Articles | Volume 21, issue 22
https://doi.org/10.5194/bg-21-4975-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-21-4975-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reviews and syntheses: Biological indicators of low-oxygen stress in marine water-breathing animals
Michael R. Roman
CORRESPONDING AUTHOR
Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, Maryland, USA
Andrew H. Altieri
Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA
Denise Breitburg
Smithsonian Environmental Research Center, Edgewater, Maryland, USA
Erica M. Ferrer
Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, USA
Natalya D. Gallo
Department of Biological Sciences, University of Bergen and Bjerknes Centre for Climate Research, Bergen, Norway
Shin-ichi Ito
Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
Karin Limburg
Department of Environmental Biology, State University of New York, Syracuse, New York, USA
Kenneth Rose
Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, Maryland, USA
Moriaki Yasuhara
School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China
Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
Related authors
No articles found.
Jialu Huang, Moriaki Yasuhara, He Wang, Pedro Julião Jimenez, Jiying Li, and Minhan Dai
Biogeosciences, 22, 4763–4777, https://doi.org/10.5194/bg-22-4763-2025, https://doi.org/10.5194/bg-22-4763-2025, 2025
Short summary
Short summary
We investigated the abundance, diversity, composition, and distribution of ostracods (a meiobenthic group) and their interactions with eutrophication and pollution through high-resolution sampling of surface sediment in Deep Bay, a small semi-enclosed riverine bay adjacent to two of the world’s most populated cities: Hong Kong and Shenzhen. The results support the idea that ostracods are a useful bioindicator of coastal benthic ecosystems shaped by distinct environmental problems.
This article is included in the Encyclopedia of Geosciences
Paul Pearce-Kelly, Andrew H. Altieri, John F. Bruno, Christopher E. Cornwall, Melanie McField, Aarón Israel Muñiz-Castillo, Juan Rocha, Renee O. Setter, Charles Sheppard, Rosa Maria Roman-Cuesta, and Chris Yesson
Earth Syst. Dynam., 16, 275–292, https://doi.org/10.5194/esd-16-275-2025, https://doi.org/10.5194/esd-16-275-2025, 2025
Short summary
Short summary
Coral reefs face unprecedented threats from multiple stressors, many of which are linked to human activities. Some stressors have tipping points that, if exceeded, could cause coral collapse. These include temperatures rising 1.2 °C above pre-industrial levels and atmospheric CO2 above 350 parts per million. Uncertainty remains for these thresholds; many stressors interact in ways we do not understand. It is important to study these and employ a precautionary principle when planning our actions.
This article is included in the Encyclopedia of Geosciences
Moriaki Yasuhara and Yuanyuan Hong
J. Micropalaeontol., 43, 519–527, https://doi.org/10.5194/jm-43-519-2024, https://doi.org/10.5194/jm-43-519-2024, 2024
Short summary
Short summary
We revisited a 19th-century taxonomic study on Hong Kong marine ostracods (the first study on Chinese marine ostracods) to compare it with a 21st-century survey. We found substantial differences in species, likely related to differences in pollution and climate between the 19th and 21st centuries. This discovery highlights the importance of historical ecology. Early natural historians documented "natural baseline" ecosystems before the substantial human presence with industrialization.
This article is included in the Encyclopedia of Geosciences
Skye Yunshu Tian, Martin Langer, Moriaki Yasuhara, and Chih-Lin Wei
Biogeosciences, 21, 3523–3536, https://doi.org/10.5194/bg-21-3523-2024, https://doi.org/10.5194/bg-21-3523-2024, 2024
Short summary
Short summary
Through the first large-scale study of meiobenthic ostracods from the diverse and productive reef ecosystem in the Zanzibar Archipelago, Tanzania, we found that the diversity and composition of ostracod assemblages as controlled by benthic habitats and human impacts were indicative of overall reef health, and we highlighted the usefulness of ostracods as a model proxy to monitor and understand the degradation of reef ecosystems from the coral-dominated phase to the algae-dominated phase.
This article is included in the Encyclopedia of Geosciences
Karin E. Limburg, Yvette Heimbrand, and Karol Kuliński
Biogeosciences, 20, 4751–4760, https://doi.org/10.5194/bg-20-4751-2023, https://doi.org/10.5194/bg-20-4751-2023, 2023
Short summary
Short summary
We found a 3-to-5-fold decline in boron in Baltic cod otoliths between the late 1990s and 2021. The trend correlates with declines in oxygen and pH but not with increased salinity. Otolith B : Ca correlated with phosphorus in a healthy out-group (Icelandic cod) but not in Baltic cod. The otolith biomarkers Mn : Mg (hypoxia proxy) and B : Ca in cod otoliths suggest a general increase in both hypoxia and acidification within Baltic intermediate and deep waters in the last decade.
This article is included in the Encyclopedia of Geosciences
Michele Casini, Martin Hansson, Alessandro Orio, and Karin Limburg
Biogeosciences, 18, 1321–1331, https://doi.org/10.5194/bg-18-1321-2021, https://doi.org/10.5194/bg-18-1321-2021, 2021
Short summary
Short summary
In the past 20 years the condition of the eastern Baltic cod has dropped, with large implications for the fishery. Our results show that simultaneously the cod population has moved deeper while low-oxygenated waters detrimental for cod growth have become shallower. Cod have thus dwelled more in detrimental waters, explaining the drop in its condition. This study, using long-term fish and hydrological monitoring data, evidences the impact of deoxygenation on fish biology and fishing.
This article is included in the Encyclopedia of Geosciences
Elizabeth D. LaBone, Kenneth A. Rose, Dubravko Justic, Haosheng Huang, and Lixia Wang
Biogeosciences, 18, 487–507, https://doi.org/10.5194/bg-18-487-2021, https://doi.org/10.5194/bg-18-487-2021, 2021
Short summary
Short summary
The hypoxic zone is an area of low dissolved oxygen (DO) in the Gulf of Mexico. Fish can be killed by exposure to hypoxia and can be negatively impacted by exposure to low, nonlethal DO concentrations (sublethal DO). We found that high sublethal area resulted in higher exposure and DO variability had a small effect on exposure. There was a large variation in exposure among individuals, which when combined with spatial variability of DO, can result in an underestimation of exposure when averaged.
This article is included in the Encyclopedia of Geosciences
Cited articles
Aberhan, M. and Baumiller, T. K.: Selective extinction among Early Jurassic bivalves: a consequence of anoxia, Geology, 31, 1077–1080, https://doi.org/10.1130/G19938.1, 2003.
Adamack, A. T., Rose, K. A., and Cerco, C. F.: Simulating the Effects of Nutrient Loading Rates and Hypoxia on Bay Anchovy in Chesapeake Bay Using Coupled Hydrodynamic, Water Quality, and Individual-Based Fish Models, Modeling Coastal Hypoxia, Springer International Publishing, 319–357, https://doi.org/10.1007/978-3-319-54571-4_12, 2017.
Affatati, A., Scaini, C., and Salon, S.: Ocean sound propagation in a changing climate: Global sound speed changes and identification of acoustic hotspots, Earth's Future, 10, e2021EF002099, 2022.
Alderdice, R., Suggett, D. J., Cárdenas, A., Hughes, D. J., Kühl, M., Pernice, M., and Voolstra, C. R.: Divergent expression of hypoxia response systems under deoxygenation in reef-forming corals aligns with bleaching susceptibility, Glob. Change Biol., 27, 312–326, https://doi.org/10.1111/gcb.15436, 2020.
Alderdice, R., Perna, G., Cárdenas, A., Hume, B. C. C., Wolf, M., Kühl, M., Pernice, M., Suggett, D. J., and Voolstra, C. R.: Deoxygenation lowers the thermal threshold of coral bleaching, Sci. Rep., 12, 18273–18273, https://doi.org/10.1038/s41598-022-22604-3, 2022.
Altieri, A. H.: Dead zones enhance key fisheries species by providing predation refuge, Ecology, 89, 2808–2818, https://doi.org/10.1890/07-0994.1, 2008.
Altieri, A. H. and Witman, J. D.: Local extinction of a foundation species in a hypoxic estuary: integrating individuals to ecosystem, Ecology, 87, 717–730, https://doi.org/10.1890/05-0226, 2006.
Altieri, A. H., Harrison, S. B., Seemann, J., Collin, R., Diaz, R. J., and Knowlton, N.: Tropical dead zones and mass mortalities on coral reefs, P. Natl. Acad. Sci. USA, 114, 3660–3665, https://doi.org/10.1073/pnas.1621517114, 2017.
Alvarez Zarikian, C. A., Nadiri, C., Alonso-García, M., Rodrigues, T., Huang, H.-H. M., Lindhorst, S., Kunkelova, T., Kroon, D., Betzler, C., and Yasuhara, M.: Ostracod response to monsoon and OMZ variability over the past 1.2 Myr, Mar. Micropaleontol., 174, 102105, https://doi.org/10.1016/j.marmicro.2022.102105, 2022.
Ambler, J. W.: Seasonal factors affecting egg production and viability of eggs of Acartia tonsa Dana from East Lagoon, Galveston, Texas, Estuar. Coast. Shelf Sci., 20, 743–760, https://doi.org/10.1016/0272-7714(85)90030-7, 1985.
Ariyama, H. and Secor, D. H.: Effect of environmental factors, especially hypoxia and typhoons, on recruitment of the Gazami crab Portunus trituberculatus in Osaka Bay, Japan, Fisheries Sci., 76, 315–324, https://doi.org/10.1007/s12562-009-0198-6, 2010.
Arntz, W. E., Gallardo, V. A., Gutiérrez, D., Isla, E., Levin, L. A., Mendo, J., Neira, C., Rowe, G. T., Tarazona, J., and Wolff, M.: El Niño and similar perturbation effects on the benthos of the Humboldt, California, and Benguela Current upwelling ecosystems, Adv. Geosci., 6, 243–265, https://doi.org/10.5194/adgeo-6-243-2006, 2006.
Atkinson, D.: Temperature and Organism Size–A Biological Law for Ectotherms?, Adv. Ecol. Res., 25, 1–58, https://doi.org/10.1016/s0065-2504(08)60212-3, 1994.
Baker, S. M. and Mann, R.: Effects of Hypoxia and Anoxia on Larval Settlement, Juvenile Growth, and Juvenile Survival of the Oyster Crassostrea virginica, Biol. Bull., 182, 265–269, https://doi.org/10.2307/1542120, 1992.
Batiuk, R. A., Breitburg, D. L., Diaz, R. J., Cronin, T. M., Secor, D. H., and Thursby, G.: Derivation of habitat-specific dissolved oxygen criteria for Chesapeake Bay and its tidal tributaries, J. Exp. Mar. Biol. Ecol., 381, S204–S215, https://doi.org/10.1016/j.jembe.2009.07.023, 2009.
Berggreen, U., Hansen, B., and Kiørboe, T.: Food size spectra, ingestion and growth of the copepod Acartia tonsa during development: Implications for determination of copepod production, Mar. Biol., 99, 341–352, https://doi.org/10.1007/bf02112126, 1988.
Boyer, D. C., Boyer, H. J., Fossen, I., and Kreiner, A.: Changes in abundance of the northern Benguela sardine stock during the decade 1990–2000, with comments on the relative importance of fishing and the environment, S. Afr. J. Marine Sci., 23, 67–84, https://doi.org/10.2989/025776101784528854, 2001.
Brandt, S., Kolesar, S., Glaspie, C., Laurent, A., Sellinger, C., Pierson, J., Roman, M., and Boicourt, W.: Functional Seascapes: Understanding the Consequences of Hypoxia and Spatial Patterning in Pelagic Ecosystems, Oceanography, 36, 28–30, https://doi.org/10.5670/oceanog.2023.s1.8, 2023.
Breitburg, D.: Effects of hypoxia, and the balance between hypoxia and enrichment, on coastal fishes and fisheries, Estuaries, 25, 767–781, https://doi.org/10.1007/bf02804904, 2002.
Breitburg, D., Rose, K., and Cowan, J.: Linking water quality to larval survival:predation mortality of fish larvae in an oxygen-stratified water column, Mar. Ecol. Prog. Ser., 178, 39–54, https://doi.org/10.3354/meps178039, 1999.
Breitburg, D., Levin, L. A., Oschlies, A., Grégoire, M., Chavez, F. P., Conley, D. J., Garçon, V., Gilbert, D., Gutiérrez, D., Isensee, K., Jacinto, G. S., Limburg, K. E., Montes, I., Naqvi, S. W. A., Pitcher, G. C., Rabalais, N. N., Roman, M. R., Rose, K. A., Seibel, B. A., Telszewski, M., Yasuhara, M., and Zhang, J.: Declining oxygen in the global ocean and coastal waters, Science, 359, 46, https://doi.org/10.1126/science.aam7240, 2018.
Breitburg, D. L., Loher, T., Pacey, C. A., and Gerstein, A.: Varying effects of low dissolved oxygen on trophic interactions in an estuarine food web, Ecol. Monogr., 67, 489–507, https://doi.org/10.1890/0012-9615(1997)067[0489:veoldo]2.0.co;2, 1997.
Breitburg, D. L., Hondorp, D. W., Davias, L. A., and Diaz, R. J.: Hypoxia, Nitrogen, and Fisheries: Integrating Effects Across Local and Global Landscapes, Annu. Rev. Mar. Sci., 1, 329–349, https://doi.org/10.1146/annurev.marine.010908.163754, 2009.
Breitburg, D. L, Baumann, H., Sokolova, I. M., and Frieder, C. A.: Multiple stressors-forces that combine to worsen deoxygenation and its effects, in: Ocean deoxygenation: Everyone's problem Causes, impacts, consequences and solutions, International Union for Conservation of Nature and Natural Resources, Gland, Switzerland, 225–247, ISBN 978-2-8317-2013-5, 2019.
Buchheister, A., Bonzek, C., Gartland, J., and Latour, R.: Patterns and drivers of the demersal fish community of Chesapeake Bay, Mar. Ecol. Prog. Ser., 481, 161–180, https://doi.org/10.3354/meps10253, 2013.
Burnett, K. G. and Burnett, L. E.: Immune Defense in Hypoxic Waters: Impacts of CO2 Acidification, Biol. Bull., 243, 120–133, https://doi.org/10.1086/721322, 2022.
Cadiz, L., Zambonino-Infante, J.-L., Quazuguel, P., Madec, L., Le Delliou, H., and Mazurais, D.: Metabolic response to hypoxia in European sea bass (Dicentrarchus labrax) displays developmental plasticity, Comp. Biochem. Phys. B, 215, 1–9, https://doi.org/10.1016/j.cbpb.2017.09.005, 2018.
Canfield, D. E.: Factors influencing organic carbon preservation in marine sediments, Chem. Geol., 114, 315–322, https://doi.org/10.1016/0009-2541(94)90061, 1994.
Casini, M., Käll, F., Hansson, M., Plikshs, M., Baranova, T., Karlsson, O., Lundström, K., Neuenfeldt, S., Gårdmark, A., and Hjelm, J.: Hypoxic areas, density-dependence and food limitation drive the body condition of a heavily exploited marine fish predator, R Soc. Open Sci., 3, 160416–160416, https://doi.org/10.1098/rsos.160416, 2016.
Caswell, B. A., Frid, C. L. J., and Borja, A.: An ecological status indicator for all time: Are AMBI and M-AMBI effective indicators of change in deep time?, Mar. Pollut. Bull., 140, 472–484, https://doi.org/10.1016/j.marpolbul.2019.01.068, 2019.
Cavole, L. M., Limburg, K. E., Gallo, N. D., Vea Salvanes, A. G., Ramírez-Valdez, A., Levin, L. A., Oropeza, O. A., Hertwig, A., Liu, M.-C., and McKeegan, K. D.: Otoliths of marine fishes record evidence of low oxygen, temperature and pH conditions of deep Oxygen Minimum Zones, Deep-Sea Res. Pt. I, 191, 103941, https://doi.org/10.1016/j.dsr.2022.103941, 2023.
Chalar, G., Arocena, R., Pacheco, J. P. and Fabián, D: Trophic assessment of streams in Uruguay: a trophic State Index for Benthic Invertebrates (TSI-BI), Ecol. Indic., 11, 362–369, https://doi.org/10.1016/j.ecolind.2010.06.004, 2011.
Chapelle, G. and Peck, L. S.: Polar gigantism dictated by oxygen availability, Nature, 399, 114–115, https://doi.org/10.1038/20099, 1999.
Chesney, E. J., Baltz, D. M., and Thomas, R. G.: Louisiana estuarine and coastal fisheries and habitats: perspectives from a fish's eye view, Ecol. Appl., 10, 350–366, https://doi.org/10.1890/1051-0761(2000)010[0350:leacfa]2.0.co;2, 2000.
Cheung, W. W., Sarmiento, J. L., Dunne, J., Frölicher, T. L., Lam, V. W., Deng Palomares, M. L., Watson, R., Pauly, D.: Shrinking of fishes exacerbates impacts of global ocean changes on marine ecosystems, Nat. Clim. Change, 3, 254–258, 2013.
Christensen, V. and Walters, C. J.: Ecopath with Ecosim: methods, capabilities and limitations, Ecol. Model., 172, 109–139, https://doi.org/10.1016/j.ecolmodel.2003.09.003, 2004.
Chu, J. W. F. and Gale, K. S. P.: Ecophysiological limits to aerobic metabolism in hypoxia determine epibenthic distributions and energy sequestration in the northeast Pacific ocean, Limnol. Oceanogr., 62, 59–74, https://doi.org/10.1002/lno.10370, 2016.
Chu, J. W. F., Nephin, J., Georgian, S., Knudby, A., Rooper, C., and Gale, K. S. P.: Modeling the environmental niche space and distributions of cold-water corals and sponges in the Canadian northeast Pacific Ocean, Deep-Sea Res. Pt. I, 151, 103063, https://doi.org/10.1016/j.dsr.2019.06.009, 2019.
Chung, M.-T., Trueman, C. N., Godiksen, J. A., Holmstrup, M. E., and Grønkjær, P.: Field metabolic rates of teleost fishes are recorded in otolith carbonate, Commun. Biol., 2, 24–24, https://doi.org/10.1038/s42003-018-0266-5, 2019.
Clarke, T. M., Wabnitz, C. C. C., Striegel, S., Frölicher, T. L., Reygondeau, G., and Cheung, W. W. L.: Aerobic growth index (AGI): An index to understand the impacts of ocean warming and deoxygenation on global marine fisheries resources, Prog. Oceanogr., 195, 102588, https://doi.org/10.1016/j.pocean.2021.102588, 2021.
Cosme, N. and Hauschild, M. Z.: Effect Factors for marine eutrophication in LCIA based on species sensitivity to hypoxia, Ecol. Indic., 69, 453–462, https://doi.org/10.1016/j.ecolind.2016.04.006, 2016.
Cosme, N., Jones, M. C., Cheung, W. W. L., and Larsen, H. F.: Spatial differentiation of marine eutrophication damage indicators based on species density, Ecol. Indic., 73, 676–685, https://doi.org/10.1016/j.ecolind.2016.10.026, 2017.
Costantini, M., Ludsin, S. A., Mason, D. M., Zhang, X., Boicourt, W. C., and Brandt, S. B.: Effect of hypoxia on habitat quality of striped bass (Morone saxatilis) in Chesapeake Bay, Can. J. Fish. Aquat. Sci., 65, 989–1002, https://doi.org/10.1139/f08-021, 2008.
Craig, J.: Aggregation on the edge: effects of hypoxia avoidance on the spatial distribution of brown shrimp and demersal fishes in the Northern Gulf of Mexico, Mar. Ecol. Prog. Ser., 445, 75–95, https://doi.org/10.3354/meps09437, 2012.
Cronin, T. M. and Vann, C. D.: The sedimentary record of climatic and anthropogenic influence on the Patuxent estuary and Chesapeake Bay ecosystems, Estuaries, 26, 196–209, https://doi.org/10.1007/BF02695962, 2003.
Dai, M., Zhao, Y., Chai, F., Chen, M., Chen, N., Chen, Y., Cheng, D., Gan, J., Guan, D., Hong, Y., Huang, J., Lee, Y., Leung, K. M. Y., Lim, P. E., Lin, S., Lin, X., Liu, X., Liu, Z., Luo, Y.-W., Meng, F., Sangmanee, C., Shen, Y., Uthaipan, K., Wan Talaat, W. I. A., Wan, X. S., Wang, C., Wang, D., Wang, G., Wang, S., Wang, Y., Wang, Y., Wang, Z., Wang, Z., Xu, Y., Yang, J.-Y. T., Yang, Y., Yasuhara, M., Yu, D., Yu, J., Yu, L., Zhang, Z., and Zhang, Z.: Persistent eutrophication and hypoxia in the coastal ocean, Cambridge Prisms: Coastal Futures, 1, https://doi.org/10.1017/cft.2023.7, 2023.
Dauvin, J. C.: Twenty years of application of Polychaete/Amphipod ratios to assess diverse human pressures in estuarine and coastal marine environments: A review, Ecol. Indic., 95, 427–435, https://doi.org/10.1016/j.ecolind.2018.07.049, 2018.
Davies, S. M., Sánchez-Velasco, L., Beier, E., Godínez, V. M., Barton, E. D., and Tamayo, A.: Three-dimensional distribution of larval fish habitats in the shallow oxygen minimum zone in the eastern tropical Pacific Ocean off Mexico, Deep-Sea Res. Pt. I, 101, 118–129, https://doi.org/10.1016/j.dsr.2015.04.003, 2015.
Deutsch, C., Ferrel, A., Seibel, B., Pörtner, H.-O., and Huey, R. B.: Climate change tightens a metabolic constraint on marine habitats, Science, 348, 1132–1135, https://doi.org/10.1126/science.aaa1605, 2015.
Deutsch, C., Penn, J. L., and Seibel, B.: Metabolic trait diversity shapes marine biogeography, Nature, 585, 557–562, https://doi.org/10.1038/s41586-020-2721-y, 2020.
Deutsch, C., Penn, J. L., Verberk, W. C. E. P., Inomura, K., Endress, M.-G., and Payne, J. L.: Impact of warming on aquatic body sizes explained by metabolic scaling from microbes to macrofauna, P. Natl. Acad. Sci. USA, 119, e2201345119–e2201345119, https://doi.org/10.1073/pnas.2201345119, 2022.
Deutsch, C., Penn, J. L., and Lucey, N.: Climate, Oxygen, and the Future of Marine Biodiversity, Annu. Rev. Mar. Sci., 16, 217–245, https://doi.org/10.1146/annurev-marine-040323-095231, 2024.
Diaz, R. J. and Breitburg, D. L.: Chapter 1 The Hypoxic Environment, Fish Physiol., 27, 1–23, https://doi.org/10.1016/s1546-5098(08)00001-0, 2009.
Diaz, R. J. and Rosenberg, R.: Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna, Oceanography and marine biology, An annual review, 33, 245–303, 1995.
Diaz, R. J. and Rosenberg, R.: Spreading Dead Zones and Consequences for Marine Ecosystems, Science, 321, 926–929, https://doi.org/10.1126/science.1156401, 2008.
Doak, D. F., Waddle, E., Langendorf, R. E., Louthan, A. M., Isabelle Chardon, N., Dibner, R. R., Keinath, D. A., Lombardi, E., Steenbock, C., Shriver, R. K., Linares, C., Begoña Garcia, M., Funk, W. C., Fitzpatrick, S. W., Morris, W. F., and DeMarche, M. L.: A critical comparison of integral projection and matrix projection models for demographic analysis, Ecol. Monogr., 91, e01447, https://doi.org/10.1002/ecm.1447, 2021.
Ducrotoy, J.-P., Michael, E., Cutts, N. D., Franco, A., Little, S., Mazik, K., and Wilkinson, M.: Temperate Estuaries: Their Ecology Under Future Environmental Changes, Coast. Estuar., Elsevier, 577–594, https://doi.org/10.1016/b978-0-12-814003-1.00033-2, 2019.
Dunn, D. C., Van Dover, C. L., Etter, R. J., Smith, C. R., Levin, L. A., Morato, T., Colaço, A., Dale, A. C., Gebruk, A. V., Gjerde, K. M., Halpin, P. N.: A strategy for the conservation of biodiversity on mid-ocean ridges from deep-sea mining, Sci. Adv., 4, eaar4313, https://doi.org/10.1126/sciadv.aar4313, 2018.
DePasquale, E., Baumann, H., and Gobier, C. J.: Vulnerability of early life stage Northwest Atlantic forage fish to ocean acidification and low oxygen., Mar. Ecol. Prog. Ser., 523, 145–156, https://doi.org/10.3354/meps11142, 2015.
Duskey, E.: Metabolic prioritization of fish in hypoxic waters: an integrative modeling approach, Front. Mar. Sci., 10, 1206506, https://doi.org/10.3389/fmars.2023.1206506, 2023.
Duskey, E., Casini, M., Limburg, K., and Gårdmark, A.: Declining food availability and habitat shifts 600 drive community responses to marine hypoxia, bioRxiv (Cold Spring Harbor Laboratory), 04, https://doi.org/10.1101/2023.04.14.536810, 2023.
Eby, L. A. and Crowder, L. B.: Hypoxia-based habitat compression in the Neuse River Estuary: context-dependent shifts in behavioral avoidance thresholds, Can. J. Fish. Aquat. Sci., 59, 952–965, https://doi.org/10.1139/f02-067, 2002.
Eby, L., Crowder, L., McClellan, C., Peterson, C., and Powers, M.: Habitat degradation from intermittent hypoxia: impacts on demersal fishes, Mar. Ecol. Prog. Ser., 291, 249–262, https://doi.org/10.3354/meps291249, 2005.
Ekau, W., Auel, H., Pörtner, H.-O., and Gilbert, D.: Impacts of hypoxia on the structure and processes in pelagic communities (zooplankton, macro-invertebrates and fish), Biogeosciences, 7, 1669–1699, https://doi.org/10.5194/bg-7-1669-2010, 2010.
Enomoto, M., Ito, S., Takahashi, M., Sassa, C., Higuchi, T., and Shirai, K.: Vertical habitat shifts of juvenile jack mackerel estimated using otolith oxygen stable isotope, Prog. Oceanogr., 208, 102897, https://doi.org/10.1016/j.pocean.2022.102897, 2022.
Franco, A. C., Kim, H., Frenzel, H., Deutsch, C., Ianson, D., Sumaila, U. R., and Tortell, P. D.: Impact of warming and deoxygenation on the habitat distribution of Pacific halibut in the Northeast Pacific, Fish. Oceanogr., 31, 601–614, https://doi.org/10.1111/fog.12610, 2022.
Friedland, R., Macias, D., Cossarini, G., Daewel, U., Estournel, C., Garcia-Gorriz, E., Grizzetti, B., Grégoire, M., Gustafson, B., Kalaroni, S., Kerimoglu, O., Lazzari, P., Lenhart, H., Lessin, G., Maljutenko, I., Miladinova, S., Müller-Karulis, B., Neumann, T., Parn, O., Pätsch, J., Piroddi, C., Raudsepp, U., Schrum, C., Stegert, C., Stips, A., Tsiaras, K., Ulses, C., and Vandenbulcke, L.: Effects of Nutrient Management Scenarios on Marine Eutrophication Indicators: A Pan-European, Multi-Model Assessment in Support of the Marine Strategy Framework Directive, Front. Mar. Sci., 8, 596126, https://doi.org/10.3389/fmars.2021.596126, 2021.
Fry, F. E. T. and Hart, J. S.: The relation of temperature and oxygen consumption in goldfish, Biol. Bull., 94, 66–77, 1948.
Gallo, N. D.: Influence of ocean deoxygenation on demersal fish communities: Lessons from upwelling margins and oxygen minimum zones, UC San Diego, 369 pp., https://escholarship.org/uc/item/6bb6v4z8 (last access: 7 November 2024), 2018.
Gallo, N., Beckwith, M., Wei, C., Levin, L., Kuhnz, L., and Barry, J.: Dissolved oxygen and temperature best predict deep-sea fish community structure in the Gulf of California with climate change implications, Mar. Ecol. Prog. Ser., 637, 159–180, https://doi.org/10.3354/meps13240, 2020.
Gallo, N. D. and Levin, L. A.: Fish Ecology and Evolution in the World's Oxygen Minimum Zones and Implications of Ocean Deoxygenation, Adv. Mar. Biol., 117–198, https://doi.org/10.1016/bs.amb.2016.04.001, 2016.
Gallo, N. D., Levin, L. A., Beckwith, M., and Barry, J. P.: Home sweet suboxic home: remarkable hypoxia tolerance in two demersal fish species in the Gulf of California, Ecology, 100, 5, https://doi.org/10.1002/ecy.2539, 2018.
Garçon, V., Karstensen, J., Palacz, A., Telszewski, M., Aparco Lara, T., Breitburg, D., Chavez, F., Coelho, P., Cornejo-D'Ottone, M., Santos, C., Fiedler, B., Gallo, N. D., Grégoire, M., Gutierrez, D., Hernandez-Ayon, M., Isensee, K., Koslow, T., Levin, L., Marsac, F., Maske, H., Mbaye, B. C., Montes, I., Naqvi, W., Pearlman, J., Pinto, E., Pitcher, G., Pizarro, O., Rose, K., Shenoy, D., Van der Plas, A., Vito, M. R., and Weng, K.: Multidisciplinary Observing in the World Ocean's Oxygen Minimum Zone Regions: From Climate to Fish – The VOICE Initiative, Front. Mar. Sci., 6, 2296–7745, https://doi.org/10.3389/fmars.2019.00722, 2019.
Gascuel, D., Bozec, Y.-M., Chassot, E., Colomb, A., and Laurans, M.: The trophic spectrum: theory and application as an ecosystem indicator, ICES J. Mar. Sci., 62, 443–452, https://doi.org/10.1016/j.icesjms.2004.12.013, 2005.
Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M., and Charnov, E. L.: Effects of Size and Temperature on Metabolic Rate, Science, 293, 2248–2251, https://doi.org/10.1126/science.1061967, 2001.
Glaspie, C. N., Clouse, M. A., Adamack, A. T., Cha, Y., Ludsin, S. A., Mason, D. M., Roman, M. R., Stow, C. A., and Brandt, S. B.: Effect of Hypoxia on Diet of Atlantic Bumpers in the Northern Gulf of Mexico, T. Am. Fish. Soc., 147, 740–748, https://doi.org/10.1002/tafs.10063, 2018.
Glud, R. N., Thamdrup, B., Stahl, H., Wenzhoefer, F., Glud, A., Nomaki, H., Oguri, K., Revsbech, N. P., and Kitazato, H.: Nitrogen cycling in a deep ocean margin sediment (Sagami Bay, Japan), Limnol. Oceanogr., 54, 723–734, https://doi.org/10.4319/lo.2009.54.3.0723, 2009.
Gooday, A. J., Bernhard, J. M., Levin, L. A., and Suhr, S. B.: Foraminifera in the Arabian Sea oxygen minimum zone and other oxygen-deficient settings: taxonomic composition, diversity, and relation to metazoan faunas, Deep-Sea Res. Pt. II, 47, 25–54, https://doi.org/10.1016/s0967-0645(99)00099-5, 2000.
Gooday, A. J., Levin, L. A., Aranda da Silva, A., Bett, B. J., Cowie, G. L., Dissard, D., Gage, J. D., Hughes, D. J., Jeffreys, R., Lamont, P. A., Larkin, K. E., Murty, S. J., Schumacher, S., Whitcraft, C., and Woulds, C.: Faunal responses to oxygen gradients on the Pakistan margin: A comparison of foraminiferans, macrofauna and megafauna, Deep-Sea Res. Pt. II, 56, 488–502, https://doi.org/10.1016/j.dsr2.2008.10.003, 2009a.
Gooday, A. J., Bett, B. J., Escobar, E., Ingole, B., Levin, L. A., Neira, C., Raman, A. V., and Sellanes, J.: Habitat heterogeneity and its influence on benthic biodiversity in oxygen minimum zones, Mar. Ecol., 31, 125–147, https://doi.org/10.1111/j.1439-0485.2009.00348.x, 2010.
Grégoire, M., Garçon, V., Garcia, H., Breitburg, D., Isensee, K., Oschlies, A., Telszewski, M., Barth, A., Bittig, H. C., Carstensen, J., Carval, T., Chai, F., Chavez, F., Conley, D., Coppola, L., Crowe, S., Currie, K., Dai, M., Deflandre, B., Dewitte, B., Diaz, R., Garcia-Robledo, E., Gilbert, D., Giorgetti, A., Glud, R., Gutierrez, D., Hosoda, S., Ishii, M., Jacinto, G., Langdon, C., Lauvset, S. K., Levin, L. A., Limburg, K. E., Mehrtens, H., Montes, I., Naqvi, W., Paulmier, A., Pfeil, B., Pitcher, G., Pouliquen, S., Rabalais, N., Rabouille, C., Recape, V., Roman, M., Rose, K., Rudnick, D., Rummer, J., Schmechtig, C., Schmidtko, S., Seibel, B., Slomp, C., Sumalia, U. R., Tanhua, T., Thierry, V., Uchida, H., Wanninkhof, R., and Yasuhara, M.: A Global Ocean Oxygen Database and Atlas for Assessing and Predicting Deoxygenation and Ocean Health in the Open and Coastal Ocean, Front. Mar. Sci., 8, 724913, https://doi.org/10.3389/fmars.2021.724913, 2021.
Gregory, T. R. and Wood, C. M.: The effects of chronic plasma cortisol elevation on the feeding behaviour, growth, competitive ability, and swimming performance of juvenile rainbow trout, Phys. Biochem. Zool., 72, 286–295, 1999.
Guo, Y., Wu, C., and Sun, J.: Pathogenic bacteria significantly increased under oxygen depletion in coastal waters: A continuous observation in the central Bohai Sea, Front. Microbiol., 13, 1035904–1035904, https://doi.org/10.3389/fmicb.2022.1035904, 2022.
Gutiérrez, D., Enríquez, E., Purca, S., Quipúzcoa, L., Marquina, R., Flores, G., and Graco, M.: Oxygenation episodes on the continental shelf of central Peru: Remote forcing and benthic ecosystem response, Prog. Oceanogr., 79, 177–189, https://doi.org/10.1016/j.pocean.2008.10.025, 2008.
Hale, S. S., Cicchetti, G., and Deacutis, C. F.: Eutrophication and Hypoxia Diminish Ecosystem Functions of Benthic Communities in a New England Estuary, Front. Mar. Sci., 3, 249, https://doi.org/10.3389/fmars.2016.00249, 2016.
Herbinger, C. M. and Friars, G. W.: Correlation between condition factor and total lipid content in Atlantic salmon, Salmo salar L., parr, Aquac. Res., 22, 527–529, https://doi.org/10.1111/j.1365-2109.1991.tb00766.x, 1991.
Hofmann, A. F., Peltzer, E. T., Walz, P. M., and Brewer, P. G.: Hypoxia by degrees: Establishing definitions for a changing ocean, Deep-Sea Res. Pt. I, 58, 1212–1226, https://doi.org/10.1016/j.dsr.2011.09.004, 2011.
Hou, Z.-S., Wen, H.-S., Li, J.-F., He, F., Li, Y., and Qi, X.: Environmental hypoxia causes growth retardation, osteoclast differentiation and calcium dyshomeostasis in juvenile rainbow trout (Oncorhynchus mykiss), Sci. Total Environ., 705, 135272, https://doi.org/10.1016/j.scitotenv.2019.135272, 2020.
Houde, E. D.: Patterns and consequences of selective processes in teleost early life histories, Early Life History and Recruitment in Fish Populations, Springer, Dordrecht, 173–196, https://doi.org/10.1007/978-94-009-1439-1_6, 1997.
Howard, E. M., Penn, J. L., Frenzel, H., Seibel, B. A., Bianchi, D., Renault, L., Kessouri, F., Sutula, M. A., McWilliams, J. C., and Deutsch, C.: Climate-driven aerobic habitat loss in the California Current System, Sci. Adv., 15, eaay3188, https://doi.org/10.1126/sciadv.aay3188, 2020.
Hughes, A. C. and Grumbine, R. E.: The Kunming-Montreal Global Biodiversity Framework: what it does and does not do, and how to improve it, Front. Environ. Sci., 11, 281536, https://doi.org/10.3389/fenvs.2023.1281536, 2023.
Hunter, W. R., Levin, L. A., Kitazato, H., and Witte, U.: Macrobenthic assemblage structure and organismal stoichiometry control faunal processing of particulate organic carbon and nitrogen in oxygen minimum zone sediments, Biogeosciences, 9, 993–1006, https://doi.org/10.5194/bg-9-993-2012, 2012.
Ingham, M. C., Cook, S. K., and Hausknecht, K. A.: Oxycline characteristics and skipjack tuna distribution in the southeastern tropical Atlantic, Fish. Bull., 75, 857–865, 1977.
Itakura, H., O'Brien, M. H. P., and Secor, D.: Tracking oxy-thermal habitat compression encountered by Chesapeake Bay striped bass through acoustic telemetry, ICES J. Mar. Sci., 78, 1049–1062, https://doi.org/10.1093/icesjms/fsab009, 2021.
Jackson, L. E., Kurtz, J. C., and Fisher, W. S.: Evaluation Guidelines for Ecol. Indic., United States, U.S. Environmental Protection Agency, Office of Research and Development, EPA/620/R-99/005, 2000.
Jacobsen, A., de Miranda Azevedo, R., Juty, N., Batista, D., Coles, S., Cornet, R., Courtot, M., Crosas, M., Dumontier, M., Evelo, C. T., Goble, C., Guizzardi, G., Hansen, K. K., Hasnain, A., Hettne, K., Heringa, J., Hooft, R. W. W., Imming, M., Jeffery, K. G., Kaliyaperumal, R., Kersloot, M. G., Kirkpatrick, C. R., Kuhn, T., Labastida, I., Magagna, B., McQuilton, P., Meyers, N., Montesanti, A., van Reisen, M., Rocca-Serra, P., Pergl, R., Sansone, S.-A., da Silva Santos, L. O. B., Schneider, J., Strawn, G., Thompson, M., Waagmeester, A., Weigel, T., Wilkinson, M. D., Willighagen, E. L., Wittenburg, P., Roos, M., Mons, B., and Schultes, E.: FAIR Principles: Interpretations and Implementation Considerations, Data Intelligence, 2, 10–29, https://doi.org/10.1162/dint_r_00024, 2020.
Jeffreys, R., Levin, L., Lamont, P., Woulds, C., Whitcraft, C., Mendoza, G., Wolff, G., and Cowie, G.: Living on the edge: single-species dominance at the Pakistan oxygen minimum zone boundary, Mar. Ecol. Prog. Ser., 470, 79–99, https://doi.org/10.3354/meps10019, 2012.
Jones, J., Hunter, E., Hambach, B., Wilding, M., and Trueman, C. N.: Individual variation in field metabolic rates of wild living fish have phenotypic and ontogenetic underpinnings: insights from stable isotope compositions of otoliths, Frontiers in Ecology and Evolution, 11, 1161105, https://doi.org/10.3389/fevo.2023.1161105, 2023.
Jung, S. and Houde, E.: Production of bay anchovy Anchoa mitchilli in Chesapeake Bay: application of size-based theory, Mar. Ecol. Prog. Ser., 281, 217–232, https://doi.org/10.3354/meps281217, 2004.
Kallio, P. J., Okamoto, K., O'Brien, S., Carrero, P., Makino, Y., Tanaka, H., and Poellinger, L.: Signal transduction in hypoxic cells: inducible nuclear translocation and recruitment of the CBP/p300 coactivator by the hypoxia-inducible factor-1alpha, EMBO J., 17, 6573–6586, https://doi.org/10.1093/emboj/17.22.6573, 1998.
Karlsen, A. W., Cronin, T. M., Ishman, S. E., Willard, D. A., Kerhin, R., Holmes, C. W., and Marot, M.: Historical Trends in Chesapeake Bay Dissolved Oxygen Based on Benthic Foraminifera from Sediment Cores, Estuaries, 23, 488–508, https://doi.org/10.2307/1353141, 2000.
Keister, J., Houde, E., and Breitburg, D.: Effects of bottom-layer hypoxia on abundances and depth distributions of organisms in Patuxent River, Chesapeake Bay, Mar. Ecol. Prog. Ser., 205, 43–59, https://doi.org/10.3354/meps205043, 2000.
Keister, J. E. and Tuttle, L. B.: Effects of bottom-layer hypoxia on spatial distributions and community structure of mesozooplankton in a sub-estuary of Puget Sound, Washington, USA, Limnol. Oceanogr., 58, 667–680, https://doi.org/10.4319/lo.2013.58.2.0667, 2013.
Keller, A. A., Ciannelli, L., Wakefield, W. W., Simon, V., Barth, J. A., and Pierce, S. D.: Occurrence of demersal fishes in relation to near-bottom oxygen levels within the California Current large marine ecosystem, Fish. Oceanogr., 24, 162–176, https://doi.org/10.1111/fog.12100, 2015.
Kim, H., Franco, A. C., and Sumaila, U. R.: A Selected Review of Impacts of Ocean Deoxygenation on Fish and Fisheries, Fishes, 8, 316, https://doi.org/10.3390/fishes8060316, 2023.
Kimmel, D. G., Boynton, W. R., and Roman, M. R.: Long-term decline in the calanoid copepod Acartia tonsa in central Chesapeake Bay, USA: An indirect effect of eutrophication?, Estuar. Coast. Shelf Sci., 101, 76–85, https://doi.org/10.1016/j.ecss.2012.02.019, 2012.
Kraus, R. T., Secor, D. H., and Wingate, R. L.: Testing the thermal-niche oxygen-squeeze hypothesis for estuarine striped bass, Environ. Biol. Fish., 98, 2083–2092, https://doi.org/10.1007/s10641-015-0431-3, 2015.
Laffoley, D. and Baxter, J, M.: Ocean deoxygenation: Everyone's problem-causes, impacts, consequences and solutions, Gland, Switzerland, IUCN, 2019.
Lai, K. P., Wang, S. Y., Li, J. W., Tong, Y., Chan, T. F., Jin, N., Tse, A., Zhang, J. W., Wan, M. T., Tam, N., Au, D. W. T., Lee, B.-Y., Lee, J.-S., Wong, A. S. T., Kong, R. Y. C., and Wu, R. S. S.: Hypoxia Causes Transgenerational Impairment of Ovarian Development and Hatching Success in Fish, Environ. Sci. Technol., 53, 3917–3928, https://doi.org/10.1021/acs.est.8b07250, 2019.
Léger, J. A., Athanasio, C. G., Zhera, A., Chauhan, M. F., and Simmons, D. B.: Hypoxic responses in Oncorhynchus mykiss involve angiogenesis, lipid, and lactate metabolism, which may be triggered by the cortisol stress response and epigenetic methylation, Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 39, 100860, 2021.
Leung, J. Y. S. and McAfee, D.: Stress across life stages: Impacts, responses and consequences for marine organisms, Sci. Total Environ., 700, 134491, https://doi.org/10.1016/j.scitotenv.2019.134491, 2020.
Levin, L. A.: Oxygen minimum zone benthos: adaptations and community responses to hypoxia. Oceanography and Marine Biology: An Annual Review, 41, 1–45, 2003.
Levin, L., Gutiérrez, D., Rathburn, A., Neira, C., Sellanes, J., Muñoz, P., Gallardo, V., and Salamanca, M.: Benthic processes on the Peru margin: a transect across the oxygen minimum zone during the 1997–98 El Niño, Prog. Oceanogr., 53, 1–27, https://doi.org/10.1016/s0079-6611(02)00022-8, 2002.
Levin, L. A. and Gage, J. D.: Relationships between oxygen, organic matter and the diversity of bathyal macrofauna, Deep-Sea Res. Pt. II, 45, 129–163, https://doi.org/10.1016/s0967-0645(97)00085-4, 1998.
Levin, L. A., Huggett, C. L., and Wishner, K. F.: Control of deep-sea benthic community structure by oxygen and organic-matter gradients in the eastern Pacific Ocean, J. Mar. Res., 49, 763–800, https://doi.org/10.1357/002224091784995756, 1991.
Levin, L. A., Rathburn, A. E., Gutiérrez, D., Muñoz, P., and Shankle, A.: Bioturbation by symbiont-bearing annelids in near-anoxic sediments: Implications for biofacies models and paleo-oxygen assessments, Palaeogeogr. Palaeocl., 199, 129–140, https://doi.org/10.1016/s0031-0182(03)00500-5, 2003.
Levin, L. A., Ekau, W., Gooday, A. J., Jorissen, F., Middelburg, J. J., Naqvi, S. W. A., Neira, C., Rabalais, N. N., and Zhang, J.: Effects of natural and human-induced hypoxia on coastal benthos, Biogeosciences, 6, 2063–2098, https://doi.org/10.5194/bg-6-2063-2009, 2009a.
Levin, L. A., Whitcraft, C. R., Mendoza, G. F., Gonzalez, J. P., and Cowie, G.: Oxygen and organic matter thresholds for benthic faunal activity on the Pakistan margin oxygen minimum zone (700–1100m), Deep-Sea Res. Pt. II, 56, 449–471, https://doi.org/10.1016/j.dsr2.2008.05.032, 2009b.
Levin, L. A., McGregor, A. L., Mendoza, G. F., Woulds, C., Cross, P., Witte, U., Gooday, A. J., Cowie, G., and Kitazato, H.: Macrofaunal colonization across the Indian margin oxygen minimum zone, Biogeosciences, 10, 7161–7177, https://doi.org/10.5194/bg-10-7161-2013, 2013.
Levin, L. A., Alfaro-Lucas, J. M., Colaço, A., Cordes, E. E., Craik, N., Danovaro, R., Hoving, H.-J., Ingels, J., Mestre, N. C., Seabrook, S., Thurber, A. R., Vivian, C., and Yasuhara, M.: Deep-sea impacts of climate interventions, Science, 379, 978–981, https://doi.org/10.1126/science.ade7521, 2023.
Lim, H.-S., Diaz, R. J., Hong, J.-S., and Schaffner, L. C.: Hypoxia and benthic community recovery in Korean coastal waters, Mar. Pollut. Bull., 52, 1517–1526, https://doi.org/10.1016/j.marpolbul.2006.05.013, 2006.
Limburg, K. E. and Casini, M.: Effect of Marine Hypoxia on Baltic Sea Cod Gadus morhua: Evidence From Otolith Chemical Proxies, Front. Mar. Sci., 5, 482, https://doi.org/10.3389/fmars.2018.00482, 2018.
Limburg, K. E. and Casini, M.: Otolith chemistry indicates recent worsened Baltic cod condition is linked to hypoxia exposure, Biol. Lett., 15, 20190352–20190352, https://doi.org/10.1098/rsbl.2019.0352, 2019.
Limburg, K. E., Walther, B. D., Lu, Z., Jackman, G., Mohan, J., Walther, Y., Nissling, A., Weber, P. K., and Schmitt, A. K.: In search of the dead zone: Use of otoliths for tracking fish exposure to hypoxia, J. Mar. Syst., 141, 167–178, https://doi.org/10.1016/j.jmarsys.2014.02.014, 2015.
Limburg, K. E., Wuenschel, M. J., Hüssy, K., Heimbrand, Y., and Samson, M.: Making the otolith magnesium chemical calendar-clock tick: plausible mechanism and empirical evidence, Rev. Fish. Sci. Aquac., 26, 479–493, https://doi.org/10.1080/23308249.2018.1458817, 2018.
Lindstrom, E., Gunn, J., Fischer, A., McCurdy, A., Glover, L. K., and Members, T. T.: A Framework for Ocean Observing, European Space Agency, https://doi.org/10.5270/oceanobs09-foo, 2012.
Long, W. C., Seitz, R. D., Brylawski, B. J., and Lipcius, R. N.: Individual, population, and ecosystem effects of hypoxia on a dominant benthic bivalve in Chesapeake Bay, Ecol. Monogr., 84, 303–327, https://doi.org/10.1890/13-0440.1, 2014.
Maximov, A. A. and Berezina, N. A.: Benthic opportunistic polychaete/amphipod ratio: an indicator of pollution or modification of the environment by macroinvertebrates?, J. Mar. Sci. Eng., 12, 190, https://doi.org/10.3390/jmse11010190, 2023.
May, E. B.: Extensive oxygen depletion in Mobile Bay, Alabama, Limnol. Oceanogr., 18, 353–366, https://doi.org/10.4319/lo.1973.18.3.0353, 1973.
McCormick, L. R. and Levin, L. A.: Physiological and ecological implications of ocean deoxygenation for vision in marine organisms, Philos. Trans. A Math. Phys. Eng. Sci., 375, 20160322, https://doi.org/10.1098/rsta.2016.0322, 2017.
McCormick, L. R., Levin, L. A., and Oesch, N. W.: Vision is highly sensitive to oxygen availability in marine invertebrate larvae, J. Exp. Biol., 15, 222, https://doi.org/10.1242/jeb.200899, 2019.
McCormick, L. R., Gangrade, S., Garwood, J. C., Oesch, N. W., and Levin, L. A.: Oxygen and irradiance constraints on visual habitat in a changing ocean: The luminoxyscape, Limnol. Oceanogr. Letters, 8, 220–228, https://doi.org/10.1002/lol2.10296, 2022.
Middelburg, J. J. and Levin, L. A.: Coastal hypoxia and sediment biogeochemistry, Biogeosciences, 6, 1273–1293, https://doi.org/10.5194/bg-6-1273-2009, 2009.
Miller, M.-E. C. and Graham, W. M.: Environmental evidence that seasonal hypoxia enhances survival and success of jellyfish polyps in the northern Gulf of Mexico, J. Exp. Mar. Biol. Ecol., 432–433, 113–120, https://doi.org/10.1016/j.jembe.2012.07.015, 2012.
Miloslavich, P., Bax, N. J., Simmons, S. E., Klein, E., Appeltans, W., Aburto-Oropeza, O., Andersen Garcia, M., Batten, S. D., Benedetti-Cecchi, L., Checkley, D. M., Chiba, S., Duffy, J. E., Dunn, D. C., Fischer, A., Gunn, J., Kudela, R., Marsac, F., Muller-Karger, F. E., Obura, D., and Shin, Y.: Essential ocean variables for global sustained observations of biodiversity and ecosystem changes, Glob. Change Biol., 24, 2416–2433, https://doi.org/10.1111/gcb.14108, 2018.
Moffitt, S. E., Hill, T. M., Ohkushi, K., Kennett, J. P., and Behl, R. J.: Vertical oxygen minimum zone oscillations since 20 ka in Santa Barbara Basin: A benthic foraminiferal community perspective, Paleoceanography, 29, 44–57, https://doi.org/10.1002/2013pa002483, 2014.
Moffitt, S. E., Moffitt, R. A., Sauthoff, W., Davis, C. V., Hewett, K., and Hill, T. M.: Paleoceanographic insights on recent oxygen minimum zone expansion: lessons for modern oceanography, PLoS One, 10, e0115246–e0115246, https://doi.org/10.1371/journal.pone.0115246, 2015.
Murphy, C. A., Rose, K. A., Rahman, M. S., and Thomas, P.: Testing and applying a fish vitellogenesis model to evaluate laboratory and field biomarkers of endocrine disruption in Atlantic croaker (Micropogonias undulatus) exposed to hypoxia, Environ. Toxicol. Chem., 28, 1288–1303, https://doi.org/10.1897/08-304.1, 2009.
Muto, D., Ishimura, T., Takahashi, M., and Nishida, K.: Extracting daily isotopic records on fish otolith (Trachurus japonicus) by combining micro-milling and micro-scale isotopic analysis (MICAL-CF-IRMS), Rapid Commun. Mass Spectrom., 36, e9366, https://doi.org/10.1002/rcm.9366, 2022.
de Mutsert, K., Steenbeek, J., Cowan, J. H., and Christensen, V.: Using Ecosystem Modeling to Determine Hypoxia Effects on Fish and Fisheries, Modeling Coastal Hypoxia, Springer, 377–400, https://doi.org/10.1007/978-3-319-54571-4_14, 2017.
Navarro, M. O., Kwan, G. T., Batalov, O., Choi, C. Y., Pierce, N. T., and Levin, L. A.: Development of Embryonic Market Squid, Doryteuthis opalescens, under Chronic Exposure to Low Environmental pH and [O2], PLoS One, 11, e0167461–e0167461, https://doi.org/10.1371/journal.pone.0167461, 2016.
Neira, C., Sellanes, J., Levin, L. A., and Arntz, W. E.: Meiofaunal distributions on the Peru margin, Deep-Sea Res. Pt. I, 48, 2453–2472, https://doi.org/10.1016/s0967-0637(01)00018-8, 2001.
Ng, C. A. and Micheli, F.: Short-term effects of hypoxia are more important than effects of ocean acidification on grazing interactions with juvenile giant kelp (Macrocystis pyrifera), Sci. Rep.-UK, 10, 5403–5403, https://doi.org/10.1038/s41598-020-62294-3, 2020.
Nixon, S. W. and Buckley, B. A.: “A strikingly rich zone”—Nutrient enrichment and secondary production in coastal marine ecosystems, Estuaries, 25, 782–796, https://doi.org/10.1007/bf02804905, 2002.
Norris, R. D., Turner, S. K., Hull, P. M., and Ridgwell, A.: Marine Ecosystem Responses to Cenozoic Global Change, Science, 341, 492–498, https://doi.org/10.1126/science.1240543, 2013.
Ogino, T. and Toyohara, H.: Identification of possible hypoxia sensor for behavioral responses in a marine annelid, Capitella teleta, Biol. Open, 8, bio037630, https://doi.org/10.1242/bio.037630, 2019.
Osterman, L. E. Benthic foraminifers from the continental shelf and slope of the Gulf of Mexico: an indicator of shelf hypoxia, Estuar. Coast. Shelf Sci., 58, 17–35, https://doi.org/10.1016/S0272-7714(02)00352-9, 2003.
Overstreet R. M.: Parasitic diseases of fishes and their relationship with toxicants and other environmental factors, in: Pathobiology of marine and estuarine organisms, 111–156, CRC Press, https://doi.org/10.1201/9781003069058-5, 2021.
Parouffe, A., Garçon, V., Dewitte, B., Paulmier, A., Montes, I., Parada, C., Mecho, A., and Veliz, D.: Evaluating future climate change exposure of marine habitat in the South East Pacific based on metabolic constraints, Front. Mar. Sci., 9, 1055875, https://doi.org/10.3389/fmars.2022.1055875, 2023.
Pearson, T. A.: Macrobenthic succession in relation to organic enrichment and pollution of the marine environment, Oceanography and marine biology: an annual review, 16, 229–311, 1987.
Penn, J. L., Deutsch, C., Payne, J. L., and Sperling, E. A.: Temperature-dependent hypoxia explains biogeography and severity of end-Permian marine mass extinction, Science, 162, eaat1327, https://doi.org/10.1126/science.aat1327, 2018.
Pierson, J. J., Roman, M. R., Kimmel, D. G., Boicourt, W. C., and Zhang, X.: Quantifying changes in the vertical distribution of mesozooplankton in response to hypoxic bottom waters, J. Exp. Mar. Biol. Ecol., 381, S74–S79, https://doi.org/10.1016/j.jembe.2009.07.013, 2009.
Pierson, J. J., Testa, J. M., and Roman, M. R.: Copepod habitat suitability estimates vary among oxygen metrics in Chesapeake Bay, ICES J. Mar. Sci., 79, 855–867, https://doi.org/10.1093/icesjms/fsac019, 2022.
Piló, D., Pereira, F., Carriço, A., Cúrdia, J., Pereira, P., Gaspar, M. B., and Carvalho, S.: Temporal variability of biodiversity patterns and trophic structure of estuarine macrobenthic assemblages along a gradient of metal contamination, Estuar. Coast. Shelf Sci., 167, 286–299, https://doi.org/10.1016/j.ecss.2015.06.018, 2015.
Piña-Ochoa, E., Koho, K., Geslin, E., and Risgaard-Petersen, N.: Survival and life strategy of the foraminiferan Globobulimina turgida through nitrate storage and denitrification, Mar. Ecol. Prog. Ser., 417, 39–49, https://doi.org/10.3354/meps08805, 2010.
Pineda, J., Cho, W., Starczak, V., Govindarajan, A. F., Guzman, H. M., Girdhar, Y., Holleman, R. C., Churchill, J., Singh, H., and Ralston, D. K.: A crab swarm at an ecological hotspot: patchiness and population density from AUV observations at a coastal, tropical seamount, PeerJ, 4, e1770–e1770, https://doi.org/10.7717/peerj.1770, 2016.
Pörtner, H. O. and Knust, R.: Climate Change Affects Marine Fishes Through the Oxygen Limitation of Thermal Tolerance, Science, 315, 95–97, https://doi.org/10.1126/science.1135471, 2007.
Pothoven, S. A., Vanderploeg, H. A., Höök, T. O., and Ludsin, S. A.: Hypoxia modifies planktivore–zooplankton interactions in Lake Erie, Can. J. Fish. Aquat. Sci., 69, 2018–2028, https://doi.org/10.1139/cjfas-2012-0144, 2012.
Purcell, J. E.: Jellyfish and Ctenophore Blooms Coincide with Human Proliferations and Environmental Perturbations, Annu. Rev. Mar. Sci., 4, 209–235, https://doi.org/10.1146/annurev-marine-120709-142751, 2012.
Rabalais, N. N. and Baustian, M. M.: Historical Shifts in Benthic Infaunal Diversity in the Northern Gulf of Mexico since the Appearance of Seasonally Severe Hypoxia, Diversity, 12, 49, https://doi.org/10.3390/d12020049, 2020.
Rahman, M. S. and Thomas, P.: Molecular and biochemical responses of hypoxia exposure in Atlantic croaker collected from hypoxic regions in the northern Gulf of Mexico, PLoS One, 12, e0184341–e0184341, https://doi.org/10.1371/journal.pone.0184341, 2017.
Reddin, C. J., Nätscher, P. S., Kocsis, Á. T., Pörtner, H. O., and Kiessling, W.: Marine clade sensitivities to climate change conform across timescales, Nat. Clim. Change, 10, 249–253, https://doi.org/10.1038/s41558-020-0690-7, 2020.
Reynolds, J. H., Knutson, M. G., Newman, K. B., Silverman, E. D., and Thompson, W. L.: A road map for designing and implementing a biological monitoring program, Environ. Monit. Assess., 188, 1–25, https://doi.org/10.1007/s10661-016-5397-x , 2016.
Rice, A. M.: Extension Programming In Support of Public Policy For The Management of Aquaculture In Common Water Bodies, Aquacultura Indonesiana, 15, 26–31, https://doi.org/10.21534/ai.v15i1.22, 2015.
Richmond, C., Marcus, N. H., Sedlacek, C., Miller, G. A., and Oppert, C.: Hypoxia and seasonal temperature: Short-term effects and long-term implications for Acartia tonsa dana, J. Exp. Mar. Biol. Ecol., 328, 177–196, https://doi.org/10.1016/j.jembe.2005.07.004, 2006.
Risgaard-Petersen, N., Langezaal, A. M., Ingvardsen, S., Schmid, M. C., Jetten, M. S., Op den Camp, H. J., and van der Zwaan, G. J.: Evidence for complete denitrification in a benthic foraminifer, Nature, 443, 93–96, https://doi.org/10.1038/nature05070, 2006.
Roman, M. R., Gauzens, A. L., Rhinehart, W. K., and White, J. R.: Effects of low oxygen waters on Chesapeake Bay zooplankton, Limnol. Oceanogr., 38, 1603–1614, https://doi.org/10.4319/lo.1993.38.8.1603, 1993.
Roman, M. R., Pierson, J. J., Kimmel, D. G., Boicourt, W. C., and Zhang, X.: Impacts of Hypoxia on Zooplankton Spatial Distributions in the Northern Gulf of Mexico, Estuar. Coasts, 35, 1261–1269, https://doi.org/10.1007/s12237-012-9531-x, 2012.
Roman, M. R., Brandt, S. B., Houde, E. D., and Pierson, J. J.: Interactive Effects of Hypoxia and Temperature on Coastal Pelagic Zooplankton and Fish, Front. Mar. Sci., 6, 139, https://doi.org/10.3389/fmars.2019.00139, 2019.
Rose, K. A., Cowan, J. H., Winemiller, K. O., Myers, R. A., and Hilborn, R.: Compensatory density dependence in fish populations: importance, controversy, understanding and prognosis, Fish Fish., 2, 293–327, https://doi.org/10.1046/j.1467-2960.2001.00056.x, 2001.
Rose, K. A., Creekmore, S., Thomas, P., Craig, J. K., Rahman, M. S., and Neilan, R. M.: Modeling the Population Effects of Hypoxia on Atlantic Croaker (Micropogonias undulatus) in the Northwestern Gulf of Mexico: Part 1–Model Description and Idealized Hypoxia, Estuar. Coasts, 41, 233–254, https://doi.org/10.1007/s12237-017-0266-6, 2017a.
Rose, K. A., Creekmore, S., Justić, D., Thomas, P., Craig, J. K., Neilan, R. M., Wang, L., Rahman, M. S., and Kidwell, D.: Modeling the Population Effects of Hypoxia on Atlantic Croaker (Micropogonias undulatus) in the Northwestern Gulf of Mexico: Part 2–Realistic Hypoxia and Eutrophication, Estuar. Coasts, 41, 255–279, https://doi.org/10.1007/s12237-017-0267-5, 2017b.
Rose, K. A., Gutiérrez, D., Breitburg, D., Conley, D., Craig, K. J., Froehlich, H. E., Jeyabaskaran, R., Kripa, V., Mbaye, B. C., Mohamed, K. S., and Padua, S.: Impacts of ocean deoxygenation on fisheries.. In: Ocean deoxygenation: Everyone’s problem Causes, impacts, consequences and solutions, International Union for Conservation of Nature and Natural Resources, Gland, Switzerland, 519–544, ISBN 978-2-8317-2013-5, 2019.
Rosenberg, R.: Benthic Faunal Recovery in a Swedish Fjord Following the Closure of a Sulphite Pulp Mill, Oikos, 23, 92–108, https://doi.org/10.2307/3543930, 1972.
Rosenberg, R., Arntz, W. E., de Flores, E. C., Flores, L. A., Carbajal, G., Finger, I., and Tarazona, J.: Benthos biomass and oxygen deficiency in the upwelling system off Peru, J. Mar. Res., 41, 263–279, https://doi.org/10.1357/002224083788520153, 1983.
Rosenzweig, M. L. and Abramsky, Z.: How are diversity and productivity related?, in: Species diversity in ecological communities, 52–65, University of Chicago Press, 1993.
Rubalcaba, J. G., Verberk, W. C. E. P., Hendriks, A. J., Saris, B., and Woods, H. A.: Oxygen limitation may affect the temperature and size dependence of metabolism in aquatic ectotherms, P. Natl. Acad. Sci. USA, 117, 31963–31968, https://doi.org/10.1073/pnas.2003292117, 2020.
Rytkönen, K. T., Williams, T. A., Renshaw, G. M., Primmer, C. R., and Nikinmaa, M.: Molecular Evolution of the Metazoan PHD–HIF Oxygen-Sensing System, Mol. Biol. Evol., 28, 1913–1926, https://doi.org/10.1093/molbev/msr012, 2011.
Sadoul, B. and Geffroy, B.: Measuring cortisol, the major stress hormone in fishes, J. Fish Biol., 94, 540–555, https://doi.org/10.1111/jfb.13904, 2019.
Sakamoto, T., Takahashi, M., Chung, M., Rykaczewski, R. R., Komatsu, K., Shirai, K., Ishimura, T., and Higuchi, T.:Contrasting life-history responses to climate variability in eastern and western North Pacific sardine populations, Nat. Commun., 13, 5298, https://doi.org/10.1038/s41467-022-33019-z, 2022.
Sampaio, E., Santos, C., Rosa, I. C., Ferreira, V., Pörtner, H.-O., Duarte, C. M., Levin, L. A., and Rosa, R.: Impacts of hypoxic events surpass those of future ocean warming and acidification, Nat. Ecol. Evol., 5, 311–321, https://doi.org/10.1038/s41559-020-01370-3, 2021.
Sánchez-García, M. A., Zottoli, S. J., and Roberson, L. M.: Hypoxia Has a Lasting Effect on Fast-Startle Behavior of the Tropical Fish, Haemulon plumieri, Biol. Bull., 237, 48–62, https://doi.org/10.1086/704337, 2019.
Scavia, D. and Donnelly, K. A.: Reassessing Hypoxia Forecasts for the Gulf of Mexico, Environ. Sci. Technol., 41, 8111–8117, https://doi.org/10.1021/es0714235, 2007.
Schwacke, L. H., Gulland, F. M., and White, S.: Sentinel Species in Oceans and Human Health, Environ. Toxicol., Springer, New York, NY, 503–528, https://doi.org/10.1007/978-1-4614-5764-0_18, 2012.
Seitz, R. D., Dauer, D. M., Llansó, R. J., and Long, W. C.: Broad-scale effects of hypoxia on benthic community structure in Chesapeake Bay, USA, J. Exp. Mar. Biol. Ecol., 381, S4–S12, https://doi.org/10.1016/j.jembe.2009.07.004, 2009.
Sen Gupta, B. K. and Machain-Castillo, M. L.: Benthic foraminifera in oxygen-poor habitats, Mar. Micropaleontol., 20, 183–201, https://doi.org/10.1016/0377-8398(93)90032-s, 1993.
Shelton, A. O., Gold, Z. J., Jensen, A. J., D'Agnese, E., Andruszkiewicz Allan, E., Van Cise, A., Gallego, R., Ramón-Laca, A., Garber-Yonts, M., Parsons, K., and Kelly, R. P.: Toward quantitative metabarcoding, Ecology, 104, e3906, https://doi.org/10.1002/ecy.3906, 2023.
Shin, P. K. S., Leung, J. Y. S., Qiu, J. W., Ang, P. O., Chiu, J. M. Y., Thiyagarajan, V., and Cheung, S. G.: Hypoxia induces abnormal larval development and affects biofilm–larval interaction in the serpulid polychaete Hydroides elegans, Mar. Pollut. Bull., 76, 291–297, https://doi.org/10.1016/j.marpolbul.2013.08.022, 2013.
Shin, P. K. S., Leung, J. Y. S., Qiu, J. W., Ang, P. O., Chiu, J. M. Y., Thiyagarajan, V., and Cheung, S. G.: Acute hypoxic exposure affects gamete quality and subsequent fertilization success and embryonic development in a serpulid polychaete, Mar. Pollut. Bull., 85, 439–445, https://doi.org/10.1016/j.marpolbul.2014.03.009, 2014.
Singh, A. D., Rai, A. K., Verma, K., Das, S., and Bharti, S. K.: Benthic foraminiferal diversity response to the climate induced changes in the eastern Arabian Sea oxygen minimum zone during the last 30kaBP, Quatern. Int., 374, 118–125, https://doi.org/10.1016/j.quaint.2014.11.052, 2015.
Smith, C. R., Levin, L. A., Hoover, D. J., McMurtry, G., and Gage, J. D.: Variations in bioturbation across the oxygen minimum zone in the northwest Arabian Sea, Deep-Sea Res. Pt. II, 47, 227–257, https://doi.org/10.1016/S0967-0645(99)00108-3, 2000.
Smith, M. D. and Crowder, L. B.: Valuing Ecosystem Services with Fishery Rents: A Lumped-Parameter Approach to Hypoxia in the Neuse River Estuary, Sustainability, 3, 2229–2267, https://doi.org/10.3390/su3112229, 2011.
Sperling, E. A., Frieder, C. A., Raman, A. V., Girguis, P. R., Levin, L. A., and Knoll, A. H.: Oxygen, ecology, and the Cambrian radiation of animals, P. Natl. Acad. Sci. USA, 110, 13446–13451, https://doi.org/10.1073/pnas.1312778110, 2013.
Sperling, E. A., Frieder, C. A., and Levin, L. A.: Biodiversity response to natural gradients of multiple stressors on continental margins, Proc. Biol. Sci., 283, 20160637, https://doi.org/10.1098/rspb.2016.0637, 2016.
Stalder, L. C. and Marcus, N. H.: Zooplankton responses to hypoxia: behavioral patterns and survival of three species of calanoid copepods, Mar. Biol., 127, 599–607, https://doi.org/10.1007/s002270050050, 1997.
Steckbauer, A., Duarte, C. M., Carstensen, J., Vaquer-Sunyer, R., and Conley, D. J.: Ecosystem impacts of hypoxia: thresholds of hypoxia and pathways to recovery, Environ. Res. Lett., 6, 025003, https://doi.org/10.1088/1748-9326/6/2/025003, 2011.
Stierhoff, K. L., Targett, T. E., and Power, J. H.: Hypoxia-induced growth limitation of juvenile fishes in an estuarine nursery: assessment of small-scale temporal dynamics using RNA:DNA, Can. J. Fish. Aquat. Sci., 66, 1033–1047, https://doi.org/10.1139/f09-066, 2009.
Stoicescu, S.-T., Lips, U., and Liblik, T.: Assessment of Eutrophication Status Based on Sub-Surface Oxygen Conditions in the Gulf of Finland (Baltic Sea), Front. Mar. Sci., 6, 54, https://doi.org/10.3389/fmars.2019.00054, 2019.
Stramma, L., Johnson, G. C., Sprintall, J., and Mohrholz, V.: Expanding Oxygen-Minimum Zones in the Tropical Oceans, Science, 320, 655–658, https://doi.org/10.1126/science.1153847, 2008.
Stramma, L., Schmidtko, S., Levin, L. A., and Johnson, G. C.: Ocean oxygen minima expansions and their biological impacts, Deep-Sea Res. Pt. I, 57, 587–595, https://doi.org/10.1016/j.dsr.2010.01.005, 2010.
Stramma, L., Prince, E. D., Schmidtko, S., Luo, J., Hoolihan, J. P., Visbeck, M., Wallace, D. W. R., Brandt, P., and Körtzinger, A.: Expansion of oxygen minimum zones may reduce available habitat for tropical pelagic fishes, Nat. Clim. Change, 2, 33–37, https://doi.org/10.1038/nclimate1304, 2011.
Suzue, T., Wu, G. B., and Furukawa, T.: High susceptibility to hypoxia of afferent synaptic transmission in the goldfish sacculus, J. Neurophysiol., 58, 1066–1079, https://doi.org/10.1152/jn.1987.58.5.1066, 1987.
Thomas, P. and Rahman, Md. S.: Biomarkers of hypoxia exposure and reproductive function in Atlantic croaker: A review with some preliminary findings from the northern Gulf of Mexico hypoxic zone, J. Exp. Mar. Biol. Ecol., 381, S38–S50, https://doi.org/10.1016/j.jembe.2009.07.008, 2009.
Thomas, P., Rahman, Md. S., Picha, M. E., and Tan, W.: Impaired gamete production and viability in Atlantic croaker collected throughout the 20,000 km2 hypoxic region in the northern Gulf of Mexico, Mar. Pollut. Bull., 101, 182–192, https://doi.org/10.1016/j.marpolbul.2015.11.001, 2015.
Thronson, A. and Quigg, A.: Fifty-Five Years of Fish Kills in Coastal Texas, Estuar. Coasts, 31, 802–813, https://doi.org/10.1007/s12237-008-9056-5, 2008.
Tigert, L. R. and Porteus, C. S.: Invited review - the effects of anthropogenic abiotic stressors on the sensory systems of fishes, Comp. Biochem. Phys. A, 277, 111366, https://doi.org/10.1016/j.cbpa.2022.111366, 2023.
Tremblay, N., Hünerlage, K., and Werner, T.: Hypoxia Tolerance of 10 Euphausiid Species in Relation to Vertical Temperature and Oxygen Gradients, Front. Physiol., 11, 248–248, https://doi.org/10.3389/fphys.2020.00248, 2020.
Trouwborst, R. E., Clement, B. G., Tebo, B. M., Glazer, B. T., and Luther, G. W.: Soluble Mn(III) in Suboxic Zones, Science, 313, 1955–1957, https://doi.org/10.1126/science.1132876, 2006.
Tsujimoto, A., Nomura, R., Yasuhara, M., Yamazaki, H., and Yoshikawa, S.: Impact of eutrophication on shallow marine benthic foraminifers over the last 150 years in Osaka Bay, Japan, Mar. Micropaleontol., 60, 258–268, https://doi.org/10.1016/j.marmicro.2006.06.001, 2006.
Tsujimoto, A., Yasuhara, M., Nomura, R., Yamazaki, H., Sampei, Y., Hirose, K., and Yoshikawa, S.: Development of modern benthic ecosystems in eutrophic coastal oceans: the foraminiferal record over the last 200 years, Osaka Bay, Japan, Mar. Micropaleontol., 69, 225–239, https://doi.org/10.1016/j.marmicro.2008.08.001, 2008.
Turner, R. E.: Some effects of eutrophication on pelagic and demersal marine food webs, Coast. Estuar. Stud., 58, 371–398, https://doi.org/10.1029/ce058p0371, 2001.
Uye, S.: Replacement of large copepods by small ones with eutrophication of embayments: cause and consequence, Ecology and Morphology of Copepods, 513–519, https://doi.org/10.1007/978-94-017-1347-4_64, 1994.
Valenza, A. N., Altenritter, M. E., and Walther, B. D.: Reconstructing consequences of lifetime hypoxia exposure on metabolism of demersal fish in the northern Gulf of Mexico using otolith chemistry, Environ. Biol. Fish., 106, 2045–2057, https://doi.org/10.1007/s10641-023-01483-1, 2023.
Vaquer-Sunyer, R. and Duarte, C. M.: Thresholds of hypoxia for marine biodiversity, P. Natl. Acad. Sci. USA, 105, 15452–15457, https://doi.org/10.1073/pnas.0803833105, 2008.
Vedor, M., Queiroz, N., Mucientes, G., Couto, A., Costa, I. da, Santos, A. D., Vandeperre, F., Fontes, J., Afonso, P., Rosa, R., Humphries, N. E., and Sims, D. W.: Climate-driven deoxygenation elevates fishing vulnerability for the ocean's widest ranging shark, Elife, 10, e62508, https://doi.org/10.7554/eLife.62508, 2021.
Verberk, W. C. E. P., Atkinson, D., Hoefnagel, K. N., Hirst, A. G., Horne, C. R., and Siepel, H.: Shrinking body sizes in response to warming: explanations for the temperature-size rule with special emphasis on the role of oxygen, Biol. Rev. Camb. Philos., 96, 247–268, https://doi.org/10.1111/brv.12653, 2021.
Wang, S. Y., Lau, K., Lai, K.-P., Zhang, J.-W., Tse, A. C.-K., Li, J.-W., Tong, Y., Chan, T.-F., Wong, C. K.-C., Chiu, J. M.-Y., Au, D. W.-T., Wong, A. S.-T., Kong, R. Y.-C., and Wu, R. S.-S.: Hypoxia causes transgenerational impairments in reproduction of fish, Nat. Commun., 7, 12114–12114, https://doi.org/10.1038/ncomms12114, 2016.
Warwick, R. M.: The nematode/copepod ratio and its use in pollution ecology, Marine Pollution Bulletin, 12, 329–333, https://doi.org/10.1016/0025-326X(81)90105-3, 1981
von Weissenberg, E., Jansson, A., Vuori, K. A., and Engström-Öst, J.: Copepod reproductive effort and oxidative status as responses to warming in the marine environment, Ecol. Evol., 12, e8594–e8594, https://doi.org/10.1002/ece3.8594, 2022.
Wishner, K. F., Ashjian, C. J., Gelfman, C., Gowing, M. M., Kann, L., Levin, L. A., Mullineaux, L. S., and Saltzman, J.: Pelagic and benthic ecology of the lower interface of the Eastern Tropical Pacific oxygen minimum zone, Deep-Sea Res. Pt. I, 42, 93–115, https://doi.org/10.1016/0967-0637(94)00021-j, 1995.
Wishner, K. F., Outram, D. M., Seibel, B. A., Daly, K. L., and Williams, R. L.: Zooplankton in the eastern tropical north Pacific: Boundary effects of oxygen minimum zone expansion, Deep-Sea Res. Pt. I, 79, 122–140, https://doi.org/10.1016/j.dsr.2013.05.012, 2013.
Wong, M. K., Nobata, S., Ito, S., and Hyodo, S.: Development of species-specific multiplex real time PCR assays for tracing the small pelagic fishes of North Pacific with environmental DNA, Environmental DNA, 4, 510-522, https://doi.org/10.1002/edn3.275, 2022.
Woods, H. A., Moran, A. L., Atkinson, D., Audzijonyte, A., Berenbrink, M., Borges, F. O., Burnett, K. G., Burnett, L. E., Coates, C. J., Collin, R., Costa-Paiva, E. M., Duncan, M. I., Ern, R., Laetz, E. M. J., Levin, L. A., Lindmark, M., Lucey, N. M., McCormick, L. R., Pierson, J. J., Rosa, R., Roman, M. R., Sampaio, E., Schulte, P. M., Sperling, E. A., Walczyńska, A., and Verberk, W. C. E. P.: Integrative Approaches to Understanding Organismal Responses to Aquatic Deoxygenation, Biol. Bull., 243, 85–103, https://doi.org/10.1086/722899, 2022.
Word, J. Q.: Classification of benthic invertebrates into infaunal trophic index feeding groups, Coastal Water Research Project Biennial Report, 103–121, 1978.
Woulds, C., Cowie, G. L., Levin, L. A., Andersson, J. H., Middelburg, J. J., Vandewiele, S., Lamont, P. A., Larkin, K. E., Gooday, A. J., Schumacher, S., Whitcraft, C., Jeffreys, R. M., and Schwartz, M.: Oxygen as a control on sea floor biological communities and their roles in sedimentary carbon cycling, Limnol. Oceanogr., 52, 1698–1709, https://doi.org/10.4319/lo.2007.52.4.1698, 2007.
Wu, R. S. S.: Hypoxia: from molecular responses to ecosystem responses, Mar. Pollut. Bull., 45, 35–45, https://doi.org/10.1016/s0025-326x(02)00061-9, 2002.
Xing, Q., Yu, H., Ito, S., and Chai, F.: Mesoscale eddies modulate the dynamics of human fishing activities in the global midlatitude ocean, Fish Fish., 24, 527–543, https://doi.org/10.1111/faf.12742, 2023.
Yasuhara, M., Yamazaki, H., Tsujimoto, A., and Hirose, K.: The effect of long-term spatiotemporal variations in urbanization-induced eutrophication on a benthic ecosystem, Osaka Bay, Japan, Limnol. Oceanogr., 52, 1633–1644, https://doi.org/10.4319/lo.2007.52.4.1633, 2007.
Yasuhara, M., Hunt, G., Breitburg, D., Tsujimoto, A., and Katsuki, K.: Human-induced marine ecological degradation: micropaleontological perspectives, Ecol. Evol., 2, 3242–3268, https://doi.org/10.1002/ece3.425, 2012.
Yoccoz, N. G., Nichols, J. D., and Boulinier, T.: Monitoring of biological diversity in space and time, Trends Ecol. Evol., 16, 446–453, https://doi.org/10.1016/S0169-5347(01)02205-4, 2002.
Zamorano, P., Hendrickx, M. E., and Toledano-Granados, A.: Distribution and ecology of deep-water mollusks from the continental slope, southeastern Gulf of California, Mexico, Mar. Biol., 150, 883–892, https://doi.org/10.1007/s00227-006-0390-5, 2006.
Zettler, M., Bochert, R., and Pollehne, F.: Macrozoobenthic biodiversity patterns in the northern province of the Benguela upwelling system, Afr. J. Mar. Sci., 35, 283–290, https://doi.org/10.2989/1814232x.2013.798592, 2013.
Zettler, M. L., Bochert, R., and Pollehne, F.: Macrozoobenthos diversity in an oxygen minimum zone off northern Namibia, Mar. Biol., 156, 1949–1961, https://doi.org/10.1007/s00227-009-1227-9, 2009.
Zhan, Y., Ning, B., Sun, J., and Chang, Y.: Living in a hypoxic world: A review of the impacts of hypoxia on aquaculture, Mar. Pollut. Bull., 194, 115207, https://doi.org/10.1016/j.marpolbul.2023.115207, 2023.
Zhang, J., Gilbert, D., Gooday, A. J., Levin, L., Naqvi, S. W. A., Middelburg, J. J., Scranton, M., Ekau, W., Peña, A., Dewitte, B., Oguz, T., Monteiro, P. M. S., Urban, E., Rabalais, N. N., Ittekkot, V., Kemp, W. M., Ulloa, O., Elmgren, R., Escobar-Briones, E., and Van der Plas, A. K.: Natural and human-induced hypoxia and consequences for coastal areas: synthesis and future development, Biogeosciences, 7, 1443–1467, https://doi.org/10.5194/bg-7-1443-2010, 2010.
Zhang, J., Zhu, Z., Mo, W. Y., Liu, S. M., Wang, D. R., and Zhang, G. S.: Hypoxia and nutrient dynamics affected by marine aquaculture in a monsoon-regulated tropical coastal lagoon, Environ. Monit. Assess., 190, 656, https://doi.org/10.1007/s10661-018-7001-z, 2018a.
Zhang, Q., Tango, P. J., Murphy, R. R., Forsyth, M. K., Tian, R., Keisman, J., and Trentacoste, E. M.: Chesapeake Bay Dissolved Oxygen Criterion Attainment Deficit: Three Decades of Temporal and Spatial Patterns, Front. Mar. Sci., 5, 422, https://doi.org/10.3389/fmars.2018.00422, 2018b.
Short summary
Oxygen-depleted ocean waters have increased worldwide. In order to improve our understanding of the impacts of this oxygen loss on marine life it is essential that we develop reliable indicators that track the negative impacts of low oxygen. We review various indicators of low-oxygen stress for marine animals including their use, research needs, and application to confront the challenges of ocean oxygen loss.
Oxygen-depleted ocean waters have increased worldwide. In order to improve our understanding of...
Altmetrics
Final-revised paper
Preprint