Articles | Volume 14, issue 21
https://doi.org/10.5194/bg-14-4891-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-14-4891-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Impacts of temperature extremes on European vegetation during the growing season
Lukas Baumbach
Research Domain IV – Transdisciplinary Concepts and Methods,
Potsdam Institute for Climate Impact Research, Telegrafenberg A31, 14473 Potsdam, Germany
Faculty of Environment and Natural Resources, Albert Ludwigs University of Freiburg,
Tennenbacherstraße 4, 79016 Freiburg im Breisgau, Germany
Jonatan F. Siegmund
Research Domain IV – Transdisciplinary Concepts and Methods,
Potsdam Institute for Climate Impact Research, Telegrafenberg A31, 14473 Potsdam, Germany
Institute of Earth and Environmental Science, University of Potsdam,
Karl-Liebknecht-Straße 24–25, 14476 Potsdam, Germany
Magdalena Mittermeier
Research Domain IV – Transdisciplinary Concepts and Methods,
Potsdam Institute for Climate Impact Research, Telegrafenberg A31, 14473 Potsdam, Germany
Department of Geography, Ludwig Maximilians University,
Geschwister-Scholl-Platz 1, 80539 Munich, Germany
Reik V. Donner
CORRESPONDING AUTHOR
Research Domain IV – Transdisciplinary Concepts and Methods,
Potsdam Institute for Climate Impact Research, Telegrafenberg A31, 14473 Potsdam, Germany
Related authors
No articles found.
David Docquier, Giorgia Di Capua, Reik V. Donner, Carlos A. L. Pires, Amélie Simon, and Stéphane Vannitsem
Nonlin. Processes Geophys., 31, 115–136, https://doi.org/10.5194/npg-31-115-2024, https://doi.org/10.5194/npg-31-115-2024, 2024
Short summary
Short summary
Identifying causes of specific processes is crucial in order to better understand our climate system. Traditionally, correlation analyses have been used to identify cause–effect relationships in climate studies. However, correlation does not imply causation, which justifies the need to use causal methods. We compare two independent causal methods and show that these are superior to classical correlation analyses. We also find some interesting differences between the two methods.
Giorgia Di Capua, Dim Coumou, Bart van den Hurk, Antje Weisheimer, Andrew G. Turner, and Reik V. Donner
Weather Clim. Dynam., 4, 701–723, https://doi.org/10.5194/wcd-4-701-2023, https://doi.org/10.5194/wcd-4-701-2023, 2023
Short summary
Short summary
Heavy rainfall in tropical regions interacts with mid-latitude circulation patterns, and this interaction can explain weather patterns in the Northern Hemisphere during summer. In this analysis we detect these tropical–extratropical interaction pattern both in observational datasets and data obtained by atmospheric models and assess how well atmospheric models can reproduce the observed patterns. We find a good agreement although these relationships are weaker in model data.
Julianna Carvalho-Oliveira, Giorgia di Capua, Leonard Borchert, Reik Donner, and Johanna Baehr
EGUsphere, https://doi.org/10.5194/egusphere-2023-1412, https://doi.org/10.5194/egusphere-2023-1412, 2023
Short summary
Short summary
We demonstrate with a causality analysis that an important recurrent summer atmospheric pattern, the so-called East Atlantic teleconnection, is influenced by the extratropical North Atlantic in spring during the second half of the 20th century. This causal link is, however, not well represented by our evaluated seasonal climate prediction system. We show that simulations able to reproduce this link show improved surface climate prediction credibility over those that do not.
Tommaso Alberti, Reik V. Donner, and Stéphane Vannitsem
Earth Syst. Dynam., 12, 837–855, https://doi.org/10.5194/esd-12-837-2021, https://doi.org/10.5194/esd-12-837-2021, 2021
Short summary
Short summary
We provide a novel approach to diagnose the strength of the ocean–atmosphere coupling by using both a reduced order model and reanalysis data. Our findings suggest the ocean–atmosphere dynamics presents a rich variety of features, moving from a chaotic to a coherent coupled dynamics, mainly attributed to the atmosphere and only marginally to the ocean. Our observations suggest further investigations in characterizing the occurrence and spatial dependency of the ocean–atmosphere coupling.
Frederik Wolf, Aiko Voigt, and Reik V. Donner
Earth Syst. Dynam., 12, 353–366, https://doi.org/10.5194/esd-12-353-2021, https://doi.org/10.5194/esd-12-353-2021, 2021
Short summary
Short summary
In our work, we employ complex networks to study the relation between the time mean position of the intertropical convergence zone (ITCZ) and sea surface temperature (SST) variability. We show that the information hidden in different spatial SST correlation patterns, which we access utilizing complex networks, is strongly correlated with the time mean position of the ITCZ. This research contributes to the ongoing discussion on drivers of the annual migration of the ITCZ.
Frederik Wolf, Ugur Ozturk, Kevin Cheung, and Reik V. Donner
Earth Syst. Dynam., 12, 295–312, https://doi.org/10.5194/esd-12-295-2021, https://doi.org/10.5194/esd-12-295-2021, 2021
Short summary
Short summary
Motivated by a lacking onset prediction scheme, we examine the temporal evolution of synchronous heavy rainfall associated with the East Asian Monsoon System employing a network approach. We find, that the evolution of the Baiu front is associated with the formation of a spatially separated double band of synchronous rainfall. Furthermore, we identify the South Asian Anticyclone and the North Pacific Subtropical High as the main drivers, which have been assumed to be independent previously.
Giorgia Di Capua, Jakob Runge, Reik V. Donner, Bart van den Hurk, Andrew G. Turner, Ramesh Vellore, Raghavan Krishnan, and Dim Coumou
Weather Clim. Dynam., 1, 519–539, https://doi.org/10.5194/wcd-1-519-2020, https://doi.org/10.5194/wcd-1-519-2020, 2020
Short summary
Short summary
We study the interactions between the tropical convective activity and the mid-latitude circulation in the Northern Hemisphere during boreal summer. We identify two circumglobal wave patterns with phase shifts corresponding to the South Asian and the western North Pacific monsoon systems at an intra-seasonal timescale. These patterns show two-way interactions in a causal framework at a weekly timescale and assess how El Niño affects these interactions.
Jaqueline Lekscha and Reik V. Donner
Nonlin. Processes Geophys., 27, 261–275, https://doi.org/10.5194/npg-27-261-2020, https://doi.org/10.5194/npg-27-261-2020, 2020
Giorgia Di Capua, Marlene Kretschmer, Reik V. Donner, Bart van den Hurk, Ramesh Vellore, Raghavan Krishnan, and Dim Coumou
Earth Syst. Dynam., 11, 17–34, https://doi.org/10.5194/esd-11-17-2020, https://doi.org/10.5194/esd-11-17-2020, 2020
Short summary
Short summary
Drivers from both the mid-latitudes and the tropical regions have been proposed to influence the Indian summer monsoon (ISM) subseasonal variability. To understand the relative importance of tropical and mid-latitude drivers, we apply recently developed causal discovery techniques to disentangle the causal relationships among these processes. Our results show that there is indeed a two-way interaction between the mid-latitude circulation and ISM rainfall over central India.
Giorgia Di Capua, Marlene Kretschmer, Reik V. Donner, Bart van den Hurk, Ramesh Vellore, Raghavan Krishnan, and Dim Coumou
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2019-11, https://doi.org/10.5194/esd-2019-11, 2019
Manuscript not accepted for further review
Short summary
Short summary
Both drivers from the mid-latitudes and from the tropical regions have been proposed to influence the Indian summer monsoon (ISM) subseasonal variability. To understand the relative importance of tropical and mid-latitude drivers, we apply recently developed causal discovery techniques to disentangle the causal relationships among these processes. Our results show that there is indeed a two-way interaction between the mid-latitude circulation and ISM rainfall over central India.
Tim Kittel, Catrin Ciemer, Nastaran Lotfi, Thomas Peron, Francisco Rodrigues, Jürgen Kurths, and Reik V. Donner
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2017-69, https://doi.org/10.5194/npg-2017-69, 2017
Revised manuscript not accepted
Jasper G. Franke, Johannes P. Werner, and Reik V. Donner
Clim. Past, 13, 1593–1608, https://doi.org/10.5194/cp-13-1593-2017, https://doi.org/10.5194/cp-13-1593-2017, 2017
Short summary
Short summary
We apply evolving functional network analysis, a tool for studying temporal changes of the spatial co-variability structure, to a set of
Late Holocene paleoclimate proxy records covering the last two millennia. The emerging patterns obtained by our analysis are related to
long-term changes in the dominant mode of atmospheric circulation in the region, the North Atlantic Oscillation (NAO). We obtain a
qualitative reconstruction of the NAO long-term variability over the entire Common Era.
Jonatan F. Siegmund, Marc Wiedermann, Jonathan F. Donges, and Reik V. Donner
Biogeosciences, 13, 5541–5555, https://doi.org/10.5194/bg-13-5541-2016, https://doi.org/10.5194/bg-13-5541-2016, 2016
Short summary
Short summary
In this study we systematically quantify simultaneities between meteorological extremes and the timing of flowering of four shrub species across Germany by using event coincidence analysis. Our study confirms previous findings of experimental studies, highlighting the impact of early spring temperatures on the flowering of the investigated plants. Additionally, the analysis reveals statistically significant indications of an influence of temperature extremes in the fall preceding the flowering.
J. F. Donges, R. V. Donner, N. Marwan, S. F. M. Breitenbach, K. Rehfeld, and J. Kurths
Clim. Past, 11, 709–741, https://doi.org/10.5194/cp-11-709-2015, https://doi.org/10.5194/cp-11-709-2015, 2015
Short summary
Short summary
Paleoclimate records from cave deposits allow the reconstruction of Holocene dynamics of the Asian monsoon system, an important tipping element in Earth's climate. Employing recently developed techniques of nonlinear time series analysis reveals several robust and continental-scale regime shifts in the complexity of monsoonal variability. These regime shifts might have played an important role as drivers of migration, cultural change, and societal collapse during the past 10,000 years.
Y. Zou, R. V. Donner, N. Marwan, M. Small, and J. Kurths
Nonlin. Processes Geophys., 21, 1113–1126, https://doi.org/10.5194/npg-21-1113-2014, https://doi.org/10.5194/npg-21-1113-2014, 2014
Short summary
Short summary
We use visibility graphs to characterize asymmetries in the dynamics of sunspot areas in both solar hemispheres. Our analysis provides deep insights into the potential and limitations of this method, revealing a complex interplay between effects due to statistical versus dynamical properties of the observed data. Temporal changes in the hemispheric predominance of the graph connectivity are found to lag those directly associated with the total hemispheric sunspot areas themselves.
R. V. Donner and G. Balasis
Nonlin. Processes Geophys., 20, 965–975, https://doi.org/10.5194/npg-20-965-2013, https://doi.org/10.5194/npg-20-965-2013, 2013
Related subject area
Biogeochemistry: Land
Implications of climate and litter quality for simulations of litterbag decomposition at high latitudes
Soil carbon-concentration and carbon-climate feedbacks in CMIP6 Earth system models
How to measure the efficiency of terrestrial carbon dioxide removal methods
Monitoring the impact of forest changes on carbon uptake with solar-induced fluorescence measurements from GOME-2A and TROPOMI for an Australian and Chinese case study
Technical note: Flagging inconsistencies in flux tower data
Relevance of near-surface soil moisture vs. terrestrial water storage for global vegetation functioning
Cropland expansion drives vegetation greenness decline in Southeast Asia
High-resolution spatial patterns and drivers of terrestrial ecosystem carbon dioxide, methane, and nitrous oxide fluxes in the tundra
Long-term additions of ammonium nitrate to montane forest ecosystems may cause limited soil acidification, even in the presence of soil carbonate
Leaf carbon and nitrogen stoichiometric variation along environmental gradients
Gross primary productivity and the predictability of CO2: more uncertainty in what we predict than how well we predict it
Scale variance in the carbon dynamics of fragmented, mixed-use landscapes estimated using model–data fusion
Seasonal controls override forest harvesting effects on the composition of dissolved organic matter mobilized from boreal forest soil organic horizons
Carbon cycle extremes accelerate weakening of the land carbon sink in the late 21st century
Estimating oil-palm Si storage, Si return to soils, and Si losses through harvest in smallholder oil-palm plantations of Sumatra, Indonesia
Assessing the sensitivity of multi-frequency passive microwave vegetation optical depth to vegetation properties
Seasonal variation of mercury concentration of ancient olive groves of Lebanon
Soil organic matter diagenetic state informs boreal forest ecosystem feedbacks to climate change
Upscaling dryland carbon and water fluxes with artificial neural networks of optical, thermal, and microwave satellite remote sensing
Sun-induced fluorescence as a proxy for primary productivity across vegetation types and climates
Technical note: A view from space on global flux towers by MODIS and Landsat: the FluxnetEO data set
Changing sub-Arctic tundra vegetation upon permafrost degradation: impact on foliar mineral element cycling
Land Management Contributes significantly to observed Vegetation Browning in Syria during 2001–2018
MODIS Vegetation Continuous Fields tree cover needs calibrating in tropical savannas
Assessing the representation of the Australian carbon cycle in global vegetation models
Assessing the response of soil carbon in Australia to changing inputs and climate using a consistent modelling framework
Reviews and syntheses: Ongoing and emerging opportunities to improve environmental science using observations from the Advanced Baseline Imager on the Geostationary Operational Environmental Satellites
First pan-Arctic assessment of dissolved organic carbon in lakes of the permafrost region
The impact of wildfire on biogeochemical fluxes and water quality in boreal catchments
Examining the sensitivity of the terrestrial carbon cycle to the expression of El Niño
Subalpine grassland productivity increased with warmer and drier conditions, but not with higher N deposition, in an altitudinal transplantation experiment
Reviews and syntheses: Impacts of plant-silica–herbivore interactions on terrestrial biogeochemical cycling
Implementation of nitrogen cycle in the CLASSIC land model
Combined effects of ozone and drought stress on the emission of biogenic volatile organic compounds from Quercus robur L.
A bottom-up quantification of foliar mercury uptake fluxes across Europe
Lagged effects regulate the inter-annual variability of the tropical carbon balance
Spatial variations in terrestrial net ecosystem productivity and its local indicators
Nitrogen cycling in CMIP6 land surface models: progress and limitations
Decomposing reflectance spectra to track gross primary production in a subalpine evergreen forest
Sensitivity of 21st century simulated ecosystem indicators to model parameters, prescribed climate drivers, RCP scenarios and forest management actions for two Finnish boreal forest sites
Summarizing the state of the terrestrial biosphere in few dimensions
Patterns and trends of the dominant environmental controls of net biome productivity
Localized basal area affects soil respiration temperature sensitivity in a coastal deciduous forest
Dissolved organic carbon mobilized from organic horizons of mature and harvested black spruce plots in a mesic boreal region
Ideas and perspectives: Proposed best practices for collaboration at cross-disciplinary observatories
Effects of leaf length and development stage on the triple oxygen isotope signature of grass leaf water and phytoliths: insights for a proxy of continental atmospheric humidity
Response of simulated burned area to historical changes in environmental and anthropogenic factors: a comparison of seven fire models
Estimation of coarse dead wood stocks in intact and degraded forests in the Brazilian Amazon using airborne lidar
Theoretical uncertainties for global satellite-derived burned area estimates
Estimating global gross primary productivity using chlorophyll fluorescence and a data assimilation system with the BETHY-SCOPE model
Elin Ristorp Aas, Inge Althuizen, Hui Tang, Sonya Geange, Eva Lieungh, Vigdis Vandvik, and Terje Koren Berntsen
Biogeosciences, 21, 3789–3817, https://doi.org/10.5194/bg-21-3789-2024, https://doi.org/10.5194/bg-21-3789-2024, 2024
Short summary
Short summary
We used a soil model to replicate two litterbag decomposition experiments to examine the implications of climate, litter quality, and soil microclimate representation. We found that macroclimate was more important than litter quality for modeled mass loss. By comparing different representations of soil temperature and moisture we found that using observed data did not improve model results. We discuss causes for this and suggest possible improvements to both the model and experimental design.
Rebecca M. Varney, Pierre Friedlingstein, Sarah E. Chadburn, Eleanor J. Burke, and Peter M. Cox
Biogeosciences, 21, 2759–2776, https://doi.org/10.5194/bg-21-2759-2024, https://doi.org/10.5194/bg-21-2759-2024, 2024
Short summary
Short summary
Soil carbon is the largest store of carbon on the land surface of Earth and is known to be particularly sensitive to climate change. Understanding this future response is vital to successfully meeting Paris Agreement targets, which rely heavily on carbon uptake by the land surface. In this study, the individual responses of soil carbon are quantified and compared amongst CMIP6 Earth system models used within the most recent IPCC report, and the role of soils in the land response is highlighted.
Sabine Egerer, Stefanie Falk, Dorothea Mayer, Tobias Nützel, Wolfgang Obermeier, and Julia Pongratz
EGUsphere, https://doi.org/10.5194/egusphere-2024-1451, https://doi.org/10.5194/egusphere-2024-1451, 2024
Short summary
Short summary
Using a state-of-the-art land model, we find that bioenergy plants can store carbon more efficiently than forests over long periods in the soil, in geological reservoirs or by substituting fossil fuel-based energy. Planting forests is more suitable for reaching climate targets until 2050. The carbon removal potential depends also on local environmental conditions. These considerations have important implications for for climate policy, spatial planning, nature conservation, and agriculture.
Juliëtte C. S. Anema, Klaas Folkert Boersma, Piet Stammes, Gerbrand Koren, William Woodgate, Philipp Köhler, Christian Frankenberg, and Jacqui Stol
Biogeosciences, 21, 2297–2311, https://doi.org/10.5194/bg-21-2297-2024, https://doi.org/10.5194/bg-21-2297-2024, 2024
Short summary
Short summary
To keep the Paris agreement goals within reach, negative emissions are necessary. They can be achieved with mitigation techniques, such as reforestation, which remove CO2 from the atmosphere. While governments have pinned their hopes on them, there is not yet a good set of tools to objectively determine whether negative emissions do what they promise. Here we show how satellite measurements of plant fluorescence are useful in detecting carbon uptake due to reforestation and vegetation regrowth.
Martin Jung, Jacob Nelson, Mirco Migliavacca, Tarek El-Madany, Dario Papale, Markus Reichstein, Sophia Walther, and Thomas Wutzler
Biogeosciences, 21, 1827–1846, https://doi.org/10.5194/bg-21-1827-2024, https://doi.org/10.5194/bg-21-1827-2024, 2024
Short summary
Short summary
We present a methodology to detect inconsistencies in perhaps the most important data source for measurements of ecosystem–atmosphere carbon, water, and energy fluxes. We expect that the derived consistency flags will be relevant for data users and will help in improving our understanding of and our ability to model ecosystem–climate interactions.
Prajwal Khanal, Anne J. Hoek Van Dijke, Timo Schaffhauser, Wantong Li, Sinikka J. Paulus, Chunhui Zhan, and René Orth
Biogeosciences, 21, 1533–1547, https://doi.org/10.5194/bg-21-1533-2024, https://doi.org/10.5194/bg-21-1533-2024, 2024
Short summary
Short summary
Water availability is essential for vegetation functioning, but the depth of vegetation water uptake is largely unknown due to sparse ground measurements. This study correlates vegetation growth with soil moisture availability globally to infer vegetation water uptake depth using only satellite-based data. We find that the vegetation water uptake depth varies across climate regimes and vegetation types and also changes during dry months at a global scale.
Ruiying Zhao, Xiangzhong Luo, Yuheng Yang, Luri Syahid, Chi Chen, and Janice Lee
EGUsphere, https://doi.org/10.5194/egusphere-2024-378, https://doi.org/10.5194/egusphere-2024-378, 2024
Short summary
Short summary
Southeast Asia has been a global hotspot of land use change in the past half-century. Meanwhile, it also hosts some most carbon-dense and diverse ecosystems in the world. Here, we explored the impact of land use change, along with other environmental factors on the ecosystem in Southeast Asia. We found elevated CO2 imposed a positive impact on vegetation greenness, but the positive impact was largely offset by intensive land use changes in the region, particularly the cropland expansion.
Anna-Maria Virkkala, Pekka Niittynen, Julia Kemppinen, Maija E. Marushchak, Carolina Voigt, Geert Hensgens, Johanna Kerttula, Konsta Happonen, Vilna Tyystjärvi, Christina Biasi, Jenni Hultman, Janne Rinne, and Miska Luoto
Biogeosciences, 21, 335–355, https://doi.org/10.5194/bg-21-335-2024, https://doi.org/10.5194/bg-21-335-2024, 2024
Short summary
Short summary
Arctic greenhouse gas (GHG) fluxes of CO2, CH4, and N2O are important for climate feedbacks. We combined extensive in situ measurements and remote sensing data to develop machine-learning models to predict GHG fluxes at a 2 m resolution across a tundra landscape. The analysis revealed that the system was a net GHG sink and showed widespread CH4 uptake in upland vegetation types, almost surpassing the high wetland CH4 emissions at the landscape scale.
Thomas Baer, Gerhard Furrer, Stephan Zimmermann, and Patrick Schleppi
Biogeosciences, 20, 4577–4589, https://doi.org/10.5194/bg-20-4577-2023, https://doi.org/10.5194/bg-20-4577-2023, 2023
Short summary
Short summary
Nitrogen (N) deposition to forest ecosystems is a matter of concern because it affects their nutrient status and makes their soil acidic. We observed an ongoing acidification in a montane forest in central Switzerland even if the subsoil of this site contains carbonates and is thus well buffered. We experimentally added N to simulate a higher pollution, and this increased the acidification. After 25 years of study, however, we can see the first signs of recovery, also under higher N deposition.
Huiying Xu, Han Wang, Iain Colin Prentice, and Sandy P. Harrison
Biogeosciences, 20, 4511–4525, https://doi.org/10.5194/bg-20-4511-2023, https://doi.org/10.5194/bg-20-4511-2023, 2023
Short summary
Short summary
Leaf carbon (C) and nitrogen (N) are crucial elements in leaf construction and physiological processes. This study reconciled the roles of phylogeny, species identity, and climate in stoichiometric traits at individual and community levels. The variations in community-level leaf N and C : N ratio were captured by optimality-based models using climate data. Our results provide an approach to improve the representation of leaf stoichiometry in vegetation models to better couple N with C cycling.
István Dunkl, Nicole Lovenduski, Alessio Collalti, Vivek K. Arora, Tatiana Ilyina, and Victor Brovkin
Biogeosciences, 20, 3523–3538, https://doi.org/10.5194/bg-20-3523-2023, https://doi.org/10.5194/bg-20-3523-2023, 2023
Short summary
Short summary
Despite differences in the reproduction of gross primary productivity (GPP) by Earth system models (ESMs), ESMs have similar predictability of the global carbon cycle. We found that, although GPP variability originates from different regions and is driven by different climatic variables across the ESMs, the ESMs rely on the same mechanisms to predict their own GPP. This shows that the predictability of the carbon cycle is limited by our understanding of variability rather than predictability.
David T. Milodowski, T. Luke Smallman, and Mathew Williams
Biogeosciences, 20, 3301–3327, https://doi.org/10.5194/bg-20-3301-2023, https://doi.org/10.5194/bg-20-3301-2023, 2023
Short summary
Short summary
Model–data fusion (MDF) allows us to combine ecosystem models with Earth observation data. Fragmented landscapes, with a mosaic of contrasting ecosystems, pose a challenge for MDF. We develop a novel MDF framework to estimate the carbon balance of fragmented landscapes and show the importance of accounting for ecosystem heterogeneity to prevent scale-dependent bias in estimated carbon fluxes, disturbance fluxes in particular, and to improve ecological fidelity of the calibrated models.
Keri L. Bowering, Kate A. Edwards, and Susan E. Ziegler
Biogeosciences, 20, 2189–2206, https://doi.org/10.5194/bg-20-2189-2023, https://doi.org/10.5194/bg-20-2189-2023, 2023
Short summary
Short summary
Dissolved organic matter (DOM) mobilized from surface soils is a source of carbon (C) for deeper mineral horizons but also a mechanism of C loss. Composition of DOM mobilized in boreal forests varied more by season than as a result of forest harvesting. Results suggest reduced snowmelt and increased fall precipitation enhance DOM properties promoting mineral soil C stores. These findings, coupled with hydrology, can inform on soil C fate and boreal forest C balance in response to climate change.
Bharat Sharma, Jitendra Kumar, Auroop R. Ganguly, and Forrest M. Hoffman
Biogeosciences, 20, 1829–1841, https://doi.org/10.5194/bg-20-1829-2023, https://doi.org/10.5194/bg-20-1829-2023, 2023
Short summary
Short summary
Rising atmospheric carbon dioxide increases vegetation growth and causes more heatwaves and droughts. The impact of such climate extremes is detrimental to terrestrial carbon uptake capacity. We found that due to overall climate warming, about 88 % of the world's regions towards the end of 2100 will show anomalous losses in net biospheric productivity (NBP) rather than gains. More than 50 % of all negative NBP extremes were driven by the compound effect of dry, hot, and fire conditions.
Britta Greenshields, Barbara von der Lühe, Felix Schwarz, Harold J. Hughes, Aiyen Tjoa, Martyna Kotowska, Fabian Brambach, and Daniela Sauer
Biogeosciences, 20, 1259–1276, https://doi.org/10.5194/bg-20-1259-2023, https://doi.org/10.5194/bg-20-1259-2023, 2023
Short summary
Short summary
Silicon (Si) can have multiple beneficial effects on crops such as oil palms. In this study, we quantified Si concentrations in various parts of an oil palm (leaflets, rachises, fruit-bunch parts) to derive Si storage estimates for the total above-ground biomass of an oil palm and 1 ha of an oil-palm plantation. We proposed a Si balance by identifying Si return (via palm fronds) and losses (via harvest) in the system and recommend management measures that enhance Si cycling.
Luisa Schmidt, Matthias Forkel, Ruxandra-Maria Zotta, Samuel Scherrer, Wouter A. Dorigo, Alexander Kuhn-Régnier, Robin van der Schalie, and Marta Yebra
Biogeosciences, 20, 1027–1046, https://doi.org/10.5194/bg-20-1027-2023, https://doi.org/10.5194/bg-20-1027-2023, 2023
Short summary
Short summary
Vegetation attenuates natural microwave emissions from the land surface. The strength of this attenuation is quantified as the vegetation optical depth (VOD) parameter and is influenced by the vegetation mass, structure, water content, and observation wavelength. Here we model the VOD signal as a multi-variate function of several descriptive vegetation variables. The results help in understanding the effects of ecosystem properties on VOD.
Nagham Tabaja, David Amouroux, Lamis Chalak, François Fourel, Emmanuel Tessier, Ihab Jomaa, Milad El Riachy, and Ilham Bentaleb
Biogeosciences, 20, 619–633, https://doi.org/10.5194/bg-20-619-2023, https://doi.org/10.5194/bg-20-619-2023, 2023
Short summary
Short summary
This study investigates the seasonality of the mercury (Hg) concentration of olive trees. Hg concentrations of foliage, stems, soil surface, and litter were analyzed on a monthly basis in ancient olive trees growing in two groves in Lebanon. Our study draws an adequate baseline for the eastern Mediterranean and for the region with similar climatic inventories on Hg vegetation uptake in addition to being a baseline for new studies on olive trees in the Mediterranean.
Allison N. Myers-Pigg, Karl Kaiser, Ronald Benner, and Susan E. Ziegler
Biogeosciences, 20, 489–503, https://doi.org/10.5194/bg-20-489-2023, https://doi.org/10.5194/bg-20-489-2023, 2023
Short summary
Short summary
Boreal forests, historically a global sink for atmospheric CO2, store carbon in vast soil reservoirs. To predict how such stores will respond to climate warming we need to understand climate–ecosystem feedbacks. We find boreal forest soil carbon stores are maintained through enhanced nitrogen cycling with climate warming, providing direct evidence for a key feedback. Further application of the approach demonstrated here will improve our understanding of the limits of climate–ecosystem feedbacks.
Matthew P. Dannenberg, Mallory L. Barnes, William K. Smith, Miriam R. Johnston, Susan K. Meerdink, Xian Wang, Russell L. Scott, and Joel A. Biederman
Biogeosciences, 20, 383–404, https://doi.org/10.5194/bg-20-383-2023, https://doi.org/10.5194/bg-20-383-2023, 2023
Short summary
Short summary
Earth's drylands provide ecosystem services to many people and will likely be strongly affected by climate change, but it is quite challenging to monitor the productivity and water use of dryland plants with satellites. We developed and tested an approach for estimating dryland vegetation activity using machine learning to combine information from multiple satellite sensors. Our approach excelled at estimating photosynthesis and water use largely due to the inclusion of satellite soil moisture.
Mark Pickering, Alessandro Cescatti, and Gregory Duveiller
Biogeosciences, 19, 4833–4864, https://doi.org/10.5194/bg-19-4833-2022, https://doi.org/10.5194/bg-19-4833-2022, 2022
Short summary
Short summary
This study explores two of the most recent products in carbon productivity estimation, FLUXCOM gross primary productivity (GPP), calculated by upscaling local measurements of CO2 exchange, and remotely sensed sun-induced chlorophyll a fluorescence (SIF). High-resolution SIF data are valuable in demonstrating similarity in the SIF–GPP relationship between vegetation covers, provide an independent probe of the FLUXCOM GPP model and demonstrate the response of SIF to meteorological fluctuations.
Sophia Walther, Simon Besnard, Jacob Allen Nelson, Tarek Sebastian El-Madany, Mirco Migliavacca, Ulrich Weber, Nuno Carvalhais, Sofia Lorena Ermida, Christian Brümmer, Frederik Schrader, Anatoly Stanislavovich Prokushkin, Alexey Vasilevich Panov, and Martin Jung
Biogeosciences, 19, 2805–2840, https://doi.org/10.5194/bg-19-2805-2022, https://doi.org/10.5194/bg-19-2805-2022, 2022
Short summary
Short summary
Satellite observations help interpret station measurements of local carbon, water, and energy exchange between the land surface and the atmosphere and are indispensable for simulations of the same in land surface models and their evaluation. We propose generalisable and efficient approaches to systematically ensure high quality and to estimate values in data gaps. We apply them to satellite data of surface reflectance and temperature with different resolutions at the stations.
Elisabeth Mauclet, Yannick Agnan, Catherine Hirst, Arthur Monhonval, Benoît Pereira, Aubry Vandeuren, Maëlle Villani, Justin Ledman, Meghan Taylor, Briana L. Jasinski, Edward A. G. Schuur, and Sophie Opfergelt
Biogeosciences, 19, 2333–2351, https://doi.org/10.5194/bg-19-2333-2022, https://doi.org/10.5194/bg-19-2333-2022, 2022
Short summary
Short summary
Arctic warming and permafrost degradation largely affect tundra vegetation. Wetter lowlands show an increase in sedges, whereas drier uplands favor shrub expansion. Here, we demonstrate that the difference in the foliar elemental composition of typical tundra vegetation species controls the change in local foliar elemental stock and potential mineral element cycling through litter production upon a shift in tundra vegetation.
Tiexi Chen, Renjie Guo, Qingyun Yan, Xin Chen, Shengjie Zhou, Chuanzhuang Liang, Xueqiong Wei, and Han Dolman
Biogeosciences, 19, 1515–1525, https://doi.org/10.5194/bg-19-1515-2022, https://doi.org/10.5194/bg-19-1515-2022, 2022
Short summary
Short summary
Currently people are very concerned about vegetation changes and their driving factors, including natural and anthropogenic drivers. In this study, a general browning trend is found in Syria during 2001–2018, indicated by the vegetation index. We found that land management caused by social unrest is the main cause of this browning phenomenon. The mechanism initially reported here highlights the importance of land management impacts at the regional scale.
Rahayu Adzhar, Douglas I. Kelley, Ning Dong, Charles George, Mireia Torello Raventos, Elmar Veenendaal, Ted R. Feldpausch, Oliver L. Phillips, Simon L. Lewis, Bonaventure Sonké, Herman Taedoumg, Beatriz Schwantes Marimon, Tomas Domingues, Luzmila Arroyo, Gloria Djagbletey, Gustavo Saiz, and France Gerard
Biogeosciences, 19, 1377–1394, https://doi.org/10.5194/bg-19-1377-2022, https://doi.org/10.5194/bg-19-1377-2022, 2022
Short summary
Short summary
The MODIS Vegetation Continuous Fields (VCF) product underestimates tree cover compared to field data and could be underestimating tree cover significantly across the tropics. VCF is used to represent land cover or validate model performance in many land surface and global vegetation models and to train finer-scaled Earth observation products. Because underestimation in VCF may render it unsuitable for training data and bias model predictions, it should be calibrated before use in the tropics.
Lina Teckentrup, Martin G. De Kauwe, Andrew J. Pitman, Daniel S. Goll, Vanessa Haverd, Atul K. Jain, Emilie Joetzjer, Etsushi Kato, Sebastian Lienert, Danica Lombardozzi, Patrick C. McGuire, Joe R. Melton, Julia E. M. S. Nabel, Julia Pongratz, Stephen Sitch, Anthony P. Walker, and Sönke Zaehle
Biogeosciences, 18, 5639–5668, https://doi.org/10.5194/bg-18-5639-2021, https://doi.org/10.5194/bg-18-5639-2021, 2021
Short summary
Short summary
The Australian continent is included in global assessments of the carbon cycle such as the global carbon budget, yet the performance of dynamic global vegetation models (DGVMs) over Australia has rarely been evaluated. We assessed simulations by an ensemble of dynamic global vegetation models over Australia and highlighted a number of key areas that lead to model divergence on both short (inter-annual) and long (decadal) timescales.
Juhwan Lee, Raphael A. Viscarra Rossel, Mingxi Zhang, Zhongkui Luo, and Ying-Ping Wang
Biogeosciences, 18, 5185–5202, https://doi.org/10.5194/bg-18-5185-2021, https://doi.org/10.5194/bg-18-5185-2021, 2021
Short summary
Short summary
We performed Roth C simulations across Australia and assessed the response of soil carbon to changing inputs and future climate change using a consistent modelling framework. Site-specific initialisation of the C pools with measurements of the C fractions is essential for accurate simulations of soil organic C stocks and composition at a large scale. With further warming, Australian soils will become more vulnerable to C loss: natural environments > native grazing > cropping > modified grazing.
Anam M. Khan, Paul C. Stoy, James T. Douglas, Martha Anderson, George Diak, Jason A. Otkin, Christopher Hain, Elizabeth M. Rehbein, and Joel McCorkel
Biogeosciences, 18, 4117–4141, https://doi.org/10.5194/bg-18-4117-2021, https://doi.org/10.5194/bg-18-4117-2021, 2021
Short summary
Short summary
Remote sensing has played an important role in the study of land surface processes. Geostationary satellites, such as the GOES-R series, can observe the Earth every 5–15 min, providing us with more observations than widely used polar-orbiting satellites. Here, we outline current efforts utilizing geostationary observations in environmental science and look towards the future of GOES observations in the carbon cycle, ecosystem disturbance, and other areas of application in environmental science.
Lydia Stolpmann, Caroline Coch, Anne Morgenstern, Julia Boike, Michael Fritz, Ulrike Herzschuh, Kathleen Stoof-Leichsenring, Yury Dvornikov, Birgit Heim, Josefine Lenz, Amy Larsen, Katey Walter Anthony, Benjamin Jones, Karen Frey, and Guido Grosse
Biogeosciences, 18, 3917–3936, https://doi.org/10.5194/bg-18-3917-2021, https://doi.org/10.5194/bg-18-3917-2021, 2021
Short summary
Short summary
Our new database summarizes DOC concentrations of 2167 water samples from 1833 lakes in permafrost regions across the Arctic to provide insights into linkages between DOC and environment. We found increasing lake DOC concentration with decreasing permafrost extent and higher DOC concentrations in boreal permafrost sites compared to tundra sites. Our study shows that DOC concentration depends on the environmental properties of a lake, especially permafrost extent, ecoregion, and vegetation.
Gustaf Granath, Christopher D. Evans, Joachim Strengbom, Jens Fölster, Achim Grelle, Johan Strömqvist, and Stephan J. Köhler
Biogeosciences, 18, 3243–3261, https://doi.org/10.5194/bg-18-3243-2021, https://doi.org/10.5194/bg-18-3243-2021, 2021
Short summary
Short summary
We measured element losses and impacts on water quality following a wildfire in Sweden. We observed the largest carbon and nitrogen losses during the fire and a strong pulse of elements 1–3 months after the fire that showed a fast (weeks) and a slow (months) release from the catchments. Total carbon export through water did not increase post-fire. Overall, we observed a rapid recovery of the biogeochemical cycling of elements within 3 years but still an annual net release of carbon dioxide.
Lina Teckentrup, Martin G. De Kauwe, Andrew J. Pitman, and Benjamin Smith
Biogeosciences, 18, 2181–2203, https://doi.org/10.5194/bg-18-2181-2021, https://doi.org/10.5194/bg-18-2181-2021, 2021
Short summary
Short summary
The El Niño–Southern Oscillation (ENSO) describes changes in the sea surface temperature patterns of the Pacific Ocean. This influences the global weather, impacting vegetation on land. There are two types of El Niño: central Pacific (CP) and eastern Pacific (EP). In this study, we explored the long-term impacts on the carbon balance on land linked to the two El Niño types. Using a dynamic vegetation model, we simulated what would happen if only either CP or EP El Niño events had occurred.
Matthias Volk, Matthias Suter, Anne-Lena Wahl, and Seraina Bassin
Biogeosciences, 18, 2075–2090, https://doi.org/10.5194/bg-18-2075-2021, https://doi.org/10.5194/bg-18-2075-2021, 2021
Short summary
Short summary
Grassland ecosystem services like forage production and greenhouse gas storage in the soil depend on plant growth.
In an experiment in the mountains with warming treatments, we found that despite dwindling soil water content, the grassland growth increased with up to +1.3 °C warming (annual mean) compared to present temperatures. Even at +2.4 °C the growth was still larger than at the reference site.
This suggests that plant growth will increase due to global warming in the near future.
Bernice C. Hwang and Daniel B. Metcalfe
Biogeosciences, 18, 1259–1268, https://doi.org/10.5194/bg-18-1259-2021, https://doi.org/10.5194/bg-18-1259-2021, 2021
Short summary
Short summary
Despite growing recognition of herbivores as important ecosystem engineers, many major gaps remain in our understanding of how silicon and herbivory interact to shape biogeochemical processes. We highlight the need for more research particularly in natural settings as well as on the potential effects of herbivory on terrestrial silicon cycling to understand potentially critical animal–plant–soil feedbacks.
Ali Asaadi and Vivek K. Arora
Biogeosciences, 18, 669–706, https://doi.org/10.5194/bg-18-669-2021, https://doi.org/10.5194/bg-18-669-2021, 2021
Short summary
Short summary
More than a quarter of the current anthropogenic CO2 emissions are taken up by land, reducing the atmospheric CO2 growth rate. This is because of the CO2 fertilization effect which benefits 80 % of global vegetation. However, if nitrogen and phosphorus nutrients cannot keep up with increasing atmospheric CO2, the magnitude of this terrestrial ecosystem service may reduce in future. This paper implements nitrogen constraints on photosynthesis in a model to understand the mechanisms involved.
Arianna Peron, Lisa Kaser, Anne Charlott Fitzky, Martin Graus, Heidi Halbwirth, Jürgen Greiner, Georg Wohlfahrt, Boris Rewald, Hans Sandén, and Thomas Karl
Biogeosciences, 18, 535–556, https://doi.org/10.5194/bg-18-535-2021, https://doi.org/10.5194/bg-18-535-2021, 2021
Short summary
Short summary
Drought events are expected to become more frequent with climate change. Along with these events atmospheric ozone is also expected to increase. Both can stress plants. Here we investigate to what extent these factors modulate the emission of volatile organic compounds (VOCs) from oak plants. We find an antagonistic effect between drought stress and ozone, impacting the emission of different BVOCs, which is indirectly controlled by stomatal opening, allowing plants to control their water budget.
Lena Wohlgemuth, Stefan Osterwalder, Carl Joseph, Ansgar Kahmen, Günter Hoch, Christine Alewell, and Martin Jiskra
Biogeosciences, 17, 6441–6456, https://doi.org/10.5194/bg-17-6441-2020, https://doi.org/10.5194/bg-17-6441-2020, 2020
Short summary
Short summary
Mercury uptake by trees from the air represents an important but poorly quantified pathway in the global mercury cycle. We determined mercury uptake fluxes by leaves and needles at 10 European forests which were 4 times larger than mercury deposition via rainfall. The amount of mercury taken up by leaves and needles depends on their age and growing height on the tree. Scaling up our measurements to the forest area of Europe, we estimate that each year 20 t of mercury is taken up by trees.
A. Anthony Bloom, Kevin W. Bowman, Junjie Liu, Alexandra G. Konings, John R. Worden, Nicholas C. Parazoo, Victoria Meyer, John T. Reager, Helen M. Worden, Zhe Jiang, Gregory R. Quetin, T. Luke Smallman, Jean-François Exbrayat, Yi Yin, Sassan S. Saatchi, Mathew Williams, and David S. Schimel
Biogeosciences, 17, 6393–6422, https://doi.org/10.5194/bg-17-6393-2020, https://doi.org/10.5194/bg-17-6393-2020, 2020
Short summary
Short summary
We use a model of the 2001–2015 tropical land carbon cycle, with satellite measurements of land and atmospheric carbon, to disentangle lagged and concurrent effects (due to past and concurrent meteorological events, respectively) on annual land–atmosphere carbon exchanges. The variability of lagged effects explains most 2001–2015 inter-annual carbon flux variations. We conclude that concurrent and lagged effects need to be accurately resolved to better predict the world's land carbon sink.
Erqian Cui, Chenyu Bian, Yiqi Luo, Shuli Niu, Yingping Wang, and Jianyang Xia
Biogeosciences, 17, 6237–6246, https://doi.org/10.5194/bg-17-6237-2020, https://doi.org/10.5194/bg-17-6237-2020, 2020
Short summary
Short summary
Mean annual net ecosystem productivity (NEP) is related to the magnitude of the carbon sink of a specific ecosystem, while its inter-annual variation (IAVNEP) characterizes the stability of such a carbon sink. Thus, a better understanding of the co-varying NEP and IAVNEP is critical for locating the major and stable carbon sinks on land. Based on daily NEP observations from eddy-covariance sites, we found local indicators for the spatially varying NEP and IAVNEP, respectively.
Taraka Davies-Barnard, Johannes Meyerholt, Sönke Zaehle, Pierre Friedlingstein, Victor Brovkin, Yuanchao Fan, Rosie A. Fisher, Chris D. Jones, Hanna Lee, Daniele Peano, Benjamin Smith, David Wårlind, and Andy J. Wiltshire
Biogeosciences, 17, 5129–5148, https://doi.org/10.5194/bg-17-5129-2020, https://doi.org/10.5194/bg-17-5129-2020, 2020
Rui Cheng, Troy S. Magney, Debsunder Dutta, David R. Bowling, Barry A. Logan, Sean P. Burns, Peter D. Blanken, Katja Grossmann, Sophia Lopez, Andrew D. Richardson, Jochen Stutz, and Christian Frankenberg
Biogeosciences, 17, 4523–4544, https://doi.org/10.5194/bg-17-4523-2020, https://doi.org/10.5194/bg-17-4523-2020, 2020
Short summary
Short summary
We measured reflected sunlight from an evergreen canopy for a year to detect changes in pigments that play an important role in regulating the seasonality of photosynthesis. Results show a strong mechanistic link between spectral reflectance features and pigment content, which is validated using a biophysical model. Our results show spectrally where, why, and when spectral features change over the course of the season and show promise for estimating photosynthesis remotely.
Jarmo Mäkelä, Francesco Minunno, Tuula Aalto, Annikki Mäkelä, Tiina Markkanen, and Mikko Peltoniemi
Biogeosciences, 17, 2681–2700, https://doi.org/10.5194/bg-17-2681-2020, https://doi.org/10.5194/bg-17-2681-2020, 2020
Short summary
Short summary
We assess the relative magnitude of uncertainty sources on ecosystem indicators of the 21st century climate change on two boreal forest sites. In addition to RCP and climate model uncertainties, we included the overlooked model parameter uncertainty and management actions in our analysis. Management was the dominant uncertainty factor for the more verdant southern site, followed by RCP, climate and parameter uncertainties. The uncertainties were estimated with canonical correlation analysis.
Guido Kraemer, Gustau Camps-Valls, Markus Reichstein, and Miguel D. Mahecha
Biogeosciences, 17, 2397–2424, https://doi.org/10.5194/bg-17-2397-2020, https://doi.org/10.5194/bg-17-2397-2020, 2020
Short summary
Short summary
To closely monitor the state of our planet, we require systems that can monitor
the observation of many different properties at the same time. We create
indicators that resemble the behavior of many different simultaneous
observations. We apply the method to create indicators representing the
Earth's biosphere. The indicators show a productivity gradient and a water
gradient. The resulting indicators can detect a large number of changes and
extremes in the Earth system.
Barbara Marcolla, Mirco Migliavacca, Christian Rödenbeck, and Alessandro Cescatti
Biogeosciences, 17, 2365–2379, https://doi.org/10.5194/bg-17-2365-2020, https://doi.org/10.5194/bg-17-2365-2020, 2020
Short summary
Short summary
This work investigates the sensitivity of terrestrial CO2 fluxes to climate drivers. We observed that CO2 flux is mostly controlled by temperature during the growing season and by radiation off season. We also observe that radiation importance is increasing over time while sensitivity to temperature is decreasing in Eurasia. Ultimately this analysis shows that ecosystem response to climate is changing, with potential repercussions for future terrestrial sink and land role in climate mitigation.
Stephanie C. Pennington, Nate G. McDowell, J. Patrick Megonigal, James C. Stegen, and Ben Bond-Lamberty
Biogeosciences, 17, 771–780, https://doi.org/10.5194/bg-17-771-2020, https://doi.org/10.5194/bg-17-771-2020, 2020
Short summary
Short summary
Soil respiration (Rs) is the flow of CO2 from the soil surface to the atmosphere and is one of the largest carbon fluxes on land. This study examined the effect of local basal area (tree area) on Rs in a coastal forest in eastern Maryland, USA. Rs measurements were taken as well as distance from soil collar, diameter, and species of each tree within a 15 m radius. We found that trees within 5 m of our sampling points had a positive effect on how sensitive soil respiration was to temperature.
Keri L. Bowering, Kate A. Edwards, Karen Prestegaard, Xinbiao Zhu, and Susan E. Ziegler
Biogeosciences, 17, 581–595, https://doi.org/10.5194/bg-17-581-2020, https://doi.org/10.5194/bg-17-581-2020, 2020
Short summary
Short summary
We examined the effects of season and tree harvesting on the flow of water and the organic carbon (OC) it carries from boreal forest soils. We found that more OC was lost from the harvested forest because more precipitation reached the soil surface but that during periods of flushing in autumn and snowmelt a limit on the amount of water-extractable OC is reached. These results contribute to an increased understanding of carbon loss from boreal forest soils.
Jason Philip Kaye, Susan L. Brantley, Jennifer Zan Williams, and the SSHCZO team
Biogeosciences, 16, 4661–4669, https://doi.org/10.5194/bg-16-4661-2019, https://doi.org/10.5194/bg-16-4661-2019, 2019
Short summary
Short summary
Interdisciplinary teams can only capitalize on innovative ideas if members work well together through collegial and efficient use of field sites, instrumentation, samples, data, and model code. Thus, biogeoscience teams may benefit from developing a set of best practices for collaboration. We present one such example from a the Susquehanna Shale Hills critical zone observatory. Many of the themes from our example are universal, and they offer insights useful to other biogeoscience teams.
Anne Alexandre, Elizabeth Webb, Amaelle Landais, Clément Piel, Sébastien Devidal, Corinne Sonzogni, Martine Couapel, Jean-Charles Mazur, Monique Pierre, Frédéric Prié, Christine Vallet-Coulomb, Clément Outrequin, and Jacques Roy
Biogeosciences, 16, 4613–4625, https://doi.org/10.5194/bg-16-4613-2019, https://doi.org/10.5194/bg-16-4613-2019, 2019
Short summary
Short summary
This calibration study shows that despite isotope heterogeneity along grass leaves, the triple oxygen isotope composition of bulk leaf phytoliths can be estimated from the Craig and Gordon model, a mixing equation and a mean leaf water–phytolith fractionation exponent (lambda) of 0.521. The results strengthen the reliability of the 17O–excess of phytoliths to be used as a proxy of atmospheric relative humidity and open tracks for its use as an imprint of leaf water 17O–excess.
Lina Teckentrup, Sandy P. Harrison, Stijn Hantson, Angelika Heil, Joe R. Melton, Matthew Forrest, Fang Li, Chao Yue, Almut Arneth, Thomas Hickler, Stephen Sitch, and Gitta Lasslop
Biogeosciences, 16, 3883–3910, https://doi.org/10.5194/bg-16-3883-2019, https://doi.org/10.5194/bg-16-3883-2019, 2019
Short summary
Short summary
This study compares simulated burned area of seven global vegetation models provided by the Fire Model Intercomparison Project (FireMIP) since 1900. We investigate the influence of five forcing factors: atmospheric CO2, population density, land–use change, lightning and climate.
We find that the anthropogenic factors lead to the largest spread between models. Trends due to climate are mostly not significant but climate strongly influences the inter-annual variability of burned area.
Marcos A. S. Scaranello, Michael Keller, Marcos Longo, Maiza N. dos-Santos, Veronika Leitold, Douglas C. Morton, Ekena R. Pinagé, and Fernando Del Bon Espírito-Santo
Biogeosciences, 16, 3457–3474, https://doi.org/10.5194/bg-16-3457-2019, https://doi.org/10.5194/bg-16-3457-2019, 2019
Short summary
Short summary
The coarse dead wood component of the tropical forest carbon pool is rarely measured. For the first time, we developed models for predicting coarse dead wood in Amazonian forests by using airborne laser scanning data. Our models produced site-based estimates similar to independent field estimates found in the literature. Our study provides an approach for estimating coarse dead wood pools from remotely sensed data and mapping those pools over large scales in intact and degraded forests.
James Brennan, Jose L. Gómez-Dans, Mathias Disney, and Philip Lewis
Biogeosciences, 16, 3147–3164, https://doi.org/10.5194/bg-16-3147-2019, https://doi.org/10.5194/bg-16-3147-2019, 2019
Short summary
Short summary
We estimate the uncertainties associated with three global satellite-derived burned area estimates. The method provides unique uncertainties for the three estimates at the global scale for 2001–2013. We find uncertainties of 4 %–5.5 % in global burned area and uncertainties of 8 %–10 % in the frequently burning regions of Africa and Australia.
Alexander J. Norton, Peter J. Rayner, Ernest N. Koffi, Marko Scholze, Jeremy D. Silver, and Ying-Ping Wang
Biogeosciences, 16, 3069–3093, https://doi.org/10.5194/bg-16-3069-2019, https://doi.org/10.5194/bg-16-3069-2019, 2019
Short summary
Short summary
This study presents an estimate of global terrestrial photosynthesis. We make use of satellite chlorophyll fluorescence measurements, a visible indicator of photosynthesis, to optimize model parameters and estimate photosynthetic carbon uptake. This new framework incorporates nonlinear, process-based understanding of the link between fluorescence and photosynthesis, an advance on past approaches. This will aid in the utility of fluorescence to quantify terrestrial carbon cycle feedbacks.
Cited articles
Amante, C. and Eakins, B.: ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis, NOAA Technical Memorandum NESDIS NGDC-24, National Geophysical Data Center, NOAA, available at: https://doi.org/10.7289/V5C8276M (last access: 2 May 2017), 2009.
Aparicio, N., Villegas, D., Casadesus, J., Araus, J. L., and Royo, C.: Spectral vegetation indices as nondestructive tools for determining durum wheat yield, Agron. J., 92, 83–91, https://doi.org/10.2134/agronj2000.92183x, 2000.
Barriopedro, D., Fischer, E. M., Luterbacher, J., Trigo, R. M., and García-Herrera, R.: The hot summer of 2010: redrawing the temperature record map of Europe, Science, 332, 220–224, https://doi.org/10.1126/science.1201224, 2011.
Beck, E. H., Heim, R., and Hansen, J.: Plant resistance to cold stress: mechanisms and environmental signals triggering frost hardening and dehardening, J. Biosci., 29, 449–459, https://doi.org/10.1007/bf02712118, 2004.
Beniston, M., Stephenson, D. B., Christensen, O. B., Ferro, C. A., Frei, C., Goyette, S., Halsnaes, K., Holt, T., Jylhä, K., Koffi, B., Palutikof, J., Schöll, R., Semmler, T., and Woth, K.: Future extreme events in European climate: an exploration of regional climate model projections, Climatic Change, 81, 71–95, https://doi.org/10.1007/s10584-006-9226-z, 2007.
Burkett, V. R., Wilcox, D. A., Stottlemyer, R., Barrow, W., Fagre, D., Baron, J., Price, J., Nielsen, J. L., Allen, C. D., Peterson, D. L., Ruggerone, G., and Doyle, T.: Nonlinear dynamics in ecosystem response to climatic change: case studies and policy implications, Ecol. Complex., 2, 357–394, https://doi.org/10.1016/j.ecocom.2005.04.010, 2005.
Cannone, N., Sgorbati, S., and Guglielmin, M.: Unexpected impacts of climate change on alpine vegetation, Front. Ecol. Environ., 5, 360–364, https://doi.org/10.1890/1540-9295(2007)5[360:UIOCCO]2.0.CO;2, 2007.
Chmielewski, F.-M., Müller, A., and Bruns, E.: Climate changes and trends in phenology of fruit trees and field crops in Germany, 1961–2000, Agr. Forest Meteorol., 121, 69–78, https://doi.org/10.1016/s0168-1923(03)00161-8, 2004.
Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogée, J., Allard, V., Aubinet, M., Buchmann, N., Bernhofer, C., Carrara, A., Chevallier, F., De Noblet, N., Friend, A. D., Friedlingstein, P., Grünwald, T., Heinesch, B., Keronen, P., Knohl, A., Krinner, G., Loustau, D., Manca, G., Matteucci, G., Miglietta, F., Ourcival, J. M., Papale, D., Pilegaard, K., Rambal, S., Seufert, G., Soussana, J. F., Sanz, M. J., Schulze, E. D., Vesala, T., and Valentini, R.: Europe-wide reduction in primary productivity caused by the heat and drought in 2003, Nature, 437, 529–533, https://doi.org/10.1038/nature03972, 2005.
Ciscar, J.-C., Iglesias, A., Feyen, L., Szabó, L., Van Regemorter, D., Amelung, B., Nicholls, R., Watkiss, P., Christensen, O. B., Dankers, R., Garrotek, L., Goodess, C. M., Hunt, A., Moreno, A., Richards, J., and Sori, A.: Physical and economic consequences of climate change in Europe, P. Natl. Acad. Sci. USA, 108, 2678–2683, https://doi.org/10.1073/pnas.1011612108, 2011.
Coumou, D. and Rahmstorf, S.: A decade of weather extremes, Nat. Clim. Change, 2, 491–496, https://doi.org/10.1038/nclimate1452, 2012.
Coumou, D., Robinson, A., and Rahmstorf, S.: Global increase in record-breaking monthly-mean temperatures, Clim. Change, 118, 771–782, https://doi.org/10.1007/s10584-012-0668-1, 2013.
De Bono, A., Peduzzi, P., Kluser, S., and Giuliani, G.: Impacts of summer 2003 heat wave in Europe, Environ. Alert Bulletin, 2, available at: http://www.unisdr.org/files/1145_ewheatwave.en.pdf, 2004.
Deryng, D., Conway, D., Ramankutty, N., Price, J., and Warren, R.: Global crop yield response to extreme heat stress under multiple climate change futures, Environ. Res. Lett., 9, 034011, https://doi.org/10.1088/1748-9326/9/3/034011, 2014.
Dierßen, K.: Vegetation Nordeuropas: 112 Tabellen, Ulmer, Stuttgart, 1996.
Donges, J. F., Schleussner, C.-F., Siegmund, J. F., and Donner, R. V.: Event coincidence analysis for quantifying statistical interrelationships between event time series, Eur. Phys. J.-Spec. Top., 225, 471–487, https://doi.org/10.1140/epjst/e2015-50233-y, 2016.
Ellenberg, H. and Leuschner, C.: Vegetation Mitteleuropas mit den Alpen: in ökologischer, dynamischer und historischer Sicht, Vol. 8104, Ulmer, Stuttgart, 2010.
Fischer, E. and Schär, C.: Consistent geographical patterns of changes in high-impact European heatwaves, Nat. Geosci., 3, 398–403, https://doi.org/10.1038/ngeo866, 2010.
Fischer, E. M., Seneviratne, S., Vidale, P., Lüthi, D., and Schär, C.: Soil moisture–atmosphere interactions during the 2003 European summer heat wave, J. Climate, 20, 5081–5099, https://doi.org/10.1175/JCLI4288.1, 2007.
Frey, W. and Lösch, R.: Geobotanik: Pflanze und Vegetation in Raum und Zeit, Springer-Verlag, https://doi.org/10.1007/978-3-662-45281-3, 2014.
Gonzalez, P., Neilson, R. P., Lenihan, J. M., and Drapek, R. J.: Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change, Global Ecol. Biogeogr., 19, 755–768, https://doi.org/10.1111/j.1466-8238.2010.00558.x, 2010.
Hao, F., Zhang, X., Ouyang, W., Skidmore, A. K., and Toxopeus, A.: Vegetation NDVI linked to temperature and precipitation in the upper catchments of Yellow River, Environ. Model. Assess., 17, 389–398, https://doi.org/10.1007/s10666-011-9297-8, 2012.
Harrington, G.: Effects of Soil Moisture on Shrub Seedling Survival in Semi-Arid Grassland, Ecology, 72, 1138–1149, https://doi.org/10.2307/1940611, 1991.
Hasanuzzaman, M., Nahar, K., Alam, M. M., Roychowdhury, R., and Fujita, M.: Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants, Int. J. Mol. Sci., 14, 9643–9684, https://doi.org/10.3390/ijms14059643, 2013.
Hatfield, J. L. and Prueger, J. H.: Temperature extremes: effect on plant growth and development, Weather Climate Extremes, 10, 4–10, https://doi.org/10.1016/j.wace.2015.08.001, 2015.
Huete, A. R., Liu, H., and van Leeuwen, W. J.: The use of vegetation indices in forested regions: issues of linearity and saturation, in: Proceedings of the 1997 IEEE International Conference on Geoscience and Remote Sensing (IGARSS'97): Remote Sensing – A Scientific Vision for Sustainable Development, 4, 1966–1968, https://doi.org/10.1109/IGARSS.1997.609169, 1997.
Ichii, K., Kawabata, A., and Yamaguchi, Y.: Global correlation analysis for NDVI and climatic variables and NDVI trends: 1982–1990, Int. J. Remote Sens., 23, 3873–3878, https://doi.org/10.1080/01431160110119416, 2002.
Iglesias, A., Garrote, L., Quiroga, S., and Moneo, M.: A regional comparison of the effects of climate change on agricultural crops in Europe, Cli. Change, 112, 29–46, https://doi.org/10.1007/s10584-011-0338-8, 2012.
IPCC: Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK, New York, NY, USA, https://doi.org/10.1017/CBO9781107415324, 2013.
Karnieli, A., Agam, N., Pinker, R. T., Anderson, M., Imhoff, M. L., Gutman, G. G., Panov, N., and Goldberg, A.: Use of NDVI and land surface temperature for drought assessment: Merits and limitations, J. Climate, 23, 618–633, https://doi.org/10.1175/2009jcli2900.1, 2010.
Kawabata, A., Ichii, K., and Yamaguchi, Y.: Global monitoring of interannual changes in vegetation activities using NDVI and its relationships to temperature and precipitation, Int. J. Remote Sens., 22, 1377–1382, https://doi.org/10.1080/01431160010028490, 2001.
Kim, Y., Glenn, D. M., Park, J., Ngugi, H. K., and Lehman, B. L.: Hyperspectral image analysis for plant stress detection, American Society of Agricultural and Biological Engineers, Pittsburgh, Pennsylvania, 20–23 June 2010, 1009114, https://doi.org/10.13031/2013.29814, 2010.
Kogan, F. N.: Operational space technology for global vegetation assessment, B. Am. Meteorol. Soc., 82, 1949–1964, https://doi.org/10.1175/1520-0477(2001)082<1949:OSTFGV>2.3.CO;2, 2001.
Larcher, W.: Ökophysiologie der Pflanzen, Ulmer, Stuttgart, 1994.
Lavalle, C., Micale, F., Houston, T. D., Camia, A., Hiederer, R., Lazar, C., Conte, C., Amatulli, G., and Genovese, G.: Climate change in Europe: 3. Impact on agriculture and forestry, A review, Agronomy for sustainable Development, 29, 433–446, https://doi.org/10.1051/agro/2008068, 2009.
Lesk, C., Rowhani, P., and Ramankutty, N.: Influence of extreme weather disasters on global crop production, Nature, 529, 84–87, https://doi.org/10.1038/nature16467, 2011.
Liu, G., Liu, H., and Yin, Y.: Global patterns of NDVI-indicated vegetation extremes and their sensitivity to climate extremes, Environ. Res. Lett., 8, 025009, https://doi.org/10.1088/1748-9326/8/2/025009, 2013.
Loew, A., Bell, W., Brocca, L., Bulgin, C. E., Burdanowitz, J., Calbet, X., Donner, R. V., Ghent, D., Gruber, A., Kaminski, T., Kinzel, J., Klepp, C., Lambert, J.-C., Schaepman-Strub, G., Schröder, M., and Verhoelst, T.: Validation practices for satellite based earth observation data across communities, Rev. Geophys., 55, 779–817, https://doi.org/10.1002/2017RG000562, 2017.
Los, S. O., Collatz, G. J., Bounoua, L., Sellers, P. J., and Tucker, C. J.: Global interannual variations in sea surface temperature and land surface vegetation, air temperature, and precipitation, J. Climate, 14, 1535–1549, https://doi.org/10.1175/1520-0442(2001)014<1535:giviss>2.0.co;2, 2001.
Luterbacher, J., Dietrich, D., Xoplaki, E., Grosjean, M., and Wanner, H.: European seasonal and annual temperature variability, trends, and extremes since 1500, Science, 303, 1409–1503, https://doi.org/10.1126/science.1093877, 2004.
Ma, X., Huete, A., Moran, S., Ponce-Campos, G., and Eamus, D.: Abrupt shifts in phenology and vegetation productivity under climate extremes, J. Geophys. Res.-Biogeo., 120, 2036–2052, https://doi.org/10.1002/2015jg003144, 2015.
Moriondo, M., Bindi, M., Kundzewicz, Z., Szwed, M., Chorynski, A., Matczak, P., Radziejewski, M., McEvoy, D., and Wreford, A.: Impact and adaptation opportunities for European agriculture in response to climatic change and variability, Mitigation and Adaption Strategies on Global Change, 15, 657–679, https://doi.org/10.1007/s11027-010-9219-0, 2010.
NASA: Land Surface Temperature Anomaly [Day] (8 day) Dataset, available at: http://neo.sci.gsfc.nasa.gov/view.php?datasetId=MOD_LSTAD_E, last access: 2 May 2017a.
NASA: Vegetation Index [NDVI] (16 Day – Terra/MODIS) Dataset, available at: http://neo.sci.gsfc.nasa.gov/view.php?datasetId=MOD13A2_M_NDVI, last access: 2 May 2017b.
NASA: Land Cover Classification (1 year) Dataset, available at: http://neo.sci.gsfc.nasa.gov/view.php?datasetId= MCD12C1_T1&date=2011-01-01, last access: 2 May 2017c.
NOAA: 2011 Seasonal Temperature Anomalies, available at: https://www.climate.gov/news-features/featured-images/2011-seasonal-temperature-anomalies (last access: 21 August 2017), 2012.
NOAA National Centers for Environmental Information: State of the Climate: Global Climate Report for Annual 2016, available at: http://www.ncdc.noaa.gov/sotc/global/201613, last access: 13 May 2017.
Petoukhov, V., Rahmstorf, S., Petri, S., and Schellnhuber, H.-J.: Quasiresonant amplification of planetary waves and recent Northern Hemisphere weather extremes, P. Natl. Acad. Sci. USA, 110, 5336–5341, https://doi.org/10.1073/pnas.1222000110, 2013.
Pettorelli, N.: The Normalized Difference Vegetation Index, Oxford University Press, Oxford, https://doi.org/10.1093/acprof:osobl/9780199693160.001.0001, 2013.
Rebetez, M., Dupont, O., and Giroud, M.: An analysis of the July 2006 heatwave extent in Europe compared to the record year of 2003, Theor. Appl. Climatol., 95, 1–7, https://doi.org/10.1007/s00704-007-0370-9, 2009.
Rockström, J., Steffen, W. L., Noone, K., Persson, Å., Chapin III, F. S., Lambin, E., Lenton, T. M., Scheffer, M., Folke, C., Schellnhuber, H. J., Nykvist, B., De Wit, C. A., Hughes, T., van der Leeuw, S., Rodhe, H., Sörlin, S., Snyder, P. K., Costanza, R., Svedin, U., Falkenmark, M., Karlberg, L., Corell, R. W., Fabry, V. J., Hansen, J., Walker, B., Liverman, D., Richardson, K., Crutzen, P., and Foley, J.: Planetary boundaries: exploring the safe operating space for humanity, Ecol. Soc., 14, 32, https://doi.org/10.5751/es-03180-140232, 2009.
Schaap, B., Blom-Zandstra, M., Hermans, C., Meerburg, B., and Verhagen, J.: Impact changes of climatic extremes on arable farming in the north of the Netherlands, Reg. Environ. Change, 11, 731–741, https://doi.org/10.1007/s10113-011-0205-1, 2011.
Scheftic, W., Zeng, X., Broxton, P., and Brunke, M.: Intercomparison of Seven NDVI Products over the United States and Mexico, Remote Sens., 6, 1057–1084, https://doi.org/10.3390/rs6021057, 2014.
Schultz, P. and Halpert, M.: Global correlation of temperature, NDVI and precipitation, Adv. Space Res., 13, 277–280, https://doi.org/10.1016/0273-1177(93)90559-t, 1993.
Schultz, P. and Halpert, M.: Global analysis of the relationships among a vegetation index, precipitation and land surface temperature, Remote Sens., 16, 2755–2777, https://doi.org/10.1080/01431169508954590, 1995.
Semenov, M. A. and Shewry, P. R.: Modelling predicts that heat stress, not drought, will increase vulnerability of wheat in Europe, Sci. Rep.-UK, 1, 66, https://doi.org/10.1038/srep00066, 2011.
Seneviratne, S. I., Nicholls, N., Easterling, D., Goodess, C. M., Kanae, S., Kossin, J., Luo, Y., Marengo, J., McInnes, K., and Rahimi, M.: Changes in climate extremes and their impacts on the natural physical environment, Managing the risks of extreme events and disasters to advance climate change adaptation, Cambridge University Press, 109–230, https://doi.org/10.1017/cbo9781139177245.006, 2012.
Siegmund, J. F.: Open-source R package CoinCalc, available at: https://github.com/JonatanSiegmund/CoinCalc, last access: 3 November 2017.
Siegmund, J. F., Wiedermann, M., Donges, J. F., and Donner, R. V.: Impact of temperature and precipitation extremes on the flowering dates of four German wildlife shrub species, Biogeosciences, 13, 5541–5555, https://doi.org/10.5194/bg-13-5541-2016, 2016a.
Siegmund, J. F., Sanders, T. G. M., Heinrich, I., van der Maaten, E., Simard, S., Helle, G., and Donner, R. V.: Meteorological Drivers of Extremes in Daily Stem Radius Variations of Beech, Oak, and Pine in Northeastern Germany: An Event Coincidence Analysis, Front. Plant Sci., 7, 733, https://doi.org/10.3389/fpls.2016.00733, 2016b.
Siegmund, J. F., Siegmund, N., and Donner, R. V.: CoinCalc – A new R package for quantifying simultaneities of event series, Comput. Geosci., 98, 64–72, https://doi.org/10.1016/j.cageo.2016.10.004, 2017.
Spinoni, J., Lakatos, M., Szentimrey, T., Bihari, Z., Szalai, S., Vogt, J., and Antofie, T.: Heat and cold waves trends in the Carpathian Region from 1961 to 2010, Int. J. Climatol., 35, 4197–4209, https://doi.org/10.1002/joc.4279, 2015.
Srikanth, A. and Schmid, M.: Regulation of flowering time: all roads lead to Rome, Cell. Mol. Life Sci., 68, 2013–2037, https://doi.org/10.1007/s00018-011-0673-y, 2011.
Stöckli, R. and Vidale, P. L.: European plant phenology and climate as seen in a 20-year AVHRR land-surface parameter dataset, Int. J. Remote Sens., 25, 3303–3330, https://doi.org/10.1080/01431160310001618149, 2004.
Strahler, A., Muchoney, D., Borak, J., Friedl, M., Gopal, S., Lambin, E., and Moody, A.: MODIS Land Cover Product Algorithm Theoretical Basis Document (ATBD) Version 5.0, Tech. rep., Boston University, 1999.
Summerfield, R. J. and Roberts, E. H.: Photo-thermal regulation of flowering in pea, lentil, faba bean and chickpea, Springer the Netherlands, 911–922, https://doi.org/10.1007/978-94-009-2764-3_72, 1988.
Tan, Z., Tao, H., Jiang, J., and Zhang, Q.: Influences of Climate Extremes on NDVI (Normalized Difference Vegetation Index) in the Poyang Lake Basin, China, Wetlands, 35, 1033–1042, https://doi.org/10.1007/s13157-015-0692-9, 2015.
Tank, K. and Konnen, G.: Trends in indices of daily temperature and precipitation extremes in Europe, 1946-99, J. Climate, 16, 3665–3680, https://doi.org/10.1175/1520-0442(2003)016<3665:tiiodt>2.0.co;2, 2003.
Tansley, A. G.: An Introduction to Plant Ecology, Discovery Publishing House, 1993.
Teixeira, E., Fischer, G., van Velthuizen, H., Walter, C., and Ewert, F.: Global hot-spots of heat stress on agricultural crops due to climate change, Agr. Forest Meteorol. 170, 206–215, https://doi.org/10.1016/j.agrformet.2011.09.002, 2013.
Teuling, A. J., Seneviratne, S. I., Stöckli, R., Reichstein, M., Moors, E., Ciais, P., Luyssaert, S., Van Den Hurk, B., Ammann, C., Bernhofer, C., Dellwik, E., Gianelle, D., Gielen, B., Grünwald, T., Klumpp, K., Montagnani, L., Moureaux, C., Sottocornola, M., and Wohlfahrt, G.: Contrasting response of European forest and grassland energy exchange to heatwaves, Nat. Geosci., 3, 722–727, https://doi.org/10.1038/ngeo950, 2010.
Trnka, M., Rötter, R. P., Ruiz-Ramos, M., Kersebaum, K. C., Olesen, J. E., Žalud, Z., and Semenov, M. A.: Adverse weather conditions for European wheat production will become more frequent with climate change, Nat. Clim. Change, 4, 637–643, https://doi.org/10.1038/nclimate2242, 2014.
USDA: Spring Dryness and Freeze Lowers Europe's 2007/08 Winter Crop Prospects, availabe at: https://www.pecad.fas.usda.gov/highlights/2007/05/EU_21May07/ (last access: 22 August 2017), 2007.
USDA: Ukraine: 2016/17 Crop Production Forecasts, availabe at: http://pecad.fas.usda.gov/highlights/2016/05/ukraine_16may2016/, last access: 19 July 2016.
Wang, J., Rich, P., and Price, K.: Temporal responses of NDVI to precipitation and temperature in the central Great Plains, USA, Int. J. Remote Sens., 24, 2345–2364, https://doi.org/10.1080/01431160210154812, 2003.
Wardlow, B. D., Egbert, S. L., and Kastens, J. H.: Analysis of time-series MODIS 250 m vegetation index data for crop classification in the US Central Great Plains, Remote Sens. Environ., 108, 290–310, https://doi.org/10.1016/j.rse.2006.11.021, 2007.
Way, D. A.: Tree phenology responses to warming: spring forward, fall back?, Tree Physiol., 31, 469–471, https://doi.org/10.1093/treephys/tpr044, 2011.
Wheeler, J., Hoch, G., Cortés, A. J., Sedlacek, J., Wipf, S., and Rixen, C.: Increased spring freezing vulnerability for alpine shrubs under early snowmelt, Oecologia, 175, 219–229, https://doi.org/10.1007/s00442-013-2872-8, 2014.
Wreford, A. and Adger, N.: Adaptation in agriculture: historic effects of heat waves and droughts on UK agriculture, Int. J. Agr. Sustain., 8, 278–289, https://doi.org/10.3763/ijas.2010.0482, 2010.
Zscheischler, J., Orth, R., and Seneviratne, S. I.: A submonthly database for detecting changes in vegetation-atmosphere coupling, Geophys. Res. Lett., 42, 9816–9824, https://doi.org/10.1002/2015GL066563, 2015.
Short summary
Temperature extremes play a crucial role for vegetation growth and vitality in vast parts of the European continent. Here, we study the likelihood of simultaneous occurrences of extremes in daytime land surface temperatures and the normalized difference vegetation index (NDVI) for three main periods during the growing season. Our results reveal a particularly high vulnerability of croplands to temperature extremes, while other vegetation types are considerably less affected.
Temperature extremes play a crucial role for vegetation growth and vitality in vast parts of the...
Altmetrics
Final-revised paper
Preprint