Articles | Volume 22, issue 13
https://doi.org/10.5194/bg-22-3329-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-3329-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Spatiotemporal variations in surface marine carbonate system properties across the western Mediterranean Sea using volunteer observing ship data
David Curbelo-Hernández
CORRESPONDING AUTHOR
Instituto de Oceanografía y Cambio Global (IOCAG), Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
David González-Santana
Instituto de Oceanografía y Cambio Global (IOCAG), Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
Aridane G. González
Instituto de Oceanografía y Cambio Global (IOCAG), Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
J. Magdalena Santana-Casiano
Instituto de Oceanografía y Cambio Global (IOCAG), Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
Melchor González-Dávila
Instituto de Oceanografía y Cambio Global (IOCAG), Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
Related authors
David Curbelo-Hernández, Fiz F. Pérez, Melchor González-Dávila, Sergey V. Gladyshev, Aridane G. González, David González-Santana, Antón Velo, Alexey Sokov, and J. Magdalena Santana-Casiano
Biogeosciences, 21, 5561–5589, https://doi.org/10.5194/bg-21-5561-2024, https://doi.org/10.5194/bg-21-5561-2024, 2024
Short summary
Short summary
The study evaluated CO2–carbonate system dynamics in the North Atlantic subpolar gyre during 2009–2019. Significant ocean acidification, largely due to rising anthropogenic CO2 levels, was found. Cooling, freshening, and enhanced convective processes intensified this trend, affecting calcite and aragonite saturation. The findings contribute to a deeper understanding of ocean acidification and improve our knowledge about its impact on marine ecosystems.
Li-Qing Jiang, Amanda Fay, Jens Daniel Müller, Lydia Keppler, Dustin Carroll, Siv K. Lauvset, Tim DeVries, Judith Hauck, Christian Rödenbeck, Luke Gregor, Nicolas Metzl, Andrea J. Fassbender, Jean-Pierre Gattuso, Peter Landschützer, Rik Wanninkhof, Christopher Sabine, Simone R. Alin, Mario Hoppema, Are Olsen, Matthew P. Humphreys, Kumiko Azetsu-Scott, Dorothee C. E. Bakker, Leticia Barbero, Nicholas R. Bates, Nicole Besemer, Henry C. Bittig, Albert E. Boyd, Daniel Broullón, Wei-Jun Cai, Brendan R. Carter, Thi-Tuyet-Trang Chau, Chen-Tung Arthur Chen, Frédéric Cyr, John E. Dore, Ian Enochs, Richard A. Feely, Hernan E. Garcia, Marion Gehlen, Lucas Gloege, Melchor González-Dávila, Nicolas Gruber, Yosuke Iida, Masao Ishii, Esther Kennedy, Alex Kozyr, Nico Lange, Claire Lo Monaco, Derek P. Manzello, Galen A. McKinley, Natalie M. Monacci, Xose A. Padin, Ana M. Palacio-Castro, Fiz F. Pérez, Alizée Roobaert, J. Magdalena Santana-Casiano, Jonathan Sharp, Adrienne Sutton, Jim Swift, Toste Tanhua, Maciej Telszewski, Jens Terhaar, Ruben van Hooidonk, Anton Velo, Andrew J. Watson, Angelicque E. White, Zelun Wu, Hyelim Yoo, and Jiye Zeng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-255, https://doi.org/10.5194/essd-2025-255, 2025
Preprint under review for ESSD
Short summary
Short summary
This review article provides an overview of 60 existing ocean carbonate chemistry data products, encompassing a broad range of types, including compilations of cruise datasets, gap-filled observational products, model simulations, and more. It is designed to help researchers identify and access the data products that best support their scientific objectives, thereby facilitating progress in understanding the ocean's changing carbonate chemistry.
David Curbelo-Hernández, Fiz F. Pérez, Melchor González-Dávila, Sergey V. Gladyshev, Aridane G. González, David González-Santana, Antón Velo, Alexey Sokov, and J. Magdalena Santana-Casiano
Biogeosciences, 21, 5561–5589, https://doi.org/10.5194/bg-21-5561-2024, https://doi.org/10.5194/bg-21-5561-2024, 2024
Short summary
Short summary
The study evaluated CO2–carbonate system dynamics in the North Atlantic subpolar gyre during 2009–2019. Significant ocean acidification, largely due to rising anthropogenic CO2 levels, was found. Cooling, freshening, and enhanced convective processes intensified this trend, affecting calcite and aragonite saturation. The findings contribute to a deeper understanding of ocean acidification and improve our knowledge about its impact on marine ecosystems.
Milagros Rico, Paula Santiago-Díaz, Guillermo Samperio-Ramos, Melchor González-Dávila, and Juana Magdalena Santana-Casiano
Biogeosciences, 21, 4381–4394, https://doi.org/10.5194/bg-21-4381-2024, https://doi.org/10.5194/bg-21-4381-2024, 2024
Short summary
Short summary
Changes in pH generate stress conditions, either because high pH drastically decreases the availability of trace metals such as Fe(II), a restrictive element for primary productivity, or because reactive oxygen species are increased with low pH. The metabolic functions and composition of microalgae can be affected. These modifications in metabolites are potential factors leading to readjustments in phytoplankton community structure and diversity and possible alteration in marine ecosystems.
David González-Santana, María Segovia, Melchor González-Dávila, Librada Ramírez, Aridane G. González, Leonardo J. Pozzo-Pirotta, Veronica Arnone, Victor Vázquez, Ulf Riebesell, and J. Magdalena Santana-Casiano
Biogeosciences, 21, 2705–2715, https://doi.org/10.5194/bg-21-2705-2024, https://doi.org/10.5194/bg-21-2705-2024, 2024
Short summary
Short summary
In a recent experiment off the coast of Gran Canaria (Spain), scientists explored a method called ocean alkalinization enhancement (OAE), where carbonate minerals were added to seawater. This process changed the levels of certain ions in the water, affecting its pH and buffering capacity. The researchers were particularly interested in how this could impact the levels of essential trace metals in the water.
Christoph Heinze, Thorsten Blenckner, Peter Brown, Friederike Fröb, Anne Morée, Adrian L. New, Cara Nissen, Stefanie Rynders, Isabel Seguro, Yevgeny Aksenov, Yuri Artioli, Timothée Bourgeois, Friedrich Burger, Jonathan Buzan, B. B. Cael, Veli Çağlar Yumruktepe, Melissa Chierici, Christopher Danek, Ulf Dieckmann, Agneta Fransson, Thomas Frölicher, Giovanni Galli, Marion Gehlen, Aridane G. González, Melchor Gonzalez-Davila, Nicolas Gruber, Örjan Gustafsson, Judith Hauck, Mikko Heino, Stephanie Henson, Jenny Hieronymus, I. Emma Huertas, Fatma Jebri, Aurich Jeltsch-Thömmes, Fortunat Joos, Jaideep Joshi, Stephen Kelly, Nandini Menon, Precious Mongwe, Laurent Oziel, Sólveig Ólafsdottir, Julien Palmieri, Fiz F. Pérez, Rajamohanan Pillai Ranith, Juliano Ramanantsoa, Tilla Roy, Dagmara Rusiecka, J. Magdalena Santana Casiano, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Miriam Seifert, Anna Shchiptsova, Bablu Sinha, Christopher Somes, Reiner Steinfeldt, Dandan Tao, Jerry Tjiputra, Adam Ulfsbo, Christoph Völker, Tsuyoshi Wakamatsu, and Ying Ye
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-182, https://doi.org/10.5194/bg-2023-182, 2023
Revised manuscript not accepted
Short summary
Short summary
For assessing the consequences of human-induced climate change for the marine realm, it is necessary to not only look at gradual changes but also at abrupt changes of environmental conditions. We summarise abrupt changes in ocean warming, acidification, and oxygen concentration as the key environmental factors for ecosystems. Taking these abrupt changes into account requires greenhouse gas emissions to be reduced to a larger extent than previously thought to limit respective damage.
Elise S. Droste, Mario Hoppema, Melchor González-Dávila, Juana Magdalena Santana-Casiano, Bastien Y. Queste, Giorgio Dall'Olmo, Hugh J. Venables, Gerd Rohardt, Sharyn Ossebaar, Daniel Schuller, Sunke Trace-Kleeberg, and Dorothee C. E. Bakker
Ocean Sci., 18, 1293–1320, https://doi.org/10.5194/os-18-1293-2022, https://doi.org/10.5194/os-18-1293-2022, 2022
Short summary
Short summary
Tides affect the marine carbonate chemistry of a coastal polynya neighbouring the Ekström Ice Shelf by movement of seawater with different physical and biogeochemical properties. The result is that the coastal polynya in the summer can switch between being a sink or a source of CO2 multiple times a day. We encourage consideration of tides when collecting in polar coastal regions to account for tide-driven variability and to avoid overestimations or underestimations of air–sea CO2 exchange.
Sara González-Delgado, David González-Santana, Magdalena Santana-Casiano, Melchor González-Dávila, Celso A. Hernández, Carlos Sangil, and José Carlos Hernández
Biogeosciences, 18, 1673–1687, https://doi.org/10.5194/bg-18-1673-2021, https://doi.org/10.5194/bg-18-1673-2021, 2021
Short summary
Short summary
We describe the carbon system dynamics of a new CO2 seep system located off the coast of La Palma. We explored for over a year, finding points with lower levels of pH and alkalinity; high levels of carbon; and poorer levels of aragonite and calcite, both essential for calcifying species. The seeps are a key feature for robust experimental designs, aimed at comprehending how life has persisted through past eras or at predicting the consequences of ocean acidification in the marine realm.
Daniel Broullón, Fiz F. Pérez, Antón Velo, Mario Hoppema, Are Olsen, Taro Takahashi, Robert M. Key, Toste Tanhua, J. Magdalena Santana-Casiano, and Alex Kozyr
Earth Syst. Sci. Data, 12, 1725–1743, https://doi.org/10.5194/essd-12-1725-2020, https://doi.org/10.5194/essd-12-1725-2020, 2020
Short summary
Short summary
This work offers a vision of the global ocean regarding the carbon cycle and the implications of ocean acidification through a climatology of a changing variable in the context of climate change: total dissolved inorganic carbon. The climatology was designed through artificial intelligence techniques to represent the mean state of the present ocean. It is very useful to introduce in models to evaluate the state of the ocean from different perspectives.
Mark J. Hopwood, Carolina Santana-González, Julian Gallego-Urrea, Nicolas Sanchez, Eric P. Achterberg, Murat V. Ardelan, Martha Gledhill, Melchor González-Dávila, Linn Hoffmann, Øystein Leiknes, Juana Magdalena Santana-Casiano, Tatiana M. Tsagaraki, and David Turner
Biogeosciences, 17, 1327–1342, https://doi.org/10.5194/bg-17-1327-2020, https://doi.org/10.5194/bg-17-1327-2020, 2020
Short summary
Short summary
Fe is an essential micronutrient. Fe(III)-organic species are thought to account for > 99 % of dissolved Fe in seawater. Here we quantified Fe(II) during experiments in Svalbard, Gran Canaria, and Patagonia. Fe(II) was always a measurable fraction of dissolved Fe up to 65 %. Furthermore, when Fe(II) was allowed to decay in the dark, it remained present longer than predicted by kinetic equations, suggesting that Fe(II) is a more important fraction of dissolved Fe in seawater than widely recognized.
Daniel Broullón, Fiz F. Pérez, Antón Velo, Mario Hoppema, Are Olsen, Taro Takahashi, Robert M. Key, Toste Tanhua, Melchor González-Dávila, Emil Jeansson, Alex Kozyr, and Steven M. A. C. van Heuven
Earth Syst. Sci. Data, 11, 1109–1127, https://doi.org/10.5194/essd-11-1109-2019, https://doi.org/10.5194/essd-11-1109-2019, 2019
Short summary
Short summary
In this work, we are contributing to the knowledge of the consequences of climate change in the ocean. We have focused on a variable related to this process: total alkalinity. We have designed a monthly climatology of total alkalinity using artificial intelligence techniques, that is, a representation of the average capacity of the ocean in the last decades to decelerate the consequences of climate change. The climatology is especially useful to infer the evolution of the ocean through models.
Melchor González-Dávila, J. Magdalena Santana Casiano, and Francisco Machín
Biogeosciences, 14, 3859–3871, https://doi.org/10.5194/bg-14-3859-2017, https://doi.org/10.5194/bg-14-3859-2017, 2017
Short summary
Short summary
The Mauritanian–Cap Vert upwelling is shown to be sensitive to climate change forcing on upwelling processes, which strongly affects the CO2 surface distribution, ocean acidification rates, and air–sea CO2 exchange. We confirmed an upwelling intensification, an increase in the CO2 outgassing, and an important decrease in the pH of the surface waters. Upwelling areas are poorly studied and VOS lines are shown as one of the most significant contributors to our knowledge of the ocean's response.
I. Hernández-Carrasco, J. Sudre, V. Garçon, H. Yahia, C. Garbe, A. Paulmier, B. Dewitte, S. Illig, I. Dadou, M. González-Dávila, and J. M. Santana-Casiano
Biogeosciences, 12, 5229–5245, https://doi.org/10.5194/bg-12-5229-2015, https://doi.org/10.5194/bg-12-5229-2015, 2015
Short summary
Short summary
We have reconstructed maps of air-sea CO2 fluxes at high resolution (4 km) in the offshore Benguela region using sea surface temperature and ocean colour data and CarbonTracker CO2 fluxes data at low resolution (110 km).
The inferred representation of pCO2 improves the description provided by CarbonTracker, enhancing small-scale variability.
We find that the resolution, as well as the inferred pCO2 data itself, is closer to in situ measurements of pCO2.
Related subject area
Biogeochemistry: Coastal Ocean
Amplified bottom water acidification rates on the Bering Sea shelf from 1970–2022
Depositional controls and budget of organic carbon burial in fine-grained sediments of the North Sea – the Helgoland Mud Area as a natural laboratory
Effects of submarine groundwater on nutrient concentration and primary production in a deep bay of the Japan Sea
The bacteria–protist link as a main route of dissolved organic matter across contrasting productivity areas on the Patagonian Shelf
Ocean alkalinity enhancement (OAE) does not cause cellular stress in a phytoplankton community of the subtropical Atlantic Ocean
Reviews and syntheses: On increasing hypoxia in eastern boundary upwelling systems – zooplankton under metabolic stress
Technical note: Testing a new approach for the determination of N2 fixation rates by coupling a membrane equilibrator to a mass spectrometer for long-term observations
Phytoplankton community succession and biogeochemistry in a bloom simulation experiment at an estuary-ocean interface
Long-term variations in pH in coastal waters along the Korean Peninsula
The effect of carbonate mineral additions on biogeochemical conditions in surface sediments and benthic–pelagic exchange fluxes
Evaluating ocean alkalinity enhancement as a carbon dioxide removal strategy in the North Sea
Assessing the impacts of simulated ocean alkalinity enhancement on viability and growth of nearshore species of phytoplankton
Responses of microbial metabolic rates to non-equilibrated silicate- versus calcium-based ocean alkalinity enhancement
High metabolic zinc demand within native Amundsen and Ross sea phytoplankton communities determined by stable isotope uptake rate measurements
The influence of zooplankton and oxygen on the particulate organic carbon flux in the Benguela Upwelling System
Reviews and syntheses: Biological indicators of low-oxygen stress in marine water-breathing animals
Temperature-enhanced effects of iron on Southern Ocean phytoplankton
Riverine nutrient impact on global ocean nitrogen cycle feedbacks and marine primary production in an Earth system model
The Northeast Greenland Shelf as a potential late-summer CO2 source to the atmosphere
Spring-neap tidal cycles modulate the strength of the carbon source at the estuary-coast interface
Technical note: Ocean Alkalinity Enhancement Pelagic Impact Intercomparison Project (OAEPIIP)
Estimates of carbon sequestration potential in an expanding Arctic fjord (Hornsund, Svalbard) affected by dark plumes of glacial meltwater
An assessment of ocean alkalinity enhancement using aqueous hydroxides: kinetics, efficiency, and precipitation thresholds
Dissolved nitric oxide in the lower Elbe Estuary and the Port of Hamburg area
Variable contribution of wastewater treatment plant effluents to downstream nitrous oxide concentrations and emissions
Improved understanding of eutrophication trends, indicators and problem areas using machine learning
Distribution of nutrients and dissolved organic matter in a eutrophic equatorial estuary: the Johor River and the East Johor Strait
Investigating the effect of silicate- and calcium-based ocean alkalinity enhancement on diatom silicification
Ocean alkalinity enhancement using sodium carbonate salts does not lead to measurable changes in Fe dynamics in a mesocosm experiment
Quantification and mitigation of bottom-trawling impacts on sedimentary organic carbon stocks in the North Sea
Influence of ocean alkalinity enhancement with olivine or steel slag on a coastal plankton community in Tasmania
Multi-model comparison of trends and controls of near-bed oxygen concentration on the northwest European continental shelf under climate change
Picoplanktonic methane production in eutrophic surface waters
Vertical mixing alleviates autumnal oxygen deficiency in the central North Sea
Hypoxia also occurs in small highly turbid estuaries: the example of the Charente (Bay of Biscay)
Seasonality and response of ocean acidification and hypoxia to major environmental anomalies in the southern Salish Sea, North America (2014–2018)
Oceanographic processes driving low-oxygen conditions inside Patagonian fjords
Above- and belowground plant mercury dynamics in a salt marsh estuary in Massachusetts, USA
Variability and drivers of carbonate chemistry at shellfish aquaculture sites in the Salish Sea, British Columbia
Unusual Hemiaulus bloom influences ocean productivity in Northeastern US Shelf waters
Insights into carbonate environmental conditions in the Chukchi Sea
UAV approaches for improved mapping of vegetation cover and estimation of carbon storage of small saltmarshes: examples from Loch Fleet, northeast Scotland
Iron “ore” nothing: benthic iron fluxes from the oxygen-deficient Santa Barbara Basin enhance phytoplankton productivity in surface waters
Marine anoxia initiates giant sulfur-oxidizing bacterial mat proliferation and associated changes in benthic nitrogen, sulfur, and iron cycling in the Santa Barbara Basin, California Borderland
Uncertainty in the evolution of northwestern North Atlantic circulation leads to diverging biogeochemical projections
The additionality problem of ocean alkalinity enhancement
Short-term variation in pH in seawaters around coastal areas of Japan: characteristics and forcings
Revisiting the applicability and constraints of molybdenum- and uranium-based paleo redox proxies: comparing two contrasting sill fjords
Influence of a small submarine canyon on biogenic matter export flux in the lower St. Lawrence Estuary, eastern Canada
Single-celled bioturbators: benthic foraminifera mediate oxygen penetration and prokaryotic diversity in intertidal sediment
Darren J. Pilcher, Jessica N. Cross, Natalie Monacci, Linquan Mu, Kelly A. Kearney, Albert J. Hermann, and Wei Cheng
Biogeosciences, 22, 3103–3125, https://doi.org/10.5194/bg-22-3103-2025, https://doi.org/10.5194/bg-22-3103-2025, 2025
Short summary
Short summary
The Bering Sea shelf is a highly productive marine ecosystem that is vulnerable to ocean acidification. We use a computational model to simulate the carbon cycle and acidification rates from 1970–2022. The results suggest that bottom water acidification rates are more than twice as great as surface rates. Bottom waters are also naturally more acidic. Thus these waters will pass key thresholds known to negatively impact marine organisms, such as red king crab, much sooner than surface waters.
Daniel Müller, Bo Liu, Walter Geibert, Moritz Holtappels, Lasse Sander, Elda Miramontes, Heidi Taubner, Susann Henkel, Kai-Uwe Hinrichs, Denise Bethke, Ingrid Dohrmann, and Sabine Kasten
Biogeosciences, 22, 2541–2567, https://doi.org/10.5194/bg-22-2541-2025, https://doi.org/10.5194/bg-22-2541-2025, 2025
Short summary
Short summary
Coastal and shelf sediments are the most important sinks for organic carbon (OC) on Earth. We produced a new high-resolution sediment and porewater data set from the Helgoland Mud Area (HMA), North Sea, to determine which depositional factors control the preservation of OC. The burial efficiency is highest in an area of high sedimentation and terrigenous OC. The HMA covers 0.09 % of the North Sea but accounts for 0.76 % of its OC accumulation, highlighting the importance of the depocentre.
Menghong Dong, Xinyu Guo, Takuya Matsuura, Taichi Tebakari, and Jing Zhang
Biogeosciences, 22, 2383–2402, https://doi.org/10.5194/bg-22-2383-2025, https://doi.org/10.5194/bg-22-2383-2025, 2025
Short summary
Short summary
Submarine groundwater discharge (SGD), a common coastal hydrological process that involves submarine inflow of groundwater into the sea, is associated with a large nutrient load. To clarify the distribution of SGD-derived nutrients after release at the bottom of the sea and their contribution to phytoplankton growth in the marine ecosystem, we modeled the SGD process in Toyama Bay using a specialized computer code that can distinguish SGD-derived nutrients from nutrients from other sources.
M. Celeste López-Abbate, John E. Garzón-Cardona, Ricardo Silva, Juan-Carlos Molinero, Laura A. Ruiz-Etcheverry, Ana M. Martínez, Azul S. Gilabert, and Rubén J. Lara
Biogeosciences, 22, 2309–2325, https://doi.org/10.5194/bg-22-2309-2025, https://doi.org/10.5194/bg-22-2309-2025, 2025
Short summary
Short summary
This study explores how microbial dynamics influence the dissolved organic matter (DOM) pool in the Patagonian Shelf. Despite high phytoplankton biomass, selective grazing on fast-growing bacteria led to DOM accumulation, likely due to reduced DOM-consuming bacteria and added egestion compounds. Experiments showed that bacteria not only acted as a carbon sink through mineralization but also transferred assimilated carbon dioxide (CO2) to higher trophic levels.
Librada Ramírez, Leonardo J. Pozzo-Pirotta, Aja Trebec, Víctor Manzanares-Vázquez, José L. Díez, Javier Arístegui, Ulf Riebesell, Stephen D. Archer, and María Segovia
Biogeosciences, 22, 1865–1886, https://doi.org/10.5194/bg-22-1865-2025, https://doi.org/10.5194/bg-22-1865-2025, 2025
Short summary
Short summary
We studied the potential effects of increasing ocean alkalinity on a natural plankton community in subtropical waters of the Atlantic near Gran Canaria, Spain. Alkalinity is the capacity of water to resist acidification, and plankton are usually microscopic plants (phytoplankton) and animals (zooplankton), often less than 2.5 cm in length. This study suggests that increasing ocean alkalinity did not have a significant negative impact on the plankton community studied.
Leissing Frederick, Mauricio A. Urbina, and Ruben Escribano
Biogeosciences, 22, 1839–1852, https://doi.org/10.5194/bg-22-1839-2025, https://doi.org/10.5194/bg-22-1839-2025, 2025
Short summary
Short summary
Evidence shows that due to global warming, zooplankton inhabiting the coastal upwelling zone are exposed to increasing hypoxia affecting their physiology, metabolism, and population dynamics. The adaptive responses of zooplankton to cope with mild/severe hypoxia may depend on trade-offs with other metabolic/energy demands, implying less energy for growth, feeding, and reproduction, with ecological consequences for the zooplankton population and the marine food web.
Sören Iwe, Oliver Schmale, and Bernd Schneider
Biogeosciences, 22, 1767–1779, https://doi.org/10.5194/bg-22-1767-2025, https://doi.org/10.5194/bg-22-1767-2025, 2025
Short summary
Short summary
We present a novel method for quantifying N2 fixation by cyanobacteria, which is crucial in Baltic Sea eutrophication. Our Gas Equilibrium – Membrane-Inlet Mass Spectrometer (GE-MIMS), designed for operation on voluntary observing ships (VOSs), enables large-scale monitoring of surface water N2 depletion caused by N2 fixation. Laboratory tests confirm the device’s accuracy and precision, ensuring that it can complement current methods and contribute valuable data for better understanding N2 fixation in the Baltic Sea.
Jenna Alyson Lee, Joseph H. Vineis, Mathieu A. Poupon, Laure Resplandy, and Bess B. Ward
EGUsphere, https://doi.org/10.5194/egusphere-2025-871, https://doi.org/10.5194/egusphere-2025-871, 2025
Short summary
Short summary
Concurrent sampling of environmental parameters, productivity rates, photopigments, and DNA were used to analyze a 24–L estuarine diatom bloom microcosm. Biogeochemical data and an ecological model indicated that the bloom was terminated by grazing. Comparisons to previous studies revealed (1) additional community and diversity complexity using 18S amplicon vs. traditional pigment–based analyses, and (2) a potential global productivity–diversity relationship using 18S and carbon transport rates.
Yong-Woo Lee, Mi-Ok Park, Seong-Gil Kim, Tae-Hoon Kim, Yong Hwa Oh, Sang Heon Lee, and DongJoo Joung
Biogeosciences, 22, 675–690, https://doi.org/10.5194/bg-22-675-2025, https://doi.org/10.5194/bg-22-675-2025, 2025
Short summary
Short summary
Long-term pH variation in coastal waters along the Korean Peninsula was assessed for the first time, and it exhibited no significant pH change over an 11-year period. This contrasts with the ongoing pH decline in open oceans and other coastal areas. Analysis of environmental data showed that pH is mainly controlled by dissolved oxygen in bottom waters. This suggests that ocean warming could cause a pH decline in Korean coastal waters, affecting many fish and seaweed aquaculture operations.
Kadir Biçe, Tristen Myers Stewart, George G. Waldbusser, and Christof Meile
Biogeosciences, 22, 641–657, https://doi.org/10.5194/bg-22-641-2025, https://doi.org/10.5194/bg-22-641-2025, 2025
Short summary
Short summary
We studied the effect of addition of carbonate minerals on coastal sediments. We carried out laboratory experiments to quantify the dissolution kinetics and integrated these observations into a numerical model that describes biogeochemical cycling in surficial sediments. Using the model, we demonstrate the buffering effect of the mineral additions and their duration. We quantify the effect under different environmental conditions and assess the potential for increased atmospheric CO2 uptake.
Feifei Liu, Ute Daewel, Jan Kossack, Kubilay Timur Demir, Helmuth Thomas, and Corinna Schrum
EGUsphere, https://doi.org/10.5194/egusphere-2025-81, https://doi.org/10.5194/egusphere-2025-81, 2025
Short summary
Short summary
Ocean Alkalinity Enhancement boosts oceanic CO₂ absorption, offering a climate solution. Using a regional model, we examined OAE in the North Sea, revealing that shallow coastal areas achieve higher CO₂ uptake than offshore, where alkalinity is more susceptible to deep-ocean loss. Long-term carbon storage is limited, and pH shifts vary by location. Our findings guide OAE deployment to optimize carbon removal while minimizing ecological effects, supporting global climate mitigation efforts.
Jessica L. Oberlander, Mackenzie E. Burke, Cat A. London, and Hugh L. MacIntyre
Biogeosciences, 22, 499–512, https://doi.org/10.5194/bg-22-499-2025, https://doi.org/10.5194/bg-22-499-2025, 2025
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is a promising negative emission technology that results in the net sequestration of atmospheric carbon. In this paper, we assess the potential impact of OAE on phytoplankton through an analysis of prior studies and the effects of simulated OAE on photosynthetic competence. Our findings suggest that there may be little if any significant impact on most phytoplankton studied to date if OAE is conducted in well-flushed, nearshore environments.
Laura Marín-Samper, Javier Arístegui, Nauzet Hernández-Hernández, and Ulf Riebesell
Biogeosciences, 21, 5707–5724, https://doi.org/10.5194/bg-21-5707-2024, https://doi.org/10.5194/bg-21-5707-2024, 2024
Short summary
Short summary
This study exposed a natural community to two non-CO2-equilibrated ocean alkalinity enhancement (OAE) deployments using different minerals. Adding alkalinity in this manner decreases dissolved CO2, essential for photosynthesis. While photosynthesis was not suppressed, bloom formation was mildly delayed, potentially impacting marine food webs. The study emphasizes the need for further research on OAE without prior equilibration and on its ecological implications.
Riss M. Kell, Rebecca J. Chmiel, Deepa Rao, Dawn M. Moran, Matthew R. McIlvin, Tristan J. Horner, Nicole L. Schanke, Ichiko Sugiyama, Robert B. Dunbar, Giacomo R. DiTullio, and Mak A. Saito
Biogeosciences, 21, 5685–5706, https://doi.org/10.5194/bg-21-5685-2024, https://doi.org/10.5194/bg-21-5685-2024, 2024
Short summary
Short summary
Despite interest in modeling the biogeochemical uptake and cycling of the trace metal zinc (Zn), measurements of Zn uptake in natural marine phytoplankton communities have not been conducted previously. To fill this gap, we employed a stable isotope uptake rate measurement method to quantify Zn uptake into natural phytoplankton assemblages within the Southern Ocean. Zn demand was high and rapid enough to depress the inventory of Zn available to phytoplankton on seasonal timescales.
Luisa Chiara Meiritz, Tim Rixen, Anja Karin van der Plas, Tarron Lamont, and Niko Lahajnar
Biogeosciences, 21, 5261–5276, https://doi.org/10.5194/bg-21-5261-2024, https://doi.org/10.5194/bg-21-5261-2024, 2024
Short summary
Short summary
Moored and drifting sediment trap experiments in the northern (nBUS) and southern (sBUS) Benguela Upwelling System showed that active carbon fluxes by vertically migrating zooplankton were about 3 times higher in the sBUS than in the nBUS. Despite these large variabilities, the mean passive particulate organic carbon (POC) fluxes were almost equal in the two subsystems. The more intense near-bottom oxygen minimum layer seems to lead to higher POC fluxes and accumulation rates in the nBUS.
Michael R. Roman, Andrew H. Altieri, Denise Breitburg, Erica M. Ferrer, Natalya D. Gallo, Shin-ichi Ito, Karin Limburg, Kenneth Rose, Moriaki Yasuhara, and Lisa A. Levin
Biogeosciences, 21, 4975–5004, https://doi.org/10.5194/bg-21-4975-2024, https://doi.org/10.5194/bg-21-4975-2024, 2024
Short summary
Short summary
Oxygen-depleted ocean waters have increased worldwide. In order to improve our understanding of the impacts of this oxygen loss on marine life it is essential that we develop reliable indicators that track the negative impacts of low oxygen. We review various indicators of low-oxygen stress for marine animals including their use, research needs, and application to confront the challenges of ocean oxygen loss.
Charlotte Eich, Mathijs van Manen, J. Scott P. McCain, Loay J. Jabre, Willem H. van de Poll, Jinyoung Jung, Sven B. E. H. Pont, Hung-An Tian, Indah Ardiningsih, Gert-Jan Reichart, Erin M. Bertrand, Corina P. D. Brussaard, and Rob Middag
Biogeosciences, 21, 4637–4663, https://doi.org/10.5194/bg-21-4637-2024, https://doi.org/10.5194/bg-21-4637-2024, 2024
Short summary
Short summary
Phytoplankton growth in the Southern Ocean (SO) is often limited by low iron (Fe) concentrations. Sea surface warming impacts Fe availability and can affect phytoplankton growth. We used shipboard Fe clean incubations to test how changes in Fe and temperature affect SO phytoplankton. Their abundances usually increased with Fe addition and temperature increase, with Fe being the major factor. These findings imply potential shifts in ecosystem structure, impacting food webs and elemental cycling.
Miriam Tivig, David P. Keller, and Andreas Oschlies
Biogeosciences, 21, 4469–4493, https://doi.org/10.5194/bg-21-4469-2024, https://doi.org/10.5194/bg-21-4469-2024, 2024
Short summary
Short summary
Marine biological production is highly dependent on the availability of nitrogen and phosphorus. Rivers are the main source of phosphorus to the oceans but poorly represented in global model oceans. We include dissolved nitrogen and phosphorus from river export in a global model ocean and find that the addition of riverine phosphorus affects marine biology on millennial timescales more than riverine nitrogen alone. Globally, riverine phosphorus input increases primary production rates.
Esdoorn Willcox, Marcos Lemes, Thomas Juul-Pedersen, Mikael Kristian Sejr, Johnna Marchiano Holding, and Søren Rysgaard
Biogeosciences, 21, 4037–4050, https://doi.org/10.5194/bg-21-4037-2024, https://doi.org/10.5194/bg-21-4037-2024, 2024
Short summary
Short summary
In this work, we measured the chemistry of seawater from samples obtained from different depths and locations off the east coast of the Northeast Greenland National Park to determine what is influencing concentrations of dissolved CO2. Historically, the region has always been thought to take up CO2 from the atmosphere, but we show that it is possible for the region to become a source in late summer. We discuss the variables that may be related to such changes.
Vlad A. Macovei, Louise C. V. Rewrie, Rüdiger Röttgers, and Yoana G. Voynova
EGUsphere, https://doi.org/10.5194/egusphere-2024-2643, https://doi.org/10.5194/egusphere-2024-2643, 2024
Short summary
Short summary
A commercial vessel equipped with scientific instruments regularly travelled between two large macro-tidal estuaries. We found that biogeochemical variability in the outer estuaries is driven by the 14-day spring-neap tidal cycle, with strong effects on dissolved inorganic and organic carbon concentrations and distribution. Since this land-sea interface effect increases the strength of the carbon source to the atmosphere by 74 % during spring tide, it should be accounted for in regional models.
Lennart Thomas Bach, Aaron James Ferderer, Julie LaRoche, and Kai Georg Schulz
Biogeosciences, 21, 3665–3676, https://doi.org/10.5194/bg-21-3665-2024, https://doi.org/10.5194/bg-21-3665-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is an emerging marine CO2 removal method, but its environmental effects are insufficiently understood. The OAE Pelagic Impact Intercomparison Project (OAEPIIP) provides funding for a standardized and globally replicated microcosm experiment to study the effects of OAE on plankton communities. Here, we provide a detailed manual for the OAEPIIP experiment. We expect OAEPIIP to help build scientific consensus on the effects of OAE on plankton.
Marlena Szeligowska, Déborah Benkort, Anna Przyborska, Mateusz Moskalik, Bernabé Moreno, Emilia Trudnowska, and Katarzyna Błachowiak-Samołyk
Biogeosciences, 21, 3617–3639, https://doi.org/10.5194/bg-21-3617-2024, https://doi.org/10.5194/bg-21-3617-2024, 2024
Short summary
Short summary
The European Arctic is experiencing rapid regional warming, causing glaciers that terminate in the sea to retreat onto land. Due to this process, the area of a well-studied fjord, Hornsund, has increased by around 100 km2 (40%) since 1976. Combining satellite and in situ data with a mathematical model, we estimated that, despite some negative consequences of glacial meltwater release, such emerging coastal waters could mitigate climate change by increasing carbon uptake and storage by sediments.
Mallory C. Ringham, Nathan Hirtle, Cody Shaw, Xi Lu, Julian Herndon, Brendan R. Carter, and Matthew D. Eisaman
Biogeosciences, 21, 3551–3570, https://doi.org/10.5194/bg-21-3551-2024, https://doi.org/10.5194/bg-21-3551-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement leverages the large surface area and carbon storage capacity of the oceans to store atmospheric CO2 as dissolved bicarbonate. We monitored CO2 uptake in seawater treated with NaOH to establish operational boundaries for carbon removal experiments. Results show that CO2 equilibration occurred on the order of weeks to months, was consistent with values expected from equilibration calculations, and was limited by mineral precipitation at high pH and CaCO3 saturation.
Riel Carlo O. Ingeniero, Gesa Schulz, and Hermann W. Bange
Biogeosciences, 21, 3425–3440, https://doi.org/10.5194/bg-21-3425-2024, https://doi.org/10.5194/bg-21-3425-2024, 2024
Short summary
Short summary
Our research is the first to measure dissolved NO concentrations in temperate estuarine waters, providing insights into its distribution under varying conditions and enhancing our understanding of its production processes. Dissolved NO was supersaturated in the Elbe Estuary, indicating that it is a source of atmospheric NO. The observed distribution of dissolved NO most likely resulted from nitrification.
Weiyi Tang, Jeff Talbott, Timothy Jones, and Bess B. Ward
Biogeosciences, 21, 3239–3250, https://doi.org/10.5194/bg-21-3239-2024, https://doi.org/10.5194/bg-21-3239-2024, 2024
Short summary
Short summary
Wastewater treatment plants (WWTPs) are known to be hotspots of greenhouse gas emissions. However, the impact of WWTPs on the emission of the greenhouse gas N2O in downstream aquatic environments is less constrained. We found spatially and temporally variable but overall higher N2O concentrations and fluxes in waters downstream of WWTPs, pointing to the need for efficient N2O removal in addition to the treatment of nitrogen in WWTPs.
Deep S. Banerjee and Jozef Skakala
EGUsphere, https://doi.org/10.22541/essoar.171405637.76928549/v1, https://doi.org/10.22541/essoar.171405637.76928549/v1, 2024
Short summary
Short summary
Nitrate is a crucial nutrient in oceans. Excess nutrients can trigger uncontrolled algae growth (eutrophication), damaging marine ecosystems. We used a machine learning tool to generate a skilled, gap-free, bi-decadal surface nitrate dataset from sparse observations. This dataset reveals areas on the North West European Shelf at risk of eutrophication, bi-decadal trends in coastal nitrate, and an impact of winter nitrate on spring phytoplankton blooms.
Amanda Y. L. Cheong, Kogila Vani Annammala, Ee Ling Yong, Yongli Zhou, Robert S. Nichols, and Patrick Martin
Biogeosciences, 21, 2955–2971, https://doi.org/10.5194/bg-21-2955-2024, https://doi.org/10.5194/bg-21-2955-2024, 2024
Short summary
Short summary
We measured nutrients and dissolved organic matter for 1 year in a eutrophic tropical estuary to understand their sources and cycling. Our data show that the dissolved organic matter originates partly from land and partly from microbial processes in the water. Internal recycling is likely important for maintaining high nutrient concentrations, and we found that there is often excess nitrogen compared to silicon and phosphorus. Our data help to explain how eutrophication persists in this system.
Aaron Ferderer, Kai G. Schulz, Ulf Riebesell, Kirralee G. Baker, Zanna Chase, and Lennart T. Bach
Biogeosciences, 21, 2777–2794, https://doi.org/10.5194/bg-21-2777-2024, https://doi.org/10.5194/bg-21-2777-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is a promising method of atmospheric carbon removal; however, its ecological impacts remain largely unknown. We assessed the effects of simulated silicate- and calcium-based mineral OAE on diatom silicification. We found that increased silicate concentrations from silicate-based OAE increased diatom silicification. In contrast, the enhancement of alkalinity had no effect on community silicification and minimal effects on the silicification of different genera.
David González-Santana, María Segovia, Melchor González-Dávila, Librada Ramírez, Aridane G. González, Leonardo J. Pozzo-Pirotta, Veronica Arnone, Victor Vázquez, Ulf Riebesell, and J. Magdalena Santana-Casiano
Biogeosciences, 21, 2705–2715, https://doi.org/10.5194/bg-21-2705-2024, https://doi.org/10.5194/bg-21-2705-2024, 2024
Short summary
Short summary
In a recent experiment off the coast of Gran Canaria (Spain), scientists explored a method called ocean alkalinization enhancement (OAE), where carbonate minerals were added to seawater. This process changed the levels of certain ions in the water, affecting its pH and buffering capacity. The researchers were particularly interested in how this could impact the levels of essential trace metals in the water.
Lucas Porz, Wenyan Zhang, Nils Christiansen, Jan Kossack, Ute Daewel, and Corinna Schrum
Biogeosciences, 21, 2547–2570, https://doi.org/10.5194/bg-21-2547-2024, https://doi.org/10.5194/bg-21-2547-2024, 2024
Short summary
Short summary
Seafloor sediments store a large amount of carbon, helping to naturally regulate Earth's climate. If disturbed, some sediment particles can turn into CO2, but this effect is not well understood. Using computer simulations, we found that bottom-contacting fishing gears release about 1 million tons of CO2 per year in the North Sea, one of the most heavily fished regions globally. We show how protecting certain areas could reduce these emissions while also benefitting seafloor-living animals.
Jiaying A. Guo, Robert F. Strzepek, Kerrie M. Swadling, Ashley T. Townsend, and Lennart T. Bach
Biogeosciences, 21, 2335–2354, https://doi.org/10.5194/bg-21-2335-2024, https://doi.org/10.5194/bg-21-2335-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement aims to increase atmospheric CO2 sequestration by adding alkaline materials to the ocean. We assessed the environmental effects of olivine and steel slag powder on coastal plankton. Overall, slag is more efficient than olivine in releasing total alkalinity and, thus, in its ability to sequester CO2. Slag also had less environmental effect on the enclosed plankton communities when considering its higher CO2 removal potential based on this 3-week experiment.
Giovanni Galli, Sarah Wakelin, James Harle, Jason Holt, and Yuri Artioli
Biogeosciences, 21, 2143–2158, https://doi.org/10.5194/bg-21-2143-2024, https://doi.org/10.5194/bg-21-2143-2024, 2024
Short summary
Short summary
This work shows that, under a high-emission scenario, oxygen concentration in deep water of parts of the North Sea and Celtic Sea can become critically low (hypoxia) towards the end of this century. The extent and frequency of hypoxia depends on the intensity of climate change projected by different climate models. This is the result of a complex combination of factors like warming, increase in stratification, changes in the currents and changes in biological processes.
Sandy E. Tenorio and Laura Farías
Biogeosciences, 21, 2029–2050, https://doi.org/10.5194/bg-21-2029-2024, https://doi.org/10.5194/bg-21-2029-2024, 2024
Short summary
Short summary
Time series studies show that CH4 is highly dynamic on the coastal ocean surface and planktonic communities are linked to CH4 accumulation, as found in coastal upwelling off Chile. We have identified the crucial role of picoplankton (> 3 µm) in CH4 recycling, especially with the addition of methylated substrates (trimethylamine and methylphosphonic acid) during upwelling and non-upwelling periods. These insights improve understanding of surface ocean CH4 recycling, aiding CH4 emission estimates.
Charlotte A. J. Williams, Tom Hull, Jan Kaiser, Claire Mahaffey, Naomi Greenwood, Matthew Toberman, and Matthew R. Palmer
Biogeosciences, 21, 1961–1971, https://doi.org/10.5194/bg-21-1961-2024, https://doi.org/10.5194/bg-21-1961-2024, 2024
Short summary
Short summary
Oxygen (O2) is a key indicator of ocean health. The risk of O2 loss in the productive coastal/continental slope regions is increasing. Autonomous underwater vehicles equipped with O2 optodes provide lots of data but have problems resolving strong vertical O2 changes. Here we show how to overcome this and calculate how much O2 is supplied to the low-O2 bottom waters via mixing. Bursts in mixing supply nearly all of the O2 to bottom waters in autumn, stopping them reaching ecologically low levels.
Sabine Schmidt and Ibrahima Iris Diallo
Biogeosciences, 21, 1785–1800, https://doi.org/10.5194/bg-21-1785-2024, https://doi.org/10.5194/bg-21-1785-2024, 2024
Short summary
Short summary
Along the French coast facing the Bay of Biscay, the large Gironde and Loire estuaries suffer from hypoxia. This prompted a study of the small Charente estuary located between them. This work reveals a minimum oxygen zone in the Charente estuary, which extends for about 25 km. Temperature is the main factor controlling the hypoxia. This calls for the monitoring of small turbid macrotidal estuaries that are vulnerable to hypoxia, a risk expected to increase with global warming.
Simone R. Alin, Jan A. Newton, Richard A. Feely, Samantha Siedlecki, and Dana Greeley
Biogeosciences, 21, 1639–1673, https://doi.org/10.5194/bg-21-1639-2024, https://doi.org/10.5194/bg-21-1639-2024, 2024
Short summary
Short summary
We provide a new multi-stressor data product that allows us to characterize the seasonality of temperature, O2, and CO2 in the southern Salish Sea and delivers insights into the impacts of major marine heatwave and precipitation anomalies on regional ocean acidification and hypoxia. We also describe the present-day frequencies of temperature, O2, and ocean acidification conditions that cross thresholds of sensitive regional species that are economically or ecologically important.
Pamela Linford, Iván Pérez-Santos, Paulina Montero, Patricio A. Díaz, Claudia Aracena, Elías Pinilla, Facundo Barrera, Manuel Castillo, Aida Alvera-Azcárate, Mónica Alvarado, Gabriel Soto, Cécile Pujol, Camila Schwerter, Sara Arenas-Uribe, Pilar Navarro, Guido Mancilla-Gutiérrez, Robinson Altamirano, Javiera San Martín, and Camila Soto-Riquelme
Biogeosciences, 21, 1433–1459, https://doi.org/10.5194/bg-21-1433-2024, https://doi.org/10.5194/bg-21-1433-2024, 2024
Short summary
Short summary
The Patagonian fjords comprise a world region where low-oxygen water and hypoxia conditions are observed. An in situ dataset was used to quantify the mechanism involved in the presence of these conditions in northern Patagonian fjords. Water mass analysis confirmed the contribution of Equatorial Subsurface Water in the advection of the low-oxygen water, and hypoxic conditions occurred when the community respiration rate exceeded the gross primary production.
Ting Wang, Buyun Du, Inke Forbrich, Jun Zhou, Joshua Polen, Elsie M. Sunderland, Prentiss H. Balcom, Celia Chen, and Daniel Obrist
Biogeosciences, 21, 1461–1476, https://doi.org/10.5194/bg-21-1461-2024, https://doi.org/10.5194/bg-21-1461-2024, 2024
Short summary
Short summary
The strong seasonal increases of Hg in aboveground biomass during the growing season and the lack of changes observed after senescence in this salt marsh ecosystem suggest physiologically controlled Hg uptake pathways. The Hg sources found in marsh aboveground tissues originate from a mix of sources, unlike terrestrial ecosystems, where atmospheric GEM is the main source. Belowground plant tissues mostly take up Hg from soils. Overall, the salt marsh currently serves as a small net Hg sink.
Eleanor Simpson, Debby Ianson, Karen E. Kohfeld, Ana C. Franco, Paul A. Covert, Marty Davelaar, and Yves Perreault
Biogeosciences, 21, 1323–1353, https://doi.org/10.5194/bg-21-1323-2024, https://doi.org/10.5194/bg-21-1323-2024, 2024
Short summary
Short summary
Shellfish aquaculture operates in nearshore areas where data on ocean acidification parameters are limited. We show daily and seasonal variability in pH and saturation states of calcium carbonate at nearshore aquaculture sites in British Columbia, Canada, and determine the contributing drivers of this variability. We find that nearshore locations have greater variability than open waters and that the uptake of carbon by phytoplankton is the major driver of pH and saturation state variability.
S. Alejandra Castillo Cieza, Rachel H. R. Stanley, Pierre Marrec, Diana N. Fontaine, E. Taylor Crockford, Dennis J. McGillicuddy Jr., Arshia Mehta, Susanne Menden-Deuer, Emily E. Peacock, Tatiana A. Rynearson, Zoe O. Sandwith, Weifeng Zhang, and Heidi M. Sosik
Biogeosciences, 21, 1235–1257, https://doi.org/10.5194/bg-21-1235-2024, https://doi.org/10.5194/bg-21-1235-2024, 2024
Short summary
Short summary
The coastal ocean in the northeastern USA provides many services, including fisheries and habitats for threatened species. In summer 2019, a bloom occurred of a large unusual phytoplankton, the diatom Hemiaulus, with nitrogen-fixing symbionts. This led to vast changes in productivity and grazing rates in the ecosystem. This work shows that the emergence of one species can have profound effects on ecosystem function. Such changes may become more prevalent as the ocean warms due to climate change.
Claudine Hauri, Brita Irving, Sam Dupont, Rémi Pagés, Donna D. W. Hauser, and Seth L. Danielson
Biogeosciences, 21, 1135–1159, https://doi.org/10.5194/bg-21-1135-2024, https://doi.org/10.5194/bg-21-1135-2024, 2024
Short summary
Short summary
Arctic marine ecosystems are highly susceptible to impacts of climate change and ocean acidification. We present pH and pCO2 time series (2016–2020) from the Chukchi Ecosystem Observatory and analyze the drivers of the current conditions to get a better understanding of how climate change and ocean acidification could affect the ecological niches of organisms.
William Hiles, Lucy C. Miller, Craig Smeaton, and William E. N. Austin
Biogeosciences, 21, 929–948, https://doi.org/10.5194/bg-21-929-2024, https://doi.org/10.5194/bg-21-929-2024, 2024
Short summary
Short summary
Saltmarsh soils may help to limit the rate of climate change by storing carbon. To understand their impacts, they must be accurately mapped. We use drone data to estimate the size of three saltmarshes in NE Scotland. We find that drone imagery, combined with tidal data, can reliably inform our understanding of saltmarsh size. When compared with previous work using vegetation communities, we find that our most reliable new estimates of stored carbon are 15–20 % smaller than previously estimated.
De'Marcus Robinson, Anh L. D. Pham, David J. Yousavich, Felix Janssen, Frank Wenzhöfer, Eleanor C. Arrington, Kelsey M. Gosselin, Marco Sandoval-Belmar, Matthew Mar, David L. Valentine, Daniele Bianchi, and Tina Treude
Biogeosciences, 21, 773–788, https://doi.org/10.5194/bg-21-773-2024, https://doi.org/10.5194/bg-21-773-2024, 2024
Short summary
Short summary
The present study suggests that high release of ferrous iron from the seafloor of the oxygen-deficient Santa Barabara Basin (California) supports surface primary productivity, creating positive feedback on seafloor iron release by enhancing low-oxygen conditions in the basin.
David J. Yousavich, De'Marcus Robinson, Xuefeng Peng, Sebastian J. E. Krause, Frank Wenzhöfer, Felix Janssen, Na Liu, Jonathan Tarn, Franklin Kinnaman, David L. Valentine, and Tina Treude
Biogeosciences, 21, 789–809, https://doi.org/10.5194/bg-21-789-2024, https://doi.org/10.5194/bg-21-789-2024, 2024
Short summary
Short summary
Declining oxygen (O2) concentrations in coastal oceans can threaten people’s ways of life and food supplies. Here, we investigate how mats of bacteria that proliferate on the seafloor of the Santa Barbara Basin sustain and potentially worsen these O2 depletion events through their unique chemoautotrophic metabolism. Our study shows how changes in seafloor microbiology and geochemistry brought on by declining O2 concentrations can help these mats grow as well as how that growth affects the basin.
Krysten Rutherford, Katja Fennel, Lina Garcia Suarez, and Jasmin G. John
Biogeosciences, 21, 301–314, https://doi.org/10.5194/bg-21-301-2024, https://doi.org/10.5194/bg-21-301-2024, 2024
Short summary
Short summary
We downscaled two mid-century (~2075) ocean model projections to a high-resolution regional ocean model of the northwest North Atlantic (NA) shelf. In one projection, the NA shelf break current practically disappears; in the other it remains almost unchanged. This leads to a wide range of possible future shelf properties. More accurate projections of coastal circulation features would narrow the range of possible outcomes of biogeochemical projections for shelf regions.
Lennart Thomas Bach
Biogeosciences, 21, 261–277, https://doi.org/10.5194/bg-21-261-2024, https://doi.org/10.5194/bg-21-261-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is a widely considered marine carbon dioxide removal method. OAE aims to accelerate chemical rock weathering, which is a natural process that slowly sequesters atmospheric carbon dioxide. This study shows that the addition of anthropogenic alkalinity via OAE can reduce the natural release of alkalinity and, therefore, reduce the efficiency of OAE for climate mitigation. However, the additionality problem could be mitigated via a variety of activities.
Tsuneo Ono, Daisuke Muraoka, Masahiro Hayashi, Makiko Yorifuji, Akihiro Dazai, Shigeyuki Omoto, Takehiro Tanaka, Tomohiro Okamura, Goh Onitsuka, Kenji Sudo, Masahiko Fujii, Ryuji Hamanoue, and Masahide Wakita
Biogeosciences, 21, 177–199, https://doi.org/10.5194/bg-21-177-2024, https://doi.org/10.5194/bg-21-177-2024, 2024
Short summary
Short summary
We carried out parallel year-round observations of pH and related parameters in five stations around the Japan coast. It was found that short-term acidified situations with Omega_ar less than 1.5 occurred at four of five stations. Most of such short-term acidified events were related to the short-term low salinity event, and the extent of short-term pH drawdown at high freshwater input was positively correlated with the nutrient concentration of the main rivers that flow into the coastal area.
K. Mareike Paul, Martijn Hermans, Sami A. Jokinen, Inda Brinkmann, Helena L. Filipsson, and Tom Jilbert
Biogeosciences, 20, 5003–5028, https://doi.org/10.5194/bg-20-5003-2023, https://doi.org/10.5194/bg-20-5003-2023, 2023
Short summary
Short summary
Seawater naturally contains trace metals such as Mo and U, which accumulate under low oxygen conditions on the seafloor. Previous studies have used sediment Mo and U contents as an archive of changing oxygen concentrations in coastal waters. Here we show that in fjords the use of Mo and U for this purpose may be impaired by additional processes. Our findings have implications for the reliable use of Mo and U to reconstruct oxygen changes in fjords.
Hannah Sharpe, Michel Gosselin, Catherine Lalande, Alexandre Normandeau, Jean-Carlos Montero-Serrano, Khouloud Baccara, Daniel Bourgault, Owen Sherwood, and Audrey Limoges
Biogeosciences, 20, 4981–5001, https://doi.org/10.5194/bg-20-4981-2023, https://doi.org/10.5194/bg-20-4981-2023, 2023
Short summary
Short summary
We studied the impact of submarine canyon processes within the Pointe-des-Monts system on biogenic matter export and phytoplankton assemblages. Using data from three oceanographic moorings, we show that the canyon experienced two low-amplitude sediment remobilization events in 2020–2021 that led to enhanced particle fluxes in the deep-water column layer > 2.6 km offshore. Sinking phytoplankton fluxes were lower near the canyon compared to background values from the lower St. Lawrence Estuary.
Dewi Langlet, Florian Mermillod-Blondin, Noémie Deldicq, Arthur Bauville, Gwendoline Duong, Lara Konecny, Mylène Hugoni, Lionel Denis, and Vincent M. P. Bouchet
Biogeosciences, 20, 4875–4891, https://doi.org/10.5194/bg-20-4875-2023, https://doi.org/10.5194/bg-20-4875-2023, 2023
Short summary
Short summary
Benthic foraminifera are single-cell marine organisms which can move in the sediment column. They were previously reported to horizontally and vertically transport sediment particles, yet the impact of their motion on the dissolved fluxes remains unknown. Using microprofiling, we show here that foraminiferal burrow formation increases the oxygen penetration depth in the sediment, leading to a change in the structure of the prokaryotic community.
Cited articles
Alberola, C., Millot, C., and Font, J.: On the seasonal and mesoscale variabilities of the Northern Current during the PRIMO-0 experiment in the western Mediterranean Sea, Oceanol. Acta, 18, 163–192, 1995.
Álvarez, M., Sanleón-Bartolomé, H., Tanhua, T., Mintrop, L., Luchetta, A., Cantoni, C., Schroeder, K., and Civitarese, G.: The CO2 system in the Mediterranean Sea: a basin-wide perspective, Ocean Sci., 10, 69–92, https://doi.org/10.5194/os-10-69-2014, 2014.
Antoine, D., Chami, M., Claustre, H., d'Ortenzio, F., Morel, A., Bécu, G., Gentili, B., Louis, F., Ras, J., Roussier, E., Scott, A. J., Tailliez, D., Hooker, S. B., Guevel, P., Desté, J. F., Dempsey, C., and Adams, D.: BOUSSOLE: A joint CNRS-INSU, ESA, CNES, and NASA ocean color calibration and validation activity, NASA Tech. Memo., 1–59, 2006.
Antoine, D., d'Ortenzio, F., Hooker, S. B., Bécu, G., Gentili, B., and Tailliez, D., and Scott, A. J.: Assessment of uncertainty in the ocean reflectance determined by three satellite ocean color sensors (MERIS, SeaWiFS and MODIS-A) at an offshore site in the Mediterranean Sea (BOUSSOLE project), J. Geophys. Res.-Ocean., 113, C07013, https://doi.org/10.1029/2007JC004472, 2008a.
Antoine, D., Guevel, P., Desté, J. F., Bécu, G., Louis, F., Scott, A. J., and Bardey, P.: The “BOUSSOLE” Buoy - A new transparent-to-swell taut mooring dedicated to marine optics: Design, tests, and performance at sea, J. Atmos. Ocean. Technol., 25, 968–989, https://doi.org/10.1175/2007JTECHO563.1, 2008b.
Bakker, D. C. E., Pfeil, B., Landa, C. S., Metzl, N., O'Brien, K. M., Olsen, A., Smith, K., Cosca, C., Harasawa, S., Jones, S. D., Nakaoka, S., Nojiri, Y., Schuster, U., Steinhoff, T., Sweeney, C., Takahashi, T., Tilbrook, B., Wada, C., Wanninkhof, R., Alin, S. R., Balestrini, C. F., Barbero, L., Bates, N. R., Bianchi, A. A., Bonou, F., Boutin, J., Bozec, Y., Burger, E. F., Cai, W.-J., Castle, R. D., Chen, L., Chierici, M., Currie, K., Evans, W., Featherstone, C., Feely, R. A., Fransson, A., Goyet, C., Greenwood, N., Gregor, L., Hankin, S., Hardman-Mountford, N. J., Harlay, J., Hauck, J., Hoppema, M., Humphreys, M. P., Hunt, C. W., Huss, B., Ibánhez, J. S. P., Johannessen, T., Keeling, R., Kitidis, V., Körtzinger, A., Kozyr, A., Krasakopoulou, E., Kuwata, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lo Monaco, C., Manke, A., Mathis, J. T., Merlivat, L., Millero, F. J., Monteiro, P. M. S., Munro, D. R., Murata, A., Newberger, T., Omar, A. M., Ono, T., Paterson, K., Pearce, D., Pierrot, D., Robbins, L. L., Saito, S., Salisbury, J., Schlitzer, R., Schneider, B., Schweitzer, R., Sieger, R., Skjelvan, I., Sullivan, K. F., Sutherland, S. C., Sutton, A. J., Tadokoro, K., Telszewski, M., Tuma, M., Van Heuven, S. M. A. C., Vandemark, D., Ward, B., Watson, A. J., and Xu, S.: A multi-decade record of high quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT), Earth Syst. Sci. Data, 8, 383–413, https://doi.org/10.5194/essd-8-383-2016, 2016.
Bakker, D. C. E., Alin, S. R., Bates, N., Becker, M., Gkritzalis, T., Jones, S. D., Kozyr, A., Lauvset, S. K., Metzl, N., Nakaoka, S., O'Brien, K. M., Olsen, A., Pierrot, D., Steinhoff, T., Sutton, A. J., Takao, S., Tilbrook, B., Wada, C., Wanninkhof, R., Akl, J., Arbilla, L. A., Arruda, R., Azetsu-Scott, K., Barbero, L., Beatty, C. M., Berghoff, C. F., Bittig, H. C., Burger, E. F., Campbell, K., Cardin, V., Collins, A., Coppola, L., Cronin, M., Cross, J. N., Currie, K. I., Emerson, S. R., Enright, M. P., Enyo, K., Evans, W., Feely, R. A., Flohr, A., Gehrung, M., Glockzin, M., González-Dávila, M., Hamnca, S., Hartman, S., Howden, S. D., Kam, K., Kamb, L., Körtzinger, A., Kosugi, N., Lefèvre, N., Lo Monaco, C., Macovei, V. A., Maenner Jones, S., Manalang, D., Martz, T. R., Mdokwana, B., Monacci, N. M., Monteiro, P. M. S., Mordy, C., Morell, J. M., Murata, A., Neill, C., Noh, J.-H., Nojiri, Y., Ohman, M. D., Olivier, L., Ono, T., Petersen, W., Plueddemann, A. J., Prytherch, J., Rehder, G., Rutgersson, A., Santana-Casiano, J. M., Schlitzer, R., Send, U., Skjelvan, I., Sullivan, K. F., T'Jampens, M., Tadokoro, K., Telszewski, M., Theetaert, H., Tsanwani, M., Vandemark, D., van Ooijen, E., Veccia, M. H., Voynova, Y. G., Wang, H., Weller, R. A., and Woosley, R. J.: Surface Ocean CO2 Atlas Database Version 2024 (SOCATv2024), NOAA Natl. Centers for Environ. Inf. [data set], https://doi.org/10.25921/9wpn-th28, 2024.
Bates, N. R., Astor, Y. M., Church, M. J., Currie, K., Dore, J. E., González-Dávila, M., Lorenzoni, L., Muller-Karger, F., Olafsson, J., and Santana-Casiano, J. M.: A time-series view of changing surface ocean chemistry due to ocean uptake of anthropogenic CO2 and ocean acidification, Oceanography, 27, 126–141, https://doi.org/10.5670/oceanog.2014.16, 2014.
Bégovic, M. and Copin-Montégut, C.: Processes controlling annual variations in the partial pressure of CO2 in surface waters of the central northwestern Mediterranean Sea (Dyfamed site), Deep-Sea Res. Pt. II, 49, 2031–2047, https://doi.org/10.1016/S0967-0645(02)00026-7, 2002.
Bergamasco, A. and Malanotte-Rizzoli, P.: The circulation of the Mediterranean Sea: a historical review of experimental investigations, Adv. Oceanogr. Limnol., 1, 11–28, https://doi.org/10.1080/19475721.2010.505354, 2010.
Bolado-Penagos, M., González, C. J., Chioua, J., Sala, I., Jesús Gomiz-Pascual, J., Vázquez, Á., and Bruno, M.: Submesoscale processes in the coastal margins of the Strait of Gibraltar. The Trafalgar – Alboran connection, Prog. Oceanogr., 181, 102219, https://doi.org/10.1016/j.pocean.2019.102219, 2020.
Borges, A. V., Delille, B., and Frankignoulle, M.: Budgeting sinks and sources of CO2 in the coastal ocean: Diversity of ecosystem counts, Geophys. Res. Lett., 32, 1–4, https://doi.org/10.1029/2005GL023053, 2005.
Borghini, M. B. H. S., Bryden, H., Schroeder, K., Sparnocchia, S., and Vetrano, A.: The Mediterranean is becoming saltier, Ocean Sci., 10, 693–700, https://doi.org/10.5194/os-10-693-2014, 2014.
Bormans, M. and Garrett, C.: A simple criterion for gyre formation by the surface outflow from a strait, with application to the Alboran Sea, J. Geophys. Res.-Ocean., 94, 12637–12644, https://doi.org/10.1029/JC094iC09p12637, 1989.
Bosse, A., Testor, P., Damien, P., Estournel, C., Marsaleix, P., Mortier, L., Prieur, L., and Taillandier, V.: Wind-forced submesoscale symmetric instability around deep convection in the northwestern Mediterranean Sea, Fluids, 6, 1–26, https://doi.org/10.3390/fluids6030123, 2021.
Bourg, N. and Molcard, A.: Northern boundary current variability and mesoscale dynamics: a long-term HF RADAR monitoring in the North-Western Mediterranean Sea, Ocean Dynam., 71, 851–870, https://doi.org/10.1007/s10236-021-01466-9, 2021.
Bray, N. A., Ochoa, J., and Kinder, T. H.: The role of the interface in exchange through the Strait of Gibraltar, J. Geophys. Res., 100, 10755–10776, https://doi.org/10.1029/95JC00381, 1995.
Cai, W. J., Dai, M., and Wang, Y.: Air-sea exchange of carbon dioxide in ocean margins: A province-based synthesis, Geophys. Res. Lett., 33, L12603, https://doi.org/10.1029/2006GL026219, 2006.
Chen, C. T. A., Huang, T. H., Chen, Y. C., Bai, Y., He, X., and Kang, Y.: Air-sea exchanges of CO2 in the world's coastal seas, Biogeosciences, 10, 6509–6544, https://doi.org/10.5194/bg-10-6509-2013, 2013.
Conan, P. and Millot, C.: Variability of the northern current off Marseilles, western Mediterranean Sea, from February to June 1992, Oceanol. Acta, 18, 193–205, https://doi.org/10.1016/0399-1784(95)00009-Q, 1995.
Copin-Montégut, C.: Alkalinity and carbon budgets in the Mediterranean Sea, Global Biogeochem. Cy., 7, 915–925, 1993.
Copin-Montégut, C. and Bégovic, M.: Distributions of carbonate properties and oxygen along the water column (0–2000 m) in the central part of the NW Mediterranean Sea (Dyfamed site): Influence of winter vertical mixing on air–sea CO2 and O2 exchanges, Deep-Sea Res. Pt. II, 49, 2049–2066, https://doi.org/10.1016/S0967-0645(02)00027-9, 2002.
Copin-Montégut, C., Bégovic, M., and Merlivat, L.: Variability of the partial pressure of CO2 on diel to annual time scales in the Northwestern Mediterranean Sea, Mar. Chem., 85, 169–189, https://doi.org/10.1016/j.marchem.2003.10.005, 2004.
Coppola, L., Boutin, J., Gattuso, J. P., Lefevre, D., and Metzl, N.: The Carbonate System in the Ligurian Sea, in: Mediterr. Sea Era Glob. Chang. 1 30 Years Multidiscip. Study Ligurian Sea, 1, 79–103, https://doi.org/10.1002/9781119706960.CH4, 2020.
Cossarini, G., Lazzari, P., and Solidoro, C.: Spatiotemporal variability of alkalinity in the Mediterranean Sea, Biogeosciences, 12, 1647–1658, https://doi.org/10.5194/bg-12-1647-2015, 2015.
Cossarini, G., Feudale, L., Teruzzi, A., Bolzon, G., Coidessa, G., Solidoro, C., Di Biagio, V., Amadio, C., Lazzari, P., Brosich, A., and Salon, S.: High-resolution reanalysis of the Mediterranean Sea biogeochemistry (1999–2019), Front. Mar. Sci., 8, 741486, https://doi.org/10.3389/fmars.2021.741486, 2021.
Curbelo-Hernández, D., González-Dávila, M., González, A. G., González-Santana, D., and Santana-Casiano, J. M.: CO2 fluxes in the Northeast Atlantic Ocean based on measurements from a surface ocean observation platform, Sci. Total Environ., 775, 145804, https://doi.org/10.1016/j.scitotenv.2021.145804, 2021a.
Curbelo-Hernández, D., Santana-Casiano, J. M., González, A. G., and González-Dávila, M.: Air-Sea CO2 Exchange in the Strait of Gibraltar, Front. Mar. Sci., 8, 1701, https://doi.org/10.3389/FMARS.2021.745304, 2021b.
Curbelo-Hernández, D., González-Dávila, M., and Santana-Casiano, J. M.: The carbonate system and air-sea CO2 fluxes in coastal and open-ocean waters of the Macaronesia, Front. Mar. Sci., 10, 1094250, https://doi.org/10.3389/fmars.2023.1094250, 2023.
Curbelo-Hernández, D., Pérez, F. F., González-Dávila, M., Gladyshev, S. V., González, A. G., González-Santana, D., Velo, A., Sokov, A., and Santana-Casiano, J. M.: Ocean Acidification trends and Carbonate System dynamics in the North Atlantic Subpolar Gyre during 2009–2019, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-1388, 2024a.
Curbelo-Hernández, D., González-Santana, D., González, A. G., Santana-Casiano, J. M., and González-Dávila, M.: Surface Marine Carbonate System Data (2019–2024) from Volunteer Observing Ship monitoring across the Western Mediterranean Sea, Zenodo [data set], https://doi.org/10.5281/zenodo.13379011, 2024b.
De Carlo, E. H., Mousseau, L., Passafiume, O., and Drupp, P. S., and Gattuso, J. P.: Carbonate Chemistry and Air-Sea CO2 Flux in a NW Mediterranean Bay Over a Four-Year Period: 2007–2011, Aquat. Geochem., 19, 399–442, https://doi.org/10.1007/s10498-013-9217-4, 2013.
de la Paz, M., Gómez-Parra, A., and Forja, J.: Seasonal variability of surface fCO2 in the Strait of Gibraltar, Aquat. Sci., 71, 55–64, https://doi.org/10.1007/s00027-008-8060-y, 2009.
de la Paz, M., Huertas, E. M., Padín, X. A., González-Dávila, M., Santana-Casiano, J. M., Forja, J. M., Orbi, A., Pérez, F. F., and Ríos, A. F.: Reconstruction of the seasonal cycle of air-sea CO2 fluxes in the Strait of Gibraltar, Mar. Chem., 126, 155–162, https://doi.org/10.1016/j.marchem.2011.05.004, 2011.
Dickson, A. G.: Standard potential of the reaction: AgCl(s) + H2(g) = Ag(s) + HCl(aq), and the standard acidity constant of the ion HSO4- in synthetic sea water from 273.15 to 318.15 K, J. Chem. Thermodyn., 22, 113–127, https://doi.org/10.1016/0021-9614(90)90074-Z, 1990.
Dickson, A. G., Sabine, C. L., and Christian, J. R. (Eds.): Guide to best practices for ocean CO2 measurements, PICES Spec. Publ., 3, 191 pp., ISBN: 1-897176-07-4, 2007.
Doney, S. C., Fabry, V. J., Feely, R. A., and Kleypas, J. A.: Ocean Acidification: The Other CO2 Problem, Ann. Rev. Mar. Sci., 1, 169–192, https://doi.org/10.1146/annurev.marine.010908.163834, 2009.
D'Ortenzio, F., Antoine, D., and Marullo, S.: Satellite-driven modeling of the upper ocean mixed layer and air-sea CO2 flux in the Mediterranean Sea, Deep-Sea Res. Pt. I, 55, 405–434, https://doi.org/10.1016/j.dsr.2007.12.008, 2008.
Echevarría, F., García Lafuente, J., Bruno, M., Gorsky, G., Goutx, M., González, N., García, C. M., Gómez, F., Vargas, J. M., Picheral, M., Striby, L., Varela, M., Alonso, J. J., Reul, A., Cózar, A., Prieto, L., Sarhan, T., Plaza, F., and Jiménez-Gómez, F.: Physical-biological coupling in the Strait of Gibraltar, Deep-Sea Res. Pt. II, 49, 4115–4130, https://doi.org/10.1016/S0967-0645(02)00145-5, 2002.
Escudier, R., Clementi, E., Omar, M., Cipollone, A., Pistoia, J., Aydogdu, A., Drudi, M., Grandi, A., Lyubartsev, V., Lecci, R., Cretí, S., Masina, S., Coppini, G., and Pinardi, N.: Mediterranean Sea Physical Reanalysis (CMEMS MED-Currents) (Version 1), Copernicus Monitoring Environment Marine Service (CMEMS) [data set], https://doi.org/10.25423/CMCC/, 2020.
Escudier, R., Clementi, E., Cipollone, A., Pistoia, J., Drudi, M., Grandi, A., Lyubartsev, V., Lecci, R., Aydogdu, A., Delrosso, D., Omar, M., Masina, S., Coppini, G., and Pinardi, N.: A High Resolution Reanalysis for the Mediterranean Sea, Front. Earth Sci., 9, 1060, https://doi.org/10.3389/feart.2021.702285, 2021.
Fassbender, A. J., Schlunegger, S., Rodgers, K. B., and Dunne, J. P.: Quantifying the Role of Seasonality in the Marine Carbon Cycle Feedback: An ESM2M Case Study, Global Biogeochem. Cy., 36, 1–15, https://doi.org/10.1029/2021GB007018, 2022.
Folkard, A. M., Davies, P. A., Fiúza, A. F. G., and Ambar, I.: Remotely sensed sea surface thermal patterns in the Gulf of Cadiz and the Strait of Gibraltar: Variability, correlations, and relationships with the surface wind field, J. Geophys. Res.-Ocean., 102, 5669–5683, https://doi.org/10.1029/96JC02505, 1997.
Ford, D. J., Tilstone, G. H., Shutler, J. D., and Kitidis, V.: Identifying the biological control of the annual and multi-year variations in South Atlantic air-sea CO2 flux, Biogeosciences, 19, 4287–4304, https://doi.org/10.5194/bg-19-4287-2022, 2022.
Frankignoulle, M. and Borges, A. V.: European continental shelf as a significant sink for atmospheric carbon dioxide, Global Biogeochem. Cy., 15, 569–576, https://doi.org/10.1029/2000GB001307, 2001.
Friis, K., Körtzinger, A., and Wallace, D. W. R.: The salinity normalization of marine inorganic carbon chemistry data, Geophys. Res. Lett., 30, 1085, https://doi.org/10.1029/2002GL015898, 2003.
Fröb, F., Olsen, A., Becker, M., Chafik, L., Johannessen, T., Reverdin, G., and Omar, A.: Wintertime fCO2 Variability in the Subpolar North Atlantic Since 2004, Geophys. Res. Lett., 46, 1580–1590, https://doi.org/10.1029/2018GL080554, 2019.
Frölicher, T. L., Fischer, E. M., and Gruber, N.: Marine heatwaves under global warming, Nature, 560, 360–364, https://doi.org/10.1038/s41586-018-0383-9, 2018.
García-Ibáñez, M. I., Zunino, P., Fröb, F., Carracedo, L. I., Ríos, A. F., Mercier, H., Olsen, A., and Pérez, F. F.: Ocean acidification in the subpolar North Atlantic: Rates and mechanisms controlling pH changes, Biogeosciences, 13, 3701–3715, https://doi.org/10.5194/bg-13-3701-2016, 2016.
García Lafuente, J., Álvarez Fanjul, E., Vargas, J. M., and Ratsimandresy, A. W.: Subinertial variability in the flow through the Strait of Gibraltar, J. Geophys. Res.-Ocean., 107, 1–9, https://doi.org/10.1029/2001jc001104, 2002.
Gómez-Jakobsen, F. J., Mercado, J. M., Cortés, D., and Yebra, L., Salles, S.: A first description of the summer upwelling off the Bay of Algeciras and its role in the northwestern Alboran Sea, Estuar. Coast. Shelf Sci., 225, 106230, https://doi.org/10.1016/j.ecss.2019.05.012, 2019.
González-Dávila, M. and Santana-Casiano, J. M.: Long-term trends of pH and inorganic carbon in the Eastern North Atlantic: the ESTOC site, Front. Mar. Sci., 10, 1–16, https://doi.org/10.3389/fmars.2023.1236214, 2023.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS), https://doi.org/10.24381/cds.adbb2d47, 2023.
Hoegh-Guldberg, O., Jacob, D., Taylor, M., Bindi, M., Brown, S., Camilloni, I., Diedhiou, A., Djalante, R., Ebi, K. L., Engelbrecht, F., Guiot, J., Hijioka, Y., Mehrotra, S., Payne, A., Seneviratne, S. I., Thomas, A., Warren, R., and Zhou, G.: Impacts of 1.5 °C Global Warming on Natural and Human Systems, in: Global Warming of 1.5 °C: An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, edited by: Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J. B. R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy, E., Maycock, T., Tignor, M., and Waterfield, T., Cambridge Univ. Press, Cambridge, UK and New York, NY, USA, 175–312, https://doi.org/10.1017/9781009157940.005, 2018.
Hood, E. M. and Merlivat, L.: Annual to interannual variations of fCO2 in the northwestern Mediterranean Sea: Results from hourly measurements made by CARIOCA buoys, 1995–1997, J. Mar. Res., 59, 113–131, https://doi.org/10.1357/002224001321237399, 2001.
IPCC: Climate Change 2023: Synthesis Report, Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Lee, H. and Romero, J., IPCC, Geneva, Switzerland, 35–115, https://doi.org/10.59327/IPCC/AR6-9789291691647, 2023.
Jiang, Z. P., Tyrrell, T., Hydes, D. J., Dai, M., and Hartman, S. E.: Variability of alkalinity and the alkalinity–salinity relationship in the tropical and subtropical surface ocean, Global Biogeochem. Cy., 28, 729–742, https://doi.org/10.1002/2013GB004678, 2014.
Lacombe, H. and Richez, C.: The regime of the strait of Gibraltar, Elsevier Oceanogr. Ser., 34, 13–73, https://doi.org/10.1016/S0422-9894(08)71237-6, 1982.
Lee, K., Kim, T. W., Byrne, R. H., Millero, F. J., Feely, R. A., and Liu, Y. M.: The universal ratio of boron to chlorinity for the North Pacific and North Atlantic oceans, Geochim. Cosmochim. Ac., 74, 1801–1811, https://doi.org/10.1016/j.gca.2009.12.027, 2010.
Lewis, E. and Wallace, D.: Program Developed for CO2 System Calculations ORNL/CDIAC-105, Carbon Dioxide Information Analysis Centre [code], United State, https://doi.org/10.15485/1464255, 1998.
López-García, M. J., Millot, C., Font, J., and García-Ladona, E.: Surface circulation variability in the Balearic Basin, J. Geophys. Res., 99, 3285–3296, https://doi.org/10.1029/93JC02114, 1994.
López-Jurado, J. L., García-Lafuente, J. M., and Cano-Lucaya, N.: Hydrographic conditions of the Ibiza channel during November 1990, March 1991 and July 1992, Oceanol. Acta, 18, 235–243, 1995.
Lovenduski, N. S., Gruber, N., Doney, S. C., and Lima, I. D.: Enhanced CO2 outgassing in the Southern Ocean from a positive phase of the Southern Annular Mode, Global Biogeochem. Cy., 21, 1–14, https://doi.org/10.1029/2006GB002900, 2007.
Lueker, T. J., Dickson, A. G., and Keeling, C. D.: Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: Validation based on laboratory measurements of CO2 in gas and seawater at equilibrium, Mar. Chem., 70, 105–119, https://doi.org/10.1016/S0304-4203(00)00022-0, 2000.
Macías, D., Bruno, M., Echevarría, F., Vázquez, A., and García, C. M.: Meteorologically-induced mesoscale variability of the North-western Alboran Sea (southern Spain) and related biological patterns, Estuar. Coast. Shelf Sci., 78, 250–266, https://doi.org/10.1016/j.ecss.2007.12.008, 2008.
Macías, D., Garcia-Gorriz, E., and Stips, A.: The seasonal cycle of the Atlantic Jet dynamics in the Alboran Sea: Direct atmospheric forcing versus Mediterranean thermohaline circulation, Ocean Dynam., 66, 137–151, https://doi.org/10.1007/s10236-015-0914-y, 2016.
Marty, J. C.: The DYFAMED time-series program (French-JGOFS), Deep-Sea Res. Pt. II, 49, 1963–1964, https://doi.org/10.1016/S0967-0645(02)00021-8, 2002.
Mémery, L., Lévy, M., Vérant, S., and Merlivat, L.: The relevant time scales in estimating the air-sea CO2 exchange in a mid-latitude region, Deep-Sea Res. Pt. II, 49, 2067–2092, https://doi.org/10.1016/S0967-0645(02)00028-0, 2002.
Merlivat, L., Boutin, J., Antoine, D., Beaumont, L., Golbol, M., and Vellucci, V.: Increase of dissolved inorganic carbon and decrease in pH in near-surface waters in the Mediterranean Sea during the past two decades, Biogeosciences, 15, 5653–5662, https://doi.org/10.5194/bg-15-5653-2018, 2018.
Millero, F. J., Morse, J., and Chen, C. T.: The carbonate system in the western Mediterranean Sea, Deep-Sea Res. Pt. A, 26, 1395–1404, https://doi.org/10.1016/0198-0149(79)90064-2, 1979.
Millot, C.: Circulation in the Western Mediterranean Sea, J. Mar. Syst., 20, 423–442, https://doi.org/10.1016/S0924-7963(98)00078-5, 1999.
Millot, C. and Taupier-Letage, I.: Circulation in the Mediterranean Sea, in: The Mediterranean Sea, Springer, Handbook of Environmental Chemistry, https://doi.org/10.1007/b107143, 29–66, 2005.
Minas, H. J., Coste, B., Le Corre, P., Minas, M., and Raimbault, P.: Biological and geochemical signatures associated with the water circulation through the Strait of Gibraltar and in the western Alboran Sea, J. Geophys. Res., 96, 8755–8771, https://doi.org/10.1029/91JC00360, 1991.
Mintrop, L., Pérez, F. F., González-Dávila, M., Santana-Casiano, J. M., and Körtzinger, A.: Alkalinity determination by potentiometry: Intercalibration using three different methods, Ciencias Mar., 26, 23–37, https://doi.org/10.7773/cm.v26i1.573, 2000.
Nielsen, J. N.: Hydrography of the Mediterranean and Adjacent Waters, Report on the Danish Ocean Exped., 1908–10, 1, 72–191, 1912.
Nigam, T., Escudier, R., Pistoia, J., Aydogdu, A., Omar, M., Clementi, E., Cipollone, A., Drudi, M., Grandi, A., Mariani, A., Lyubartsev, V., Lecci, R., Cretí, S., Masina, S., Coppini, G., and Pinardi, N.: Mediterranean Sea Physical Reanalysis INTERIM (CMEMS MED-Currents, E3R1i system) (Version 1) [Data set], Copernicus Monitoring Environment Marine Service (CMEMS), https://doi.org/10.25423/CMCC/, 2021.
Oliver, E. C. J., Donat, M. G., Burrows, M. T., Moore, P. J., Smale, D. A., Alexander, L. V., Benthuysen, J. A., Feng, M., Sen Gupta, A., Hobday, A. J., Holbrook, N. J., Perkins-Kirkpatrick, S. E., Scannell, H. A., Straub, S. C., and Wernberg, T.: Longer and more frequent marine heatwaves over the past century, Nat. Commun., 9, 1–12, https://doi.org/10.1038/s41467-018-03732-9, 2018.
Orr, J. C., Epitalon, J.-M., Dickson, A. G., and Gattuso, J.-P.: Routine uncertainty propagation for the marine carbon dioxide system, Mar. Chem., 207, 84–107, https://doi.org/10.1016/j.marchem.2018.10.006, 2018.
Padin, X. A., Vazquez-Rodriguez, M., Castaño, M., Velo, A., Alonso-Perez, F., Gago, J., Gilcoto, M., Alvarez, M., Pardo, P. C., De La Paz, M., Rios, A. F., and Pérez, F. F.: Air-Sea CO2 fluxes in the Atlantic as measured during boreal spring and autumn, Biogeosciences, 7, 1587–1606, https://doi.org/10.5194/bg-7-1587-2010, 2010.
Palmiéri, J., Orr, J. C., Dutay, J. C., Béranger, K., Schneider, A., Beuvier, J., and Somot, S.: Simulated anthropogenic CO2 storage and acidification of the Mediterranean Sea, Biogeosciences, 12, 781–802, https://doi.org/10.5194/bg-12-781-2015, 2015.
Peliz, Á., Teles-Machado, A., Marchesiello, P., Dubert, J., and Lafuente, J. G.: Filament generation off the Strait of Gibraltar in response to gap winds, Dyn. Atmos. Ocean., 46, 36–45, https://doi.org/10.1016/j.dynatmoce.2008.08.002, 2009.
Peliz, Á., Boutov, D., and Teles-Machado, A.: The Alboran Sea mesoscale in a long term high resolution simulation: Statistical analysis, Ocean Model., 72, 32–52, https://doi.org/10.1016/j.ocemod.2013.07.002, 2013.
Pérez, F. F. and Fraga, F.: Association constant of fluoride and hydrogen ions in seawater, Mar. Chem., 21, 161–168, https://doi.org/10.1016/0304-4203(87)90036-3, 1987.
Pérez, F. F., Olafsson, J., Ólafsdóttir, S. R., Fontela, M., and Takahashi, T.: Contrasting drivers and trends of ocean acidification in the subarctic Atlantic, Sci. Rep., 11, 1–16, https://doi.org/10.1038/s41598-021-93324-3, 2021.
Pierrot, D., Neill, C., Sullivan, K., Castle, R., Wanninkhof, R., Lüger, H., Johannessen, T., Olsen, A., Feely, R. A., and Cosca, C. E.: Recommendations for autonomous underway pCO2 measuring systems and data-reduction routines, Deep-Sea Res. Pt. II, 56, 512–522, https://doi.org/10.1016/j.dsr2.2008.05.014, 2009.
Pinot, J. M., Tintoré, J., and Gomis, D.: Multivariate analysis of the surface circulation in the Balearic Sea, Prog. Oceanogr., 36, 343–376, https://doi.org/10.1016/0079-6611(96)00003-1, 1995.
Renault, L., Oguz, T., Pascual, A., Vizoso, G., and Tintore, J.: Surface circulation in the Alboran Sea (western Mediterranean) inferred from remotely sensed data, J. Geophys. Res.-Ocean., 117, 1–11, https://doi.org/10.1029/2011JC007659, 2012.
Richez, C. and Kergomard, C.: Characteristic features occurring in the Strait of Gibraltar as seen through remote sensing data, Phys. Oceanogr. Sea Straits, 318, 441–455, https://doi.org/10.1007/978-94-009-0677-8_21, 1990.
Rivaro, P., Messa, R., Massolo, S., and Frache, R.: Distributions of carbonate properties along the water column in the Mediterranean Sea: Spatial and temporal variations, Mar. Chem., 121, 236–245, https://doi.org/10.1016/j.marchem.2010.01.007, 2010.
Robinson, A. R. and Golnaraghi, M.: The physical and dynamical oceanography of the Mediterranean Sea, in: Ocean Processes in Climate Dynamics: Global and Mediterranean Examples, edited by: Robinson, A. R. andBrink, K. , 255–306, Dordrecht, Springer Netherlands, https://doi.org/10.1007/978-94-011-0870-6_12, 1994.
Robinson, A. R., Leslie, W. G., Theocharis, A., and Lascaratos, A.:Mediterranean Sea circulation, Encycl. Ocean Sci., 3, 1689–1705, https://doi.org/10.1006/rwos.2001.0376, 2001.
Rodgers, K. B., Schwinger, J., Fassbender, A. J., Landschützer, P., Yamaguchi, R., Frenzel, H., Stein, K., Müller, J. D., Goris, N., Sharma, S., Bushinsky, S., Chau, T. T. T., Gehlen, M., Gallego, M. A., Gloege, L., Gregor, L., Gruber, N., Hauck, J., Iida, Y., Ishii, M., Keppler, L., Kim, J. E., Schlunegger, S., Tjiputra, J., Toyama, K., Vaittinada Ayar, P., and Velo, A.: Seasonal Variability of the Surface Ocean Carbon Cycle: A Synthesis, Global Biogeochem. Cy., 37, 1–34, https://doi.org/10.1029/2023GB007798, 2023.
Sammari, C., Millot, C., and Prieur, L.: Aspects of the seasonal and mesoscale variabilities of the Northern Current in the western Mediterranean Sea inferred from the PROLIG-2 and PROS-6 experiments, Deep-Sea Res. Pt. I, 42, 893–917, https://doi.org/10.1016/0967-0637(95)00031-Z, 1995.
Sánchez-Garrido, J. C. and Nadal, I.: The Alboran Sea circulation and its biological response: A review, Front. Mar. Sci., 9, 1–15, https://doi.org/10.3389/fmars.2022.933390, 2022.
Sánchez-Garrido, J. C., García Lafuente, J., Álvarez Fanjul, E., Sotillo, M. G., and de los Santos, F. J.: What does cause the collapse of the western Alboran gyre? Results of an operational ocean model, Prog. Oceanogr., 116, 142–153, https://doi.org/10.1016/j.pocean.2013.07.002, 2013.
Santana-Casiano, J. and González-Dávila, M.: ICOS OTC SOOP NRT Product from CanOA, 2024-01-10-2024-12-11, ICOS RI [data set], https://hdl.handle.net/11676/gwO1_f1H5DDIVmrWaeZ3GwDX (last access: 8 July 2025), 2024.
Sarmiento, J. and Gruber, N.: Ocean Biogeochemical Dynamics, Princeton Univ. Press, Princeton, https://doi.org/10.1515/9781400849079, 2006.
Schneider, A., Tanhua, T., Körtzinger, A., and Wallace, D. W. R.: High anthropogenic carbon content in the eastern Mediterranean, J. Geophys. Res.-Ocean., 115, 1–11, https://doi.org/10.1029/2010JC006171, 2010.
Schneider, A., Wallace, D. W., and Körtzinger, A.: Alkalinity of the Mediterranean Sea, Geophys. Res. Lett., 34, L15608, https://doi.org/10.1029/2006GL028842, 2007.
Schroeder, K., García-Lafuente, J., Josey, S. A., Artale, V., Nardelli, B. B., Carrillo, A., Gacic, M., Gasparini, G. P., Herrmann, M, Lionello, P., Ludwig, W., Millot, C., Özsoy, E., Pisacane, G., Sánchez-Garrido, J. C., Sannino, G., Santoleri, R., Somot, S., Struglia, M. V., Stanev, E. V., Taupier-Letage, I., Tsimplis, M., Vargas-Yáñez, M., Zervakis, V., and Zodiatis, G.: Circulation of the Mediterranean Sea and its variability, in: The Climate of the Mediterranean Region, edited by: Alpert, M. D. and Reinhold, L. O., Vol. 187, https://doi.org/10.1016/B978-0-12-416042-2.00003-3, 2012.
Shadwick, E. H., Thomas, H., Comeau, A., Craig, S. E., Hunt, C. W., and Salisbury, J. E.: Air-Sea CO2 fluxes on the Scotian Shelf: Seasonal to multi-annual variability, Biogeosciences, 7, 3851–3867, https://doi.org/10.5194/bg-7-3851-2010, 2010.
Sharp, J. D., Pierrot, D., Humphreys, M. P., Epitalon, J.-M., Orr, J. C., Lewis, E. R., and Wallace, D. W. R.: CO2SYSv3 for MATLAB (Version v3.2.1), Zenodo, https://doi.org/10.5281/zenodo.3950562, 2023.
Sisma-Ventura, G., Bialik, O. M., Yam, R., Herut, B., and Silverman, J.: pCO2 variability in the surface waters of the ultra-oligotrophic Levantine Sea: Exploring the air–sea CO2 fluxes in a fast warming region, Mar. Chem., 196, 13–23, https://doi.org/10.1016/j.marchem.2017.06.006, 2017.
Smale, D. A., Wernberg, T., Oliver, E. C., Thomsen, M., Harvey, B. P., Straub, S. C., Burrows, M. T., Alexander, L. V., Benthuysen, J. A., Donat, M, G., Feng, M., Hobday, A. J., Holbrook, N. J., Perkins-Kirkpatrick, S. E., Scannell, H. A., Gupta, A. S., Payne, B. L., and Moore, P. J.: Marine heatwaves threaten global biodiversity and the provision of ecosystem services, Nat. Clim. Change, 9, 306–312, 2019.
Solé, J., Ballabrera-Poy, J., Macías, D., and Catalán, I. A.: The role of ocean velocity in chlorophyll variability. A modelling study in the Alboran Sea, Sci. Mar., 80, 249–256, https://doi.org/10.3989/scimar.04290.04A, 2016.
Speich, S., Madec, G., and Crépon, M.: A strait outflow circulation process study: The case of the Alboran Sea, J. Phys. Oceanogr., 26, 320–340, https://doi.org/10.1175/1520-0485(1996)026<0320>2.0.CO;2, 1996.
Stanichny, S., Tigny, V., Stanichnaya, R., and Djenidi, S.: Wind driven upwelling along the African coast of the Strait of Gibraltar, Geophys. Res. Lett., 32, 1–4, https://doi.org/10.1029/2004GL021760, 2005.
Steinhoff, T. and Skjelvan, I.: Uncertainty analysis for calculations of the marine carbonate system for ICOS-Oceans stations, ICOS OTC, https://doi.org/10.18160/VB7C-Z758, 2020.
Taillandier, V., D'Ortenzio, F., and Antoine, D.: Carbon fluxes in the mixed layer of the Mediterranean Sea in the 1980s and the 2000s, Deep-Sea Res. Pt. I, 65, 73–84, https://doi.org/10.1016/j.dsr.2012.03.004, 2012.
Takahashi, T., Olafsson, J., Goddard, J. G., Chipman, D. W., and Sutherland, S. C.: Seasonal variation of CO2 and nutrients in the high-latitude surface oceans: A comparative study, Global Biogeochem. Cy., 7, 843–878, https://doi.org/10.1029/93GB02263, 1993.
Takahashi, T., Sutherland, S. C., Chipman, D. W., Goddard, J. G., Ho, C., Newberger, T., and Munro, D. R.: Climatological distributions of pH, pCO2, total CO2, alkalinity, and CaCO3 saturation in the global surface ocean, and temporal changes at selected locations, Mar. Chem., 164, 95–125, https://doi.org/10.1016/j.marchem.2014.06.004, 2014.
Takahashi, T., Sutherland, S. C., Sweeney, C., Poisson, A., Metzl, N., Tilbrook, B., Bates, N., Wanninkhof, R., Feely, R. A., Sabine, C., Olafsson, J., and Nojiri, Y.: Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects, Deep-Sea Res. Pt. II, 49, 1601–1622, https://doi.org/10.1016/S0967-0645(02)00003-6, 2002.
Tanhua, T., Hainbucher, D., Schroeder, K., Cardin, V., Álvarez, M., and Civitarese, G.: The Mediterranean Sea system: A review and an introduction to the special issue, Ocean Sci., 9, 789–803, https://doi.org/10.5194/OS-9-789-2013, 2013.
Touratier, F. and Goyet, C.: Decadal evolution of anthropogenic CO2 in the northwestern Mediterranean Sea from the mid-1990s to the mid-2000s, Deep-Sea Res. Pt. I, 56, 1708–1716, https://doi.org/10.1016/J.DSR.2009.05.015, 2009.
Turi, G., Lachkar, Z., and Gruber, N.: Spatiotemporal variability and drivers of pCO2 and air-sea CO2 fluxes in the California Current System: An eddy-resolving modeling study, Biogeosciences, 11, 671–690, https://doi.org/10.5194/BG-11-671-2014, 2014.
Ulses, C., Estournel, C., Marsaleix, P., Soetaert, K., Fourrier, M., Coppola, L., Lefèvre, D., Touratier, F., Goyet, C., Guglielmi, V., Kessouri, F., Testor, P., and Durrieu De Madron, X.: Seasonal dynamics and annual budget of dissolved inorganic carbon in the northwestern Mediterranean deep-convection region, Biogeosciences, 20, 4683–4710, https://doi.org/10.5194/bg-20-4683-2023, 2023.
van Heuven, S., Pierrot, D., Rae, J. W. B., Lewis, E., and Wallace, D. W. R.: MATLAB Program Developed for CO2 System Calculations, ORNL/CDIAC-105b, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, 2011.
Vargas-Yáez, M., Plaza, F., García-Lafuente, J., Sarhan, T., Vargas, J. M., and Vélez-Belchi, P.: About the seasonal variability of the Alboran Sea circulation, J. Mar. Syst., 35, 229–248, https://doi.org/10.1016/S0924-7963(02)00128-8, 2002.
Vélez-Belchı, P., Vargas-Yáñez, M., and Tintoré, J.: Observation of a western Alborán gyre migration event, Prog. Oceanogr., 66, 190–210, https://doi.org/10.1016/j.pocean.2004.09.006, 2005
Viúdez, A., Pinot, J. M., and Haney, R. L.: On the upper layer circulation in the Alboran Sea, J. Geophys. Res.-Ocean., 103, 21653–21666, https://doi.org/10.1029/98JC01082, 1998.
Wanninkhof, R.: Relationship between wind speed and gas exchange over the ocean revisited, Limnol. Oceanogr. Method., 12, 351–362, https://doi.org/10.4319/lom.2014.12.351, 2014.
Wanninkhof, R., Doney, S. C., Peng, T.-H., Bullister, J. L., Lee, K., and Feely, R. A.: Comparison of methods to determine the anthropogenic CO2 invasion into the Atlantic Ocean, Tellus B, 51, 511–530, https://doi.org/10.3402/tellusb.v51i2.16335, 1999.
Wanninkhof, R., Pierrot, D., Sullivan, K., Mears, P., and Barbero, L.: Comparison of discrete and underway CO2 measurements: Inferences on the temperature dependence of the fugacity of CO2 in seawater, Mar. Chem., 247, 104178, https://doi.org/10.1016/j.marchem.2022.104178, 2022.
Weiss, R.: Carbon dioxide in water and seawater: the solubility of a non-ideal gas, Mar. Chem., 2, 203–215, https://doi.org/10.1016/0304-4203(74)90015-2, 1974.
Whitehead, J. A. and Miller, A. R.: Laboratory simulation of the gyre in the Alboran Sea, J. Geophys. Res.-Ocean., 84, 3733–3742, https://doi.org/10.1029/jc084ic07p03733, 1979.
Wimart-Rousseau, C., Lajaunie-Salla, K., Marrec, P., Wagener, T., Raimbault, P., Lagadec, V., Lafont, M., Garcia, N., Diaz, F., Pinazo, C., Yohia, C., Garcia, F., Xueref-Remy, I., Blanc, P. E., Armengaud, A., and Lefèvre, D.: Temporal variability of the carbonate system and air-sea CO2 exchanges in a Mediterranean human-impacted coastal site, Estuar. Coast. Shelf Sci., 236, 106641, https://doi.org/10.1016/j.ecss.2020.106641, 2020.
Wimart-Rousseau, C., Wagener, T., Álvarez, M., Moutin, T., Fourrier, M., Coppola, L., Niclas-Chirurgien, L., Raimbault, P., D'Ortenzio, F., Durrieu de Madron, X., Taillandier, V., Dumas, F., Conan, P., Pujo-Pay, M., and Lefèvre, D.: Seasonal and Interannual Variability of the CO2 System in the Eastern Mediterranean Sea: A Case Study in the North Western Levantine Basin, Front. Mar. Sci., 8, 1–18, https://doi.org/10.3389/fmars.2021.649246, 2021.
Wimart-Rousseau, C., Wagener, T., Bosse, A., Raimbault, P., Coppola, L., Fourrier, M., Ulses, C., and Lefèvre, D.: Assessing seasonal and interannual changes in carbonate chemistry across two time-series sites in the North Western Mediterranean Sea, Front. Mar. Sci., 10, 1281003, https://doi.org/10.3389/fmars.2023.1281003, 2023.
Wolf-Gladrow, D. A., Zeebe, R. E., Klaas, C., Körtzinger, A., and Dickson, A. G.: Total alkalinity: The explicit conservative expression and its application to biogeochemical processes, Mar. Chem., 106, 287–300, https://doi.org/10.1016/j.marchem.2007.01.006, 2007.
Yao, K. M., Marcou, O., Goyet, C., Guglielmi, V., Touratier, F., and Savy, J. P.: Time variability of the north-western Mediter- 5 ranean Sea pH over 1995–2011, Mar. Environ. Res., 116, 51–60, https://doi.org/10.1016/J.MARENVRES.2016.02.016, 2016.
Zambrano-Bigiarini, M., Majone, B., Bellin, A., Bovolo, C. I., Blenkinsop, S., and Fowler, H. J.: Hydrological impacts of climate change on the Ebro River basin, in: The Ebro River Basin, The Handbook of Environmental Chemistry, Springer, Berlin, Heidelberg, 13, 47–75, https://doi.org/10.1007/698_2010_85, 2010.
Zarghamipour, M., Malakooti, H., and Bordbar, M. H.: Air–Sea CO2 Exchange Over the Mediterranean Sea, the Red Sea and the Arabian Sea, Int. J. Environ. Res., 18, 36, https://doi.org/10.1007/s41742-024-00586-6, 2024.
Short summary
This study offers a unique high-resolution dataset (2019–2024) on surface physicochemical properties in the western Mediterranean Sea. It reveals accelerated surface warming, significantly altering CO2 levels and pH. Currently a net CO2 sink, the region may become a CO2 source by 2030 due to weakening in-gassing. The research highlights the value of VOS (volunteer observing ship) lines for monitoring climate impacts and emphasizes the need for ongoing observations to enhance long-term trend accuracy and future projections.
This study offers a unique high-resolution dataset (2019–2024) on surface...
Altmetrics
Final-revised paper
Preprint