and nitrifying bacteria in Baltic Sea sediments, Mar. Ecol. Prog. Ser., 350, 55–61, https://doi.org/10.3354/meps07143, 2007.
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., and Glöckner, F. O.: The SILVA ribosomal RNA gene database project: improved data processing and web-based tools, Nucleic Acids Res., 41, D590–D596, https://doi.org/10.1093/nar/gks1219, 2013.
R Core Team: R: A Language and Environment for Statistical Computing, Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: October 2023), 2019.
Revsbech, N. P.: An oxygen microsensor with a guard cathode, Limnol. Oceanogr., 34, 474–478, https://doi.org/10.4319/lo.1989.34.2.0474, 1989.
Richirt, J., Riedel, B., Mouret, A., Schweizer, M., Langlet, D., Seitaj, D., Meysman, F. J. R., Slomp, C. P., and Jorissen, F. J.: Foraminiferal community response to seasonal anoxia in Lake Grevelingen (the Netherlands), Biogeosciences, 17, 1415–1435, https://doi.org/10.5194/bg-17-1415-2020, 2020.
Rudin, L. I., Osher, S., and Fatemi, E.: Nonlinear total variation based noise removal algorithms, Physica D, 60, 259–268, https://doi.org/10.1016/0167-2789(92)90242-F, 1992.
Rysgaard, S., Christensen, P., Sørensen, M., Funch, P., and Berg, P.: Marine meiofauna, carbon and nitrogen mineralization in sandy and soft sediments of Disko Bay, West Greenland, Aquat. Microb. Ecol., 21, 59–71, https://doi.org/10.3354/ame021059, 2000.
Schratzberger, M. and Ingels, J.: Meiofauna matters: The roles of meiofauna in benthic ecosystems, J. Exp. Mar. Biol. Ecol., 502, 12–25, https://doi.org/10.1016/j.jembe.2017.01.007, 2018.
Severin, K. P., Culver, S. J., and Blanpied, C.: Burrows and trails produced by Quinqueloculina impressa Reuss, a benthic foraminifer, in fine-grained sediment, Sedimentology, 29, 897–901, https://doi.org/10.1111/j.1365-3091.1982.tb00093.x, 1982.
Shen, H., Jiang, G., Wan, X., Li, H., Qiao, Y., Thrush, S., and He, P.: Response of the microbial community to bioturbation by benthic macrofauna on intertidal flats, J. Exp. Mar. Biol. Ecol., 488, 44–51, https://doi.org/10.1016/j.jembe.2016.12.010, 2017.
Šimek, K., Nedoma, J., Znachor, P., Kasalický, V., Jezbera, J., Horňák, K., and Sed'a, J.: A finely tuned symphony of factors modulates the microbial food web of a freshwater reservoir in spring, Limnol. Oceanogr., 59, 1477–1492, https://doi.org/10.4319/lo.2014.59.5.1477, 2014.
Stief, P. and de Beer, D.: Bioturbation effects of Chironomus riparius on the benthic N-cycle as measured using microsensors and microbiological assays, Aquat. Microb. Ecol., 27, 175–185, https://doi.org/10.3354/ame027175, 2002.
Thibault de Chanvalon, A., Metzger, E., Mouret, A., Cesbron, F., Knoery, J., Rozuel, E., Launeau, P., Nardelli, M. P., Jorissen, F. J., and Geslin, E.: Two-dimensional distribution of living benthic foraminifera in anoxic sediment layers of an estuarine mudflat (Loire estuary, France), Biogeosciences, 12, 6219–6234, https://doi.org/10.5194/bg-12-6219-2015, 2015.
Ullman, W. J. and Aller, R. C.: Diffusion coefficients in nearshore marine sediments1, Limnol. Oceanogr., 27, 552–556, https://doi.org/10.4319/lo.1982.27.3.0552, 1982.
Volkenborn, N., Polerecky, L., Hedtkamp, S. I. C., van Beusekom, J. E. E., and de Beer, D.: Bioturbation and bioirrigation extend the open exchange regions in permeable sediments, Limnol. Oceanogr., 52, 1898–1909, https://doi.org/10.4319/lo.2007.52.5.1898, 2007.
Walker, C. B., Torre, J. R. de la, Klotz, M. G., Urakawa, H., Pinel, N., Arp, D. J., Brochier-Armanet, C., Chain, P. S. G., Chan, P. P., Gollabgir, A., Hemp, J., Hügler, M., Karr, E. A., Könneke, M., Shin, M., Lawton, T. J., Lowe, T., Martens-Habbena, W., Sayavedra-Soto, L. A., Lang, D., Sievert, S. M., Rosenzweig, A. C., Manning, G., and Stahl, D. A.: Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea, P. Natl. Acad. Sci. USA, 107, 8818–8823, https://doi.org/10.1073/pnas.0913533107, 2010.
Wasmund, K., Mußmann, M., and Loy, A.: The life sulfuric: microbial ecology of sulfur cycling in marine sediments, Env. Microbiol. Rep., 9, 323–344, https://doi.org/10.1111/1758-2229.12538, 2017.
Short summary
Benthic foraminifera are single-cell marine organisms which can move in the sediment column. They were previously reported to horizontally and vertically transport sediment particles, yet the impact of their motion on the dissolved fluxes remains unknown. Using microprofiling, we show here that foraminiferal burrow formation increases the oxygen penetration depth in the sediment, leading to a change in the structure of the prokaryotic community.
Benthic foraminifera are single-cell marine organisms which can move in the sediment column....
Altmetrics
Final-revised paper
Preprint