Articles | Volume 23, issue 1
https://doi.org/10.5194/bg-23-233-2026
https://doi.org/10.5194/bg-23-233-2026
Research article
 | 
09 Jan 2026
Research article |  | 09 Jan 2026

High-resolution remote sensing and machine-learning-based upscaling of methane fluxes: a case study in the Western Canadian tundra

Kseniia Ivanova, Anna-Maria Virkkala, Victor Brovkin, Tobias Stacke, Barbara Widhalm, Annett Bartsch, Carolina Voigt, Oliver Sonnentag, and Mathias Göckede

Related authors

ARGO: ARctic greenhouse Gas Observation metadata version 1
Judith Vogt, Martijn M. T. A. Pallandt, Luana S. Basso, Abdullah Bolek, Kseniia Ivanova, Mark Schlutow, Gerardo Celis, McKenzie Kuhn, Marguerite Mauritz, Edward A. G. Schuur, Kyle Arndt, Anna-Maria Virkkala, Isabel Wargowsky, and Mathias Göckede
Earth Syst. Sci. Data, 17, 2553–2573, https://doi.org/10.5194/essd-17-2553-2025,https://doi.org/10.5194/essd-17-2553-2025, 2025
Short summary

Cited articles

AMAP: Arctic climate change update 2021: Key trends and impacts. Summary for policy-makers, Arctic Monitoring and Assessment Programme (AMAP), Tromsø, Norway, https://www.amap.no/documents/download/6759/inline (last access: 7 January 2026), 2021. 
Anderson, K. and Gaston, K. J.: Lightweight unmanned aerial vehicles will revolutionize spatial ecology, Frontiers in Ecol & Environ, 11, 138–146, https://doi.org/10.1890/120150, 2013. 
Baldocchi, D. D.: Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future, Global Change Biology, 9, 479–492, https://doi.org/10.1046/j.1365-2486.2003.00629.x, 2003. 
Ballinger, T. J., Overland, J. E., Wang, M., Bhatt, U. S., Hanna, E., Hanssen-Bauer, I., Kim, S.-J., Thoman, R. L., and Walsh, J. E.: Arctic Report Card 2020: Surface Air Temperature, https://doi.org/10.25923/GCW8-2Z06, 2020. 
Bao, T., Xu, X., Jia, G., Billesbach, D. P., and Sullivan, R. C.: Much stronger tundra methane emissions during autumn‐freeze than spring‐thaw, Global Change Biology, 27, 376–387, https://doi.org/10.1111/gcb.15421, 2021. 
Download
Short summary
We measured over 13,000 methane fluxes at a site in the Canadian Arctic and linked them with drone and free satellite images. We tested four machine-learning methods and two map scales. Metre-scale maps captured small wet and dry features that strongly affect methane release, while coarser maps blurred them. Different models shifted the monthly methane estimate. This helps choose the right data and tools to map methane, design monitoring networks, and check climate models.
Share
Altmetrics
Final-revised paper
Preprint