Articles | Volume 22, issue 3
https://doi.org/10.5194/bg-22-659-2025
https://doi.org/10.5194/bg-22-659-2025
Research article
 | 
06 Feb 2025
Research article |  | 06 Feb 2025

Proglacial methane emissions driven by meltwater and groundwater flushing in a high-Arctic glacial catchment

Gabrielle E. Kleber, Leonard Magerl, Alexandra V. Turchyn, Stefan Schloemer, Mark Trimmer, Yizhu Zhu, and Andrew Hodson

Related authors

Interferences caused by the biogeochemical methane cycle in peats during the assessment of abandoned oil wells
Sebastian F. A. Jordan, Stefan Schloemer, Martin Krüger, Tanja Heffner, Marcus A. Horn, and Martin Blumenberg
Biogeosciences, 22, 809–830, https://doi.org/10.5194/bg-22-809-2025,https://doi.org/10.5194/bg-22-809-2025, 2025
Short summary
An emulation-based approach for interrogating reactive transport models
Angus Fotherby, Harold J. Bradbury, Jennifer L. Druhan, and Alexandra V. Turchyn
Geosci. Model Dev., 16, 7059–7074, https://doi.org/10.5194/gmd-16-7059-2023,https://doi.org/10.5194/gmd-16-7059-2023, 2023
Short summary
Mountain permafrost in the Central Pyrenees: insights from the Devaux ice cave
Miguel Bartolomé, Gérard Cazenave, Marc Luetscher, Christoph Spötl, Fernando Gázquez, Ánchel Belmonte, Alexandra V. Turchyn, Juan Ignacio López-Moreno, and Ana Moreno
The Cryosphere, 17, 477–497, https://doi.org/10.5194/tc-17-477-2023,https://doi.org/10.5194/tc-17-477-2023, 2023
Short summary
Aerodynamic roughness length of crevassed tidewater glaciers from UAV mapping
Armin Dachauer, Richard Hann, and Andrew J. Hodson
The Cryosphere, 15, 5513–5528, https://doi.org/10.5194/tc-15-5513-2021,https://doi.org/10.5194/tc-15-5513-2021, 2021
Short summary
Review Article: Permafrost Trapped Natural Gas in Svalbard, Norway
Thomas Birchall, Malte Jochmann, Peter Betlem, Kim Senger, Andrew Hodson, and Snorre Olaussen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-226,https://doi.org/10.5194/tc-2021-226, 2021
Preprint withdrawn
Short summary

Cited articles

Abay, T. B., Karlsen, D. A., Lerch, B., Olaussen, S., Pedersen, J. H., and Backer-Owe, K.: Migrated Petroleum in Outcropping Mesozoic Sedimentary Rocks in Spitsbergen: Organic Geochemical Characterization and Implications for Regional Exploration, J. Petrol. Geol., 40, 5–36, https://doi.org/10.1111/jpg.12662, 2017. 
Betlem, P., Senger, K., and Hodson, A.: 3D thermobaric modelling of the gas hydrate stability zone onshore central Spitsbergen, Arctic Norway, Mar. Petrol. Geol., 100, 246–262, https://doi.org/10.1016/j.marpetgeo.2018.10.050, 2019. 
Boyd, E. S., Skidmore, M., Mitchell, A. C., Bakermans, C., and Peters, J. W.: Methanogenesis in subglacial sediments, Env. Microbiol. Rep., 2, 685–692, https://doi.org/10.1111/j.1758-2229.2010.00162.x, 2010. 
Burns, R., Wynn, P. M., Barker, P., McNamara, N., Oakley, S., Ostle, N., Stott, A. W., Tuffen, H., Zhou, Z., Tweed, F. S., Chesler, A., and Stuart, M.: Direct isotopic evidence of biogenic methane production and efflux from beneath a temperate glacier, Sci. Rep., 8, 17118, https://doi.org/10.1038/s41598-018-35253-2, 2018. 
Bussmann, I.: Distribution of methane in the Lena Delta and Buor-Khaya Bay, Russia, Biogeosciences, 10, 4641–4652, https://doi.org/10.5194/bg-10-4641-2013, 2013. 
Download
Short summary
Our research on Svalbard shows that glacier melt rivers can transport large amounts of methane, a potent greenhouse gas. By studying a glacier over one summer, we found that its river was highly concentrated in methane, suggesting that rivers could provide a significant source of methane emissions as the Arctic warms and glaciers melt. This is the first time such emissions have been measured on Svalbard, indicating a wider environmental concern as such processes are occurring across the Arctic.
Share
Altmetrics
Final-revised paper
Preprint