Articles | Volume 22, issue 5
https://doi.org/10.5194/bg-22-1163-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-1163-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Bacteria as paleoenvironmental proxies: the study of a cave Pleistocene profile
Cătălina Haidău
CORRESPONDING AUTHOR
Emil Racovita Institute of Speleology, Bucureşti 050711, Romania
Ionuţ Cornel Mirea
Emil Racovita Institute of Speleology, Bucureşti 050711, Romania
Silviu Constantin
Emil Racovita Institute of Speleology, Bucureşti 050711, Romania
Centro Nacional de Investigación sobre la Evolución Humana, Burgos 09002, Spain
Oana Teodora Moldovan
CORRESPONDING AUTHOR
Centro Nacional de Investigación sobre la Evolución Humana, Burgos 09002, Spain
Emil Racovita Institute of Speleology, Cluj-Napoca Department, Cluj-Napoca 400006, Romania
Related authors
No articles found.
Oana Teodora Moldovan, Crin-Triandafil Theodorescu, and Erika Andrea Levei
EGUsphere, https://doi.org/10.5194/egusphere-2025-2507, https://doi.org/10.5194/egusphere-2025-2507, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
This study examines the microbial and geochemical environment surrounding mirabilite deposits in Izvorul Tăușoarelor Cave (Romanian Carpathians). Using a metabarcoding approach, the microbial profiling is unique: sulfur-reducing bacteria were absent in mirabilite samples. The presence of ammonia-oxidising archaea exclusively in the mirabilite area indicates a possible influence from a bat colony, which contributes minimal ammonia that supports the microbial equilibrium for mirabilite growth.
Cited articles
Albuquerque, L., França, L., Rainey, F. A., Schumann, P., Nobre, M. F., and da Costa, M. S.: Gaiella occulta gen. nov., sp. nov., a novel representative of a deep branching phylogenetic lineage within the class Actinobacteria and proposal of Gaiellaceae fam. nov. and Gaiellales ord. nov., Syst. Appl. Microbiol., 34, 595–599, https://doi.org/10.1016/j.syapm.2011.07.001, 2011.
Alves, J. I., van Gelder, A. H., Alves, M. M., Sousa, D. Z., and Plugge, C. M.: Moorella stamsii sp. nov., a new anaerobic thermophilic hydrogenogenic carboxydotroph isolated from digester sludge, I. J. Syst. Evol. Microbiol., 63, 4072–4076, https://doi.org/10.1099/ijs.0.050369-0, 2013.
Audra, P., De Waele, J., Bentaleb, I., Chroòáková, A., Krištùfek, V., D'Angeli, I. M., Carbone, C., Madonia, G., Vattano, M., Scopelliti, G., Caihol, D., Vanara, N., Temovski, M., Bigot, Y.-J., Nobécourt, C.-J., Galli, E., Rull, F., and Sanz-Arranz, A.: Guano-related phosphate-rich minerals in European caves, Int. J. Speleol., 48, 75–105, https://doi.org/10.5038/1827-806X.48.1.2252, 2019.
Bailén, M., Bressa, C., Larrosa, M., and González-Soltero, R.: Bioinformatic strategies to address limitations of 16rRNA short-read amplicons from different sequencing platforms, J. Microbiol. Method., 169, 105811, https://doi.org/10.1016/j.mimet.2019.105811, 2020.
Bandrabur, G. and Bandrabur, R.: Parâng and Capaţânii Mountains, in: Karst Hydrogeology of Romania, edited by: Oraşeanu, I. and Iurkiewicz, A., Belvedere, Oradea, 69–75, ISBN 978-606-92444-0-1, 2010.
Barbato, R. A., Jones, R. M., Douglas, T. A., Esdale, J., Foley, K., Perkins, E. J., Rosten, S., and Garcia-Reyero, N.: Alaskan palaeosols in modern times: Deciphering unique microbial diversity within the late-Holocene, Holocene, 32, 909–923, https://doi.org/10.1177/09596836221101249, 2022.
Bay, S. K., McGeoch, M. A., Gillor, O., Wieler, N., Palmer, D. J., Baker, D. J., Chown, S. L., and Greening, C.: Soil bacterial communities exhibit strong biogeographic patterns at fine taxonomic resolution, mSystems, 5, 16 pp., https://doi.org/10.1128/msystems.00540-20, 2020.
Bell, E., Blake, L. I., Sherry, A., Head, I. M., and Hubert, C. R.: Distribution of thermophilic endospores in a temperate estuary indicate that dispersal history structures sediment microbial communities, Environ. Microbiol., 20, 1134–1147, https://doi.org/10.1111/1462-2920.14056, 2018.
Benammar, L., İnan Bektaş, K., Menasria, T., Beldüz, O. A., Güler, H. I., Bedaida, I. K., Gonzalez, J. M., and Ayachi, A.: Diversity and enzymatic potential of thermophilic bacteria associated with terrestrial hot springs in Algeria, Braz. J. Microbiol., 51, 1987–2007, https://doi.org/10.1007/s42770-020-00376-0, 2020.
Bernal, J. P., Revolorio, F., Cu-Xi, M., Lases-Hernández, F., Piacsek, P., Lachniet, M. S., Beddows, A. P., Lucia, G., López-Aguiar, K., Capella-Vizcaíno, S., López-Martínez, R., and Vásquez, O. J.: Variability of trace-elements and δ18O in drip water from Gruta del Rey Marcos, Guatemala; seasonal and environmental effects, and its implications for paleoclimate reconstructions, Front. Earth Sci., 11, 1112957, https://doi.org/10.3389/feart.2023.1112957, 2023.
Berto, C., Krajcarz, M. T., Moskal-del Hoyo, M., Komar, M., Sinet-Mathiot, V., Zarzecka-Szubińska, K., Krajcarz, M., Szymanek, M., Wertz, K., Marciszak, A., Mętrak, M., Suska-Malawska, M., Wilcke, A., and Kot, M.: Environment changes during Middle to Upper Palaeolithic transition in southern Poland (Central Europe), A multiproxy approach for the MIS 3 sequence of Koziarnia Cave (Kraków-Częstocgt Upland), J. Archaeol. Sci. Rep., 35, 102723, https://doi.org/10.1016/j.jasrep.2020.102723, 2021.
Bogush, A. A., Leonova, G. A., Krivonogov, S. K., Bychinsky, V. A., Bobrov, V. A., Maltsev, A. E., Tikhova, D. V., Miroshnichenko, L. V., Kondratyeva, M. L., and Kuzmina, A. E.: Biogeochemistry and element speciation in sapropel from freshwater Lake Dukhovoe (East Baikal region, Russia), Appl. Geochem., 143, 105384, https://doi.org/10.1016/j.apgeochem.2022.105384, 2022.
Buttler, C. J. and Wilson, M. A.: Paleoecology of an Upper Ordovician submarine cave-dwelling bryozoan fauna and its exposed equivalents in northern Kentucky, USA, J. Paleontol., 92, 568–576, https://doi.org/10.1017/jpa.2017.131, 2018.
Caccavo F. J., Lonergan D. J., Lovley D. R., Davis M., Stolz J. F., and McInerney M. J.: Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism, Appl. Environ. Microbiol., 60, 3752–3759, https://doi.org/10.1128/aem.60.10.3752-3759.1994, 1994.
Campaña, I., Benito-Calvo, A., Pérez-González, A., Ortega, A. I., Álvaro-Gallo, A., Miguens-Rodríguez, L., Iglesias-Cibanal, J., Bermúdez de Castro, J.M., and Carbonell, E.: Reconstructing depositional environments through cave interior facies: The case of Galería Complex (Sierra de Atapuerca, Spain), Geomorphology, 440, 108864, https://doi.org/10.1016/j.geomorph.2023.108864, 2023.
Castro, H. F., Classen, A. T., Austin, E. E., Norby, R. J., and Schadt, C. W.: Soil microbial community responses to multiple experimental climate change drivers, Appl. Environ. Microbiol., 76, 999–1007, https://doi.org/10.1128/AEM.02874-09, 2010.
Chee-Sanford, J., Tian, D., and Sanford, R.: Consumption of N2O and other N-cycle intermediates by Gemmatimonas aurantiaca strain T-27, Microbiol., 165, 1345–1354, https://doi.org/10.1099/mic.0.000847, 2019.
Comte, J., Langenheder, S., Berga, M., and Lindström, E. S.: Contribution of different dispersal sources to the metabolic response of lake bacterioplankton following a salinity change, Environ. Microbiol., 19, 251–260, https://doi.org/10.1111/1462-2920.13593, 2017.
Constantin, S., Mirea, I. C., Petculescu, A., Arghir, R. A., Măntoiu, D. Ş., Kenesz, M., Robu, M., and Moldovan, O. T: Monitoring human impact in show caves. A study of four Romanian caves, Sustainability, 13, 1619, https://doi.org/10.3390/su13041619, 2021.
Cruz, J. A., Velasco, J.A., Arroyo-Cabrales, J., and Johnson, E.: Paleoclimatic reconstruction based on the Late Pleistocene San Josecito Cave Stratum 720 Fauna Using Fossil Mammals, Reptiles, and Birds, Diversity, 15, 881, https://doi.org/10.3390/d15070881, 2023.
Dattagupta, S., Schaperdoth, I., Montanari, A., Mariani, S., Kita, N., Valley, W. J., and Macalady, L. J.: A novel symbiosis between chemoautotrophic bacteria and a freshwater cave amphipod, ISME J., 3, 935–943, https://doi.org/10.1038/ismej.2009.34, 2009.
de Rezende, J. R., Kjeldsen, K. U., Hubert, C. R. J., Finster, K., Loy, A. and Jørgensen, B. B.: Dispersal of thermophilic Desulfotomaculum endospores into Baltic Sea sediments over thousands of years, ISME J., 7, 72–84, https://doi.org/10.1038/ismej.2012.83, 2013.
Diaconu, G., Dumitraş, D., and Marincea, Ş.: Mineralogical analyses in peştera Polovragi (Olteţului gorges) and peştera Muierilor (Galbenului Gorges), Gorj County. Trav. Institut. Speol. – Emile Racovitza XLVII, Romanian Academy, 89–105, EISSN: 2067-9033, 2008.
Ding, S., Grossi, V., Hopmans, E. C., Bale, N. J., Cravo-Laureau, C., and Sinninghe Damsté, J. S.: Nitrogen and sulfur for phosphorus: Lipidome adaptation of anaerobic sulfate-reducing bacteria in phosphorus-deprived conditions, P. Natl. Acad. Sci. USA, 121, e2400711121, https://doi.org/10.1073/pnas.2400711121, 2024.
Domeignoz-Horta, L. A., Shinfuku, M., Junier, P., Poirier, S., Verrecchia, E., Sebag, D., and DeAngelis, K. M.: Direct evidence for the role of microbial community composition in the formation of soil organic matter composition and persistence, ISME Commun., 1, 64, https://doi.org/10.1038/s43705-021-00071-7, 2021.
Dominguez-Moñino, I., Jurado, V., Rogerio-Candelera, M. A., Hermosin, B., and Saiz-Jimenez, C.: Airborne bacteria in show caves from Southern Spain, Microb. Cell, 26, 247–255, https://doi.org/10.15698/mic2021.10.762, 2021.
Dong, Y., Gao, J., Wu, Q. Ai, Y., Huang, Y., Wei, W., Sun, S., and Weng, Q.: Co-occurrence pattern and function prediction of bacterial community in Karst cave, BMC Microbiol., 20, 137, https://doi.org/10.1186/s12866-020-01806-7, 2020.
Edwards, T. A., Calica, N. A., Huang, D. A., Manoharan, N., Hou, W., Huang, L., Manoharan, N., Hou, W., Huang, L., Panosyan, H., Dong, H., and Hedlund, B. P.: Cultivation and characterization of thermophilic Nitrospira species from geothermal springs in the US Great Basin, China, and Armenia, FEMS Microbiol. Ecol., 85, 283–292, https://doi.org/10.1111/1574-6941.12117, 2013.
Engel, C. E. A., Vorländer, D., Biedendieck, R., Krull, R., and Dohnt, K.: Quantification of microaerobic growth of Geobacter sulfurreducens, PLoS One, 15, e0215341, https://doi.org/10.1371/journal.pone.0215341, 2020.
Epure, L., Meleg, I. N., Munteanu, C. M., Roban, R. D., and Moldovan O. T.: Bacterial and fungal diversity of Quaternary cave sediment deposits, Geomicrobiol. J., 31, 116–127, https://doi.org/10.1080/01490451.2013.815292, 2014.
Epure, L., Muntean, V., Constantin, S., and Moldovan, O. T.: Ecophysiological groups of bacteria from cave sediments as potential indicators of paleoclimate, Quaternary Int., 432, 20–32, https://doi.org/10.1016/j.quaint.2015.04.016, 2017.
Feng, L., Yang, J., Ma, F., Pi, S., Xing, L., and Li, A.: Characterisation of Pseudomonas stutzeri T13 for aerobic denitrification: Stoichiometry and reaction kinetics, Sci. Total Environ., 717, 135181, https://doi.org/10.1016/j.scitotenv.2019.135181, 2020.
Fike, D. A., Bradley, A. S., and Rose, C. V.: Rethinking the ancient sulfur cycle, Annu. Rev. Earth Planet. Sci., 43, 593–622, https://doi.org/10.1146/annurev-earth-060313-054802, 2015.
Finore, I., Feola, A., Russo, L., Cattaneo, A., Di Donato, P., Nicolaus, B., Poli, A., and Romano, I.: Thermophilic bacteria and their thermozymes in composting processes: a review, Chem. Biol. Technol. Agric., 10, 7, https://doi.org/10.1186/s40538-023-00381-z, 2023.
Frindte, K., Lehndorff, E., Vlaminck, S. Werner, K., Kehl, M., Khormali, F., and Knief, C.: Evidence for signatures of ancient microbial life in paleosols, Sci. Rep., 10, 16830, https://doi.org/10.1038/s41598-020-73938-9, 2020.
Gaastra, W., Kusters, J. G., Van Duijkeren, E., and Lipman, L. J. A.: Escherichia fergusonii, Vet. microbiol., 172, 7–12, https://doi.org/10.1016/j.vetmic.2014.04.016, 2014.
Gehrig, J. L., Portik, D. M., Driscoll, M. D., Jackson, E., Chakraborty, S., Gratalo, D., Ashby, M., and Valladares, R.: Finding the right fit: evaluation of short-read and long-read sequencing approaches to maximize the utility of clinical microbiome data, Microb. Genom., 8, 000794, https://doi.org/10.1099/mgen.0.000794, 2022.
Ghenea, C., Bandrabur, T., and Ghenea, A.: Atlas of Romania: The underground and mineral waters map; Sheet V-2; Romanian Academy, Institute of Geography, Bucharest, Romanian Academy, Romania, EISSN: 2067-9033, 1981.
Gomez, E. J., Delgado, J. A., and González, J. M.: Influence of water availability and temperature on estimates of microbial extracellular enzyme activity, PeerJ., 9, e10994, https://doi.org/10.7717/peerj.10994, 2021.
González, J. M., Portillo, M. C., and Piñeiro-Vidal, M.: Latitude-dependent underestimation of microbial extracellular enzyme activity in soils, Int. J. Environ. Sci. Technol., 12, 2427–2434, https://doi.org/10.1007/s13762-014-0635-7, 2015.
González, J. M., Santana, M. M., Gomez, E. J., and Delgado, J. A.: Soil thermophiles and their extracellular enzymes: a set of capabilities able to provide significant services and risks, Microorganisms, 11, 1650, https://doi.org/10.3390/microorganisms11071650, 2023.
Greene, A. C., Patel, B. K., and Yacob, S.: Geoalkalibacter subterraneus sp. nov., an anaerobic Fe (III)-and Mn (IV)-reducing bacterium from a petroleum reservoir, and emended descriptions of the family Desulfuromonadaceae and the genus Geoalkalibacter, I. J. Syst. Evol. Microbiol., 59, 781–785, https://doi.org/10.1099/ijs.0.001537-0, 2009.
Grégoire, P., Bohli, M., Cayol, J. L., Joseph, M., Guasco, S., Dubourg, K., Cambar, J., Michotey, V., Bonin, P., Fardeau, M. L., and Ollivier, B.: Caldilinea tarbellica sp. nov., a filamentous, thermophilic, anaerobic bacterium isolated from a deep hot aquifer in the Aquitaine Basin, Int. J. Syst. Evol. Microbiol., 61, 1436–1441, https://doi.org/10.1099/ijs.0.025676-0, 2011.
Haidău, C., Năstase-Bucur, R., Bulzu, P., Levei, E., Cadar, O., Mirea, I. C., Faur, L., Fruth, V., Atkinson, I., Constantin, S., and Moldovan, O. T.: A 16S rRNA gene-based metabarcoding of phosphate-rich deposits in Muierilor Cave, South-Western Carpathians, Front. Microbiol., 13, 877481, https://doi.org/10.3389/fmicb.2022.877481, 2022.
Hakil, F., Amin-Ali, O., Hirschler-Rea, A., Mollex, D., Grossi, V., Duran, R., Matheron, R., and Cravo-Laureau, C.: Desulfatiferula berrensis sp. nov., an-alkene-degrading sulfate-reducing bacterium isolated from estuarine sediments, Int. J. Syst. Evol. Microbiol., 64, 540–544, https://doi.org/10.1099/ijs.0.057174-0, 2014.
Hann, H., Berza, T., Pop, G., Marinescu, F., Ricman, C., Pană, D., Săbău, G., Bindea, G., and Tatu, M.: Harta geologică a României scara 1:50 000, Foaia Polovragi, Institutul Geologic al României, Romanian Academy, Bucureşti, EISSN: 2067-9033, 1986.
Hanson, C. A., Fuhrman, J. A., Horner-Devine, M. C., and Martiny, J. B. H.: Beyond biogeographic patterns: processes shaping the microbial landscape, Nat. Rev. Microbiol., 10, 497–506, https://doi.org/10.1038/nrmicro2795, 2012.
Haouari, O., Fardeau, M. L., Cayol, J. L., Fauque, G., Casiot, C., Elbaz-Poulichet, F., Hamdi, M., and Ollivier, B.: Thermodesulfovibrio hydrogeniphilus sp. nov., a new thermophilic sulphate-reducing bacterium isolated from a Tunisian hot spring, Syst. Appl. Microbiol., 31, 38–42, https://doi.org/10.1016/j.syapm.2007.12.002, 2008.
Hashmi, I., Bindschedler, S., and Junier, P.: Firmicutes, in: Beneficial microbes in agro-ecology, edited by: Amaresan, N., Senthil Kumar, M., Annapurna, K. Kumar Krishna, and Sankaranarayanan, A., Academic Press, London, 363–396, https://doi.org/10.1016/B978-0-12-823414-3.00018-6, 2020.
Hazarika, S. N. and Thakur, D.: Actinobacteria, in Beneficial microbes in agro-ecology, edited by: Amaresan, N., Senthil Kumar, M., Annapurna, K., Kumar Krishna, and Sankaranarayanan, A., Academic Press, London, 443–47, https://doi.org/10.1016/B978-0-12-823414-3.00021-6, 2020.
Henstra, A. M. and Stams, A. J.: Novel physiological features of Carboxydothermus hydrogenoformans and Thermoterrabacterium ferrireducens, Appl. Environ. Microbiol., 70, 7236–7240, https://doi.org/10.1128/AEM.70.12.7236-7240.2004, 2004.
Hirayama, H., Takai, K., Inagaki, F., Nealson, K. H., and Horikoshi, K.: Thiobacter subterraneus gen. nov., sp. nov., an obligately chemolithoautotrophic, thermophilic, sulfur-oxidizing bacterium from a subsurface hot aquifer, I. J. Syst. Evol. Microbiol., 55, 467–472, https://doi.org/10.1099/ijs.0.63389-0, 2005.
Holmer, M. and Storkholm, P.: Sulphate reduction and sulphur cycling in lake sediments: a review, Freshw. Biol., 46, 431–451, https://doi.org/10.1046/j.1365-2427.2001.00687.x, 2001.
Hosomi, K., Saito, M., Park, J., Murakami, H., Shibata, N., Ando, M., Nagatake, T., Konishi, K., Ohno, H., Tanisawa, K., Mohsen, A., Chen, Y.-A., Kawashima, J., Natsume-Kitatani, Y., Oka, Y., Shimizu, H., Furuta, M., Tojima, Y., Sawane, K., Saija, A., Kondo, S., Yonejima, Y., Takeyama, H., Matsutani, A., Mizuguchi, K., Miyachi, M., and Kunisawa, J.: Oral administration of Blautia wexlerae ameliorates obesity and type 2 diabetes via metabolic remodeling of the gut microbiota, Nat. Commun., 13, 4477, https://doi.org/10.1038/s41467-022-32015-7, 2022.
Howarth, G. F. and Moldovan, T. O.: The ecological classification of cave animals and their adaptations, in: Cave Ecology, edited by: Moldovan, T. O., Kovac, L., and Halse, S., Springer, Berlin, 41–67, https://doi.org/10.1007/978-3-319-98852-8_4, 2018.
Huber, K. J., Geppert, A. M., Wanner, G., Fösel, B. U., Wüst, P. K., and Overmann, J.: The first representative of the globally widespread subdivision 6 Acidobacteria, Vicinamibacter silvestris gen. nov., sp. nov., isolated from subtropical savannah soil, I. J. Syst. Evol. Microbiol., 66, 2971–2979, https://doi.org/10.1099/ijsem.0.001131, 2016.
Hubert, C., Loy, A., Nickel, M., Arnosti, C., Baranyi, C., Brüchert, V., Ferdelman, T., Finster, K., Christensen, M. F., de Rezende, R, J., Vandieken, V., and Jørgensen, B. B.: A constant flux of diverse thermophilic bacteria into the cold Arctic seabed, J. Sci., 325, 1541–1544, https://doi.org/10.1126/science.1174012, 2009.
Itoh, T., Yamanoi, K., Kudo, T., Ohkuma, M., and Takashina, T.: Aciditerrimonas ferrireducens gen. nov., sp. nov., an iron-reducing thermoacidophilic actinobacterium isolated from a solfataric field, I. J. Syst. Evol. Microbiol., 6, 1281–1285, https://doi.org/10.1099/ijs.0.023044-0, 2011.
Ji, M., Kong, W., Stegen, J., Yue, L., Wang, F., Dong, X., Cowan, A. D., and Ferrari, B. C.: Distinct assembly mechanisms underlie similar biogeographical patterns of rare and abundant bacteria in Tibetan Plateau grassland soils, Environ. Microbiol., 22, 2261–227, https://doi.org/10.1111/1462-2920.14993, 2020.
Jia, B., Chang, X., Fu, Y., Heng, W., Ye, Z., Liu, P., Liu, L., Shoffe, A. Y., Watkins, B. C., and Zhu, L.: Metagenomic analysis of rhizosphere microbiome provides insights into occurrence of iron deficiency chlorosis in field of Asian pears, BMC Microbiol., 22, 18, https://doi.org/10.1186/s12866-021-02432-7, 2022.
Kaksonen, A. H., Spring, S., Schumann, P., Kroppenstedt, R. M., and Puhakka, J. A.: Desulfovirgula thermocuniculi gen. nov., sp. nov., a thermophilic sulfate-reducer isolated from a geothermal underground mine in Japan, I. J. Syst. Evol. Microbiol., 57, 98–102, https://doi.org/10.1099/ijs.0.64655-0, 2007.
Kim, B. R., Shin, J., Guevarra, R. B., Lee, J. H., Kim, D. W., Seol, K. H., Lee, J.-H, Kim, B. H., and Isaacson, E. R.: Deciphering diversity indices for a better understanding of microbial communities, J. Microbiol. Biotechnol., 27, 2089–2093, https://doi.org/10.4014/jmb.1709.09027, 2017.
Kim, H., Park, H.-Y., Yang, E. J., Kim, S.-H., Kim, S.-C., Oh, E.-J., Moon, J., Cho, W., Shin, W., and Yu, C.: Analysis of major bacteria and diversity of surface soil to discover biomarkers related to soil health, Toxics, 10, 117, https://doi.org/10.3390/toxics10030117, 2022.
Koblížek, M., Dachev, M., Bína, D., Piwosz, K., and Kaftan, D.: Utilization of light energy in phototrophic Gemmatimonadetes, J. Photochem. Photobiol. B., 213, 112085, https://doi.org/10.1016/j.jphotobiol.2020.112085, 2020.
Kochetkova, T. V., Podosokorskaya, O. A., Elcheninov, A. G., and Kublanov, I. V.: Diversity of thermophilic prokaryotes inhabiting Russian natural hot springs, Microbiology, 91, 1–27, https://doi.org/10.1134/S0026261722010064, 2022.
Konopiński, M. K.: Shannon diversity index: a call to replace the original Shannon's formula with unbiased estimator in the population genetics studies, PeerJ, 8, e9391, https://doi.org/10.7717/peerj.9391, 2020.
Kosznik-Kwaśnicka, K., Golec, P., Jaroszewicz, W., Lubomska, D., and Piechowicz, L.: Into the Unknown: Microbial Communities in Caves, Their Role, and Potential Use, Microorganisms, 10, 222, https://doi.org/10.3390/microorganisms10020222, 2022.
Krishna, M. P. and Mohan, M.: Litter decomposition in forest ecosystems: a review, Energy, Ecol. Environ., 2, 236–249, https://doi.org/10.1007/s40974-017-0064-9, 2017.
Lang, C., Leuenberger, M., Schwander, J., and Johnsen, S.: 16 °C Rapid Temperature Variation in Central Greenland 70,000 Years Ago, Science, 286, 934–937, http://www.jstor.org/stable/2899490 (last access: 10 November 2024), 1999.
Lange-Enyedi, N. T., Németh, P., Borsodi, A. K., Halmy, R., Czuppon, G., Kovács, I., Leél-Őssy, S., Demény, A., and Makk, J.: Calcium carbonate precipitating cultivable bacteria from different speleothems of karst caves, Geomicrobiol. J., 39, 107–122, https://doi.org/10.1080/01490451.2021.2019857, 2022.
Leonova, G. A., Maltsev, A. E., Melenevsky, V. N., Krivonogov, S. K., Kondratyeva, L. M., Bobrov, V. A., and Suslova, M. Y.: Diagenetic transformation of organic matter in sapropel sediments of small lakes (southern West Siberia and eastern Transbaikalia), Quaternary Int., 524, 40–47, https://doi.org/10.1016/j.quaint.2019.03.011, 2019.
Li, W., Fu, L., Niu, B., Wu, S., and Wooley, J.: Ultrafast clustering algorithms for metagenomic sequence analysis, Brief. Bioinform., 13, 656–668, https://doi.org/10.1093/bib/bbs035, 2012.
Losey, N. A., Stevenson, B. S., Busse, H. J., Damsté, J. S. S., Rijpstra, W. I. C., Rudd, S., and Lawson, P. A.: Thermoanaerobaculum aquaticum gen. nov., sp. nov., the first cultivated member of Acidobacteria subdivision 23, isolated from a hot spring, Int. J. Syst. Evol. Microbiol., 63, 4149–4157, https://doi.org/10.1099/ijs.0.051425-0, 2013.
Lupu, S. and Ilie, I.: Observaţii geomorfologice preliminare în bazinul rîului Galbenul, Probleme de Geografie, X, Editura Academiei Republicii Populare Romane, 1962.
Ma, L., Huang, X., Wang, H.,Yun, Y.,Cheng, X., Liu, D., Lu, X., and Qiu, X.: Microbial interactions drive distinct taxonomic and potential metabolic responses to habitats in karst cave ecosystem, Microbiol. Spectr., 9, e0115221, https://doi.org/10.1128/Spectrum.01152-21, 2021.
Ma, L., Yang, W., Huang, S., Liu, R., Li, H., Huang, X., Liu, R., Li, H., Huang, X., Xiong, J., and Liu, X.: Integrative assessments on molecular taxonomy of Acidiferrobacter thiooxydans ZJ and its environmental adaptation based on mobile genetic elements, Front. Microbiol., 13, 826829, https://doi.org/10.3389/fmicb.2022.826829, 2022.
Magoč, T. and Salzberg, S. L.: FLASH: fast length adjustment of short reads to improve genome assemblies, Bioinformatics, 27, 2957–2963, https://doi.org/10.1093/bioinformatics/btr507, 2011.
Malard, L. A., Anwar, M. Z., Jacobsen, C. S., and Pearce, D. A.: Biogeographical patterns in soil bacterial communities across the Arctic region, FEMS Microbiol. Ecol., 95, fiz128, https://doi.org/10.1093/femsec/fiz128, 2019.
McMahon, S., Anderson, R. P., Saupe, E. E., and Briggs, D. E. G.: Experimental evidence that clay inhibits bacterial decomposers: Implications for preservation of organic fossils, Geology, 44, 867–870, https://doi.org/10.1130/G38454.1, 2016.
McMurdie, P. J. and Holmes, S.: phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data, PLOS One, 8, e61217, https://doi.org/10.1371/journal.pone.0061217, 2013.
Michail, G., Lefkothea K., Panagiotis, M., Angeliki, R., and Ioannis, V.: Metataxonomic analysis of bacteria entrapped in a stalactite's core and their possible environmental origins, Microorganisms, 9, 2411, https://doi.org/10.3390/microorganisms9122411, 2021.
Micu, M. D., Dumitrascu, A., Cheval, S., and Birsan, V.-M.: Regional Climatic Patterns in Climate of the Romanian Carpathians, edited by: Micu, M. D., Dumitrascu, A., Cheval, S., and Birsan, V.-M., Springer Cham, Switzerland, 73–148, https://doi.org/10.1007/978-3-319-02886-6, 2015.
Milojevic, T., Cramm, M. A., Hubert, C. R. J., and Westall, F.: “Freezing” thermophiles: From one temperature extreme to another, Microorganisms, 10, 2417, https://doi.org/10.3390/microorganisms10122417, 2022.
Minckley, T. A., Clementz, M. T., and Lovelace, D.: Paleo-vegetation and environmental history of Natural Trap Cave based on pollen and carbon isotope analyses, Quaternary Int., 647, 103–111, https://doi.org/10.1016/j.quaint.2021.11.019, 2023.
Mirea, I. C.: Late Quaternary environmental changes as revealed by the sedimentary archives from Muierilor Cave, Romania, Unpublished PhD thesis, Cluj-Napoca, 138, 2020.
Mirea, I. C., Robu, M., Petculescu, A., Kenesz, M., Faur, L., Arghir, R., Tecsa, V., Timar-Gabor, A., Roban, R.-D., Panaiotu, G. C., Sharifi, A., Pourmand, A., Codrea, A. V., and Constantin, S.: Last deglaciation flooding events in the Southern Carpathians as revealed by the study of cave deposits from Muierilor Cave, Romania, Palaeogeogr. Palaeocl., 562, 110084, https://doi.org/10.1016/j.palaeo.2020.110084, 2021.
Miroshnichenko, M. L. and Bonch-Osmolovskaya, E. A.: Recent developments in the thermophilic microbiology of deep-sea hydrothermal vents, Extremophiles, 10, 85–96, https://doi.org/10.1007/s00792-005-0489-5, 2006.
Misra, P. K., Gautam, N. K., and Elangovan, V.: Bat guano: a rich source of macro and microelements essential for plant growth, Ann. Plant Soil Res., 21, 82–86, 2019.
Moldovan, O.T., Constantin, S., Panaiotu, C., Roban, R. D., Frenzel, P., and Miko, L.: Fossil invertebrates records in cave sediments and paleoenvironmental assessments: a study of four cave sites from Romanian Carpathians, Biogeosciences, 13, 483–497, https://doi.org/10.5194/bg-13-483-2016, 2016.
Moldovan, O. T., Mihevc, A., Miko, L., Constantin, S., Meleg, I. N., Petculescu, A., and Bosak, P.: Invertebrate fossils from cave sediments: a new proxy for pre-Quaternary paleoenvironments, Biogeosciences, 8, 1825–1837, https://doi.org/10.5194/bg-8-1825-2011, 2011.
More, K. D., Giosan, L., Grice, and Coolen, M. J.: Holocene paleodepositional changes reflected in the sedimentary microbiome of the Black Sea, Geobiology, 17, 436–448, https://doi.org/10.1111/gbi.12338, 2019.
Moreno, I. J., Brahamsha, B., Donia, M. S., and Palenik, B.: Diverse microbial hot spring mat communities at Black Canyon of the Colorado River, Microb. Ecol., 86, 1534–1551, https://doi.org/10.1007/s00248-023-02186-x, 2023.
Mori, K., Hanada, S., Maruyama, A., and Marumo, K.: Thermanaeromonas toyohensis gen. nov., sp. nov., a novel thermophilic anaerobe isolated from a subterranean vein in the Toyoha Mines, I. J. Syst. Evol. Microbiol., 52, 1675–1680, https://doi.org/10.1099/00207713-52-5-1675, 2002.
Mori, K., Suzuki, K. I., Urabe, T., Sugihara, M., Tanaka, K., Hamada, M., and Hanada, S.: Thioprofundum hispidum sp. nov., an obligately chemolithoautotrophic sulfur-oxidizing gammaproteobacterium isolated from the hydrothermal field on Suiyo Seamount, and proposal of Thioalkalispiraceae fam. nov. in the order Chromatiales, I. J. Syst. Evol. Microbiol., 61, 2412–2418, https://doi.org/10.1099/ijs.0.026963-0, 2011.
Müller, A. L., De Rezende, J. R., Hubert, C. R., Kjeldsen, K. U., Lagkouvardos, I., Berry, D., Jørgensen, B. B., and Loy, A.: Endospores of thermophilic bacteria as tracers of microbial dispersal by ocean currents, ISME J., 8, 1153–1165, https://doi.org/10.1038/ismej.2013.225, 2014.
Nejman, L., Lisá, L., Doláková, N., Horáček, I., Bajer, A., Novák, J., Wright, D., Sullivan, M., Wood, R., Gargett, R. H., Pacher, M., Sázelová, S., Nývltová Fišáková, M., Rohovec, J., and Králík, M.: Cave deposits as a sedimentary trap for the Marine Isotope Stage 3 environmental record: The case study of Pod Hradem, Czech Republic, Palaeogeogr. Palaeocl., 497, 201–217, https://doi.org/10.1016/j.palaeo.2018.02.020, 2018.
North Greenland Ice Core Project members: High-resolution record of Northern Hemisphere climate extending into the last interglacial period, Nature, 431, 147–151, https://doi.org/10.1038/nature02805, 2004.
Novikov, A. A., Sokolova, T. G., Lebedinsky, A. V., Kolganova, T. V., and Bonch-Osmolovskaya, E. A.: Carboxydothermus islandicus sp. nov., a thermophilic, hydrogenogenic, carboxydotrophic bacterium isolated from a hot spring, I. J. Syst. Evol. Microbiol., 61, 2532–2537, https://doi.org/10.1099/ijs.0.030288-0, 2011.
Onac, B. P., Wynn, J. G., and Sumrall, J. B.: Tracing the sources of cave sulfates: a unique case from Cerna Valley, Romania, Chem. Geol., 288, 105–114, https://doi.org/10.1016/j.chemgeo.2011.07.006, 2011.
Oren, A. and Garrity, G. M.: Valid publication of the names of forty-two phyla of prokaryotes, Int. J. Syst. Evol. Microbiol., 71, 005056, https://doi.org/10.1099/ijsem.0.005056, 2021.
Oren, A., Mareš, J., and Rippka, R.: Validation of the names Cyanobacterium and Cyanobacterium stanieri, and proposal of Cyanobacteriota phyl. nov. Int. J. Syst. Evol. Microbiol., 72, 005528, https://doi.org/10.1099/ijsem.0.005528, 2022.
Osipova, E., Danukalova, G., and Tiunov, M.: Late Pleistocene and Holocene malacological and theriological faunas from the Tetyukhinskaya Cave (South Far East, Russia) and their palaeoecological implications, Palaeoworld, 33, 241–256, https://doi.org/10.1016/j.palwor.2022.12.007, 2024.
Pascual, J., Foesel, B. U., Geppert, A., Huber, K. J., Boedeker, C., Luckner, M., Wanner, G., and Overmann, J.: Roseisolibacter agri gen. nov., sp. nov., a novel slow-growing member of the under-represented phylum Gemmatimonadetes, I. J. Syst. Evol. Microbiol., 68, 1028–1036, https://doi.org/10.1099/ijsem.0.002619, 2018.
Perevalova, A. A., Kublanov, I. V., Baslerov, R. V., Zhang, G., and Bonch-Osmolovskaya, E. A.: Brockia lithotrophica gen. nov., sp. nov., an anaerobic thermophilic bacterium from a terrestrial hot spring, Int. J. Syst. Evol. Microbiol., 63, 479–483, https://doi.org/10.1099/ijs.0.041285-0, 2013.
Perfumo, A. and Marchant, R.: Global transport of thermophilic bacteria in atmospheric dust, Environ. Microbiol. Reports, 2, 333–339, https://doi.org/10.1111/j.1758-2229.2010.00143.x, 2010.
Pester, M., Knorr, K. H., Friedrich, M. W., Wagner, M., and Loy, A.: Sulfate-reducing microorganisms in wetlands–fameless actors in carbon cycling and climate change, Front. Microbiol., 3, 72, https://doi.org/10.3389/fmicb.2012.00072, 2012.
Pianta, A., Arvikar, S., Strle, K., Drouin, E. E., Wang, Q., Costello, C. E., and Steere, A. C.: Evidence of the immune relevance of Prevotella copri, a gut microbe, in patients with rheumatoid arthritis, Arthritis Rheumatol., 69, 964–975, https://doi.org/10.1002/art.40003, 2017.
Portillo, M. C. and González, J. M.: Microbial communities and immigration in volcanic environments of Canary Islands (Spain), Naturwissenschaften, 95, 307–315, https://doi.org/10.1007/s00114-007-0330-3, 2008.
Portillo, M. C., Santana, M., and González, J. M.: Presence and potential role of thermophilic bacteria in temperate terrestrial environments, Naturwissenschaften, 99, 43–53, https://doi.org/10.1007/s00114-011-0867-z, 2012.
Prescott, C. E. and Vesterdal, L.: Decomposition and transformations along the continuum from litter to soil organic matter in forest soils, Forest Ecol. Manag., 498, 119522, https://doi.org/10.1016/j.foreco.2021.119522, 2021.
Prieto, A. R., Azar, P. F., and Fernández, M. M.: Holocene vegetation dynamics and human–environment interactions inferred from pollen and plant macrofossils from caves in northwestern Patagonia (Argentina), Rev. Palaeobot. Palynol., 293, 104496, https://doi.org/10.1016/j.revpalbo.2021.104496, 2021.
Reang, L., Bhatt, S., Tomar, R. S., Joshi, K., Padhiyar, S., Vyas, M. U., and Kheni, H. J.: Plant growth promoting characteristics of halophilic and halotolerant bacteria isolated from coastal regions of Saurashtra Gujarat, Sci. Rep., 12, 4699, https://doi.org/10.1038/s41598-022-08151-x, 2022.
Rime, T., Hartmann, M., and Frey, B.: Potential sources of microbial colonizers in an initial soil ecosystem after retreat of an alpine glacier, ISME J., 10, 1625–1641, https://doi.org/10.1038/ismej.2015.238, 2016.
Romanenko, L. A., Tanaka, N., Svetashev, V. I., and Mikhailov, V. V.: Pseudomonas glareae sp. nov., a marine sediment-derived bacterium with antagonistic activity, Arch. Microbiol., 197, 693–699, https://doi.org/10.1007/s00203-015-1103-6, 2015.
Romano, E., Sechi, D., Andreucci, S., Bergamin, L., D'Ambrosi, A., De Santis, C., Di Bella, L., Dinelli, E., Frezza, V., Pascucci, V., Pierfranceschi, G., and Provenzani, C.: Paleoecological reconstruction during the Holocene in the Middle Branch of Bue Marino Cave (Sardinia, Italy), Holocene, 34, 74–86, https://doi.org/10.1177/09596836231200435, 2024.
Sakon, H., Nagai, F., Morotomi, M., and Tanaka, R.: Sutterella parvirubra sp. nov. and Megamonas funiformis sp. nov., isolated from human faeces, I. J. Syst. Evol. Microbiol., 58, 970–975, https://doi.org/10.1099/ijs.0.65456-0, 2008.
Santana, M. M. and González, J. M.: High temperature microbial activity in upper soil layers, FEMS Microbiol. Lett., 362, fnv182, https://doi.org/10.1093/femsle/fnv182, 2015.
Santana, M. M., Carvalho, L., Melo, J., Araújo, M. E., and Cruz, C.: Unveiling the hidden interaction between thermophiles and plant crops: Wheat and soil thermophilic bacteria, J. Plant Interact., 15, 127–138, https://doi.org/10.1080/17429145.2020.1766585, 2020.
Santana, M. M., Dias, T., González, J. M., and Cruz, C.: Transformation of organic and inorganic sulfur-adding perspectives to new players in soil and rhizosphere, Soil Biol. Biochem., 160, 108306, https://doi.org/10.1016/j.soilbio.2021.108306, 2021.
Satam, H., Joshi, K., Mangrolia, U., Waghoo, S., Zaidi, G., Rawool, S., Thakare, R. P., Banday, S., Mishra, A. K., Das, G., and Malonia, S. K.: Next-Generation Sequencing Technology: Current Trends and Advancements, Biology, 12, 997, https://doi.org/10.3390/biology12070997, 2023.
Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., Lesniewski, A. R., Oakley, B. B., Parks, H. D., Robinson, J. C., Sahl, W. J., Stres, B., Thallinger, G. G., Van Horn, J. D., and Weber, C. F.: Introducing Mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities, Appl. Environ. Microbiol., 75, 7537–7541, https://doi.org/10.1128/AEM.01541-09, 2009.
Semenov, M. V., Chernov, T. I., Zhelezova, A. D. Nikitin, D. A., Tkhakakhova, A. K., Ivanova, E. A., Xenofontova, N. A., Sycheva, S. A., Kolganova, T. V., and Kutovaya, O. V.: Microbial communities of interglacial and interstadial paleosols of the Late Pleistocene, Eurasian Soil Sc., 53, 772–779, https://doi.org/10.1134/S1064229320060101, 2020.
Sequence Read Archive (SRA): PRJNA1161469 Bacteria from cave sediments as indicator of paleoenvironments, National Library of Medicine (US), National Center for Biotechnology Information [data set], https://dataview.ncbi.nlm.nih.gov/object/PRJNA1161469?reviewer=oj751r51jbshf43t890pjt85b0 (last access: 17 February 2025), 2009.
Shelobolina, E. S., Nevin, K. P., Blakeney-Hayward, J. D., Johnsen, C. V., Plaia, T. W., Krader, P., Woodard, T., Holmes, D. E., VanPraagh, C. G., and Lovley, D. R.: Geobacter pickeringii sp. nov., Geobacter argillaceus sp. nov. and Pelosinus fermentans gen. nov., sp. nov., isolated from subsurface kaolin lenses, I. J. Syst. Evol. Microbiol., 57, 126–135, https://doi.org/10.1099/ijs.0.64221-0, 2007.
Simpson, E. H.: Measurement of diversity, Nature, 163, 688, https://doi.org/10.1038/163688a0, 1949.
Slobodkin, A. I., Reysenbach, A. L., Slobodkina, G. B., Baslerov, R. V., Kostrikina, N. A., Wagner, I. D., and Bonch-Osmolovskaya, E. A.: Thermosulfurimonas dismutans gen. nov., sp. nov., an extremely thermophilic sulfur-disproportionating bacterium from a deep-sea hydrothermal vent, I. J. Syst. Evol. Microbiol., 62, 2565–2571, https://doi.org/10.1099/ijs.0.034397-0, 2012.
Slobodkina, G. B., Baslerov, R. V., Novikov, A. A., Bonch-Osmolovskaya, E. A., and Slobodkin, A. I.: Thermodesulfitimonas autotrophica gen. nov., sp. nov., a thermophilic, obligate sulfite-reducing bacterium isolated from a terrestrial hot spring, I. J. Syst. Evol. Microbiol., 67, 301–305, https://doi.org/10.1099/ijsem.0.001619, 2017.
Sokolova, T. G., Kostrikina, N. A., Chernyh, N. A., Kolganova, T. V., Tourova, T. P., and Bonch-Osmolovskaya, E. A.: Thermincola carboxydiphila gen. nov., sp. nov., a novel anaerobic, carboxydotrophic, hydrogenogenic bacterium from a hot spring of the Lake Baikal area, I. J. Syst. Evol. Microbiol., 55, 2069–2073, https://doi.org/10.1099/ijs.0.63299-0, 2005.
Sperfeld, M., Diekert, G., and Studenik, S.: Anaerobic aromatic compound degradation in Sulfuritalea hydrogenivorans sk43H, FEMS Microbiol. Ecol., 95, fiy199, https://doi.org/10.1093/femsec/fiy199, 2019.
Takahashi, H., Kopriva, S., Giordano, M., Saito, K., and Hell, R.: Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes, Annu. Rev. Plant Biol., 62, 157–184, https://doi.org/10.1146/annurev-arplant-042110-103921, 2011.
Talà, A., Buccolieri, A., Calcagnile, M., Ciccarese, G., Onorato, M., Onorato, R., Serra, A., Spedicato, F., Tredici, M. S., Alifano, P., and Belmonte, G.: Chemotrophic profiling of prokaryotic communities thriving on organic and mineral nutrients in a submerged coastal cave, Sci. Total Environ., 755, 142514, https://doi.org/10.1016/j.scitotenv.2020.142514, 2021.
Taran, O. P., Boltenkov, V. V., Ermolaeva, N. I., Zarubina, E. Y., Delii, I. V., Romanov, R. E., and Strakhovenko, V. D.: Relations between the chemical composition of organic matter in lacustrine ecosystems and the genesis of their sapropel, Geochem. Int., 56, 256–265, https://doi.org/10.1134/S0016702918030096, 2018.
Täuber, S., Riedel, S. L., Neubauer, P., and Junne, S.: Phosphate assimilation with co-cultures of Acinetobacter tjernbergiae and Pseudomonas stutzeri, Chem.-Ing.-Tech., 94, 1300–1300, https://doi.org/10.1002/cite.202255269, 2022.
Tauxe, L., Gee, J., and Staudigel, H.: Flow directions in dikes from AMS data: The bootstrap way, J. Geophys. Res., 103, 17775–17790, 1998.
Thomas, S. P., Shanmuganathan, B., Jaiswal, M. K., Kumaresan, A., and Sadasivam, S. K.: Legacy of a Pleistocene bacterial community: Patterns in community dynamics through changing ecosystems, Microbiol. Res., 226, 65–73, https://doi.org/10.1016/j.micres.2019.06.001, 2019.
Thu, N. K., Tanabe, Y., Yoshida, M., Matsuura, H., and Watanabe, M. M.: Aerosakkonema funiforme gen. et sp. nov. (Oscillatoriales), a new gas-vacuolated oscillatorioid cyanobacterium isolated from a mesotrophic reservoir, Phycologia, 51, 672–683, https://doi.org/10.2216/11-130.1, 2012.
Uroz, S., Calvaruso, C., Turpault, M. P., and Frey-Klett, P.: Mineral weathering by bacteria: ecology, actors and mechanisms, Trends Microbiol., 17, 378–387, https://doi.org/10.1016/j.tim.2009.05.004, 2009.
Walters, K. E., Capocchi, J. K., Albright, M. B. N., Hao, Z., Brodie, L. E., and Martiny, B. J.: Routes and rates of bacterial dispersal impact surface soil microbiome composition and functioning, ISME J., 16, 2295–2304, https://doi.org/10.1038/s41396-022-01269-w, 2022.
Waltgenbach, S., Riechelmann, D. F. C., Spötl, C., Jochum, K. P., Fohlmeister, J., Schröder-Ritzrau, A., and Scholz, D.: Climate variability in central europe during the last 2500 years reconstructed from four high-resolution multi-proxy speleothem records, Geosciences, 11, 166, https://doi.org/10.3390/geosciences11040166, 2021.
Wani, A. K., Akhtar, N., Sher, F. Navarrete, A. A., and Américo-Pinheiro, J. H. P.: Microbial adaptation to different environmental conditions: molecular perspective of evolved genetic and cellular systems, Arch. Microbiol., 204, 144, https://doi.org/10.1007/s00203-022-02757-5, 2022.
Weber, M., Hinz, Y., Schöne, B. R., Jochum, K. P., Hoffmann, D., Spötl, C., Riechelmann, D. F. C., and Scholz, D.: Opposite trends in Holocene speleothem proxy records from two neighboring caves in Germany: A multi-proxy evaluation, Front. Earth Sci., 9, 642651, https://doi.org/10.3389/feart.2021.642651, 2021.
White, W. B.: Cave sediments and paleoclimate, J. Cave Karst Stud., 69, 76–93, 2007.
Wu, Y., Tan, L., Liu, W., Wang, B., Wang, J., Cai, Y., and Lin, X.: Profiling bacterial diversity in a limestone cave of the western Loess Plateau of China, Front. Microbiol., 6, 244, https://doi.org/10.3389/fmicb.2015.00244, 2015.
Xu, S., Wang, J., Zhang, X., Yang, R., Zhao, W., Huang, Z., and Wang, Y.: Lacustrine sediments bacterial community structure vertical succession of the Linxia Basin, NE Tibetan Plateau: significance for paleoenvironment reconstruction, Front. Earth Sci., 9, 714352, https://doi.org/10.3389/feart.2021.714352, 2022.
Yang, X.: Moraxellaceae, in: Encyclopedia of Food Microbiology, 2nd Edn., edited by: Batt, C. A. and Tortorello, M. L., Academic Press, London, 826–833, https://doi.org/10.1016/B978-0-12-384730-0.00441-9, 2014.
Yarwood, S. A.: The role of wetland microorganisms in plant-litter decomposition and soil organic matter formation: a critical review, FEMS Microbiol. Ecol., 94, fiy175, https://doi.org/10.1093/femsec/fiy175, 2018.
Yun, Y., Xiang, X., Wang, H., Man, B., Gong, L., Liu, Q., Dong, Q., and Wang, R.: Five-year monitoring of bacterial communities in dripping water from the Heshang Cave in Central China: implication for paleoclimate reconstruction and ecological functions, Geomicrobiol. J., 33, 1–11, https://doi.org/10.1080/01490451.2015.1062062, 2016.
Zada, S., Xie, J., Yang, M., Yang, X., Sajjad, W., Rafiq, M., Hasan, F., Zhong, H., and Wang, H.: Composition and functional profiles of microbial communities in two geochemically and mineralogically different caves, Appl. Microbiol. Biotechnol., 105, 8921–8936, https://doi.org/10.1007/s00253-021-11658-4, 2021.
Zavarzina, D. G., Zhilina, T. N., Kuznetsov, B. B., Kolganova, T. V., Osipov, G. A., Kotelev, M. S., and Zavarzin, G. A.: Natranaerobaculum magadiense gen. nov., sp. nov., an anaerobic, alkalithermophilic bacterium from soda lake sediment, I. J. Syst. Evol. Microbiol., 63, 4456–4461, https://doi.org/10.1099/ijs.0.054536-0, 2013.
Zavarzina, D. G., Gavrilov, N. S., Chistyakova, I. N., Antonova, V. A., Gracheva, A. M., Yu Merkel, A., Perevalova, A. A., Chernov, S. M., Zhilina, N. T., Yu Bychkov, A., and Bonch-Osmolovskaya, A. E.: Syntrophic growth of alkaliphilic anaerobes controlled by ferric and ferrous minerals transformation coupled to acetogenesis, ISME J., 14, 425–436, https://doi.org/10.1038/s41396-019-0527-4, 2020.
Zeng, X., Alain, K., and Shao, Z.: Microorganisms from deep-sea hydrothermal vents, Mar. Life Sci. Technol., 3, 204–230, https://doi.org/10.1007/s42995-020-00086-4, 2021.
Zepeda Mendoza, M. L., Lundberg, J., Ivarsson, M., Campos, P., Nylander, J. A., Sallstedt, T., and Dalen, L.: Metagenomic analysis from the interior of a speleothem in Tjuv-Ante's cave, northern Sweden, PLoS One, 11, e0151577, https://doi.org/10.1371/journal.pone.0151577, 2016.
Zhang, M., Han, F., Li, Y., Liu, Z., Chen, H., Li, Z., Li, Q., and Zhou, W.: Nitrogen recovery by a halophilic ammonium-assimilating microbiome: a new strategy for saline wastewater treatment, Water Res., 207, 117832, https://doi.org/10.1016/j.watres.2021.117832, 2021.
Zhao, L., Xiao, R., Zhang, S., Zhang, C., and Zhang, F.: Environmental specificity of karst cave habitats evidenced by diverse symbiotic bacteria in Opiliones, BMC Ecol. Evol., 24, 58, https://doi.org/10.1186/s12862-024-02248-9, 2024.
Zhou, J., Agichtein, E., and Kallumadi, S.: Diversifying multi-aspect search results using Simpson's diversity index, Proceedings of the 29th ACM International Conference on Information and Knowledge Management, Virtual Event Ireland, Association for Computing Machinery, New York, NY, United States, 19–23 October 2020, 2345–2348, https://doi.org/10.1145/3340531.3412163, 2020.
Zhu, H. Z., Zhang, Z. F., Zhou, N., Jiang, C. Y., Wang, B. J., Cai, L., and Liu, S. J.: Diversity, distribution and co-occurrence patterns of bacterial communities in a karst cave system, Front. microbiol., 10, 1726, https://doi.org/10.3389/fmicb.2019.01726, 2019.
Zhu, H. Z., Zhang, Z. F., Zhou, N., Jiang, C. Y., Wang, B. J., Cai, L., Wang, M.-H., and Liu, S. J.: Bacteria and metabolic potential in karst caves revealed by intensive bacterial cultivation and genome assembly, Appl. Environ. Microbiol., 8, e0244020, https://doi.org/10.1128/AEM.02440-20, 2021.
Short summary
Caves are natural archives for reconstructing past climates and environments. A 480 cm sediment profile was dated at 74.7 ± 12.3 to 56 ± 8 ka, with some sections influenced by Last Glacial Maximum flooding. Bacterial diversity shifts with depth, from soil bacteria in upper layers to thermophilic sulfur bacteria in deeper sediments, possibly linked to historic hot springs or sapropels. This study highlights the potential of bacteria as proxies for reconstructing paleoenvironmental conditions.
Caves are natural archives for reconstructing past climates and environments. A 480 cm sediment...
Altmetrics
Final-revised paper
Preprint