Articles | Volume 22, issue 3
https://doi.org/10.5194/bg-22-767-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-767-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Influence of minor hydrocarbon seepage on sulfur cycling in marine subsurface sediments
Ellen Schnabel
GFZ Helmholtz Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany
Aurèle Vuillemin
GFZ Helmholtz Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany
Cédric C. Laczny
Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
Benoit J. Kunath
Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
André R. Soares
Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg–Essen, Essen, Germany
Alexander J. Probst
Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg–Essen, Essen, Germany
Rolando Di Primio
AkerBP, 1366 Lysaker, Norway
GFZ Helmholtz Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany
A full list of authors appears at the end of the paper.
Related authors
No articles found.
George Westmeijer, Cristina Escudero, Claudia Bergin, Stephanie Turner, Magnus Ståhle, Maliheh Mehrshad, Prune Leroy, Moritz Buck, Pilar López-Hernández, Jens Kallmeyer, Ricardo Amils, Stefan Bertilsson, and Mark Dopson
Biogeosciences, 21, 591–604, https://doi.org/10.5194/bg-21-591-2024, https://doi.org/10.5194/bg-21-591-2024, 2024
Short summary
Short summary
Rock cores down to 2250 m depth, groundwater-bearing fractures, and drilling fluid were sampled for DNA to characterize the subsurface microbial community. In general, microbial biomass was extremely low despite the employment of detection methods widespread in low-biomass environments. The described contamination control measures could support future sampling efforts, and our findings emphasize the use of sequencing extraction controls.
Steffen Kutterolf, Mark Brenner, Robert A. Dull, Armin Freundt, Jens Kallmeyer, Sebastian Krastel, Sergei Katsev, Elodie Lebas, Axel Meyer, Liseth Pérez, Juanita Rausch, Armando Saballos, Antje Schwalb, and Wilfried Strauch
Sci. Dril., 32, 73–84, https://doi.org/10.5194/sd-32-73-2023, https://doi.org/10.5194/sd-32-73-2023, 2023
Short summary
Short summary
The NICA-BRIDGE workshop proposes a milestone-driven three-phase project to ICDP and later ICDP/IODP involving short- and long-core drilling in the Nicaraguan lakes and in the Pacific Sandino Basin to (1) reconstruct tropical climate and environmental changes and their external controlling mechanisms over several million years, (2) assess magnitudes and recurrence times of multiple natural hazards, and (3) provide
baselineenvironmental data for monitoring lake conditions.
Tomáš Fischer, Pavla Hrubcová, Torsten Dahm, Heiko Woith, Tomáš Vylita, Matthias Ohrnberger, Josef Vlček, Josef Horálek, Petr Dědeček, Martin Zimmer, Martin P. Lipus, Simona Pierdominici, Jens Kallmeyer, Frank Krüger, Katrin Hannemann, Michael Korn, Horst Kämpf, Thomas Reinsch, Jakub Klicpera, Daniel Vollmer, and Kyriaki Daskalopoulou
Sci. Dril., 31, 31–49, https://doi.org/10.5194/sd-31-31-2022, https://doi.org/10.5194/sd-31-31-2022, 2022
Short summary
Short summary
The newly established geodynamic laboratory aims to develop modern, comprehensive, multiparameter observations at depth for studying earthquake swarms, crustal fluid flow, mantle-derived fluid degassing and processes of the deep biosphere. It is located in the West Bohemia–Vogtland (western Eger Rift) geodynamic region and comprises a set of five shallow boreholes with high-frequency 3-D seismic arrays as well as continuous real-time fluid monitoring at depth and the study of the deep biosphere.
Henning Lorenz, Jan-Erik Rosberg, Christopher Juhlin, Iwona Klonowska, Rodolphe Lescoutre, George Westmeijer, Bjarne S. G. Almqvist, Mark Anderson, Stefan Bertilsson, Mark Dopson, Jens Kallmeyer, Jochem Kück, Oliver Lehnert, Luca Menegon, Christophe Pascal, Simon Rejkjær, and Nick N. W. Roberts
Sci. Dril., 30, 43–57, https://doi.org/10.5194/sd-30-43-2022, https://doi.org/10.5194/sd-30-43-2022, 2022
Short summary
Short summary
The Collisional Orogeny in the Scandinavian Caledonides project provides insights into the deep structure and bedrock of a ca. 400 Ma old major orogen to study deformation processes that are hidden at depth from direct access in modern mountain belts. This paper describes the successful operations at the second site. It provides an overview of the retrieved geological section that differs from the expected and summarises the scientific potential of the accomplished data sets and drill core.
Aurèle Vuillemin, André Friese, Richard Wirth, Jan A. Schuessler, Anja M. Schleicher, Helga Kemnitz, Andreas Lücke, Kohen W. Bauer, Sulung Nomosatryo, Friedhelm von Blanckenburg, Rachel Simister, Luis G. Ordoñez, Daniel Ariztegui, Cynthia Henny, James M. Russell, Satria Bijaksana, Hendrik Vogel, Sean A. Crowe, Jens Kallmeyer, and the Towuti Drilling Project
Science team
Biogeosciences, 17, 1955–1973, https://doi.org/10.5194/bg-17-1955-2020, https://doi.org/10.5194/bg-17-1955-2020, 2020
Short summary
Short summary
Ferruginous lakes experience restricted primary production due to phosphorus trapping by ferric iron oxides under oxic conditions. We report the presence of large crystals of vivianite, a ferrous iron phosphate, in sediments from Lake Towuti, Indonesia. We address processes of P retention linked to diagenesis of iron phases. Vivianite crystals had light Fe2+ isotope signatures and contained mineral inclusions consistent with antecedent processes of microbial sulfate and iron reduction.
Julia Mitzscherling, Fabian Horn, Maria Winterfeld, Linda Mahler, Jens Kallmeyer, Pier P. Overduin, Lutz Schirrmeister, Matthias Winkel, Mikhail N. Grigoriev, Dirk Wagner, and Susanne Liebner
Biogeosciences, 16, 3941–3958, https://doi.org/10.5194/bg-16-3941-2019, https://doi.org/10.5194/bg-16-3941-2019, 2019
Short summary
Short summary
Permafrost temperatures increased substantially at a global scale, potentially altering microbial assemblages involved in carbon mobilization before permafrost thaws. We used Arctic Shelf submarine permafrost as a natural laboratory to investigate the microbial response to long-term permafrost warming. Our work shows that millennia after permafrost warming by > 10 °C, microbial community composition and population size reflect the paleoenvironment rather than a direct effect through warming.
James M. Russell, Satria Bijaksana, Hendrik Vogel, Martin Melles, Jens Kallmeyer, Daniel Ariztegui, Sean Crowe, Silvia Fajar, Abdul Hafidz, Doug Haffner, Ascelina Hasberg, Sarah Ivory, Christopher Kelly, John King, Kartika Kirana, Marina Morlock, Anders Noren, Ryan O'Grady, Luis Ordonez, Janelle Stevenson, Thomas von Rintelen, Aurele Vuillemin, Ian Watkinson, Nigel Wattrus, Satrio Wicaksono, Thomas Wonik, Kohen Bauer, Alan Deino, André Friese, Cynthia Henny, Imran, Ristiyanti Marwoto, La Ode Ngkoimani, Sulung Nomosatryo, La Ode Safiuddin, Rachel Simister, and Gerald Tamuntuan
Sci. Dril., 21, 29–40, https://doi.org/10.5194/sd-21-29-2016, https://doi.org/10.5194/sd-21-29-2016, 2016
Short summary
Short summary
The Towuti Drilling Project seeks to understand the long-term environmental and climatic history of the tropical western Pacific and to discover the unique microbes that live in metal-rich sediments. To accomplish these goals, in 2015 we carried out a scientific drilling project on Lake Towuti, located in central Indonesia. We recovered over 1000 m of core, and our deepest core extended 175 m below the lake floor and gives us a complete record of the lake.
Aurèle Vuillemin, Daniel Ariztegui, Peter R. Leavitt, Lynda Bunting, and the PASADO Science Team
Biogeosciences, 13, 2475–2492, https://doi.org/10.5194/bg-13-2475-2016, https://doi.org/10.5194/bg-13-2475-2016, 2016
Short summary
Short summary
Aquatic sediments record climatic conditions while providing ecological niches for microorganisms. In lacustrine settings, the relationship between environmental features and sedimentary DNA remains largely unknown. Comparison of microbial assemblages with fossil pigments show that the subsurface biosphere is specific to climatic intervals and that post-depositional processes result in a rapid overprint of phototrophic communities by heterotrophic assemblages with preserved pigment compositions.
H. J. Mills, J. de Leeuw, K.-U. Hinrichs, F. Inagaki, and J. Kallmeyer
Sci. Dril., 20, 59–65, https://doi.org/10.5194/sd-20-59-2015, https://doi.org/10.5194/sd-20-59-2015, 2015
Short summary
Short summary
Proceedings and results are presented from the Seoul 2014 Advancing Subsurface Biosphere and Paleoclimate Research workshop. Participants discussed past and present directions of IODP and ICDP subsurface research, including efforts with DCO and IMPRESS. Discussions led to the formation of a level-based communication system with the goal of improving communication and expectations between all drilling disciplines. The production of a biology-themed handbook to guide surface research is planned.
T. L. Kieft, T. C. Onstott, L. Ahonen, V. Aloisi, F. S. Colwell, B. Engelen, S. Fendrihan, E. Gaidos, U. Harms, I. Head, J. Kallmeyer, B. Kiel Reese, L.-H. Lin, P. E. Long, D. P. Moser, H. Mills, P. Sar, D. Schulze-Makuch, H. Stan-Lotter, D. Wagner, P.-L. Wang, F. Westall, and M. J. Wilkins
Sci. Dril., 19, 43–53, https://doi.org/10.5194/sd-19-43-2015, https://doi.org/10.5194/sd-19-43-2015, 2015
Related subject area
Biogeochemistry: Sediment
Dissolved Mn(III) is a key redox intermediate in sediments of a seasonally euxinic coastal basin
Unexpected scarcity of ANME archaea in hydrocarbon seeps within Monterey Bay
Reviews and syntheses: Tufa microbialites on rocky coasts – towards an integrated terminology
Seafloor sediment characterization improves estimates of organic carbon standing stocks: an example from the Eastern Shore Islands, Nova Scotia, Canada
How is particulate organic carbon transported through the river-fed submarine Congo Canyon to the deep sea?
The fate of fixed nitrogen in Santa Barbara Basin sediments during seasonal anoxia
Distinct oxygenation modes of the Gulf of Oman over the past 43 000 years – a multi-proxy approach
Potential impacts of cable bacteria activity on hard-shelled benthic foraminifera: implications for their interpretation as bioindicators or paleoproxies
Evidence of cryptic methane cycling and non-methanogenic methylamine consumption in the sulfate-reducing zone of sediment in the Santa Barbara Basin, California
Assessing global-scale organic matter reactivity patterns in marine sediments using a lognormal reactive continuum model
Deposit-feeding of Nonionellina labradorica (foraminifera) from an Arctic methane seep site and possible association with a methanotroph
Benthic silicon cycling in the Arctic Barents Sea: a reaction–transport model study
Long-term incubations provide insight into the mechanisms of anaerobic oxidation of methane in methanogenic lake sediments
Ideas and perspectives: Sea-level change, anaerobic methane oxidation, and the glacial–interglacial phosphorus cycle
Estimation of the natural background of phosphate in a lowland river using tidal marsh sediment cores
Geochemical consequences of oxygen diffusion from the oceanic crust into overlying sediments and its significance for biogeochemical cycles based on sediments of the northeast Pacific
Carbon sources of benthic fauna in temperate lakes across multiple trophic states
Deep-water inflow event increases sedimentary phosphorus release on a multi-year scale
Bioturbation has a limited effect on phosphorus burial in salt marsh sediments
Biogeochemical impact of cable bacteria on coastal Black Sea sediment
Organic carbon characteristics in ice-rich permafrost in alas and Yedoma deposits, central Yakutia, Siberia
The control of hydrogen sulfide on benthic iron and cadmium fluxes in the oxygen minimum zone off Peru
Quantity and distribution of methane entrapped in sediments of calcareous, Alpine glacier forefields
Assessing the potential for non-turbulent methane escape from the East Siberian Arctic Shelf
Vertical transport of sediment-associated metals and cyanobacteria by ebullition in a stratified lake
Evidence of changes in sedimentation rate and sediment fabric in a low-oxygen setting: Santa Monica Basin, CA
Authigenic formation of Ca–Mg carbonates in the shallow alkaline Lake Neusiedl, Austria
Vivianite formation in ferruginous sediments from Lake Towuti, Indonesia
Impact of ambient conditions on the Si isotope fractionation in marine pore fluids during early diagenesis
Impact of small-scale disturbances on geochemical conditions, biogeochemical processes and element fluxes in surface sediments of the eastern Clarion–Clipperton Zone, Pacific Ocean
Acetate turnover and methanogenic pathways in Amazonian lake sediments
Benthic alkalinity and dissolved inorganic carbon fluxes in the Rhône River prodelta generated by decoupled aerobic and anaerobic processes
Small-scale heterogeneity of trace metals including rare earth elements and yttrium in deep-sea sediments and porewaters of the Peru Basin, southeastern equatorial Pacific
Organic matter contents and degradation in a highly trawled area during fresh particle inputs (Gulf of Castellammare, southwestern Mediterranean)
Identifying the core bacterial microbiome of hydrocarbon degradation and a shift of dominant methanogenesis pathways in the oil and aqueous phases of petroleum reservoirs of different temperatures from China
Effects of eutrophication on sedimentary organic carbon cycling in five temperate lakes
Evidence for microbial iron reduction in the methanic sediments of the oligotrophic southeastern Mediterranean continental shelf
Fracture-controlled fluid transport supports microbial methane-oxidizing communities at Vestnesa Ridge
Hydrothermal alteration of aragonitic biocarbonates: assessment of micro- and nanostructural dissolution–reprecipitation and constraints of diagenetic overprint from quantitative statistical grain-area analysis
Large variations in iron input to an oligotrophic Baltic Sea estuary: impact on sedimentary phosphorus burial
Vivianite formation in methane-rich deep-sea sediments from the South China Sea
Benthic archaea as potential sources of tetraether membrane lipids in sediments across an oxygen minimum zone
Carbon amendment stimulates benthic nitrogen cycling during the bioremediation of particulate aquaculture waste
Modelling biogeochemical processes in sediments from the north-western Adriatic Sea: response to enhanced particulate organic carbon fluxes
Carbon mineralization in Laptev and East Siberian sea shelf and slope sediment
Reviews and syntheses: to the bottom of carbon processing at the seafloor
Scotland's forgotten carbon: a national assessment of mid-latitude fjord sedimentary carbon stocks
Does denitrification occur within porous carbonate sand grains?
Sediment phosphorus speciation and mobility under dynamic redox conditions
Pore water geochemistry along continental slopes north of the East Siberian Sea: inference of low methane concentrations
Robin Klomp, Olga M. Żygadłowska, Mike S. M. Jetten, Véronique E. Oldham, Niels A. G. M. van Helmond, Caroline P. Slomp, and Wytze K. Lenstra
Biogeosciences, 22, 751–765, https://doi.org/10.5194/bg-22-751-2025, https://doi.org/10.5194/bg-22-751-2025, 2025
Short summary
Short summary
In marine sediments, dissolved Mn is present as either Mn(III) or Mn(II). We apply a reactive transport model to geochemical data for a seasonally anoxic and sulfidic coastal basin to determine the pathways of formation and removal of dissolved Mn(III) in the sediment. We demonstrate a critical role for reactions with Fe(II) and show evidence for substantial benthic release of dissolved Mn(III). Given the mobility of Mn(III), these findings have important implications for marine Mn cycling.
Amanda C. Semler and Anne E. Dekas
Biogeosciences, 22, 385–403, https://doi.org/10.5194/bg-22-385-2025, https://doi.org/10.5194/bg-22-385-2025, 2025
Short summary
Short summary
Marine hydrocarbon seeps typically host subsurface microorganisms capable of degrading methane before it is emitted to the water column. Here we describe a seep in Monterey Bay which virtually lacks known methanotrophs and where biological consumption of methane at depth is undetected. Our findings suggest that some seeps are missing this critical biofilter and that seeps may be a more significant source of methane to the water column than previously realized.
Thomas W. Garner, J. Andrew G. Cooper, Alan M. Smith, Gavin M. Rishworth, and Matt Forbes
Biogeosciences, 21, 4785–4807, https://doi.org/10.5194/bg-21-4785-2024, https://doi.org/10.5194/bg-21-4785-2024, 2024
Short summary
Short summary
There is a diverse and often conflicting suite of terminologies, classifications, and nomenclature applicable to the study of terrestrial carbonate deposits and microbialites (deposits that wholly or primarily accrete as a result of microbial activity). We review existing schemes, identify duplication and redundancy, and present a new integrated approach applicable to tufa microbialites on rock coasts.
Catherine Brenan, Markus Kienast, Vittorio Maselli, Christopher K. Algar, Benjamin Misiuk, and Craig J. Brown
Biogeosciences, 21, 4569–4586, https://doi.org/10.5194/bg-21-4569-2024, https://doi.org/10.5194/bg-21-4569-2024, 2024
Short summary
Short summary
Quantifying how much organic carbon is stored in seafloor sediments is key to assessing how human activities can accelerate the process of carbon storage at the seabed, an important consideration for climate change. This study uses seafloor sediment maps to model organic carbon content. Carbon estimates were 12 times higher when assuming the absence of detailed sediment maps, demonstrating that high-resolution seafloor mapping is critically important for improved estimates of organic carbon.
Sophie Hage, Megan L. Baker, Nathalie Babonneau, Guillaume Soulet, Bernard Dennielou, Ricardo Silva Jacinto, Robert G. Hilton, Valier Galy, François Baudin, Christophe Rabouille, Clément Vic, Sefa Sahin, Sanem Açikalin, and Peter J. Talling
Biogeosciences, 21, 4251–4272, https://doi.org/10.5194/bg-21-4251-2024, https://doi.org/10.5194/bg-21-4251-2024, 2024
Short summary
Short summary
The land-to-ocean flux of particulate organic carbon (POC) is difficult to measure, inhibiting accurate modeling of the global carbon cycle. Here, we quantify the POC flux between one of the largest rivers on Earth (Congo) and the ocean. POC in the form of vegetation and soil is transported by episodic submarine avalanches in a 1000 km long canyon at up to 5 km water depth. The POC flux induced by avalanches is at least 3 times greater than that induced by the background flow related to tides.
Xuefeng Peng, David J. Yousavich, Annie Bourbonnais, Frank Wenzhöfer, Felix Janssen, Tina Treude, and David L. Valentine
Biogeosciences, 21, 3041–3052, https://doi.org/10.5194/bg-21-3041-2024, https://doi.org/10.5194/bg-21-3041-2024, 2024
Short summary
Short summary
Biologically available (fixed) nitrogen (N) is a limiting nutrient for life in the ocean. Under low-oxygen conditions, fixed N is either removed via denitrification or retained via dissimilatory nitrate reduction to ammonia (DNRA). Using in situ incubations in the Santa Barbara Basin, which undergoes seasonal anoxia, we found that benthic denitrification was the dominant nitrate reduction process, while nitrate availability and organic carbon content control the relative importance of DNRA.
Nicole Burdanowitz, Gerhard Schmiedl, Birgit Gaye, Philipp M. Munz, and Hartmut Schulz
Biogeosciences, 21, 1477–1499, https://doi.org/10.5194/bg-21-1477-2024, https://doi.org/10.5194/bg-21-1477-2024, 2024
Short summary
Short summary
We analyse benthic foraminifera, nitrogen isotopes and lipids in a sediment core from the Gulf of Oman to investigate how the oxygen minimum zone (OMZ) and bottom water (BW) oxygenation have reacted to climatic changes since 43 ka. The OMZ and BW deoxygenation was strong during the Holocene, but the OMZ was well ventilated during the LGM period. We found an unstable mode of oscillating oxygenation states, from moderately oxygenated in cold stadials to deoxygenated in warm interstadials in MIS 3.
Maxime Daviray, Emmanuelle Geslin, Nils Risgaard-Petersen, Vincent V. Scholz, Marie Fouet, and Edouard Metzger
Biogeosciences, 21, 911–928, https://doi.org/10.5194/bg-21-911-2024, https://doi.org/10.5194/bg-21-911-2024, 2024
Short summary
Short summary
Coastal marine sediments are subject to major acidification processes because of climate change and human activities, but these processes can also result from biotic activity. We studied the sediment acidifcation effect on benthic calcareous foraminifera in intertidal mudflats. The strong pH decrease in sediments probably caused by cable bacteria led to calcareous test dissolution of living and dead foraminifera, threatening the test preservation and their robustness as environmental proxies.
Sebastian J. E. Krause, Jiarui Liu, David J. Yousavich, DeMarcus Robinson, David W. Hoyt, Qianhui Qin, Frank Wenzhöfer, Felix Janssen, David L. Valentine, and Tina Treude
Biogeosciences, 20, 4377–4390, https://doi.org/10.5194/bg-20-4377-2023, https://doi.org/10.5194/bg-20-4377-2023, 2023
Short summary
Short summary
Methane is a potent greenhouse gas, and hence it is important to understand its sources and sinks in the environment. Here we present new data from organic-rich surface sediments below an oxygen minimum zone off the coast of California (Santa Barbara Basin) demonstrating the simultaneous microbial production and consumption of methane, which appears to be an important process preventing the build-up of methane in these sediments and the emission into the water column and atmosphere.
Sinan Xu, Bo Liu, Sandra Arndt, Sabine Kasten, and Zijun Wu
Biogeosciences, 20, 2251–2263, https://doi.org/10.5194/bg-20-2251-2023, https://doi.org/10.5194/bg-20-2251-2023, 2023
Short summary
Short summary
We use a reactive continuum model based on a lognormal distribution (l-RCM) to inversely determine model parameters μ and σ at 123 sites across the global ocean. Our results show organic matter (OM) reactivity is more than 3 orders of magnitude higher in shelf than in abyssal regions. In addition, OM reactivity is higher than predicted in some specific regions, yet the l-RCM can still capture OM reactivity features in these regions.
Christiane Schmidt, Emmanuelle Geslin, Joan M. Bernhard, Charlotte LeKieffre, Mette Marianne Svenning, Helene Roberge, Magali Schweizer, and Giuliana Panieri
Biogeosciences, 19, 3897–3909, https://doi.org/10.5194/bg-19-3897-2022, https://doi.org/10.5194/bg-19-3897-2022, 2022
Short summary
Short summary
This study is the first to show non-selective deposit feeding in the foraminifera Nonionella labradorica and the possible uptake of methanotrophic bacteria. We carried out a feeding experiment with a marine methanotroph to examine the ultrastructure of the cell and degradation vacuoles using transmission electron microscopy (TEM). The results revealed three putative methanotrophs at the outside of the cell/test, which could be taken up via non-targeted grazing in seeps or our experiment.
James P. J. Ward, Katharine R. Hendry, Sandra Arndt, Johan C. Faust, Felipe S. Freitas, Sian F. Henley, Jeffrey W. Krause, Christian März, Allyson C. Tessin, and Ruth L. Airs
Biogeosciences, 19, 3445–3467, https://doi.org/10.5194/bg-19-3445-2022, https://doi.org/10.5194/bg-19-3445-2022, 2022
Short summary
Short summary
The seafloor plays an important role in the cycling of silicon (Si), a key nutrient that promotes marine primary productivity. In our model study, we disentangle major controls on the seafloor Si cycle to better anticipate the impacts of continued warming and sea ice melt in the Barents Sea. We uncover a coupling of the iron redox and Si cycles, dissolution of lithogenic silicates, and authigenic clay formation, comprising a Si sink that could have implications for the Arctic Ocean Si budget.
Hanni Vigderovich, Werner Eckert, Michal Elul, Maxim Rubin-Blum, Marcus Elvert, and Orit Sivan
Biogeosciences, 19, 2313–2331, https://doi.org/10.5194/bg-19-2313-2022, https://doi.org/10.5194/bg-19-2313-2022, 2022
Short summary
Short summary
Anaerobic oxidation of methane (AOM) is one of the major processes limiting the release of the greenhouse gas methane from natural environments. Here we show that significant AOM exists in the methane zone of lake sediments in natural conditions and even after long-term (ca. 18 months) anaerobic slurry incubations with two stages. Methanogens were most likely responsible for oxidizing the methane, and humic substances and iron oxides are likely electron acceptors to support this oxidation.
Bjorn Sundby, Pierre Anschutz, Pascal Lecroart, and Alfonso Mucci
Biogeosciences, 19, 1421–1434, https://doi.org/10.5194/bg-19-1421-2022, https://doi.org/10.5194/bg-19-1421-2022, 2022
Short summary
Short summary
A glacial–interglacial methane-fuelled redistribution of reactive phosphorus between the oceanic and sedimentary phosphorus reservoirs can occur in the ocean when falling sea level lowers the pressure on the seafloor, destabilizes methane hydrates, and triggers the dissolution of P-bearing iron oxides. The mass of phosphate potentially mobilizable from the sediment is similar to the size of the current oceanic reservoir. Hence, this process may play a major role in the marine phosphorus cycle.
Florian Lauryssen, Philippe Crombé, Tom Maris, Elliot Van Maldegem, Marijn Van de Broek, Stijn Temmerman, and Erik Smolders
Biogeosciences, 19, 763–776, https://doi.org/10.5194/bg-19-763-2022, https://doi.org/10.5194/bg-19-763-2022, 2022
Short summary
Short summary
Surface waters in lowland regions have a poor surface water quality, mainly due to excess nutrients like phosphate. Therefore, we wanted to know the phosphate levels without humans, also called the pre-industrial background. Phosphate binds strongly to sediment particles, suspended in the river water. In this research we used sediments deposited by a river as an archive for surface water phosphate back to 1800 CE. Pre-industrial phosphate levels were estimated at one-third of the modern levels.
Gerard J. M. Versteegh, Andrea Koschinsky, Thomas Kuhn, Inken Preuss, and Sabine Kasten
Biogeosciences, 18, 4965–4984, https://doi.org/10.5194/bg-18-4965-2021, https://doi.org/10.5194/bg-18-4965-2021, 2021
Short summary
Short summary
Oxygen penetrates sediments not only from the ocean bottom waters but also from the basement. The impact of the latter is poorly understood. We show that this basement oxygen has a clear impact on the nitrogen cycle, the redox state, and the distribution of manganese, nickel cobalt and organic matter in the sediments. This is important for (1) global biogeochemical cycles, (2) understanding sedimentary life and (3) the interpretation of the sediment record to reconstruct the past.
Annika Fiskal, Eva Anthamatten, Longhui Deng, Xingguo Han, Lorenzo Lagostina, Anja Michel, Rong Zhu, Nathalie Dubois, Carsten J. Schubert, Stefano M. Bernasconi, and Mark A. Lever
Biogeosciences, 18, 4369–4388, https://doi.org/10.5194/bg-18-4369-2021, https://doi.org/10.5194/bg-18-4369-2021, 2021
Short summary
Short summary
Microbially produced methane can serve as a carbon source for freshwater macrofauna most likely through grazing on methane-oxidizing bacteria. This study investigates the contributions of different carbon sources to macrofaunal biomass. Our data suggest that the average contribution of methane-derived carbon is similar between different fauna but overall remains low. This is further supported by the low abundance of methane-cycling microorganisms.
Astrid Hylén, Sebastiaan J. van de Velde, Mikhail Kononets, Mingyue Luo, Elin Almroth-Rosell, and Per O. J. Hall
Biogeosciences, 18, 2981–3004, https://doi.org/10.5194/bg-18-2981-2021, https://doi.org/10.5194/bg-18-2981-2021, 2021
Short summary
Short summary
Sediments in oxygen-depleted ocean areas release high amounts of phosphorus, feeding algae that consume oxygen upon degradation, leading to further phosphorus release. Oxygenation is thought to trap phosphorus in the sediment and break this feedback. We studied the sediment phosphorus cycle in a previously anoxic area after an inflow of oxic water. Surprisingly, the sediment phosphorus release increased, showing that feedbacks between phosphorus release and oxygen depletion can be hard to break.
Sebastiaan J. van de Velde, Rebecca K. James, Ine Callebaut, Silvia Hidalgo-Martinez, and Filip J. R. Meysman
Biogeosciences, 18, 1451–1461, https://doi.org/10.5194/bg-18-1451-2021, https://doi.org/10.5194/bg-18-1451-2021, 2021
Short summary
Short summary
Some 540 Myr ago, animal life evolved in the ocean. Previous research suggested that when these early animals started inhabiting the seafloor, they retained phosphorus in the seafloor, thereby limiting photosynthesis in the ocean. We studied salt marsh sediments with and without animals and found that their impact on phosphorus retention is limited, which implies that their impact on the global environment might have been less drastic than previously assumed.
Martijn Hermans, Nils Risgaard-Petersen, Filip J. R. Meysman, and Caroline P. Slomp
Biogeosciences, 17, 5919–5938, https://doi.org/10.5194/bg-17-5919-2020, https://doi.org/10.5194/bg-17-5919-2020, 2020
Short summary
Short summary
This paper demonstrates that the recently discovered cable bacteria are capable of using a mineral, known as siderite, as a source for the formation of iron oxides. This work also demonstrates that the activity of cable bacteria can lead to a distinct subsurface layer in the sediment that can be used as a marker for their activity.
Torben Windirsch, Guido Grosse, Mathias Ulrich, Lutz Schirrmeister, Alexander N. Fedorov, Pavel Y. Konstantinov, Matthias Fuchs, Loeka L. Jongejans, Juliane Wolter, Thomas Opel, and Jens Strauss
Biogeosciences, 17, 3797–3814, https://doi.org/10.5194/bg-17-3797-2020, https://doi.org/10.5194/bg-17-3797-2020, 2020
Short summary
Short summary
To extend the knowledge on circumpolar deep permafrost carbon storage, we examined two deep permafrost deposit types (Yedoma and alas) in central Yakutia. We found little but partially undecomposed organic carbon as a result of largely changing sedimentation processes. The carbon stock of the examined Yedoma deposits is about 50 % lower than the general Yedoma domain mean, implying a very hetererogeneous Yedoma composition, while the alas is approximately 80 % below the thermokarst deposit mean.
Anna Plass, Christian Schlosser, Stefan Sommer, Andrew W. Dale, Eric P. Achterberg, and Florian Scholz
Biogeosciences, 17, 3685–3704, https://doi.org/10.5194/bg-17-3685-2020, https://doi.org/10.5194/bg-17-3685-2020, 2020
Short summary
Short summary
We compare the cycling of Fe and Cd in sulfidic sediments of the Peruvian oxygen minimum zone. Due to the contrasting solubility of their sulfide minerals, the sedimentary Fe release and Cd burial fluxes covary with spatial and temporal distributions of H2S. Depending on the solubility of their sulfide minerals, sedimentary trace metal fluxes will respond differently to ocean deoxygenation/expansion of H2S concentrations, which may change trace metal stoichiometry of upwelling water masses.
Biqing Zhu, Manuel Kübler, Melanie Ridoli, Daniel Breitenstein, and Martin H. Schroth
Biogeosciences, 17, 3613–3630, https://doi.org/10.5194/bg-17-3613-2020, https://doi.org/10.5194/bg-17-3613-2020, 2020
Short summary
Short summary
We provide evidence that the greenhouse gas methane (CH4) is enclosed in calcareous glacier-forefield sediments across Switzerland. Geochemical analyses confirmed that this ancient CH4 has its origin in the calcareous parent bedrock. Our estimate of the total quantity of CH4 enclosed in sediments across Switzerland indicates a large CH4 mass (~105 t CH4). We produced evidence that CH4 is stable in its enclosed state, but additional experiments are needed to elucidate its long-term fate.
Matteo Puglini, Victor Brovkin, Pierre Regnier, and Sandra Arndt
Biogeosciences, 17, 3247–3275, https://doi.org/10.5194/bg-17-3247-2020, https://doi.org/10.5194/bg-17-3247-2020, 2020
Short summary
Short summary
A reaction-transport model to assess the potential non-turbulent methane flux from the East Siberian Arctic sediments to water columns is applied here. We show that anaerobic oxidation of methane (AOM) is an efficient filter except for high values of sedimentation rate and advective flow, which enable considerable non-turbulent steady-state methane fluxes. Significant transient methane fluxes can also occur during the building-up phase of the AOM-performing biomass microbial community.
Kyle Delwiche, Junyao Gu, Harold Hemond, and Sarah P. Preheim
Biogeosciences, 17, 3135–3147, https://doi.org/10.5194/bg-17-3135-2020, https://doi.org/10.5194/bg-17-3135-2020, 2020
Short summary
Short summary
In this study, we investigate whether bubbles transport sediments containing arsenic and cyanobacteria from the bottom to the top of a polluted lake. We measured arsenic and cyanobacteria from bubble traps in the lake and from an experimental bubble column in the laboratory. We found that bubble transport was not an important source of arsenic in the surface waters but that bubbles could transport enough cyanobacteria to the surface to exacerbate harmful algal blooms.
Nathaniel Kemnitz, William M. Berelson, Douglas E. Hammond, Laura Morine, Maria Figueroa, Timothy W. Lyons, Simon Scharf, Nick Rollins, Elizabeth Petsios, Sydnie Lemieux, and Tina Treude
Biogeosciences, 17, 2381–2396, https://doi.org/10.5194/bg-17-2381-2020, https://doi.org/10.5194/bg-17-2381-2020, 2020
Short summary
Short summary
Our paper shows how sedimentation in a very low oxygen setting provides a unique record of environmental change. We look at the past 250 years through the filter of sediment accumulation via radioisotope dating and other physical and chemical analyses of these sediments. We conclude, remarkably, that there has been very little change in net sediment mass accumulation through the past 100–150 years, yet just prior to 1900 CE, sediments were accumulating at 50 %–70 % of today's rate.
Dario Fussmann, Avril Jean Elisabeth von Hoyningen-Huene, Andreas Reimer, Dominik Schneider, Hana Babková, Robert Peticzka, Andreas Maier, Gernot Arp, Rolf Daniel, and Patrick Meister
Biogeosciences, 17, 2085–2106, https://doi.org/10.5194/bg-17-2085-2020, https://doi.org/10.5194/bg-17-2085-2020, 2020
Short summary
Short summary
Dolomite (CaMg(CO3)2) is supersaturated in many aquatic settings (e.g., seawater) on modern Earth but does not precipitate directly from the fluid, a fact known as the dolomite problem. The widely acknowledged concept of dolomite precipitation involves microbial extracellular polymeric substances (EPSs) and anoxic conditions as important drivers. In contrast, results from Lake Neusiedl support an alternative concept of Ca–Mg carbonate precipitation under aerobic and alkaline conditions.
Aurèle Vuillemin, André Friese, Richard Wirth, Jan A. Schuessler, Anja M. Schleicher, Helga Kemnitz, Andreas Lücke, Kohen W. Bauer, Sulung Nomosatryo, Friedhelm von Blanckenburg, Rachel Simister, Luis G. Ordoñez, Daniel Ariztegui, Cynthia Henny, James M. Russell, Satria Bijaksana, Hendrik Vogel, Sean A. Crowe, Jens Kallmeyer, and the Towuti Drilling Project
Science team
Biogeosciences, 17, 1955–1973, https://doi.org/10.5194/bg-17-1955-2020, https://doi.org/10.5194/bg-17-1955-2020, 2020
Short summary
Short summary
Ferruginous lakes experience restricted primary production due to phosphorus trapping by ferric iron oxides under oxic conditions. We report the presence of large crystals of vivianite, a ferrous iron phosphate, in sediments from Lake Towuti, Indonesia. We address processes of P retention linked to diagenesis of iron phases. Vivianite crystals had light Fe2+ isotope signatures and contained mineral inclusions consistent with antecedent processes of microbial sulfate and iron reduction.
Sonja Geilert, Patricia Grasse, Kristin Doering, Klaus Wallmann, Claudia Ehlert, Florian Scholz, Martin Frank, Mark Schmidt, and Christian Hensen
Biogeosciences, 17, 1745–1763, https://doi.org/10.5194/bg-17-1745-2020, https://doi.org/10.5194/bg-17-1745-2020, 2020
Short summary
Short summary
Marine silicate weathering is a key process of the marine silica cycle; however, its controlling processes are not well understood. In the Guaymas Basin, silicate weathering has been studied under markedly differing ambient conditions. Environmental settings like redox conditions or terrigenous input of reactive silicates appear to be major factors controlling marine silicate weathering. These factors need to be taken into account in future oceanic mass balances of Si and in modeling studies.
Jessica B. Volz, Laura Haffert, Matthias Haeckel, Andrea Koschinsky, and Sabine Kasten
Biogeosciences, 17, 1113–1131, https://doi.org/10.5194/bg-17-1113-2020, https://doi.org/10.5194/bg-17-1113-2020, 2020
Short summary
Short summary
Potential future deep-sea mining of polymetallic nodules at the seafloor is expected to severely harm the marine environment. However, the consequences on deep-sea ecosystems are still poorly understood. This study on surface sediments from man-made disturbance tracks in the Pacific Ocean shows that due to the removal of the uppermost sediment layer and thereby the loss of organic matter, the geochemical system in the sediments is disturbed for millennia before reaching a new equilibrium.
Ralf Conrad, Melanie Klose, and Alex Enrich-Prast
Biogeosciences, 17, 1063–1069, https://doi.org/10.5194/bg-17-1063-2020, https://doi.org/10.5194/bg-17-1063-2020, 2020
Short summary
Short summary
Lake sediments release the greenhouse gas CH4. Acetate is an important precursor. Although Amazonian lake sediments all contained acetate-consuming methanogens, measurement of the turnover of labeled acetate showed that some sediments converted acetate not to CH4 plus CO2, as expected, but only to CO2. Our results indicate the operation of acetate-oxidizing microorganisms couples the oxidation process to syntrophic methanogenic partners and/or to the reduction of organic compounds.
Jens Rassmann, Eryn M. Eitel, Bruno Lansard, Cécile Cathalot, Christophe Brandily, Martial Taillefert, and Christophe Rabouille
Biogeosciences, 17, 13–33, https://doi.org/10.5194/bg-17-13-2020, https://doi.org/10.5194/bg-17-13-2020, 2020
Short summary
Short summary
In this paper, we use a large set of measurements made using in situ and lab techniques to elucidate the cause of dissolved inorganic carbon fluxes in sediments from the Rhône delta and its companion compound alkalinity, which carries the absorption capacity of coastal waters with respect to atmospheric CO2. We show that sediment processes (sulfate reduction, FeS precipitation and accumulation) are crucial in generating the alkalinity fluxes observed in this study by in situ incubation chambers.
Sophie A. L. Paul, Matthias Haeckel, Michael Bau, Rajina Bajracharya, and Andrea Koschinsky
Biogeosciences, 16, 4829–4849, https://doi.org/10.5194/bg-16-4829-2019, https://doi.org/10.5194/bg-16-4829-2019, 2019
Short summary
Short summary
We studied the upper 10 m of deep-sea sediments, including pore water, in the Peru Basin to understand small-scale variability of trace metals. Our results show high spatial variability related to topographical variations, which in turn impact organic matter contents, degradation processes, and trace metal cycling. Another interesting finding was the influence of dissolving buried nodules on the surrounding sediment and trace metal cycling.
Sarah Paradis, Antonio Pusceddu, Pere Masqué, Pere Puig, Davide Moccia, Tommaso Russo, and Claudio Lo Iacono
Biogeosciences, 16, 4307–4320, https://doi.org/10.5194/bg-16-4307-2019, https://doi.org/10.5194/bg-16-4307-2019, 2019
Short summary
Short summary
Chronic deep bottom trawling in the Gulf of Castellammare (SW Mediterranean) erodes large volumes of sediment, exposing over-century-old sediment depleted in organic matter. Nevertheless, the arrival of fresh and nutritious sediment recovers superficial organic matter in trawling grounds and leads to high turnover rates, partially and temporarily mitigating the impacts of bottom trawling. However, this deposition is ephemeral and it will be swiftly eroded by the passage of the next trawler.
Zhichao Zhou, Bo Liang, Li-Ying Wang, Jin-Feng Liu, Bo-Zhong Mu, Hojae Shim, and Ji-Dong Gu
Biogeosciences, 16, 4229–4241, https://doi.org/10.5194/bg-16-4229-2019, https://doi.org/10.5194/bg-16-4229-2019, 2019
Short summary
Short summary
This study shows a core bacterial microbiome with a small proportion of shared operational taxonomic units of common sequences among all oil reservoirs. Dominant methanogenesis shifts from the hydrogenotrophic pathway in water phase to the acetoclastic pathway in the oil phase at high temperatures, but the opposite is true at low temperatures. There are also major functional metabolism differences between the two phases for amino acids, hydrocarbons, and carbohydrates.
Annika Fiskal, Longhui Deng, Anja Michel, Philip Eickenbusch, Xingguo Han, Lorenzo Lagostina, Rong Zhu, Michael Sander, Martin H. Schroth, Stefano M. Bernasconi, Nathalie Dubois, and Mark A. Lever
Biogeosciences, 16, 3725–3746, https://doi.org/10.5194/bg-16-3725-2019, https://doi.org/10.5194/bg-16-3725-2019, 2019
Hanni Vigderovich, Lewen Liang, Barak Herut, Fengping Wang, Eyal Wurgaft, Maxim Rubin-Blum, and Orit Sivan
Biogeosciences, 16, 3165–3181, https://doi.org/10.5194/bg-16-3165-2019, https://doi.org/10.5194/bg-16-3165-2019, 2019
Short summary
Short summary
Microbial iron reduction participates in important biogeochemical cycles. In the last decade iron reduction has been observed in many aquatic sediments below its classical zone, in the methane production zone, suggesting a link between the two cycles. Here we present evidence for microbial iron reduction in the methanogenic depth of the oligotrophic SE Mediterranean continental shelf using mainly geochemical and microbial sedimentary profiles and suggest possible mechanisms for this process.
Haoyi Yao, Wei-Li Hong, Giuliana Panieri, Simone Sauer, Marta E. Torres, Moritz F. Lehmann, Friederike Gründger, and Helge Niemann
Biogeosciences, 16, 2221–2232, https://doi.org/10.5194/bg-16-2221-2019, https://doi.org/10.5194/bg-16-2221-2019, 2019
Short summary
Short summary
How methane is transported in the sediment is important for the microbial community living on methane. Here we report an observation of a mini-fracture that facilitates the advective gas transport of methane in the sediment, compared to the diffusive fluid transport without a fracture. We found contrasting bio-geochemical signals in these different transport modes. This finding can help to fill the gap in the fracture network system in modulating methane dynamics in surface sediments.
Laura A. Casella, Sixin He, Erika Griesshaber, Lourdes Fernández-Díaz, Martina Greiner, Elizabeth M. Harper, Daniel J. Jackson, Andreas Ziegler, Vasileios Mavromatis, Martin Dietzel, Anton Eisenhauer, Sabino Veintemillas-Verdaguer, Uwe Brand, and Wolfgang W. Schmahl
Biogeosciences, 15, 7451–7484, https://doi.org/10.5194/bg-15-7451-2018, https://doi.org/10.5194/bg-15-7451-2018, 2018
Short summary
Short summary
Biogenic carbonates record past environmental conditions. Fossil shell chemistry and microstructure change as metastable biogenic carbonates are replaced by inorganic calcite. Simulated diagenetic alteration at 175 °C of different shell microstructures showed that (nacreous) shell aragonite and calcite were partially replaced by coarse inorganic calcite crystals due to dissolution–reprecipitation reactions. EBSD maps allowed for qualitative assessment of the degree of diagenetic overprint.
Wytze K. Lenstra, Matthias Egger, Niels A. G. M. van Helmond, Emma Kritzberg, Daniel J. Conley, and Caroline P. Slomp
Biogeosciences, 15, 6979–6996, https://doi.org/10.5194/bg-15-6979-2018, https://doi.org/10.5194/bg-15-6979-2018, 2018
Short summary
Short summary
We show that burial rates of phosphorus (P) in an estuary in the northern Baltic Sea are very high. We demonstrate that at high sedimentation rates, P retention in the sediment is related to the formation of vivianite. With a reactive transport model, we assess the sensitivity of sedimentary vivianite formation. We suggest that enrichments of iron and P in the sediment are linked to periods of enhanced riverine input of Fe, which subsequently strongly enhances P burial in coastal sediments.
Jiarui Liu, Gareth Izon, Jiasheng Wang, Gilad Antler, Zhou Wang, Jie Zhao, and Matthias Egger
Biogeosciences, 15, 6329–6348, https://doi.org/10.5194/bg-15-6329-2018, https://doi.org/10.5194/bg-15-6329-2018, 2018
Short summary
Short summary
Our work provides new insights into the biogeochemical cycling of iron, methane and phosphorus. We found that vivianite, an iron-phosphate mineral, is pervasive in methane-rich sediments, suggesting that iron reduction at depth is coupled to phosphorus and methane cycling on a much greater spatial scale than previously assumed. Acting as an important burial mechanism for iron and phosphorus, vivianite authigenesis may be an under-considered process in both modern and ancient settings alike.
Marc A. Besseling, Ellen C. Hopmans, R. Christine Boschman, Jaap S. Sinninghe Damsté, and Laura Villanueva
Biogeosciences, 15, 4047–4064, https://doi.org/10.5194/bg-15-4047-2018, https://doi.org/10.5194/bg-15-4047-2018, 2018
Short summary
Short summary
Benthic archaea comprise a significant part of the total prokaryotic biomass in marine sediments. Here, we compared the archaeal diversity and intact polar lipid (IPL) composition in both surface and subsurface sediments with different oxygen regimes in the Arabian Sea oxygen minimum zone. The oxygenated sediments were dominated by Thaumarchaeota and IPL-GDGT-0. The anoxic sediment contained highly diverse archaeal communities and high relative abundances of IPL-GDGT-1 to -4.
Georgina Robinson, Thomas MacTavish, Candida Savage, Gary S. Caldwell, Clifford L. W. Jones, Trevor Probyn, Bradley D. Eyre, and Selina M. Stead
Biogeosciences, 15, 1863–1878, https://doi.org/10.5194/bg-15-1863-2018, https://doi.org/10.5194/bg-15-1863-2018, 2018
Short summary
Short summary
This study examined the effect of adding carbon to a sediment-based effluent treatment system to treat nitrogen-rich aquaculture waste. The research was conducted in incubation chambers to measure the exchange of gases and nutrients across the sediment–water interface and examine changes in the sediment microbial community. Adding carbon increased the amount of nitrogen retained in the treatment system, thereby reducing the levels of nitrogen needing to be discharged to the environment.
Daniele Brigolin, Christophe Rabouille, Bruno Bombled, Silvia Colla, Salvatrice Vizzini, Roberto Pastres, and Fabio Pranovi
Biogeosciences, 15, 1347–1366, https://doi.org/10.5194/bg-15-1347-2018, https://doi.org/10.5194/bg-15-1347-2018, 2018
Short summary
Short summary
We present the result of a study carried out in the north-western Adriatic Sea by combining two different types of models with field sampling. A mussel farm was taken as a local source of perturbation to the natural flux of particulate organic carbon to the sediment. Differences in fluxes were primarily associated with mussel physiological conditions. Although restricted, these changes in particulate organic carbon fluxes induced visible effects on sediment biogeochemistry.
Volker Brüchert, Lisa Bröder, Joanna E. Sawicka, Tommaso Tesi, Samantha P. Joye, Xiaole Sun, Igor P. Semiletov, and Vladimir A. Samarkin
Biogeosciences, 15, 471–490, https://doi.org/10.5194/bg-15-471-2018, https://doi.org/10.5194/bg-15-471-2018, 2018
Short summary
Short summary
We determined the aerobic and anaerobic degradation rates of land- and marine-derived organic material in East Siberian shelf sediment. Marine plankton-derived organic carbon was the main source for the oxic dissolved carbon dioxide production, whereas terrestrial organic material significantly contributed to the production of carbon dioxide under anoxic conditions. Our direct degradation rate measurements provide new constraints for the present-day Arctic marine carbon budget.
Jack J. Middelburg
Biogeosciences, 15, 413–427, https://doi.org/10.5194/bg-15-413-2018, https://doi.org/10.5194/bg-15-413-2018, 2018
Short summary
Short summary
Organic carbon processing at the seafloor is studied by geologists to better understand the sedimentary record, by biogeochemists to quantify burial and respiration, by organic geochemists to elucidate compositional changes, and by ecologists to follow carbon transfers within food webs. These disciplinary approaches have their strengths and weaknesses. This award talk provides a synthesis, highlights the role of animals in sediment carbon processing and presents some new concepts.
Craig Smeaton, William E. N. Austin, Althea L. Davies, Agnes Baltzer, John A. Howe, and John M. Baxter
Biogeosciences, 14, 5663–5674, https://doi.org/10.5194/bg-14-5663-2017, https://doi.org/10.5194/bg-14-5663-2017, 2017
Short summary
Short summary
Fjord sediments are recognised as hotspots for the burial and long-term storage of carbon. In this study, we use the Scottish fjords as a natural laboratory. Using geophysical and geochemical analysis in combination with upscaling techniques, we have generated the first full national sedimentary C inventory for a fjordic system. The results indicate that the Scottish fjords on a like-for-like basis are more effective as C stores than their terrestrial counterparts, including Scottish peatlands.
Perran Louis Miall Cook, Adam John Kessler, and Bradley David Eyre
Biogeosciences, 14, 4061–4069, https://doi.org/10.5194/bg-14-4061-2017, https://doi.org/10.5194/bg-14-4061-2017, 2017
Short summary
Short summary
Nitrogen is the key nutrient that typically limits productivity in coastal waters. One of the key controls on the amount of bioavailable nitrogen is the process of denitrification, which converts nitrate (bioavailable) into nitrogen gas. Previous studies suggest high rates of denitrification may take place within carbonate sediments, and one explanation for this is that this process may take place within the sand grains. Here we show evidence to support this hypothesis.
Chris T. Parsons, Fereidoun Rezanezhad, David W. O'Connell, and Philippe Van Cappellen
Biogeosciences, 14, 3585–3602, https://doi.org/10.5194/bg-14-3585-2017, https://doi.org/10.5194/bg-14-3585-2017, 2017
Short summary
Short summary
Phosphorus (P) has accumulated in sediments due to past human activities. The re-release of this P to water contributes to the growth of harmful algal blooms. Our research improves our mechanistic understanding of how P is partitioned between different chemical forms and between sediment and water under dynamic conditions. We demonstrate that P trapped within iron minerals may be less mobile during anoxic conditions than previously thought due to reversible changes to P forms within sediment.
Clint M. Miller, Gerald R. Dickens, Martin Jakobsson, Carina Johansson, Andrey Koshurnikov, Matt O'Regan, Francesco Muschitiello, Christian Stranne, and Carl-Magnus Mörth
Biogeosciences, 14, 2929–2953, https://doi.org/10.5194/bg-14-2929-2017, https://doi.org/10.5194/bg-14-2929-2017, 2017
Short summary
Short summary
Continental slopes north of the East Siberian Sea are assumed to hold large amounts of methane. We present pore water chemistry from the 2014 SWERUS-C3 expedition. These are among the first results generated from this vast climatically sensitive region, and they imply that abundant methane, including gas hydrates, do not characterize the East Siberian Sea slope or rise. This contradicts previous modeling and discussions, which due to the lack of data are almost entirely based assumption.
Cited articles
Abrams, M. A.: Marine seepage variability and its impact on evaluating the surface migrated hydrocarbon seep signal, Mar. Petrol. Geol., 121, 104600, https://doi.org/10.1016/j.marpetgeo.2020.104600, 2020.
Argentino, C., Waghorn, K. A., Bünz, S., and Panieri, G.: Sulfate reduction and anaerobic oxidation of methane in sediments of the South-Western Barents Sea, Biogeosciences Discuss. [preprint], https://doi.org/10.5194/bg-2021-58, 2021a.
Argentino, C., Waghorn, K. A., Vadakkepuliyambatta, S., Polteau, S., Bunz, S., and Panieri, G.: Dynamic and history of methane seepage in the SW Barents Sea: new insights from Leirdjupet Fault Complex, Sci. Rep., 11, 4373, https://doi.org/10.1038/s41598-021-83542-0, 2021b.
Berg, P., Risgaard-Petersen, N., and Rysgaard, S.: Interpretation of measured concentration profiles in sediment pore water, Limnol. Oceanogr., 43, 1500–1510, https://doi.org/10.4319/lo.1998.43.7.1500, 1998.
Beulig, F., Roy, H., McGlynn, S. E., and Jorgensen, B. B.: Cryptic CH(4) cycling in the sulfate-methane transition of marine sediments apparently mediated by ANME-1 archaea, ISME J., 13, 250–262, https://doi.org/10.1038/s41396-018-0273-z, 2019.
Bolger, A. M., Lohse, M., and Usadel, B.: Trimmomatic: a flexible trimmer for Illumina sequence data, Bioinformatics, 30, 2114–2120, https://doi.org/10.1093/bioinformatics/btu170, 2014.
Bornemann, T. L. V., Esser, S. P., Stach, T. L., Burg, T., and Probst, A. J.: uBin: A manual refining tool for genomes from metagenomes, Environ. Microbiol., 25, 1077–1083, https://doi.org/10.1111/1462-2920.16351, 2023.
Borowski, W. S., Paull, C. K., and Ussler, W.: Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate, Geology, 24, 655–658, https://doi.org/10.1130/0091-7613(1996)024<0655:Mpwspi>2.3.Co;2, 1996.
Borowski, W. S., Paull, C. K., and Ussler, W.: Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments: Sensitivity to underlying methane and gas hydrates, Mar. Geol., 159, 131–154, https://doi.org/10.1016/S0025-3227(99)00004-3, 1999.
Bowles, M. W., Mogollon, J. M., Kasten, S., Zabel, M., and Hinrichs, K. U.: Global rates of marine sulfate reduction and implications for sub-sea-floor metabolic activities, Science, 344, 889–891, https://doi.org/10.1126/science.1249213, 2014.
Buchfink, B., Xie, C., and Huson, D. H.: Fast and sensitive protein alignment using DIAMOND, Nat. Methods, 12, 59–60, https://doi.org/10.1038/nmeth.3176, 2015.
Castresana, J.: Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis, Mol. Biol. Evol., 17, 540–552, https://doi.org/10.1093/oxfordjournals.molbev.a026334, 2000.
Chen, C., Wu, X., Wan, Z., Shang, J., Huang, W., Zhang, W., Liang, J., Xiao, Z., Zhou, W., and Zhong, L.: Geochemical characteristics of sediment and pore water affected by cold seeps in southern South China Sea, Front. Mar. Sci., 10, 1167578, https://doi.org/10.3389/fmars.2023.1167578, 2023.
Ciotoli, G., Procesi, M., Etiope, G., Fracassi, U., and Ventura, G.: Influence of tectonics on global scale distribution of geological methane emissions, Nat. Commun., 11, 2305, https://doi.org/10.1038/s41467-020-16229-1, 2020.
Cline, J. D.: Spectrophotometric Determination of Hydrogen Sulfide in Natural Waters1, Limnol. Oceanogr., 14, 454–458, https://doi.org/10.4319/lo.1969.14.3.0454, 1969.
Cramm, M. A., Neves, B. M., Manning, C. C. M., Oldenburg, T. B. P., Archambault, P., Chakraborty, A., Cyr-Parent, A., Edinger, E. N., Jaggi, A., Mort, A., Tortell, P., and Hubert, C. R. J.: Characterization of marine microbial communities around an Arctic seabed hydrocarbon seep at Scott Inlet, Baffin Bay, Sci. Total Environ., 762, 143961, https://doi.org/10.1016/j.scitotenv.2020.143961, 2021.
Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F., Dufayard, J. F., Guindon, S., Lefort, V., Lescot, M., Claverie, J. M., and Gascuel, O.: Phylogeny.fr: robust phylogenetic analysis for the non-specialist, Nucleic Acids Res., 36, W465–469, https://doi.org/10.1093/nar/gkn180, 2008.
D'Hondt, S., Jorgensen, B. B., Miller, D. J., Batzke, A., Blake, R., Cragg, B. A., Cypionka, H., Dickens, G. R., Ferdelman, T., Hinrichs, K. U., Holm, N. G., Mitterer, R., Spivack, A., Wang, G., Bekins, B., Engelen, B., Ford, K., Gettemy, G., Rutherford, S. D., Sass, H., Skilbeck, C. G., Aiello, I. W., Guerin, G., House, C. H., Inagaki, F., Meister, P., Naehr, T., Niitsuma, S., Parkes, R. J., Schippers, A., Smith, D. C., Teske, A., Wiegel, J., Padilla, C. N., and Acosta, J. L.: Distributions of microbial activities in deep subseafloor sediments, Science, 306, 2216–2221, https://doi.org/10.1126/science.1101155, 2004.
Dong, X., Rattray, J. E., Campbell, D. C., Webb, J., Chakraborty, A., Adebayo, O., Matthews, S., Li, C., Fowler, M., Morrison, N. M., MacDonald, A., Groves, R. A., Lewis, I. A., Wang, S. H., Mayumi, D., Greening, C., and Hubert, C. R. J.: Thermogenic hydrocarbon biodegradation by diverse depth-stratified microbial populations at a Scotian Basin cold seep, Nat. Commun., 11, 5825, https://doi.org/10.1038/s41467-020-19648-2, 2020.
Doré, A. G.: Barents Sea Geology, Petroleum Resources and Commercial Potencial, ARCTIC, 48, 207-221, 1995.
Edenborn, H. M., Paquin, Y., and Chateauneuf, G.: Bacterial contribution to manganese oxidation in a deep coastal sediment, Estuarine, Coast. Shelf Sci., 21, 801–815, https://doi.org/10.1016/0272-7714(85)90074-5, 1985.
Edgar, R. C.: MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res., 32, 1792–1797, https://doi.org/10.1093/nar/gkh340, 2004.
Egger, M., Riedinger, N., Mogollón, J. M., and Jørgensen, B. B.: Global diffusive fluxes of methane in marine sediments, Nat. Geosci., 11, 421–425, https://doi.org/10.1038/s41561-018-0122-8, 2018.
Elverhøi, A. and Solheim, A.: The Barents Sea ice sheet – a sedimentological discussion, Polar Res., 1, 23–42, https://doi.org/10.1111/j.1751-8369.1983.tb00729.x, 1983.
EMODnet project (European Commision): https://erddap.emodnet.eu/erddap/files/bathymetry_2022/ (last access: 27 November 2024), 2022.
Firrincieli, A., Negroni, A., Zanaroli, G., and Cappelletti, M.: Unraveling the Metabolic Potential of Asgardarchaeota in a Sediment from the Mediterranean Hydrocarbon-Contaminated Water Basin Mar Piccolo (Taranto, Italy), Microorganisms, 9, 859, https://doi.org/10.3390/microorganisms9040859, 2021.
Fossing, H., Ferdelman, T. G., and Berg, P.: Sulfate reduction and methane oxidation in continental margin sediments influenced by irrigation (South-East Atlantic off Namibia), Geochim. Cosmochim. Ac., 64, 897–910, https://doi.org/10.1016/S0016-7037(99)00349-X, 2000.
Gabrielsen, R. H., Faerseth, R. B., Jensen, L. N., Kalheim, J. E., and Riis, F.: Structual elements of the Norwegian continental shelf, Part 1: The Barents Sea Region, NPD Bulletin, 6, 1–33, 1990.
Gouy, M., Guindon, S., and Gascuel, O.: SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building, Mol. Biol. Evol., 27, 221–224, https://doi.org/10.1093/molbev/msp259, 2010.
Griffith, E. M. and Paytan, A.: Barite in the ocean – occurrence, geochemistry and palaeoceanographic applications, Sedimentology, 59, 1817–1835, https://doi.org/10.1111/j.1365-3091.2012.01327.x, 2012.
Guindon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W., and Gascuel, O.: New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0, Syst. Biol., 59, 307–321, https://doi.org/10.1093/sysbio/syq010, 2010.
Guseva, N., Moiseeva, Y., Purgina, D., Gershelis, E., Yakushev, E., and Semiletov, I.: The Impact of Methane Seepage on the Pore-Water Geochemistry across the East Siberian Arctic Shelf, Water, 13, 397, https://doi.org/10.3390/w13040397, 2021.
Hammer, Ø., Harper, D. A. T., and Ryan, P. D.: Past: Paleontological Statistics Software Package for Education and Data Analysis, Palaeontologia Electronica, Palaeontol. Electron., 4, 1–9, https://www.researchgate.net/publication/259640226_PAST_Paleontological_Statistics_Software_Package_for_Education_and_Data_Analysis (last access: 10 May 2024), 2001.
Heggland, R.: Gas seepage as an indicator of deeper prospective reservoirs. A study based on exploration 3D seismic data, Mar. Petrol. Geol., 15, 1–9, https://doi.org/10.1016/S0264-8172(97)00060-3, 1998.
Henrichs, S. M. and Reeburgh, W. S.: Anaerobic mineralization of marine sediment organic matter: Rates and the role of anaerobic processes in the oceanic carbon economy, Geomicrobiol. J., 5, 191–237, https://doi.org/10.1080/01490458709385971, 1987.
Hesse, R. and Schacht, U.: Early Diagenesis of Deep-Sea Sediments, in: Deep-Sea Sediments, edited by: Hüneke, H., and Mulder, T., Developments in Sedimentology, Elsevier, 557–713, https://doi.org/10.1016/b978-0-444-53000-4.00009-3, 2011.
Hong, W.-L., Sauer, S., Panieri, G., Ambrose, W. G., James, R. H., Plaza-Faverola, A., and Schneider, A.: Removal of methane through hydrological, microbial, and geochemical processes in the shallow sediments of pockmarks along eastern Vestnesa Ridge (Svalbard), Limnol. Oceanogr., 61, S324–S343, https://doi.org/10.1002/lno.10299, 2016.
Hu, C.-Y., Frank Yang, T., Burr, G. S., Chuang, P.-C., Chen, H.-W., Walia, M., Chen, N.-C., Huang, Y.-C., Lin, S., Wang, Y., Chung, S.-H., Huang, C.-D., and Chen, C.-H.: Biogeochemical cycles at the sulfate-methane transition zone (SMTZ) and geochemical characteristics of the pore fluids offshore southwestern Taiwan, J. Asian Earth Sci., 149, 172–183, https://doi.org/10.1016/j.jseaes.2017.07.002, 2017.
Hunt, J. M.: Petroleum Geochemistry and Geology, Freeman & co, New York, ISBN 9780716724414, 1995.
Hvoslef, S., Christie, O. H. J., Sassen, R., Kennicutt, M. C., Requejo, A. G., and Brooks, J. M.: Test of a new surface geochemistry tool for resource prediction in frontier areas, Mar. Petrol. Geol.y, 13, 107–124, https://doi.org/10.1016/0264-8172(95)00032-1, 1996.
Hyatt, D., Chen, G. L., Locascio, P. F., Land, M. L., Larimer, F. W., and Hauser, L. J.: Prodigal: prokaryotic gene recognition and translation initiation site identification, BMC Bioinform., 11, 119, https://doi.org/10.1186/1471-2105-11-119, 2010.
Iasakov, T. R., Kanapatskiy, T. A., Toshchakov, S. V., Korzhenkov, A. A., Ulyanova, M. O., and Pimenov, N. V.: The Baltic Sea methane pockmark microbiome: The new insights into the patterns of relative abundance and ANME niche separation, Mar. Environ. Res., 173, 105533, https://doi.org/10.1016/j.marenvres.2021.105533, 2022.
Iversen, N. and Jorgensen, B. B.: Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark), Limnol. Oceanogr., 30, 944–955, https://doi.org/10.4319/lo.1985.30.5.0944, 1985.
Iversen, N. and Jørgensen, B. B.: Diffusion coefficents of sulfate and methane in marine sediments: Influence of porosity, Geochem. Cosmochem. Ac., 57, 571–778, https://doi.org/10.1016/0016-7037(93)90368-7, 1993.
Jang, J., Cao, S. C., Stern, L. A., Jung, J., and Waite, W. F.: Impact of Pore Fluid Chemistry on Fine-Grained Sediment Fabric and Compressibility, J. Geophys. Res.-Sol. Ea., 123, 5495–5514, https://doi.org/10.1029/2018jb015872, 2018.
Jiang, S.: Clay Minerals from the Perspective of Oil and Gas Exploration, in: Clay Minerals in Nature – Their Characterization, Modification and Application, https://doi.org/10.5772/47790, 2012.
Johansen, S. E., Ostisty, B. K., Birkeland, ø., Fedorovsky, Y. F., Martirosjan, V. N., Bruun Christensen, O., Cheredeev, S. I., Ignatenko, E. A., and Margulis, L. S.: Hydrocarbon potential in the Barents Sea region: play distribution and potential, NPF Sp. Publ., 2, 273-320, https://doi.org/10.1016/B978-0-444-88943-0.50024-1, 1993.
Jørgensen, B. B.: A comparison of methods for the quantification of bacterial sulfate reduction in coastal marine sediments, Geomicrobiol. J., 1, 11–27, https://doi.org/10.1080/01490457809377721, 1978.
Jørgensen, B. B.: Mineralization of organic matter in the sea bed – the role of sulphate reduction, Nature, 296, 643–645, https://doi.org/10.1038/296643a0, 1982.
Jørgensen, B. B., and Kasten, S.: Sulfur cycling and methane oxidation, in: Marine Geochemistry, edited by: Schulz, H. D., and Zabel, M., Springer, Berlin, Heidelberg, 271–309, https://doi.org/10.1007/978-3-662-04242-7_8, Print ISBN 978-3-662-04244-1, 2006.
Jørgensen, B. B., Egger, M., and Canfield, D. E.: Sulfate distribution and sulfate reduction in global marine sediments, Geochim. Cosmochim. Ac., 364, 79–88, https://doi.org/10.1016/j.gca.2023.11.015, 2024.
Jørgensen, B. B., Nelson, D. C., Amend, J. P., Edwards, K. J., and Lyons, T. W.: Sulfide oxidation in marine sediments: Geochemistry meets microbiology, in: Sulfur Biogeochemistry – Past and Present, Geol. Soc. Am., https://doi.org/10.1130/0-8137-2379-5.63, 2004.
Jørgensen, B. B., Findlay, A. J., and Pellerin, A.: The Biogeochemical Sulfur Cycle of Marine Sediments, Front Microbiol., 10, 849, https://doi.org/10.3389/fmicb.2019.00849, 2019a.
Jørgensen, B. B., Beulig, F., Egger, M., Petro, C., Scholze, C., and Røy, H.: Organoclastic sulfate reduction in the sulfate-methane transition of marine sediments, Geochim. Cosmochim. Ac., 254, 231–245, https://doi.org/10.1016/j.gca.2019.03.016, 2019b.
Joye, S. B.: The Geology and Biogeochemistry of Hydrocarbon Seeps, Annu. Rev. Earth Pl. Sci., 48, 205–231, https://doi.org/10.1146/annurev-earth-063016-020052, 2020.
Joye, S. B., Boetius, A., Orcutt, B. N., Montoya, J. P., Schulz, H. N., Erickson, M. J., and Lugo, S. K.: The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps, Chem. Geol., 205, 219–238, https://doi.org/10.1016/j.chemgeo.2003.12.019, 2004.
Kallmeyer, J., Ferdelman, T. G., Weber, A., Fossing, H., and Jorgensen, B. B.: A cold chromium distillation procedure for radiolabeled sulfide applied to sulfate reduction measurements, Limnol. Oceanogr.-Meth., 2, 171–180, https://doi.org/10.4319/lom.2004.2.171, 2004.
Kasten, S. and Jørgensen, B. B.: Sulfate Reduction in Marine Sediments, in: Marine Geochemistry, Springer, Heidelberg, 263–281, https://doi.org/10.1007/978-3-662-04242-7_8, 2000.
Kellermann, M. Y., Wegener, G., Elvert, M., Yoshinaga, M. Y., Lin, Y. S., Holler, T., Mollar, X. P., Knittel, K., and Hinrichs, K. U.: Autotrophy as a predominant mode of carbon fixation in anaerobic methane-oxidizing microbial communities, P. Natl. Acad. Sci. USA, 109, 19321–19326, https://doi.org/10.1073/pnas.1208795109, 2012.
Kerr, D. E., Brown, P. J., Grey, A., and Kelleher, B. P.: The influence of organic alkalinity on the carbonate system in coastal waters, Mar. Chem., 237, 104050, https://doi.org/10.1016/j.marchem.2021.104050, 2021.
Kim, J., Dong, H. L., Seabaugh, J., Newell, S. W., and Eberl, D. D.: Role of microbes in the smectite-to-illite reaction, Science, 303, 830–832, https://doi.org/10.1126/science.1093245, 2004.
Kleindienst, S., Herbst, F. A., Stagars, M., von Netzer, F., von Bergen, M., Seifert, J., Peplies, J., Amann, R., Musat, F., Lueders, T., and Knittel, K.: Diverse sulfate-reducing bacteria of the Desulfosarcina/Desulfococcus clade are the key alkane degraders at marine seeps, ISME J., 8, 2029–2044, https://doi.org/10.1038/ismej.2014.51, 2014.
Knies, J. and Martinez, P.: Organic matter sedimentation in the western Barents Sea region: Terrestrial and marine contribution based on isotopic composition and organic nitrogen content, Norw. J. Geol., 89, 79–89, 2009.
Larssen, G. B., Elvebakk, G., Henriksen, L. B., Kristensen, S.-E., Nilsson, I., Samuelsberg, T. A., Stemmerik, L., and Worsley, D.: Upper Paleozoic lithostratigraphy of the southern Norwegian Barents Sea, Norsk Geologisk Undersøkelser, Bull., 444, 43, https://www.researchgate.net/publication/312656540_Upper_Palaeozoic_lithostratigraphy_of_the_southern_part_of_the_Norwegian_Barents_Sea (last access: 10 May 2024), 2002.
Li, H. and Durbin, R.: Fast and accurate short read alignment with Burrows-Wheeler transform, Bioinformatics, 25, 1754–1760, https://doi.org/10.1093/bioinformatics/btp324, 2009.
Liao, Y., Smyth, G. K., and Shi, W.: featureCounts: an efficient general purpose program for assigning sequence reads to genomic features, Bioinformatics, 30, 923–930, https://doi.org/10.1093/bioinformatics/btt656, 2014.
MacLeod, F., Kindler, G. S., Wong, H. L., Chen, R., and Burns, B. P.: Asgard archaea: Diversity, function, and evolutionary implications in a range of microbiomes, AIMS Microbiol., 5, 48–61, https://doi.org/10.3934/microbiol.2019.1.48, 2019.
Martens, C. S. and Berner, R. A.: Methane production in the interstitial waters of sulfate-depleted marine sediments, Science, 185, 1167–1169, https://doi.org/10.1126/science.185.4157.1167, 1974.
März, C., Hoffmann, J., Bleil, U., de Lange, G. J., and Kasten, S.: Diagenetic changes of magnetic and geochemical signals by anaerobic methane oxidation in sediments of the Zambezi deep-sea fan (SW Indian Ocean), Mar. Geol., 255, 118–130, https://doi.org/10.1016/j.margeo.2008.05.013, 2008.
Middelburg, J. J.: Reviews and syntheses: to the bottom of carbon processing at the seafloor, Biogeosciences, 15, 413–427, https://doi.org/10.5194/bg-15-413-2018, 2018.
Mölder, F., Jablonski, K. P., Letcher, B., Hall, M. B., Tomkins-Tinch, C. H., Sochat, V., Forster, J., Lee, S., Twardziok, S. O., Kanitz, A., Wilm, A., Holtgrewe, M., Rahmann, S., Nahnsen, S., and Koster, J.: Sustainable data analysis with Snakemake, F1000Res, 10, 33, https://doi.org/10.12688/f1000research.29032.2, 2021.
Nickel, J. C., di Primio, R., Mangelsdorf, K., Stoddart, D., and Kallmeyer, J.: Characterization of microbial activity in pockmark fields of the SW-Barents Sea, Mar. Geol., 332–334, 152–162, https://doi.org/10.1016/j.margeo.2012.02.002, 2012.
Nickel, J. C., di Primio, R., Kallmeyer, J., Hammer, Ø., Horsfield, B., Stoddart, D., Brunstad, H., and Mangelsdorf, K.: Tracing the origin of thermogenic hydrocarbon signals in pockmarks from the southwestern Barents Sea, Org. Geochem., 63, 73–84, https://doi.org/10.1016/j.orggeochem.2013.08.008, 2013.
Niewöhner, C., Hensen, C., Kasten, S., Zabel, M., and Schulz, H. D.: Deep Sulfate Reduction Completely Mediated by Anaerobic Methane Oxidation in Sediments of the Upwelling Area off Namibia, Geochim. Cosmochim. Ac., 62, 455–464, https://doi.org/10.1016/s0016-7037(98)00055-6, 1998.
Nunoura, T., Soffientino, B., Blazejak, A., Kakuta, J., Oida, H., Schippers, A., and Takai, K.: Subseafloor microbial communities associated with rapid turbidite deposition in the Gulf of Mexico continental slope (IODP Expedition 308), FEMS Microbiol. Ecol., 69, 410–424, https://doi.org/10.1111/j.1574-6941.2009.00718.x, 2009.
Orsi, W. D.: MetaProt: an integrated database of predicted proteins for improved annotation of metaomic datasets, 20. April 2020, Open Data LMU [data set], https://doi.org/10.5282/ubm/data.183, 2020.
Orsi, W. D., Richards, T. A., and Francis, W. R.: Predicted microbial secretomes and their target substrates in marine sediment, Nat. Microbiol., 3, 32–37, https://doi.org/10.1038/s41564-017-0047-9, 2018.
Parkes, R. J., Cragg, B., Roussel, E., Webster, G., Weightman, A., and Sass, H.: A review of prokaryotic populations and processes in sub-seafloor sediments, including biosphere:geosphere interactions, Mar. Geol., 352, 409–425, https://doi.org/10.1016/j.margeo.2014.02.009, 2014.
Pellerin, A., Bui, T. H., Rough, M., Mucci, A., Canfield, D. E., and Wing, B. A.: Mass-dependent sulfur isotope fractionation during reoxidative sulfur cycling: A case study from Mangrove Lake, Bermuda, Geochim. Cosmochim. Ac., 149, 152–164, https://doi.org/10.1016/j.gca.2014.11.007, 2015.
Pop Ristova, P., Wenzhofer, F., Ramette, A., Felden, J., and Boetius, A.: Spatial scales of bacterial community diversity at cold seeps (Eastern Mediterranean Sea), ISME J., 9, 1306–1318, https://doi.org/10.1038/ismej.2014.217, 2015.
Raab, A. and Feldmann, J.: Microbial transformation of metals and metalloids, Sci. Prog., 86, 179–202, https://doi.org/10.3184/003685003783238671, 2003.
Rasheed, M. A., Lakshmi, M., Rao, P. L. S., Kalpana, M. S., Dayal, A. M., and Patil, D. J.: Geochemical evidences of trace metal anomalies for finding hydrocarbon microseepage in the petroliferous regions of the Tatipaka and Pasarlapudi areas of Krishna Godavari Basin, India, Pet. Sci., 10, 19–29, https://doi.org/10.1007/s12182-013-0245-x, 2013.
Riedinger, N., Formolo, M. J., Lyons, T. W., Henkel, S., Beck, A., and Kasten, S.: An inorganic geochemical argument for coupled anaerobic oxidation of methane and iron reduction in marine sediments, Geobiology, 12, 172–181, https://doi.org/10.1111/gbi.12077, 2014.
Riedinger, N., Brunner, B., Krastel, S., Arnold, G. L., Wehrmann, L. M., Formolo, M. J., Beck, A., Bates, S. M., Henkel, S., Kasten, S., and Lyons, T. W.: Sulfur Cycling in an Iron Oxide-Dominated, Dynamic Marine Depositional System: The Argentine Continental Margin, Front. Earth Sci., 5, 33, https://doi.org/10.3389/feart.2017.00033, 2017.
Ruiz-Blas, F., Bartholomaus, A., Yang, S., Wagner, D., Henny, C., Russell, J. M., Kallmeyer, J., and Vuillemin, A.: Metabolic features that select for Bathyarchaeia in modern ferruginous lacustrine subsurface sediments, ISME Commun., 4, ycae112, https://doi.org/10.1093/ismeco/ycae112, 2024.
Rovere, M., Mercorella, A., Frapiccini, E., Funari, V., Spagnoli, F., Pellegrini, C., Bonetti, A. S., Veneruso, T., Tassetti, A. N., Dell'Orso, M., Mastroianni, M., Giuliani, G., De Marco, R., Fabi, G., Ciccone, F., and Antoncecchi, I.: Geochemical and Geophysical Monitoring of Hydrocarbon Seepage in the Adriatic Sea, Sensors, 20, 1504, https://doi.org/10.3390/s20051504, 2020.
Ruff, S. E., Biddle, J. F., Teske, A. P., Knittel, K., Boetius, A., and Ramette, A.: Global dispersion and local diversification of the methane seep microbiome, P. Natl. Acad. Sci. USA, 112, 4015–4020, https://doi.org/10.1073/pnas.1421865112, 2015.
Sættem, J., Rise, L., and Westgaard, D. A.: Composition and properties of glacigenic sediments in the southwestern Barents Sea, Mar. Geotechnol., 10, 229–255, https://doi.org/10.1080/10641199109379893, 1991.
Schnabel, E., Vuillemin, A., Laczny, C. C., Kunath, B. J., Soares, A. R., Di Primo, R., Kallmeyer, J., and PROSPECTOMICS Consortium: Pore water solutes, total cell counts, dissolved gases, and sulfate reduction rates of the 50 gravity cores of the PROSPECTOMICS project, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.974341, 2025.
Schulz, H. D.: Quantification of Early Diagenesis: Dissolved Constituents in Pore Water and Signals in the Solid Phase, Marine Geochemistry, 73–124, https://doi.org/10.1007/3-540-32144-6_3, 2006.
Schwengers, O., Jelonek, L., Dieckmann, M. A., Beyvers, S., Blom, J., and Goesmann, A.: Bakta: rapid and standardized annotation of bacterial genomes via alignment-free sequence identification, Microb. Genom., 7, 000685, https://doi.org/10.1099/mgen.0.000685, 2021.
Seeberg-Elverfeldt, J., Schluter, M., Feseker, T., and Kolling, M.: Rhizon sampling of porewaters near the sediment-water interface of aquatic systems, Limnol. Oceanogr.-Meth., 3, 361–371, https://doi.org/10.4319/lom.2005.3.361, 2005.
Smrzka, D., Zwicker, J., Bach, W., Feng, D., Himmler, T., Chen, D., and Peckmann, J.: The behavior of trace elements in seawater, sedimentary pore water, and their incorporation into carbonate minerals: a review, Facies, 65, 41, https://doi.org/10.1007/s10347-019-0581-4, 2019.
Sultan, N., Garziglia, S., and Ruffine, L.: New insights into the transport processes controlling the sulfate-methane-transition-zone near methane vents, Sci. Rep., 6, 26701, https://doi.org/10.1038/srep26701, 2016.
Teske, A.: Hydrocarbon-Degrading Microbial Communities in Natural Oil Seeps, in: Microbial Communities Utilizing Hydrocarbons and Lipids: Members, Metagenomics and Ecophysiology, 1–31, https://doi.org/10.1007/978-3-319-60063-5_3-2, 2019.
Torres, M. E., Brumsack, H. J., Bohrmann, G., and Emeis, K. C.: Barite fronts in continental margin sediments: a new look at barium remobilization in the zone of sulfate reduction and formation of heavy barites in diagenetic fronts, Chem. Geol., 127, 125–139, https://doi.org/10.1016/0009-2541(95)00090-9, 1996.
Treude, T., Krause, S., Maltby, J., Dale, A. W., Coffin, R., and Hamdan, L. J.: Sulfate reduction and methane oxidation activity below the sulfate-methane transition zone in Alaskan Beaufort Sea continental margin sediments: Implications for deep sulfur cycling, Geochim. Cosmochim. Ac., 144, 217–237, https://doi.org/10.1016/j.gca.2014.08.018, 2014.
Treude, T., Krause, S., Steinle, L., Burwicz, E., Hamdan, L. J., Niemann, H., Feseker, T., Liebetrau, V., Krastel, S., and Berndt, C.: Biogeochemical Consequences of Nonvertical Methane Transport in Sediment Offshore Northwestern Svalbard, J. Geophys. Res.-Biogeo., 125, e2019JG005371, https://doi.org/10.1029/2019jg005371, 2020.
Turchyn, A. V., Bradbury, H. J., Walker, K., and Sun, X.: Controls on the Precipitation of Carbonate Minerals Within Marine Sediments, Front. Earth Sci., 9, 618311, https://doi.org/10.3389/feart.2021.618311, 2021.
Vuillemin, A., Kerrigan, Z., D'Hondt, S., and Orsi, W. D.: Exploring the abundance, metabolic potential and gene expression of subseafloor Chloroflexi in million-year-old oxic and anoxic abyssal clay, FEMS Microbiol. Ecol., 96, fiaa223, https://doi.org/10.1093/femsec/fiaa223, 2020a.
Vuillemin, A., Vargas, S., Coskun, O. K., Pockalny, R., Murray, R. W., Smith, D. C., D'Hondt, S., and Orsi, W. D.: Atribacteria Reproducing over Millions of Years in the Atlantic Abyssal Subseafloor, mBio, 11, e01937-20, https://doi.org/10.1128/mBio.01937-20, 2020b.
Vuillemin, A., Coskun, O. K., and Orsi, W. D.: Microbial Activities and Selection from Surface Ocean to Subseafloor on the Namibian Continental Shelf, Appl. Environ. Microbiol., 88, e0021622, https://doi.org/10.1128/aem.00216-22, 2022.
Wegener, G., Laso-Perez, R., Orphan, V. J., and Boetius, A.: Anaerobic Degradation of Alkanes by Marine Archaea, Annu. Rev. Microbiol., 76, 553–577, https://doi.org/10.1146/annurev-micro-111021-045911, 2022.
Widdel, F., Knittel, K., and Galushko, A.: Anaerobic Hydrocarbon- Degrading Microorganisms: An Overview, in: Handbook of Hydrocarbon and Lipid Microbiology, Springer, Berlin, Heidelberg, 1997–2021, https://doi.org/10.1007/978-3-540-77587-4, 2010.
Yergin, D.: The Prize: The Epic Quest for Oil, Money & Power, Free Press, ISBN 9781847376466, 2009.
Zhang, C., Fang, Y. X., Yin, X., Lai, H., Kuang, Z., Zhang, T., Xu, X. P., Wegener, G., Wang, J. H., and Dong, X.: The majority of microorganisms in gas hydrate-bearing subseafloor sediments ferment macromolecules, Microbiome, 11, 37, https://doi.org/10.1186/s40168-023-01482-5, 2023.
Zhang, C. J., Zhou, Z., Cha, G., Li, L., Fu, L., Liu, L. Y., Yang, L., Wegener, G., Cheng, L., and Li, M.: Anaerobic hydrocarbon biodegradation by alkylotrophic methanogens in deep oil reservoirs, ISME J., 18, wrae152, https://doi.org/10.1093/ismejo/wrae152, 2024.
Zhou, Z., Zhang, C.-j., Liu, P.-f., Fu, L., Laso-Pérez, R., Yang, L., Bai, L.-p., Li, J., Yang, M., Lin, J.-z., Wang, W.-d., Wegener, G., Li, M., and Cheng, L.: Non-syntrophic methanogenic hydrocarbon degradation by an archaeal species, Nature, 601, 257–262, https://doi.org/10.1038/s41586-021-04235-2, 2021.
Short summary
This study analysed marine sediment samples from areas with and without minimal hydrocarbon seepage from reservoirs underneath. Depth profiles of dissolved chemical components in the pore water and molecular biological data revealed differences in microbial community composition and activity. These results indicate that even minor hydrocarbon seepage affects sedimentary biogeochemical cycling in marine sediments, potentially providing a new tool for the detection of hydrocarbon reservoirs.
This study analysed marine sediment samples from areas with and without minimal hydrocarbon...
Altmetrics
Final-revised paper
Preprint