Articles | Volume 17, issue 2
https://doi.org/10.5194/bg-17-423-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-17-423-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Anomalies in the carbonate system of Red Sea coastal habitats
Kimberlee Baldry
CORRESPONDING AUTHOR
Red Sea Research Center and Computational Bioscience Research Center,
King Abdullah University of Science and Technology (KAUST), Thuwal, 23955,
Saudi Arabia
currently at: Institute of Marine and Antarctic Studies,
University of Tasmania, Hobart 7000, Australia
Vincent Saderne
Red Sea Research Center and Computational Bioscience Research Center,
King Abdullah University of Science and Technology (KAUST), Thuwal, 23955,
Saudi Arabia
Daniel C. McCorkle
Woods Hole Oceanographic Institution (WHOI), Woods Hole,
Massachusetts 02543, USA
James H. Churchill
Woods Hole Oceanographic Institution (WHOI), Woods Hole,
Massachusetts 02543, USA
Susana Agusti
Red Sea Research Center and Computational Bioscience Research Center,
King Abdullah University of Science and Technology (KAUST), Thuwal, 23955,
Saudi Arabia
Carlos M. Duarte
Red Sea Research Center and Computational Bioscience Research Center,
King Abdullah University of Science and Technology (KAUST), Thuwal, 23955,
Saudi Arabia
Related authors
Ben J. Fisher, Alex J. Poulton, Michael P. Meredith, Kimberlee Baldry, Oscar Schofield, and Sian F. Henley
EGUsphere, https://doi.org/10.5194/egusphere-2024-990, https://doi.org/10.5194/egusphere-2024-990, 2024
Short summary
Short summary
The Southern Ocean is a rapidly warming environment, with subsequent impacts on ecosystems and biogeochemical cycling. This study examines changes in phytoplankton and biogeochemistry using a range of climate models. Under climate change the Southern Ocean will be warmer, more acidic, more productive and have reduced nutrient availability by 2100. However, there is substantial variability between models across key productivity parameters, we propose ways of reducing this uncertainty.
Ben J. Fisher, Alex J. Poulton, Michael P. Meredith, Kimberlee Baldry, Oscar Schofield, and Sian F. Henley
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-10, https://doi.org/10.5194/bg-2023-10, 2023
Revised manuscript not accepted
Short summary
Short summary
The Southern Ocean is warming faster than the global average. As a globally important carbon sink and nutrient source, climate driven changes in ecosystems can be expected to cause widespread changes to biogeochemical cycles. We analysed earth system models and showed that productivity is expected to increase across the Southern Ocean, driven by different phytoplankton groups at different latitudes. These predictions carry large uncertainties, we propose targeted studies to reduce this error.
Jessica Ashley Valerie Breavington, Alexandra Steckbauer, Chuancheng Fu, Mongi Ennasri, and Carlos Manuel Duarte
EGUsphere, https://doi.org/10.5194/egusphere-2024-1831, https://doi.org/10.5194/egusphere-2024-1831, 2024
Short summary
Short summary
Mangroves are known for storing large amounts of carbon in their soils, but this is lower in the Red Sea due to challenging growth conditions. We collected soil cores over multiple seasons to measure soil properties, and the greenhouse gasses (GHG) of carbon dioxide and methane. We found that GHG emissions are generally a small offset to carbon storage but punctuated by periods of very high GHG emission and this variability is linked to multiple environmental and soil properties.
Ben J. Fisher, Alex J. Poulton, Michael P. Meredith, Kimberlee Baldry, Oscar Schofield, and Sian F. Henley
EGUsphere, https://doi.org/10.5194/egusphere-2024-990, https://doi.org/10.5194/egusphere-2024-990, 2024
Short summary
Short summary
The Southern Ocean is a rapidly warming environment, with subsequent impacts on ecosystems and biogeochemical cycling. This study examines changes in phytoplankton and biogeochemistry using a range of climate models. Under climate change the Southern Ocean will be warmer, more acidic, more productive and have reduced nutrient availability by 2100. However, there is substantial variability between models across key productivity parameters, we propose ways of reducing this uncertainty.
Christian Lønborg, Cátia Carreira, Gwenaël Abril, Susana Agustí, Valentina Amaral, Agneta Andersson, Javier Arístegui, Punyasloke Bhadury, Mariana B. Bif, Alberto V. Borges, Steven Bouillon, Maria Ll. Calleja, Luiz C. Cotovicz Jr., Stefano Cozzi, Maryló Doval, Carlos M. Duarte, Bradley Eyre, Cédric G. Fichot, E. Elena García-Martín, Alexandra Garzon-Garcia, Michele Giani, Rafael Gonçalves-Araujo, Renee Gruber, Dennis A. Hansell, Fuminori Hashihama, Ding He, Johnna M. Holding, William R. Hunter, J. Severino P. Ibánhez, Valeria Ibello, Shan Jiang, Guebuem Kim, Katja Klun, Piotr Kowalczuk, Atsushi Kubo, Choon-Weng Lee, Cláudia B. Lopes, Federica Maggioni, Paolo Magni, Celia Marrase, Patrick Martin, S. Leigh McCallister, Roisin McCallum, Patricia M. Medeiros, Xosé Anxelu G. Morán, Frank E. Muller-Karger, Allison Myers-Pigg, Marit Norli, Joanne M. Oakes, Helena Osterholz, Hyekyung Park, Maria Lund Paulsen, Judith A. Rosentreter, Jeff D. Ross, Digna Rueda-Roa, Chiara Santinelli, Yuan Shen, Eva Teira, Tinkara Tinta, Guenther Uher, Masahide Wakita, Nicholas Ward, Kenta Watanabe, Yu Xin, Youhei Yamashita, Liyang Yang, Jacob Yeo, Huamao Yuan, Qiang Zheng, and Xosé Antón Álvarez-Salgado
Earth Syst. Sci. Data, 16, 1107–1119, https://doi.org/10.5194/essd-16-1107-2024, https://doi.org/10.5194/essd-16-1107-2024, 2024
Short summary
Short summary
In this paper, we present the first edition of a global database compiling previously published and unpublished measurements of dissolved organic matter (DOM) collected in coastal waters (CoastDOM v1). Overall, the CoastDOM v1 dataset will be useful to identify global spatial and temporal patterns and to facilitate reuse in studies aimed at better characterizing local biogeochemical processes and identifying a baseline for modelling future changes in coastal waters.
Afrah Alothman, Daffne López-Sandoval, Carlos M. Duarte, and Susana Agustí
Biogeosciences, 20, 3613–3624, https://doi.org/10.5194/bg-20-3613-2023, https://doi.org/10.5194/bg-20-3613-2023, 2023
Short summary
Short summary
This study investigates bacterial dissolved inorganic carbon (DIC) fixation in the Red Sea, an oligotrophic ecosystem, using stable-isotope labeling and spectroscopy. The research reveals that bacterial DIC fixation significantly contributes to total DIC fixation, in the surface and deep water. The study demonstrates that as primary production decreases, the role of bacterial DIC fixation increases, emphasizing its importance with photosynthesis in estimating oceanic carbon dioxide production.
Ben J. Fisher, Alex J. Poulton, Michael P. Meredith, Kimberlee Baldry, Oscar Schofield, and Sian F. Henley
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-10, https://doi.org/10.5194/bg-2023-10, 2023
Revised manuscript not accepted
Short summary
Short summary
The Southern Ocean is warming faster than the global average. As a globally important carbon sink and nutrient source, climate driven changes in ecosystems can be expected to cause widespread changes to biogeochemical cycles. We analysed earth system models and showed that productivity is expected to increase across the Southern Ocean, driven by different phytoplankton groups at different latitudes. These predictions carry large uncertainties, we propose targeted studies to reduce this error.
Nadia Burgoa, Francisco Machín, Ángeles Marrero-Díaz, Ángel Rodríguez-Santana, Antonio Martínez-Marrero, Javier Arístegui, and Carlos Manuel Duarte
Ocean Sci., 16, 483–511, https://doi.org/10.5194/os-16-483-2020, https://doi.org/10.5194/os-16-483-2020, 2020
Short summary
Short summary
The main objective of the study is to analyze the export of carbon to the open ocean from the rich waters of the upwelling system of North Africa. South of the Canary Islands, permanent upwelling interacts with other physical processes impacting the main biogeochemical processes. Taking advantage of data from two cruises combined with the outputs of models, important conclusions from the differences observed between seasons are obtained, largely related to changes in the CVFZ in this area.
Celina Burkholz, Neus Garcias-Bonet, and Carlos M. Duarte
Biogeosciences, 17, 1717–1730, https://doi.org/10.5194/bg-17-1717-2020, https://doi.org/10.5194/bg-17-1717-2020, 2020
Short summary
Short summary
Seagrass meadows store carbon in their biomass and sediments, but they have also been shown to be sources of carbon dioxide (CO2) and methane (CH4). We experimentally investigated the effect of warming and prolonged darkness on CO2 and CH4 fluxes in Red Sea seagrass (Halophila stipulacea) communities. Our results indicated that sublethal warming may lead to increased emissions of greenhouse gases from seagrass meadows which may contribute to further enhance global warming.
Miguel Agulles, Gabriel Jordà, Burt Jones, Susana Agustí, and Carlos M. Duarte
Ocean Sci., 16, 149–166, https://doi.org/10.5194/os-16-149-2020, https://doi.org/10.5194/os-16-149-2020, 2020
Short summary
Short summary
The Red Sea holds one of the most diverse marine ecosystems in the world, although fragile and vulnerable to ocean warming. To better understand the long-term variability and trends of temperature in the whole water column, we produce a 3-D gridded temperature product (TEMPERSEA) for the period 1958–2017, based on a large number of in situ observations, covering the Red Sea and the Gulf of Aden.
Susana Agustí, Jeffrey W. Krause, Israel A. Marquez, Paul Wassmann, Svein Kristiansen, and Carlos M. Duarte
Biogeosciences, 17, 35–45, https://doi.org/10.5194/bg-17-35-2020, https://doi.org/10.5194/bg-17-35-2020, 2020
Short summary
Short summary
We found that 24 % of the total diatoms community in the Arctic water column (450 m depth) was located below the photic layer. Healthy diatom communities in active spring–bloom stages remained in the photic layer. Dying diatom communities exported a large fraction of the biomass to the aphotic zone, fuelling carbon sequestration and benthic ecosystems in the Arctic. The results of the study conform to a conceptual model where diatoms grow during the bloom until silicic acid stocks are depleted.
Daffne C. López-Sandoval, Katherine Rowe, Paloma Carillo-de-Albonoz, Carlos M. Duarte, and Susana Agustí
Biogeosciences, 16, 2983–2995, https://doi.org/10.5194/bg-16-2983-2019, https://doi.org/10.5194/bg-16-2983-2019, 2019
Short summary
Short summary
We addressed how the intertwined effect of temperature and nutrients modulates the metabolic response of planktonic communities in the Red Sea, one of the warmest seas on earth. Our study unveiled that photosynthesis increases at a faster pace than respiration rates for this group of organisms formed by microalgae, bacteria, and drifting animals. This anomaly is likely due to the nature of the basin where the warmest waters are frequently enriched with nutrients, which favours microalgae growth.
Susann Rossbach, Vincent Saderne, Andrea Anton, and Carlos M. Duarte
Biogeosciences, 16, 2635–2650, https://doi.org/10.5194/bg-16-2635-2019, https://doi.org/10.5194/bg-16-2635-2019, 2019
Short summary
Short summary
Giant clams including the species Tridacna maxima are unique among bivalves as they live in symbiosis with unicellular algae and generally function as net photoautotrophs. Light is therefore crucial for these species to thrive. We show that net calcification and photosynthetic rates of T. maxima are light dependent, with maximum rates at conditions comparable to 4 m water depth, reflected also in the depth-related distribution in the Red Sea with maximum abundances in shallow sunlit coral reefs.
Neus Garcias-Bonet, Raquel Vaquer-Sunyer, Carlos M. Duarte, and Núria Marbà
Biogeosciences, 16, 167–175, https://doi.org/10.5194/bg-16-167-2019, https://doi.org/10.5194/bg-16-167-2019, 2019
Short summary
Short summary
We assess the impact of warming on nitrogen fixation in three key Mediterranean macrophytes by experimentally measuring sediment nitrogen fixation rates at current and projected seawater temperature by 2100 under a scenario of moderate greenhouse gas emissions. The temperature dependence of nitrogen fixation could potentially increase rates by 37 % by the end of the century, with important consequences for primary production in coastal ecosystems.
Neus Garcias-Bonet, Marco Fusi, Muhammad Ali, Dario R. Shaw, Pascal E. Saikaly, Daniele Daffonchio, and Carlos M. Duarte
Biogeosciences, 15, 7333–7346, https://doi.org/10.5194/bg-15-7333-2018, https://doi.org/10.5194/bg-15-7333-2018, 2018
Short summary
Short summary
Nitrogen (N) loads are detrimental for coastal ecosystems. We measured the balance between N losses and gains in a Red Sea seagrass. The N loss was higher than N2 fixed, pointing out the importance of seagrasses in removing N from the system. N2 losses increased with temperature. Therefore, the forecasted warming could increase the N2 flux to the atmosphere, potentially impacting seagrass productivity and their capacity to mitigate climate change but also enhancing their potential N removal.
Ariane Arias-Ortiz, Pere Masqué, Jordi Garcia-Orellana, Oscar Serrano, Inés Mazarrasa, Núria Marbà, Catherine E. Lovelock, Paul S. Lavery, and Carlos M. Duarte
Biogeosciences, 15, 6791–6818, https://doi.org/10.5194/bg-15-6791-2018, https://doi.org/10.5194/bg-15-6791-2018, 2018
Short summary
Short summary
Efforts to include tidal marsh, mangrove and seagrass ecosystems in existing carbon mitigation strategies are limited by a lack of estimates of carbon accumulation rates (CARs). We discuss the use of 210Pb dating to determine CARs in these habitats, which are often composed of heterogeneous sediments and affected by sedimentary processes. Results show that obtaining reliable geochronologies in these systems is ambitious, but estimates of mean 100-year CARs are mostly secure within 20 % error.
Jeffrey W. Krause, Carlos M. Duarte, Israel A. Marquez, Philipp Assmy, Mar Fernández-Méndez, Ingrid Wiedmann, Paul Wassmann, Svein Kristiansen, and Susana Agustí
Biogeosciences, 15, 6503–6517, https://doi.org/10.5194/bg-15-6503-2018, https://doi.org/10.5194/bg-15-6503-2018, 2018
Short summary
Short summary
Diatoms can dominate the Arctic Ocean spring bloom, the key annual event for regional food webs. Diatom growth requires silicon and this nutrient has been declining in the European Arctic. This study communicates an unprecedented combination of silicon-cycling measurements around Svalbard during the spring and shows that dissolved silicon can limit diatom production. These results suggest an important coupling of silicon and carbon cycling during the spring bloom in the European Arctic.
Anna Roik, Till Röthig, Claudia Pogoreutz, Vincent Saderne, and Christian R. Voolstra
Biogeosciences, 15, 6277–6296, https://doi.org/10.5194/bg-15-6277-2018, https://doi.org/10.5194/bg-15-6277-2018, 2018
Short summary
Short summary
In this study we collected in situ accretion/erosion rates and abiotic/biotic variables to estimate carbonate budgets and ecological drivers of coral reef growth in the central Red Sea. Our data suggest that reef growth is comparable to estimates of other regions, but the erosive forces in the Red Sea are not as pronounced. Comparison with recent data suggests that Red Sea reef growth might not have decreased over the past decades, despite warming, calling for more detailed investigations.
Mallory A. Sea, Neus Garcias-Bonet, Vincent Saderne, and Carlos M. Duarte
Biogeosciences, 15, 5365–5375, https://doi.org/10.5194/bg-15-5365-2018, https://doi.org/10.5194/bg-15-5365-2018, 2018
Short summary
Short summary
Mangroves are capable of storing carbon in their roots, leaves, and in the sediment; however they can also emit carbon as greenhouse gases (GHG) to the atmosphere. In this study, we collected sediment cores and calculated GHG flux rates from mangrove forests along the Red Sea coastline. Using flux rates reported in this study, we determined that Red Sea mangroves are net carbon sinks, storing more carbon than they emit. This study provides rationale to conserve and expand Red Sea mangroves.
Aisling Fontanini, Alexandra Steckbauer, Sam Dupont, and Carlos M. Duarte
Biogeosciences, 15, 3717–3729, https://doi.org/10.5194/bg-15-3717-2018, https://doi.org/10.5194/bg-15-3717-2018, 2018
Short summary
Short summary
Invertebrate species of the Gullmar Fjord (Sweden) were exposed to four different treatments (high/low oxygen and low/high CO2) and respiration measured. Respiration responses of species of contrasting habitats and life-history strategies to single and multiple stressors was evaluated. Results show that the responses of the respiration were highly species specific as we observed both synergetic as well as antagonistic responses, and neither phylum nor habitat explained trends in respiration.
Francesca Iuculano, Carlos Maria Duarte, Núria Marbà, and Susana Agustí
Biogeosciences, 14, 5069–5075, https://doi.org/10.5194/bg-14-5069-2017, https://doi.org/10.5194/bg-14-5069-2017, 2017
Vincent Saderne, Peer Fietzek, Jens Daniel Müller, Arne Körtzinger, and Claas Hiebenthal
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-351, https://doi.org/10.5194/bg-2017-351, 2017
Preprint withdrawn
Carlos M. Duarte
Biogeosciences, 14, 301–310, https://doi.org/10.5194/bg-14-301-2017, https://doi.org/10.5194/bg-14-301-2017, 2017
Short summary
Short summary
Vegetated coastal habitats (mangroves, seagrass meadows, salt marshes and macroalgal beds) are key contributors to the marine carbon budget, but remain hidden in the representation of the coastal carbon budget. While they have been acknowledged to play an important role in carbon burial, this is small compared to the export flow, which may lead to carbon sequestration beyond these habitats. The carbon fluxes supported by vegetated coastal habitats are globally relevant.
Alexandra Coello-Camba and Susana Agustí
Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-424, https://doi.org/10.5194/bg-2016-424, 2016
Revised manuscript not accepted
Short summary
Short summary
We demonstrated that the effects of increased temperature and pCO2
on the silicification process in diatoms are interactive, showing a temperature dependent capacity of increased pCO2 to buffer the negative effects of warming. Therefore, as long as the increase in temperature does not surpass the buffering capacity of pCO2, the increase of this latter stressor will help diatoms to retain their sinking properties, preserving their role in the biogeochemical
cycles of silica and carbon.
Oscar Serrano, Paul S. Lavery, Carlos M. Duarte, Gary A. Kendrick, Antoni Calafat, Paul H. York, Andy Steven, and Peter I. Macreadie
Biogeosciences, 13, 4915–4926, https://doi.org/10.5194/bg-13-4915-2016, https://doi.org/10.5194/bg-13-4915-2016, 2016
Short summary
Short summary
We explored the relationship between organic carbon and mud (i.e. silt and clay) contents in seagrass ecosystems to address whether mud can be used to predict soil C content, thereby enabling robust scaling up exercises at a low cost as part of blue carbon stock assessments. We show that mud is not a universal proxy for blue carbon content in seagrass ecosystems, but it can be used to estimate soil Corg content when low biomass seagrass species (i.e. Zostera, Halodule and Halophila) are present.
Oscar Serrano, Aurora M. Ricart, Paul S. Lavery, Miguel Angel Mateo, Ariane Arias-Ortiz, Pere Masque, Mohammad Rozaimi, Andy Steven, and Carlos M. Duarte
Biogeosciences, 13, 4581–4594, https://doi.org/10.5194/bg-13-4581-2016, https://doi.org/10.5194/bg-13-4581-2016, 2016
Short summary
Short summary
The recent focus on carbon (C) trading has intensified interest in "Blue Carbon" – C sequestered by coastal vegetation. However, the factors influencing C storage are poorly understood. The patterns found in this study support that C storage in Posidonia seagrass soils is influenced by interactions of biological, chemical and physical factors within the meadow. We conclude that there is a need to improve global estimates accounting for biogeochemical factors driving variability within habitats.
J. E. Rheuban, S. Williamson, J. E. Costa, D. M. Glover, R. W. Jakuba, D. C. McCorkle, C. Neill, T. Williams, and S. C. Doney
Biogeosciences, 13, 253–265, https://doi.org/10.5194/bg-13-253-2016, https://doi.org/10.5194/bg-13-253-2016, 2016
Short summary
Short summary
We analysed 22 years of water quality data collected through a citizen science program focused on Buzzards Bay, MA. We found that summertime water temperatures warmed by nearly 2C and chlorophyll a nearly doubled across Buzzards Bay from 1992-2013. Although water quality worsened over time, nutrient concentrations remained largely the same in many places. Warming or altered rainfall patterns from a changing climate may partially offset benefits achieved by reducing nutrients.
D. Krause-Jensen, C. M. Duarte, I. E. Hendriks, L. Meire, M. E. Blicher, N. Marbà, and M. K. Sejr
Biogeosciences, 12, 4895–4911, https://doi.org/10.5194/bg-12-4895-2015, https://doi.org/10.5194/bg-12-4895-2015, 2015
Short summary
Short summary
The Arctic Ocean is considered the most vulnerable ecosystem to ocean acidification (OA), but very little information is available on natural variability of pH in the Arctic coastal zone. We report pH variability at various scales in a Greenland fjord. Variability ranged up to 0.2-0.3 pH units horizontally and vertically in the fjord, between seasons and on diel basis in kelp forests and was extreme in tidal pools. Overall, primary producers played a fundamental role in producing mosaics of pH.
V. Saderne, P. Fietzek, S. Aßmann, A. Körtzinger, and C. Hiebenthal
Biogeosciences Discuss., https://doi.org/10.5194/bgd-12-11423-2015, https://doi.org/10.5194/bgd-12-11423-2015, 2015
Revised manuscript not accepted
A. N. Schwier, C. Rose, E. Asmi, A. M. Ebling, W. M. Landing, S. Marro, M.-L. Pedrotti, A. Sallon, F. Iuculano, S. Agusti, A. Tsiola, P. Pitta, J. Louis, C. Guieu, F. Gazeau, and K. Sellegri
Atmos. Chem. Phys., 15, 7961–7976, https://doi.org/10.5194/acp-15-7961-2015, https://doi.org/10.5194/acp-15-7961-2015, 2015
Short summary
Short summary
The effect of ocean acidification and changing water conditions on primary (and secondary) marine aerosol emissions is not well understood on a regional or a global scale. To investigate this effect, we deployed mesocosms in the Mediterranean Sea for several weeks during both winter pre-bloom and summer oligotrophic conditions and subjected them to various levels of CO2. We observed larger effects due to the differences between a pre-bloom and oligotrophic environment than due to CO2 levels.
S. Lasternas and S. Agustí
Biogeosciences, 11, 6377–6387, https://doi.org/10.5194/bg-11-6377-2014, https://doi.org/10.5194/bg-11-6377-2014, 2014
L. S. García-Corral, E. Barber, A. Regaudie-de-Gioux, S. Sal, J. M. Holding, S. Agustí, N. Navarro, P. Serret, P. Mozetič, and C. M. Duarte
Biogeosciences, 11, 4529–4540, https://doi.org/10.5194/bg-11-4529-2014, https://doi.org/10.5194/bg-11-4529-2014, 2014
J.-P. Gattuso, W. Kirkwood, J. P. Barry, E. Cox, F. Gazeau, L. Hansson, I. Hendriks, D.I. Kline, P. Mahacek, S. Martin, P. McElhany, E. T. Peltzer, J. Reeve, D. Roberts, V. Saderne, K. Tait, S. Widdicombe, and P. G. Brewer
Biogeosciences, 11, 4057–4075, https://doi.org/10.5194/bg-11-4057-2014, https://doi.org/10.5194/bg-11-4057-2014, 2014
S. Ruiz-Halpern, M. Ll. Calleja, J. Dachs, S. Del Vento, M. Pastor, M. Palmer, S. Agustí, and C. M. Duarte
Biogeosciences, 11, 2755–2770, https://doi.org/10.5194/bg-11-2755-2014, https://doi.org/10.5194/bg-11-2755-2014, 2014
I. E. Hendriks, Y. S. Olsen, L. Ramajo, L. Basso, A. Steckbauer, T. S. Moore, J. Howard, and C. M. Duarte
Biogeosciences, 11, 333–346, https://doi.org/10.5194/bg-11-333-2014, https://doi.org/10.5194/bg-11-333-2014, 2014
S. Lasternas, M. Piedeleu, P. Sangrà, C. M. Duarte, and S. Agustí
Biogeosciences, 10, 2129–2143, https://doi.org/10.5194/bg-10-2129-2013, https://doi.org/10.5194/bg-10-2129-2013, 2013
R. Vaquer-Sunyer, C. M. Duarte, J. Holding, A. Regaudie-de-Gioux, L. S. García-Corral, M. Reigstad, and P. Wassmann
Biogeosciences, 10, 1451–1469, https://doi.org/10.5194/bg-10-1451-2013, https://doi.org/10.5194/bg-10-1451-2013, 2013
M. Alcaraz, R. Almeda, E. Saiz, A. Calbet, C. M. Duarte, S. Agustí, R. Santiago, and A. Alonso
Biogeosciences, 10, 689–697, https://doi.org/10.5194/bg-10-689-2013, https://doi.org/10.5194/bg-10-689-2013, 2013
Related subject area
Biogeochemistry: Coastal Ocean
The Northeast Greenland Shelf as a potential late-summer CO2 source to the atmosphere
Technical note: Ocean Alkalinity Enhancement Pelagic Impact Intercomparison Project (OAEPIIP)
Estimates of carbon sequestration potential in an expanding Arctic fjord (Hornsund, Svalbard) affected by dark plumes of glacial meltwater
An assessment of ocean alkalinity enhancement using aqueous hydroxides: kinetics, efficiency, and precipitation thresholds
Dissolved nitric oxide in the lower Elbe Estuary and the Port of Hamburg area
Variable contribution of wastewater treatment plant effluents to downstream nitrous oxide concentrations and emissions
Distribution of nutrients and dissolved organic matter in a eutrophic equatorial estuary: the Johor River and the East Johor Strait
Investigating the effect of silicate- and calcium-based ocean alkalinity enhancement on diatom silicification
Ocean alkalinity enhancement using sodium carbonate salts does not lead to measurable changes in Fe dynamics in a mesocosm experiment
Quantification and mitigation of bottom-trawling impacts on sedimentary organic carbon stocks in the North Sea
Temperature-enhanced effects of iron on Southern Ocean phytoplankton
Influence of ocean alkalinity enhancement with olivine or steel slag on a coastal plankton community in Tasmania
Multi-model comparison of trends and controls of near-bed oxygen concentration on the northwest European continental shelf under climate change
Picoplanktonic methane production in eutrophic surface waters
Vertical mixing alleviates autumnal oxygen deficiency in the central North Sea
Hypoxia also occurs in small highly turbid estuaries: the example of the Charente (Bay of Biscay)
Seasonality and response of ocean acidification and hypoxia to major environmental anomalies in the southern Salish Sea, North America (2014–2018)
Oceanographic processes driving low-oxygen conditions inside Patagonian fjords
Above- and belowground plant mercury dynamics in a salt marsh estuary in Massachusetts, USA
Reviews and syntheses: Biological Indicators of Oxygen Stress in Water Breathing Animals
Variability and drivers of carbonate chemistry at shellfish aquaculture sites in the Salish Sea, British Columbia
Unusual Hemiaulus bloom influences ocean productivity in Northeastern US Shelf waters
Insights into carbonate environmental conditions in the Chukchi Sea
UAV approaches for improved mapping of vegetation cover and estimation of carbon storage of small saltmarshes: examples from Loch Fleet, northeast Scotland
Iron “ore” nothing: benthic iron fluxes from the oxygen-deficient Santa Barbara Basin enhance phytoplankton productivity in surface waters
Marine anoxia initiates giant sulfur-oxidizing bacterial mat proliferation and associated changes in benthic nitrogen, sulfur, and iron cycling in the Santa Barbara Basin, California Borderland
Riverine nutrient impact on global ocean nitrogen cycle feedbacks and marine primary production in an Earth System Model
Uncertainty in the evolution of northwestern North Atlantic circulation leads to diverging biogeochemical projections
The additionality problem of ocean alkalinity enhancement
Short-term variation in pH in seawaters around coastal areas of Japan: characteristics and forcings
Revisiting the applicability and constraints of molybdenum- and uranium-based paleo redox proxies: comparing two contrasting sill fjords
Influence of a small submarine canyon on biogenic matter export flux in the lower St. Lawrence Estuary, eastern Canada
Single-celled bioturbators: benthic foraminifera mediate oxygen penetration and prokaryotic diversity in intertidal sediment
Assessing impacts of coastal warming, acidification, and deoxygenation on Pacific oyster (Crassostrea gigas) farming: a case study in the Hinase area, Okayama Prefecture, and Shizugawa Bay, Miyagi Prefecture, Japan
Multiple nitrogen sources for primary production inferred from δ13C and δ15N in the southern Sea of Japan
Influence of manganese cycling on alkalinity in the redox stratified water column of Chesapeake Bay
Estuarine flocculation dynamics of organic carbon and metals from boreal acid sulfate soils
Drivers of particle sinking velocities in the Peruvian upwelling system
Impacts and uncertainties of climate-induced changes in watershed inputs on estuarine hypoxia
Considerations for hypothetical carbon dioxide removal via alkalinity addition in the Amazon River watershed
High metabolism and periodic hypoxia associated with drifting macrophyte detritus in the shallow subtidal Baltic Sea
Production and accumulation of reef framework by calcifying corals and macroalgae on a remote Indian Ocean cay
Zooplankton community succession and trophic links during a mesocosm experiment in the coastal upwelling off Callao Bay (Peru)
Temporal and spatial evolution of bottom-water hypoxia in the St Lawrence estuarine system
Significant nutrient consumption in the dark subsurface layer during a diatom bloom: a case study on Funka Bay, Hokkaido, Japan
Contrasts in dissolved, particulate, and sedimentary organic carbon from the Kolyma River to the East Siberian Shelf
Sediment quality assessment in an industrialized Greek coastal marine area (western Saronikos Gulf)
Limits and CO2 equilibration of near-coast alkalinity enhancement
Role of phosphorus in the seasonal deoxygenation of the East China Sea shelf
Interannual variability of the initiation of the phytoplankton growing period in two French coastal ecosystems
Esdoorn Willcox, Marcos Lemes, Thomas Juul-Pedersen, Mikael Kristian Sejr, Johnna Marchiano Holding, and Søren Rysgaard
Biogeosciences, 21, 4037–4050, https://doi.org/10.5194/bg-21-4037-2024, https://doi.org/10.5194/bg-21-4037-2024, 2024
Short summary
Short summary
In this work, we measured the chemistry of seawater from samples obtained from different depths and locations off the east coast of the Northeast Greenland National Park to determine what is influencing concentrations of dissolved CO2. Historically, the region has always been thought to take up CO2 from the atmosphere, but we show that it is possible for the region to become a source in late summer. We discuss the variables that may be related to such changes.
Lennart Thomas Bach, Aaron James Ferderer, Julie LaRoche, and Kai Georg Schulz
Biogeosciences, 21, 3665–3676, https://doi.org/10.5194/bg-21-3665-2024, https://doi.org/10.5194/bg-21-3665-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is an emerging marine CO2 removal method, but its environmental effects are insufficiently understood. The OAE Pelagic Impact Intercomparison Project (OAEPIIP) provides funding for a standardized and globally replicated microcosm experiment to study the effects of OAE on plankton communities. Here, we provide a detailed manual for the OAEPIIP experiment. We expect OAEPIIP to help build scientific consensus on the effects of OAE on plankton.
Marlena Szeligowska, Déborah Benkort, Anna Przyborska, Mateusz Moskalik, Bernabé Moreno, Emilia Trudnowska, and Katarzyna Błachowiak-Samołyk
Biogeosciences, 21, 3617–3639, https://doi.org/10.5194/bg-21-3617-2024, https://doi.org/10.5194/bg-21-3617-2024, 2024
Short summary
Short summary
The European Arctic is experiencing rapid regional warming, causing glaciers that terminate in the sea to retreat onto land. Due to this process, the area of a well-studied fjord, Hornsund, has increased by around 100 km2 (40%) since 1976. Combining satellite and in situ data with a mathematical model, we estimated that, despite some negative consequences of glacial meltwater release, such emerging coastal waters could mitigate climate change by increasing carbon uptake and storage by sediments.
Mallory C. Ringham, Nathan Hirtle, Cody Shaw, Xi Lu, Julian Herndon, Brendan R. Carter, and Matthew D. Eisaman
Biogeosciences, 21, 3551–3570, https://doi.org/10.5194/bg-21-3551-2024, https://doi.org/10.5194/bg-21-3551-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement leverages the large surface area and carbon storage capacity of the oceans to store atmospheric CO2 as dissolved bicarbonate. We monitored CO2 uptake in seawater treated with NaOH to establish operational boundaries for carbon removal experiments. Results show that CO2 equilibration occurred on the order of weeks to months, was consistent with values expected from equilibration calculations, and was limited by mineral precipitation at high pH and CaCO3 saturation.
Riel Carlo O. Ingeniero, Gesa Schulz, and Hermann W. Bange
Biogeosciences, 21, 3425–3440, https://doi.org/10.5194/bg-21-3425-2024, https://doi.org/10.5194/bg-21-3425-2024, 2024
Short summary
Short summary
Our research is the first to measure dissolved NO concentrations in temperate estuarine waters, providing insights into its distribution under varying conditions and enhancing our understanding of its production processes. Dissolved NO was supersaturated in the Elbe Estuary, indicating that it is a source of atmospheric NO. The observed distribution of dissolved NO most likely resulted from nitrification.
Weiyi Tang, Jeff Talbott, Timothy Jones, and Bess B. Ward
Biogeosciences, 21, 3239–3250, https://doi.org/10.5194/bg-21-3239-2024, https://doi.org/10.5194/bg-21-3239-2024, 2024
Short summary
Short summary
Wastewater treatment plants (WWTPs) are known to be hotspots of greenhouse gas emissions. However, the impact of WWTPs on the emission of the greenhouse gas N2O in downstream aquatic environments is less constrained. We found spatially and temporally variable but overall higher N2O concentrations and fluxes in waters downstream of WWTPs, pointing to the need for efficient N2O removal in addition to the treatment of nitrogen in WWTPs.
Amanda Y. L. Cheong, Kogila Vani Annammala, Ee Ling Yong, Yongli Zhou, Robert S. Nichols, and Patrick Martin
Biogeosciences, 21, 2955–2971, https://doi.org/10.5194/bg-21-2955-2024, https://doi.org/10.5194/bg-21-2955-2024, 2024
Short summary
Short summary
We measured nutrients and dissolved organic matter for 1 year in a eutrophic tropical estuary to understand their sources and cycling. Our data show that the dissolved organic matter originates partly from land and partly from microbial processes in the water. Internal recycling is likely important for maintaining high nutrient concentrations, and we found that there is often excess nitrogen compared to silicon and phosphorus. Our data help to explain how eutrophication persists in this system.
Aaron Ferderer, Kai G. Schulz, Ulf Riebesell, Kirralee G. Baker, Zanna Chase, and Lennart T. Bach
Biogeosciences, 21, 2777–2794, https://doi.org/10.5194/bg-21-2777-2024, https://doi.org/10.5194/bg-21-2777-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is a promising method of atmospheric carbon removal; however, its ecological impacts remain largely unknown. We assessed the effects of simulated silicate- and calcium-based mineral OAE on diatom silicification. We found that increased silicate concentrations from silicate-based OAE increased diatom silicification. In contrast, the enhancement of alkalinity had no effect on community silicification and minimal effects on the silicification of different genera.
David González-Santana, María Segovia, Melchor González-Dávila, Librada Ramírez, Aridane G. González, Leonardo J. Pozzo-Pirotta, Veronica Arnone, Victor Vázquez, Ulf Riebesell, and J. Magdalena Santana-Casiano
Biogeosciences, 21, 2705–2715, https://doi.org/10.5194/bg-21-2705-2024, https://doi.org/10.5194/bg-21-2705-2024, 2024
Short summary
Short summary
In a recent experiment off the coast of Gran Canaria (Spain), scientists explored a method called ocean alkalinization enhancement (OAE), where carbonate minerals were added to seawater. This process changed the levels of certain ions in the water, affecting its pH and buffering capacity. The researchers were particularly interested in how this could impact the levels of essential trace metals in the water.
Lucas Porz, Wenyan Zhang, Nils Christiansen, Jan Kossack, Ute Daewel, and Corinna Schrum
Biogeosciences, 21, 2547–2570, https://doi.org/10.5194/bg-21-2547-2024, https://doi.org/10.5194/bg-21-2547-2024, 2024
Short summary
Short summary
Seafloor sediments store a large amount of carbon, helping to naturally regulate Earth's climate. If disturbed, some sediment particles can turn into CO2, but this effect is not well understood. Using computer simulations, we found that bottom-contacting fishing gears release about 1 million tons of CO2 per year in the North Sea, one of the most heavily fished regions globally. We show how protecting certain areas could reduce these emissions while also benefitting seafloor-living animals.
Charlotte Eich, Mathijs van Manen, J. Scott P. McCain, Loay J. Jabre, Willem H. van de Poll, Jinyoung Jung, Sven B. E. H. Pont, Hung-An Tian, Indah Ardiningsih, Gert-Jan Reichart, Erin M. Bertrand, Corina P. D. Brussaard, and Rob Middag
EGUsphere, https://doi.org/10.5194/egusphere-2024-1508, https://doi.org/10.5194/egusphere-2024-1508, 2024
Short summary
Short summary
Phytoplankton growth in the Southern Ocean (SO) is often limited by low iron (Fe) concentrations. Sea surface warming impacts Fe availability and can affect phytoplankton growth. We used Fe clean shipboard incubations to test how changes in Fe and temperature affect SO phytoplankton. Their abundances usually increased with Fe addition and temperature increase, with Fe being the major factor. These findings imply potential shifts in ecosystem structure, impacting food webs and elemental cycling.
Jiaying A. Guo, Robert F. Strzepek, Kerrie M. Swadling, Ashley T. Townsend, and Lennart T. Bach
Biogeosciences, 21, 2335–2354, https://doi.org/10.5194/bg-21-2335-2024, https://doi.org/10.5194/bg-21-2335-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement aims to increase atmospheric CO2 sequestration by adding alkaline materials to the ocean. We assessed the environmental effects of olivine and steel slag powder on coastal plankton. Overall, slag is more efficient than olivine in releasing total alkalinity and, thus, in its ability to sequester CO2. Slag also had less environmental effect on the enclosed plankton communities when considering its higher CO2 removal potential based on this 3-week experiment.
Giovanni Galli, Sarah Wakelin, James Harle, Jason Holt, and Yuri Artioli
Biogeosciences, 21, 2143–2158, https://doi.org/10.5194/bg-21-2143-2024, https://doi.org/10.5194/bg-21-2143-2024, 2024
Short summary
Short summary
This work shows that, under a high-emission scenario, oxygen concentration in deep water of parts of the North Sea and Celtic Sea can become critically low (hypoxia) towards the end of this century. The extent and frequency of hypoxia depends on the intensity of climate change projected by different climate models. This is the result of a complex combination of factors like warming, increase in stratification, changes in the currents and changes in biological processes.
Sandy E. Tenorio and Laura Farías
Biogeosciences, 21, 2029–2050, https://doi.org/10.5194/bg-21-2029-2024, https://doi.org/10.5194/bg-21-2029-2024, 2024
Short summary
Short summary
Time series studies show that CH4 is highly dynamic on the coastal ocean surface and planktonic communities are linked to CH4 accumulation, as found in coastal upwelling off Chile. We have identified the crucial role of picoplankton (> 3 µm) in CH4 recycling, especially with the addition of methylated substrates (trimethylamine and methylphosphonic acid) during upwelling and non-upwelling periods. These insights improve understanding of surface ocean CH4 recycling, aiding CH4 emission estimates.
Charlotte A. J. Williams, Tom Hull, Jan Kaiser, Claire Mahaffey, Naomi Greenwood, Matthew Toberman, and Matthew R. Palmer
Biogeosciences, 21, 1961–1971, https://doi.org/10.5194/bg-21-1961-2024, https://doi.org/10.5194/bg-21-1961-2024, 2024
Short summary
Short summary
Oxygen (O2) is a key indicator of ocean health. The risk of O2 loss in the productive coastal/continental slope regions is increasing. Autonomous underwater vehicles equipped with O2 optodes provide lots of data but have problems resolving strong vertical O2 changes. Here we show how to overcome this and calculate how much O2 is supplied to the low-O2 bottom waters via mixing. Bursts in mixing supply nearly all of the O2 to bottom waters in autumn, stopping them reaching ecologically low levels.
Sabine Schmidt and Ibrahima Iris Diallo
Biogeosciences, 21, 1785–1800, https://doi.org/10.5194/bg-21-1785-2024, https://doi.org/10.5194/bg-21-1785-2024, 2024
Short summary
Short summary
Along the French coast facing the Bay of Biscay, the large Gironde and Loire estuaries suffer from hypoxia. This prompted a study of the small Charente estuary located between them. This work reveals a minimum oxygen zone in the Charente estuary, which extends for about 25 km. Temperature is the main factor controlling the hypoxia. This calls for the monitoring of small turbid macrotidal estuaries that are vulnerable to hypoxia, a risk expected to increase with global warming.
Simone R. Alin, Jan A. Newton, Richard A. Feely, Samantha Siedlecki, and Dana Greeley
Biogeosciences, 21, 1639–1673, https://doi.org/10.5194/bg-21-1639-2024, https://doi.org/10.5194/bg-21-1639-2024, 2024
Short summary
Short summary
We provide a new multi-stressor data product that allows us to characterize the seasonality of temperature, O2, and CO2 in the southern Salish Sea and delivers insights into the impacts of major marine heatwave and precipitation anomalies on regional ocean acidification and hypoxia. We also describe the present-day frequencies of temperature, O2, and ocean acidification conditions that cross thresholds of sensitive regional species that are economically or ecologically important.
Pamela Linford, Iván Pérez-Santos, Paulina Montero, Patricio A. Díaz, Claudia Aracena, Elías Pinilla, Facundo Barrera, Manuel Castillo, Aida Alvera-Azcárate, Mónica Alvarado, Gabriel Soto, Cécile Pujol, Camila Schwerter, Sara Arenas-Uribe, Pilar Navarro, Guido Mancilla-Gutiérrez, Robinson Altamirano, Javiera San Martín, and Camila Soto-Riquelme
Biogeosciences, 21, 1433–1459, https://doi.org/10.5194/bg-21-1433-2024, https://doi.org/10.5194/bg-21-1433-2024, 2024
Short summary
Short summary
The Patagonian fjords comprise a world region where low-oxygen water and hypoxia conditions are observed. An in situ dataset was used to quantify the mechanism involved in the presence of these conditions in northern Patagonian fjords. Water mass analysis confirmed the contribution of Equatorial Subsurface Water in the advection of the low-oxygen water, and hypoxic conditions occurred when the community respiration rate exceeded the gross primary production.
Ting Wang, Buyun Du, Inke Forbrich, Jun Zhou, Joshua Polen, Elsie M. Sunderland, Prentiss H. Balcom, Celia Chen, and Daniel Obrist
Biogeosciences, 21, 1461–1476, https://doi.org/10.5194/bg-21-1461-2024, https://doi.org/10.5194/bg-21-1461-2024, 2024
Short summary
Short summary
The strong seasonal increases of Hg in aboveground biomass during the growing season and the lack of changes observed after senescence in this salt marsh ecosystem suggest physiologically controlled Hg uptake pathways. The Hg sources found in marsh aboveground tissues originate from a mix of sources, unlike terrestrial ecosystems, where atmospheric GEM is the main source. Belowground plant tissues mostly take up Hg from soils. Overall, the salt marsh currently serves as a small net Hg sink.
Michael R. Roman, Andrew H. Altieri, Denise Breitburg, Erica Ferrer, Natalya D. Gallo, Shin-ichi Ito, Karin Limburg, Kenneth Rose, Moriaki Yasuhara, and Lisa A. Levin
EGUsphere, https://doi.org/10.5194/egusphere-2024-616, https://doi.org/10.5194/egusphere-2024-616, 2024
Short summary
Short summary
Oxygen-depleted ocean waters have increased worldwide. In order to improve our understanding of the impacts of this oxygen loss on marine life it is essential that we develop reliable indicators that track the negative impacts of low oxygen. We review various indicators of oxygen stress for marine animals including their use, research needs and application to confront the challenges of ocean oxygen loss.
Eleanor Simpson, Debby Ianson, Karen E. Kohfeld, Ana C. Franco, Paul A. Covert, Marty Davelaar, and Yves Perreault
Biogeosciences, 21, 1323–1353, https://doi.org/10.5194/bg-21-1323-2024, https://doi.org/10.5194/bg-21-1323-2024, 2024
Short summary
Short summary
Shellfish aquaculture operates in nearshore areas where data on ocean acidification parameters are limited. We show daily and seasonal variability in pH and saturation states of calcium carbonate at nearshore aquaculture sites in British Columbia, Canada, and determine the contributing drivers of this variability. We find that nearshore locations have greater variability than open waters and that the uptake of carbon by phytoplankton is the major driver of pH and saturation state variability.
S. Alejandra Castillo Cieza, Rachel H. R. Stanley, Pierre Marrec, Diana N. Fontaine, E. Taylor Crockford, Dennis J. McGillicuddy Jr., Arshia Mehta, Susanne Menden-Deuer, Emily E. Peacock, Tatiana A. Rynearson, Zoe O. Sandwith, Weifeng Zhang, and Heidi M. Sosik
Biogeosciences, 21, 1235–1257, https://doi.org/10.5194/bg-21-1235-2024, https://doi.org/10.5194/bg-21-1235-2024, 2024
Short summary
Short summary
The coastal ocean in the northeastern USA provides many services, including fisheries and habitats for threatened species. In summer 2019, a bloom occurred of a large unusual phytoplankton, the diatom Hemiaulus, with nitrogen-fixing symbionts. This led to vast changes in productivity and grazing rates in the ecosystem. This work shows that the emergence of one species can have profound effects on ecosystem function. Such changes may become more prevalent as the ocean warms due to climate change.
Claudine Hauri, Brita Irving, Sam Dupont, Rémi Pagés, Donna D. W. Hauser, and Seth L. Danielson
Biogeosciences, 21, 1135–1159, https://doi.org/10.5194/bg-21-1135-2024, https://doi.org/10.5194/bg-21-1135-2024, 2024
Short summary
Short summary
Arctic marine ecosystems are highly susceptible to impacts of climate change and ocean acidification. We present pH and pCO2 time series (2016–2020) from the Chukchi Ecosystem Observatory and analyze the drivers of the current conditions to get a better understanding of how climate change and ocean acidification could affect the ecological niches of organisms.
William Hiles, Lucy C. Miller, Craig Smeaton, and William E. N. Austin
Biogeosciences, 21, 929–948, https://doi.org/10.5194/bg-21-929-2024, https://doi.org/10.5194/bg-21-929-2024, 2024
Short summary
Short summary
Saltmarsh soils may help to limit the rate of climate change by storing carbon. To understand their impacts, they must be accurately mapped. We use drone data to estimate the size of three saltmarshes in NE Scotland. We find that drone imagery, combined with tidal data, can reliably inform our understanding of saltmarsh size. When compared with previous work using vegetation communities, we find that our most reliable new estimates of stored carbon are 15–20 % smaller than previously estimated.
De'Marcus Robinson, Anh L. D. Pham, David J. Yousavich, Felix Janssen, Frank Wenzhöfer, Eleanor C. Arrington, Kelsey M. Gosselin, Marco Sandoval-Belmar, Matthew Mar, David L. Valentine, Daniele Bianchi, and Tina Treude
Biogeosciences, 21, 773–788, https://doi.org/10.5194/bg-21-773-2024, https://doi.org/10.5194/bg-21-773-2024, 2024
Short summary
Short summary
The present study suggests that high release of ferrous iron from the seafloor of the oxygen-deficient Santa Barabara Basin (California) supports surface primary productivity, creating positive feedback on seafloor iron release by enhancing low-oxygen conditions in the basin.
David J. Yousavich, De'Marcus Robinson, Xuefeng Peng, Sebastian J. E. Krause, Frank Wenzhöfer, Felix Janssen, Na Liu, Jonathan Tarn, Franklin Kinnaman, David L. Valentine, and Tina Treude
Biogeosciences, 21, 789–809, https://doi.org/10.5194/bg-21-789-2024, https://doi.org/10.5194/bg-21-789-2024, 2024
Short summary
Short summary
Declining oxygen (O2) concentrations in coastal oceans can threaten people’s ways of life and food supplies. Here, we investigate how mats of bacteria that proliferate on the seafloor of the Santa Barbara Basin sustain and potentially worsen these O2 depletion events through their unique chemoautotrophic metabolism. Our study shows how changes in seafloor microbiology and geochemistry brought on by declining O2 concentrations can help these mats grow as well as how that growth affects the basin.
Miriam Tivig, David Peter Keller, and Andreas Oschlies
EGUsphere, https://doi.org/10.5194/egusphere-2024-258, https://doi.org/10.5194/egusphere-2024-258, 2024
Short summary
Short summary
Marine biological production is highly dependent on the availability of nitrogen and phosphorus. Rivers are the main source of phosphorus to the oceans but poorly represented in global model oceans. We include dissolved nitrogen and phosphorus from river export in a global model ocean and find that the addition of riverine phosphorus affects marine biology on millennial timescales more than riverine nitrogen alone. Globally, riverine phosphorus input increase primary production rates.
Krysten Rutherford, Katja Fennel, Lina Garcia Suarez, and Jasmin G. John
Biogeosciences, 21, 301–314, https://doi.org/10.5194/bg-21-301-2024, https://doi.org/10.5194/bg-21-301-2024, 2024
Short summary
Short summary
We downscaled two mid-century (~2075) ocean model projections to a high-resolution regional ocean model of the northwest North Atlantic (NA) shelf. In one projection, the NA shelf break current practically disappears; in the other it remains almost unchanged. This leads to a wide range of possible future shelf properties. More accurate projections of coastal circulation features would narrow the range of possible outcomes of biogeochemical projections for shelf regions.
Lennart Thomas Bach
Biogeosciences, 21, 261–277, https://doi.org/10.5194/bg-21-261-2024, https://doi.org/10.5194/bg-21-261-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is a widely considered marine carbon dioxide removal method. OAE aims to accelerate chemical rock weathering, which is a natural process that slowly sequesters atmospheric carbon dioxide. This study shows that the addition of anthropogenic alkalinity via OAE can reduce the natural release of alkalinity and, therefore, reduce the efficiency of OAE for climate mitigation. However, the additionality problem could be mitigated via a variety of activities.
Tsuneo Ono, Daisuke Muraoka, Masahiro Hayashi, Makiko Yorifuji, Akihiro Dazai, Shigeyuki Omoto, Takehiro Tanaka, Tomohiro Okamura, Goh Onitsuka, Kenji Sudo, Masahiko Fujii, Ryuji Hamanoue, and Masahide Wakita
Biogeosciences, 21, 177–199, https://doi.org/10.5194/bg-21-177-2024, https://doi.org/10.5194/bg-21-177-2024, 2024
Short summary
Short summary
We carried out parallel year-round observations of pH and related parameters in five stations around the Japan coast. It was found that short-term acidified situations with Omega_ar less than 1.5 occurred at four of five stations. Most of such short-term acidified events were related to the short-term low salinity event, and the extent of short-term pH drawdown at high freshwater input was positively correlated with the nutrient concentration of the main rivers that flow into the coastal area.
K. Mareike Paul, Martijn Hermans, Sami A. Jokinen, Inda Brinkmann, Helena L. Filipsson, and Tom Jilbert
Biogeosciences, 20, 5003–5028, https://doi.org/10.5194/bg-20-5003-2023, https://doi.org/10.5194/bg-20-5003-2023, 2023
Short summary
Short summary
Seawater naturally contains trace metals such as Mo and U, which accumulate under low oxygen conditions on the seafloor. Previous studies have used sediment Mo and U contents as an archive of changing oxygen concentrations in coastal waters. Here we show that in fjords the use of Mo and U for this purpose may be impaired by additional processes. Our findings have implications for the reliable use of Mo and U to reconstruct oxygen changes in fjords.
Hannah Sharpe, Michel Gosselin, Catherine Lalande, Alexandre Normandeau, Jean-Carlos Montero-Serrano, Khouloud Baccara, Daniel Bourgault, Owen Sherwood, and Audrey Limoges
Biogeosciences, 20, 4981–5001, https://doi.org/10.5194/bg-20-4981-2023, https://doi.org/10.5194/bg-20-4981-2023, 2023
Short summary
Short summary
We studied the impact of submarine canyon processes within the Pointe-des-Monts system on biogenic matter export and phytoplankton assemblages. Using data from three oceanographic moorings, we show that the canyon experienced two low-amplitude sediment remobilization events in 2020–2021 that led to enhanced particle fluxes in the deep-water column layer > 2.6 km offshore. Sinking phytoplankton fluxes were lower near the canyon compared to background values from the lower St. Lawrence Estuary.
Dewi Langlet, Florian Mermillod-Blondin, Noémie Deldicq, Arthur Bauville, Gwendoline Duong, Lara Konecny, Mylène Hugoni, Lionel Denis, and Vincent M. P. Bouchet
Biogeosciences, 20, 4875–4891, https://doi.org/10.5194/bg-20-4875-2023, https://doi.org/10.5194/bg-20-4875-2023, 2023
Short summary
Short summary
Benthic foraminifera are single-cell marine organisms which can move in the sediment column. They were previously reported to horizontally and vertically transport sediment particles, yet the impact of their motion on the dissolved fluxes remains unknown. Using microprofiling, we show here that foraminiferal burrow formation increases the oxygen penetration depth in the sediment, leading to a change in the structure of the prokaryotic community.
Masahiko Fujii, Ryuji Hamanoue, Lawrence Patrick Cases Bernardo, Tsuneo Ono, Akihiro Dazai, Shigeyuki Oomoto, Masahide Wakita, and Takehiro Tanaka
Biogeosciences, 20, 4527–4549, https://doi.org/10.5194/bg-20-4527-2023, https://doi.org/10.5194/bg-20-4527-2023, 2023
Short summary
Short summary
This is the first study of the current and future impacts of climate change on Pacific oyster farming in Japan. Future coastal warming and acidification may affect oyster larvae as a result of longer exposure to lower-pH waters. A prolonged spawning period may harm oyster processing by shortening the shipping period and reducing oyster quality. To minimize impacts on Pacific oyster farming, in addition to mitigation measures, local adaptation measures may be required.
Taketoshi Kodama, Atsushi Nishimoto, Ken-ichi Nakamura, Misato Nakae, Naoki Iguchi, Yosuke Igeta, and Yoichi Kogure
Biogeosciences, 20, 3667–3682, https://doi.org/10.5194/bg-20-3667-2023, https://doi.org/10.5194/bg-20-3667-2023, 2023
Short summary
Short summary
Carbon and nitrogen are essential elements for organisms; their stable isotope ratios (13C : 12C, 15N : 14N) are useful tools for understanding turnover and movement in the ocean. In the Sea of Japan, the environment is rapidly being altered by human activities. The 13C : 12C of small organic particles is increased by active carbon fixation, and phytoplankton growth increases the values. The 15N : 14N variations suggest that nitrates from many sources contribute to organic production.
Aubin Thibault de Chanvalon, George W. Luther, Emily R. Estes, Jennifer Necker, Bradley M. Tebo, Jianzhong Su, and Wei-Jun Cai
Biogeosciences, 20, 3053–3071, https://doi.org/10.5194/bg-20-3053-2023, https://doi.org/10.5194/bg-20-3053-2023, 2023
Short summary
Short summary
The intensity of the oceanic trap of CO2 released by anthropogenic activities depends on the alkalinity brought by continental weathering. Between ocean and continent, coastal water and estuaries can limit or favour the alkalinity transfer. This study investigate new interactions between dissolved metals and alkalinity in the oxygen-depleted zone of estuaries.
Joonas J. Virtasalo, Peter Österholm, and Eero Asmala
Biogeosciences, 20, 2883–2901, https://doi.org/10.5194/bg-20-2883-2023, https://doi.org/10.5194/bg-20-2883-2023, 2023
Short summary
Short summary
We mixed acidic metal-rich river water from acid sulfate soils and seawater in the laboratory to study the flocculation of dissolved metals and organic matter in estuaries. Al and Fe flocculated already at a salinity of 0–2 to large organic flocs (>80 µm size). Precipitation of Al and Fe hydroxide flocculi (median size 11 µm) began when pH exceeded ca. 5.5. Mn transferred weakly to Mn hydroxides and Co to the flocs. Up to 50 % of Cu was associated with the flocs, irrespective of seawater mixing.
Moritz Baumann, Allanah Joy Paul, Jan Taucher, Lennart Thomas Bach, Silvan Goldenberg, Paul Stange, Fabrizio Minutolo, and Ulf Riebesell
Biogeosciences, 20, 2595–2612, https://doi.org/10.5194/bg-20-2595-2023, https://doi.org/10.5194/bg-20-2595-2023, 2023
Short summary
Short summary
The sinking velocity of marine particles affects how much atmospheric CO2 is stored inside our oceans. We measured particle sinking velocities in the Peruvian upwelling system and assessed their physical and biochemical drivers. We found that sinking velocity was mainly influenced by particle size and porosity, while ballasting minerals played only a minor role. Our findings help us to better understand the particle sinking dynamics in this highly productive marine system.
Kyle E. Hinson, Marjorie A. M. Friedrichs, Raymond G. Najjar, Maria Herrmann, Zihao Bian, Gopal Bhatt, Pierre St-Laurent, Hanqin Tian, and Gary Shenk
Biogeosciences, 20, 1937–1961, https://doi.org/10.5194/bg-20-1937-2023, https://doi.org/10.5194/bg-20-1937-2023, 2023
Short summary
Short summary
Climate impacts are essential for environmental managers to consider when implementing nutrient reduction plans designed to reduce hypoxia. This work highlights relative sources of uncertainty in modeling regional climate impacts on the Chesapeake Bay watershed and consequent declines in bay oxygen levels. The results demonstrate that planned water quality improvement goals are capable of reducing hypoxia levels by half, offsetting climate-driven impacts on terrestrial runoff.
Linquan Mu, Jaime B. Palter, and Hongjie Wang
Biogeosciences, 20, 1963–1977, https://doi.org/10.5194/bg-20-1963-2023, https://doi.org/10.5194/bg-20-1963-2023, 2023
Short summary
Short summary
Enhancing ocean alkalinity accelerates carbon dioxide removal from the atmosphere. We hypothetically added alkalinity to the Amazon River and examined the increment of the carbon uptake by the Amazon plume. We also investigated the minimum alkalinity addition in which this perturbation at the river mouth could be detected above the natural variability.
Karl M. Attard, Anna Lyssenko, and Iván F. Rodil
Biogeosciences, 20, 1713–1724, https://doi.org/10.5194/bg-20-1713-2023, https://doi.org/10.5194/bg-20-1713-2023, 2023
Short summary
Short summary
Aquatic plants produce a large amount of organic matter through photosynthesis that, following erosion, is deposited on the seafloor. In this study, we show that plant detritus can trigger low-oxygen conditions (hypoxia) in shallow coastal waters, making conditions challenging for most marine animals. We propose that the occurrence of hypoxia may be underestimated because measurements typically do not consider the region closest to the seafloor, where detritus accumulates.
M. James McLaughlin, Cindy Bessey, Gary A. Kendrick, John Keesing, and Ylva S. Olsen
Biogeosciences, 20, 1011–1026, https://doi.org/10.5194/bg-20-1011-2023, https://doi.org/10.5194/bg-20-1011-2023, 2023
Short summary
Short summary
Coral reefs face increasing pressures from environmental change at present. The coral reef framework is produced by corals and calcifying algae. The Kimberley region of Western Australia has escaped land-based anthropogenic impacts. Specimens of the dominant coral and algae were collected from Browse Island's reef platform and incubated in mesocosms to measure calcification and production patterns of oxygen. This study provides important data on reef building and climate-driven effects.
Patricia Ayón Dejo, Elda Luz Pinedo Arteaga, Anna Schukat, Jan Taucher, Rainer Kiko, Helena Hauss, Sabrina Dorschner, Wilhelm Hagen, Mariona Segura-Noguera, and Silke Lischka
Biogeosciences, 20, 945–969, https://doi.org/10.5194/bg-20-945-2023, https://doi.org/10.5194/bg-20-945-2023, 2023
Short summary
Short summary
Ocean upwelling regions are highly productive. With ocean warming, severe changes in upwelling frequency and/or intensity and expansion of accompanying oxygen minimum zones are projected. In a field experiment off Peru, we investigated how different upwelling intensities affect the pelagic food web and found failed reproduction of dominant zooplankton. The changes projected could severely impact the reproductive success of zooplankton communities and the pelagic food web in upwelling regions.
Mathilde Jutras, Alfonso Mucci, Gwenaëlle Chaillou, William A. Nesbitt, and Douglas W. R. Wallace
Biogeosciences, 20, 839–849, https://doi.org/10.5194/bg-20-839-2023, https://doi.org/10.5194/bg-20-839-2023, 2023
Short summary
Short summary
The deep waters of the lower St Lawrence Estuary and gulf have, in the last decades, experienced a strong decline in their oxygen concentration. Below 65 µmol L-1, the waters are said to be hypoxic, with dire consequences for marine life. We show that the extent of the hypoxic zone shows a seven-fold increase in the last 20 years, reaching 9400 km2 in 2021. After a stable period at ~ 65 µmol L⁻¹ from 1984 to 2019, the oxygen level also suddenly decreased to ~ 35 µmol L-1 in 2020.
Sachi Umezawa, Manami Tozawa, Yuichi Nosaka, Daiki Nomura, Hiroji Onishi, Hiroto Abe, Tetsuya Takatsu, and Atsushi Ooki
Biogeosciences, 20, 421–438, https://doi.org/10.5194/bg-20-421-2023, https://doi.org/10.5194/bg-20-421-2023, 2023
Short summary
Short summary
We conducted repetitive observations in Funka Bay, Japan, during the spring bloom 2019. We found nutrient concentration decreases in the dark subsurface layer during the bloom. Incubation experiments confirmed that diatoms could consume nutrients at a substantial rate, even in darkness. We concluded that the nutrient reduction was mainly caused by nutrient consumption by diatoms in the dark.
Dirk Jong, Lisa Bröder, Tommaso Tesi, Kirsi H. Keskitalo, Nikita Zimov, Anna Davydova, Philip Pika, Negar Haghipour, Timothy I. Eglinton, and Jorien E. Vonk
Biogeosciences, 20, 271–294, https://doi.org/10.5194/bg-20-271-2023, https://doi.org/10.5194/bg-20-271-2023, 2023
Short summary
Short summary
With this study, we want to highlight the importance of studying both land and ocean together, and water and sediment together, as these systems function as a continuum, and determine how organic carbon derived from permafrost is broken down and its effect on global warming. Although on the one hand it appears that organic carbon is removed from sediments along the pathway of transport from river to ocean, it also appears to remain relatively ‘fresh’, despite this removal and its very old age.
Georgia Filippi, Manos Dassenakis, Vasiliki Paraskevopoulou, and Konstantinos Lazogiannis
Biogeosciences, 20, 163–189, https://doi.org/10.5194/bg-20-163-2023, https://doi.org/10.5194/bg-20-163-2023, 2023
Short summary
Short summary
The pollution of the western Saronikos Gulf from heavy metals has been examined through the study of marine sediment cores. It is a deep gulf (maximum depth 440 m) near Athens affected by industrial and volcanic activity. Eight cores were received from various stations and depths and analysed for their heavy metal content and geochemical characteristics. The results were evaluated by using statistical methods, environmental indicators and comparisons with old data.
Jing He and Michael D. Tyka
Biogeosciences, 20, 27–43, https://doi.org/10.5194/bg-20-27-2023, https://doi.org/10.5194/bg-20-27-2023, 2023
Short summary
Short summary
Recently, ocean alkalinity enhancement (OAE) has gained interest as a scalable way to address the urgent need for negative CO2 emissions. In this paper we examine the capacity of different coastlines to tolerate alkalinity enhancement and the time scale of CO2 uptake following the addition of a given quantity of alkalinity. The results suggest that OAE has significant potential and identify specific favorable and unfavorable coastlines for its deployment.
Arnaud Laurent, Haiyan Zhang, and Katja Fennel
Biogeosciences, 19, 5893–5910, https://doi.org/10.5194/bg-19-5893-2022, https://doi.org/10.5194/bg-19-5893-2022, 2022
Short summary
Short summary
The Changjiang is the main terrestrial source of nutrients to the East China Sea (ECS). Nutrient delivery to the ECS has been increasing since the 1960s, resulting in low oxygen (hypoxia) during phytoplankton decomposition in summer. River phosphorus (P) has increased less than nitrogen, and therefore, despite the large nutrient delivery, phytoplankton growth can be limited by the lack of P. Here, we investigate this link between P limitation, phytoplankton production/decomposition, and hypoxia.
Coline Poppeschi, Guillaume Charria, Anne Daniel, Romaric Verney, Peggy Rimmelin-Maury, Michaël Retho, Eric Goberville, Emilie Grossteffan, and Martin Plus
Biogeosciences, 19, 5667–5687, https://doi.org/10.5194/bg-19-5667-2022, https://doi.org/10.5194/bg-19-5667-2022, 2022
Short summary
Short summary
This paper aims to understand interannual changes in the initiation of the phytoplankton growing period (IPGP) in the current context of global climate changes over the last 20 years. An important variability in the timing of the IPGP is observed with a trend towards a later IPGP during this last decade. The role and the impact of extreme events (cold spells, floods, and wind burst) on the IPGP is also detailed.
Cited articles
Albright, R., Langdon, C., and Anthony, K. R. N.: Dynamics of seawater carbonate chemistry, production, and calcification of a coral reef flat, central Great Barrier Reef, Biogeosciences, 10, 6747–6758, https://doi.org/10.5194/bg-10-6747-2013, 2013.
Almahasheer, H., Aljowair, A., Duarte, C. M., and Irigoien, X.: Decadal
stability of Red Sea mangroves, Estuar. Coast. Shelf S., 169,
164–172, https://doi.org/10.1016/j.ecss.2015.11.027, 2016.
Anderson, L. and Dyrssen, D.: Alkalinity and total carbonate in the Arabian
Sea. Carbonate depletion in the Red Sea and Persian Gulf, Mar. Chem.,
47, 195–202, https://doi.org/10.1016/0304-4203(94)90019-1,
1994.
Anton, A., Baldry, K., Coker, D., and Duarte, C. M.: Thermal optima and
drivers of the low meetabolic rates of seagrass meadows in the Red Sea,
Frontiers in Marine Science, in review, 2020.
Baldry, K., Saderne, V., McCorkle, D. C., Churchill, J. H., Agustí, S., and Duarte, C. M.: Surface Carbonate Chemistry of the Red Sea (offshore and coastal), PANGAEA, https://doi.org/10.1594/PANGAEA.899850, 2019.
Barrón, C., Duarte, C. M., Frankignoulle, M., and Borges, A. V.: Organic
carbon metabolism and carbonate dynamics in a Mediterranean seagrass
(Posidonia oceanica), meadow, Estuar. Coast., 29, 417–426,
https://doi.org/10.1007/BF02784990, 2006.
Bauer, J. E., Cai, W.-J., Raymond, P. A., Bianchi, T. S., Hopkinson, C. S.,
and Regnier, P. A.: The changing carbon cycle of the coastal ocean, Nature,
504, 61–70, https://doi.org/10.1038/nature12857, 2013.
Bouillon, S., Middelburg, J. J., Dehairs, F., Borges, A. V., Abril, G., Flindt, M. R., Ulomi, S., and Kristensen, E.: Importance of intertidal sediment processes and porewater exchange on the water column biogeochemistry in a pristine mangrove creek (Ras Dege, Tanzania), Biogeosciences, 4, 311–322, https://doi.org/10.5194/bg-4-311-2007, 2007.
Bouillon, S., Borges, A. V., Castañeda-Moya, E., Diele, K., Dittmar, T.,
Duke, N. C., Kristensen, E., Lee, S. Y., Marchand, C., and Middelburg, J.
J.: Mangrove production and carbon sinks: a revision of global budget
estimates, Global Biogeochem. Cy., 22, GB2013,
https://doi.org/10.1029/2007GB003052, 2008.
Borges, A. V., Djenidi, S., Lacroix, G., Théate, J., Delille, B., and
Frankignoulle, M.: Atmospheric CO2 flux from mangrove surrounding waters,
Geophys. Res. Lett., 30, 1558, https://doi.org/10.1029/2003gl017143, 2003.
Burdige, D. J. and Zimmerman, R. C.: Impact of sea grass density on
carbonate dissolution in Bahamian sediments, Limnol. Oceanogr.,
47, 1751–1763, https://doi.org/10.4319/lo.2002.47.6.1751, 2002.
Burkholz, C., Duarte, C. M., and Garcias-Bonet, N.: Thermal dependence of
seagrass ecosystem metabolism in the Red Sea, Mar. Ecol.-Prog.
Ser., 614, 79–90, 2019.
Camp, E. F., Suggett, D. J., Gendron, G., Jompa, J., Manfrino, C., and
Smith, D. J.: Mangrove and Seagrass Beds Provide Different Biogeochemical
Services for Corals Threatened by Climate Change, Front. Mar.
Sci., 3, 1–16, https://doi.org/10.3389/fmars.2016.00052, 2016.
Cantin, N. E., Cohen, A. L., Karnauskas, K. B., Tarrant, A. M., and
McCorkle, D. C.: Ocean warming slows coral growth in the central Red
Sea, Science, 329, 322–325, https://doi.org/10.1126/science.1190182, 2010.
Chaidez, V., Dreano, D., Agusti, S., Duarte, C. M., and Hoteit, I.: Decadal
trends in Red Sea maximum surface temperature, Sci. Rep.-UK, 7,
1–8, https://doi.org/10.1038/s41598-017-08146-z, 2017.
Challener, R. C., Robbins, L. L., and McClintock, J. B.: Variability of the
carbonate chemistry in a shallow, seagrass-dominated ecosystem: implications
for ocean acidification experiments, Mar. Freshwater Res., 67,
163–172, https://doi.org/10.1071/MF14219, 2016.
Churchill, J. H., Bower, A. S., McCorkle, D. C., and Abualnaja, Y.: The
transport of nutrient-rich Indian Ocean water through the Red Sea and into
coastal reef systems, J. Mar. Res., 72, 165–181,
https://doi.org/10.1357/002224014814901994, 2014.
Cook, R. D. and Weisberg, S.: Graphics for assessing the adequacy of
regression models, J. Am. Stat. Assoc., 92,
490–499, https://doi.org/10.2307/2965698, 1997.
Cyronak, T., Andersson, A. J., Langdon, C., Albright, R., Bates, N. R.,
Caldeira, K., Carlton, R., Corredor, J. E., Dunbar, R. B., and Enochs, I.:
Taking the metabolic pulse of the world's coral reefs, PloS One, 13,
e0190872, https://doi.org/10.1371/journal.pone.0190872, 2018.
de Vries, A. J., Tyrlis, E., Edry, D., Krichak, S. O., Steil, B., and
Lelieveld, J.: Extreme precipitation events in the Middle East: Dynamics of
the Active Red Sea Trough, J. Geophys. Res.-Atmos.,
118, 7087–7108, https://doi.org/10.1002/jgrd.50569, 2013.
Dickson, A. G., Sabine, C. L., and Christian, J. R.: Guide to best practices
for ocean CO2 measurements, PICED Special Publication 3, IOCCP Report No. 8, North Pacific Marine Science Organization, Sidney,
Canada, 2007.
Doney, S. C.: The growing human footprint on coastal and open-ocean
biogeochemistry, Science, 328, 1512–1516, https://doi.org/10.1126/science.1185198,
2010.
Duarte, C. M., Hendriks, I. E., Moore, T. S., Olsen, Y. S., Steckbauer, A.,
Ramajo, L., Carstensen, J., Trotter, J. A., and McCulloch, M.: Is ocean
acidification an open-ocean syndrome? Understanding anthropogenic impacts on
seawater pH, Estuar. Coast., 36, 221–236,
https://doi.org/10.1007/s12237-013-9594-3, 2013.
Forsythe, G. E., Malcolm, M. A., and Moler, C. B.: Computer Methods for
Mathematical Computations, Prentice Hall Professional Technical Reference, Wiley,
259 pp., 1977.
Gattuso, J.-P., Frankignoulle, M., and Wollast, R.: Carbon and Carbonate
Metabolism in Coastal Aquatic Ecosystems, Annu. Rev. Ecol.
Syst., 29, 405–434, https://doi.org/10.1146/annurev.ecolsys.29.1.405, 1998.
Gattuso, J.-P., Allemand, D., and Frankignoulle, M.: Photosynthesis and
calcification at cellular, organismal and community levels in coral reefs: a
review on interactions and control by carbonate chemistry, Am.
Zool., 39, 160–183, https://doi.org/10.1093/icb/39.1.160, 1999.
Gattuso, J.-P., Epitalon, J.-M., Lavigne, H., and Orr, J.: seacarb: Seawater
Carbonate Chemistry, R package version 3.2.6, available at: https://CRAN.R-project.org/package=seacarb (last access: 3 May 2019), 2018.
Giraud, X., Le Quéré, C., and Da Cunha, L. C.: Importance of coastal
nutrient supply for global ocean biogeochemistry, Global Biogeochem.
Cy., 22, GB2025, https://doi.org/10.1029/2006GB002717, 2008.
Guannel, G., Arkema, K., Ruggiero, P., and Verutes, G.: The power of three:
coral reefs, seagrasses and mangroves protect coastal regions and increase
their resilience, PloS one, 11, e0158094,
https://doi.org/10.1371/journal.pone.0158094, 2016.
Hijmans, R. J.: geosphere: Spherical Trigonometry, R package version 1.5-7, available at:
https://CRAN.R-project.org/package=geosphere (last access: 14 May 2018),
2017.
Ho, D. T., Ferrón, S., Engel, V. C., Larsen, L. G., and Barr, J. G.:
Air-water gas exchange and CO2 flux in a mangrove-dominated estuary,
Geophys. Res. Lett., 41, 108–113, https://doi.org/10.1002/2013gl058785, 2014.
Hughes, T. P., Anderson, K. D., Connolly, S. R., Heron, S. F., Kerry, J. T.,
Lough, J. M., Baird, A. H., Baum, J. K., Berumen, M. L., Bridge, T. C.,
Claar, D. C., Eakin, C. M., Gilmour, J. P., Graham, N. A. J., Harrison, H.,
Hobbs, J.-P. A., Hoey, A. S., Hoogenboom, M., Lowe, R. J., McCulloch, M. T.,
Pandolfi, J. M., Pratchett, M., Schoepf, V., Torda, G., and Wilson, S. K.:
Spatial and temporal patterns of mass bleaching of corals in the
Anthropocene, Science, 359, 80–83, https://doi.org/10.1126/science.aan8048,
2018.
Hydes, D., Jiang, Z., Hartman, M., Campbell, J., Pagnani, M., and
Kelly-Gerreyn, B.: Surface DIC and TALK measurements along the M/V Pacific
Celebes VOS Line during the 2007–2012 cruises, Carbon Dioxide Information
Analysis Center. Oak Ridge National Laboratory, US Department of Energy, Oak
Ridge, Tennessee, https://doi.org/10.3334/CDIAC/OTG.VOS_PC_2007-2012, 2012.
IPCC: Climate change 2013: The physical science basis: Working Group I
contribution to the Fifth assessment report of the Intergovernmental Panel
on Climate Change: Cambridge University Press, Cambridge, UK,
https://doi.org/10.1017/CBO9781107415324, 2014.
Jiang, Z. P., Tyrrell, T., Hydes, D. J., Dai, M., and Hartman, S. E.:
Variability of alkalinity and the alkalinity-salinity relationship in the
tropical and subtropical surface ocean, Global Biogeochem. Cy., 28,
729–742, https://doi.org/10.1002/2013GB004678, 2014.
Kenworthy, W. J., Wyllie-Echeverria, S., Coles, R. G., Pergent, G., and
Pergent-Martini, C.: Seagrass conservation biology: an interdisciplinary
science for protection of the seagrass biome, in: Seagrasses: Biology,
Ecology and Conservation, Springer, Dordrecht, 595–623,
https://doi.org/10.1007/978-1-4020-2983-7_25, 2007.
Kleypas, J. A., Anthony, K. R., and Gattuso, J. P.: Coral reefs modify their
seawater carbon chemistry–case study from a barrier reef (Moorea, French
Polynesia), Glob. Change Biol., 17, 3667–3678,
https://doi.org/10.1111/j.1365-2486.2011.02530.x, 2011.
Krumgalz, B., Erez, J., and Chen, C.: Anthropogenic CO2 penetration in the
northern Red Sea and in the Gulf of Elat (Aqaba), Oceanol. Acta, 13,
283–290, 1990.
Krumins, V., Gehlen, M., Arndt, S., Van Cappellen, P., and Regnier, P.: Dissolved inorganic carbon and alkalinity fluxes from coastal marine sediments: model estimates for different shelf environments and sensitivity to global change, Biogeosciences, 10, 371–398, https://doi.org/10.5194/bg-10-371-2013, 2013.
Lyons, T. W., Walter, L. M., Gellatly, A. M., Martini, A. M., and Blake, R.
E.: Sites of anomalous organic remineralization in the carbonate sediments
of South Florida, USA: the sulfur cycle and carbonate-associated sulfate,
Geol. S. Am. S., 379, 161–176,
https://doi.org/10.1130/0-8137-2379-5.161, 2004.
Macklin, P. A., Suryaputra, I. G. N. A., Maher, D. T., Murdiyarso, D., and
Santos, I. R.: Drivers of CO2 along a mangrove-seagrass transect in a
tropical bay: Delayed groundwater seepage and seagrass uptake, Cont.
Shelf Res., 172, 57–67, https://doi.org/10.1016/j.csr.2018.10.008, 2019.
Macreadie, P. I., Serrano, O., Maher, D. T., Duarte, C. M., and Beardall,
J.: Addressing calcium carbonate cycling in blue carbon accounting,
Limnol. Oceanogr. Lett., 2, 195–201, https://doi.org/10.1002/lol2.10052,
2017.
Mair, P. and Wilcox, R.: WRS2: Wilcox robust estimation and Testing, R
package ver 3.4.4, available at: https://cran.r-project.org/web/packages/WRS2/index.html, last access: 1 October 2018.
Meister, P.: Two opposing effects of sulfate reduction on carbonate precipitation in normal marine, hypersaline, and alkaline environments, Geology, 41, 499–502, 2013.
Middelburg, J. J., Nieuwenhuize, J., Slim, F. J., and Ohowa, B.: Sediment biogeochemistry in an East African mangrove forest (Gazi bay, Kenya), Biogeochemistry, 34, 133–155, 1996.
Millero, F. J.: Carbonate constants for estuarine waters, Mar. Freshwater Res., 61, 139–142, https://doi.org/10.1071/MF09254, 2010.
Osman, E. O., Smith, D. J., Ziegler, M., Kürten, B., Conrad, C.,
El-Haddad, K. M., Voolstra, C. R. and Suggett, D. J.: Thermal refugia against
coral bleaching throughout the northern Red Sea, Glob. Change
Biol., 24, e474–e484, https://doi.org/10.1111/gcb.13895, 2018.
Papaud, A. and Poisson, A.: Distribution of dissolved CO2 in the Red Sea
and correlations with other geochemical tracers, J. Mar. Res.,
44, 385–402, https://doi.org/10.1357/002224086788405347, 1986.
Picheral, M., Searson, S., Taillandier, V., Bricaud, A., Boss, E., Ras, J.,
Claustre, H., Ouhssain, M., Morin, P., Tremblay, J., Coppola, L., Gattuso,
J., Metzl, N., Thuillier, D., Gorsky, G., Tara Oceans Consortium
(Coordinators), and Tara Oceans Expedition (Participants): Vertical profiles
of environmental parameters measured on discrete water samples collected
with Niskin bottles during the Tara Oceans expedition 2009–2013, PANGAEA,
https://doi.org/10.1594/PANGAEA.836319, 2014.
Qurban, M. A. B., Karuppasamy, M., Krishnakumar, P. K., Garcias-Bonet, N.,
and Duarte, C. M.: Seagrass Distribution, Composition and Abundance Along
the Saudi Arabian Coast of Red Sea, in: Oceanographic and Biological Aspects
of the Red Sea, edited by: Rasul, N. M. A., and Stewart, I. C. F., Springer,
Cham, 367–385, https://doi.org/10.1007/978-3-319-99417-8_20, 2019.
R Core Team: R v3.4.3, Vienna, Austria, https://www.R-project.org/, last access: 8 March 2018.
Robbins, P. E.: Oceanic carbon transport carried by freshwater divergence:
Are salinity normalizations useful?, J. Geophys. Res.-Oceans, 106, 30939–30946, https://doi.org/10.1029/2000JC000451, 2001.
Saderne, V., Baldry, K., Anton, A., Agustí, S., and Duarte, C. M.: Characterization of the CO2 system in a coral reef, a seagrass meadow, and a mangrove forest in the central Red Sea, J. Geophys. Res.-Oceans, 124, 7513–7528, https://doi.org/10.1029/2019JC015266, 2019.
Sea, M. A., Garcias-Bonet, N., Saderne, V., and Duarte, C. M.: Carbon dioxide and methane fluxes at the air–sea interface of Red Sea mangroves, Biogeosciences, 15, 5365–5375, https://doi.org/10.5194/bg-15-5365-2018, 2018.
Sofianos, S. S. and Johns, W. E.: An oceanic general circulation model
(OGCM) investigation of the Red Sea circulation: 2. Three-dimensional
circulation in the Red Sea, J. Geophys. Res.-Oceans,
108, 3066, https://doi.org/10.1029/2001JC001185, 2003.
Steiner, Z., Erez, J., Shemesh, A., Yam, R., Katz, A., and Lazar, B.:
Basin-scale estimates of pelagic and coral reef calcification in the Red Sea
and Western Indian Ocean, P. Natl. Acad. Sci. USA,
111, 16303–16308, https://doi.org/10.1073/pnas.1414323111, 2014.
Steiner, Z., Turchyn, A. V., Harpaz, E., and Silverman, J.: Water chemistry
reveals a significant decline in coral calcification rates in the southern
Red Sea, Nat. Commun., 9, 3615, https://doi.org/10.1038/s41467-018-06030-6,
2018.
Takeshita, Y. T., Cyronak, T., Martz, T. R., Kindeberg, T., and Andersson,
A. J.: Coral reef carbonate chemistry variability at different functional
scales, Front. Mar. Sci., 5, 175, https://doi.org/10.3389/fmars.2018.00175,
2018.
Unsworth, R. K., Collier, C. J., Henderson, G. M., and McKenzie, L. J.:
Tropical seagrass meadows modify seawater carbon chemistry: implications for
coral reefs impacted by ocean acidification, Environ. Res. Lett.,
7, 024026, https://doi.org/10.1088/1748-9326/7/2/024026, 2012.
Wafar, M., Ashraf, M., Manikandan, K. P., Qurban, M. A., and Kattan, Y.:
Propagation of Gulf of Aden Intermediate Water (GAIW) in the Red Sea during
autumn and its importance to biological production, J. Marine
Syst., 154, 243–251, https://doi.org/10.1016/j.jmarsys.2015.10.016, 2016.
Wurgaft, E., Steiner, Z., Luz, B., and Lazar, B.: Evidence for inorganic
precipitation of CaCO3 on suspended solids in the open water of the Red Sea,
Mar. Chem., 186, 145–155, https://doi.org/10.1016/j.marchem.2016.09.006, 2016.
Zablocki, J. A., Andersson, A. J., and Bates, N. R.: Diel aquatic CO2
system dynamics of a Bermudian mangrove environment, Aquat. Geochem.,
17, 841, https://doi.org/10.1007/s10498-011-9142-3, 2011.
Zeebe, R. E. and Wolf-Gladrow, D. A.: CO2 in seawater: Equilibrium,
kinetics, isotopes, Elsevier Oceanography Series, 65, Elsevier, 1–136, 2001.
Zhan, P., Subramanian, A. C., Yao, F., and Hoteit, I.: Eddies in the Red
Sea: A statistical and dynamical study, J. Geophys. Res.-Oceans, 119, 3909–3925, https://doi.org/10.1002/2013JC009563, 2014.
Short summary
The carbon cycling of coastal ecosystems over large spatial scales is not well measured relative to the open ocean. In this study we measure the carbonate system in the three habitats, to measure ecosystem-driven changes compared to offshore waters. We find (1) 70 % of seagrass meadows and mangrove forests show large ecosystem-driven changes, and (2) mangrove forests show strong and consistent trends over large scales, while seagrass meadows display more variability.
The carbon cycling of coastal ecosystems over large spatial scales is not well measured relative...
Altmetrics
Final-revised paper
Preprint