Articles | Volume 17, issue 2
Biogeosciences, 17, 423–439, 2020
https://doi.org/10.5194/bg-17-423-2020
Biogeosciences, 17, 423–439, 2020
https://doi.org/10.5194/bg-17-423-2020
Research article
29 Jan 2020
Research article | 29 Jan 2020

Anomalies in the carbonate system of Red Sea coastal habitats

Kimberlee Baldry et al.

Related authors

Mass, nutrients and dissolved organic carbon (DOC) lateral transports off northwest Africa during fall 2002 and spring 2003
Nadia Burgoa, Francisco Machín, Ángeles Marrero-Díaz, Ángel Rodríguez-Santana, Antonio Martínez-Marrero, Javier Arístegui, and Carlos Manuel Duarte
Ocean Sci., 16, 483–511, https://doi.org/10.5194/os-16-483-2020,https://doi.org/10.5194/os-16-483-2020, 2020
Short summary
Warming enhances carbon dioxide and methane fluxes from Red Sea seagrass (Halophila stipulacea) sediments
Celina Burkholz, Neus Garcias-Bonet, and Carlos M. Duarte
Biogeosciences, 17, 1717–1730, https://doi.org/10.5194/bg-17-1717-2020,https://doi.org/10.5194/bg-17-1717-2020, 2020
Short summary
Temporal evolution of temperatures in the Red Sea and the Gulf of Aden based on in situ observations (1958–2017)
Miguel Agulles, Gabriel Jordà, Burt Jones, Susana Agustí, and Carlos M. Duarte
Ocean Sci., 16, 149–166, https://doi.org/10.5194/os-16-149-2020,https://doi.org/10.5194/os-16-149-2020, 2020
Short summary
Arctic (Svalbard islands) active and exported diatom stocks and cell health status
Susana Agustí, Jeffrey W. Krause, Israel A. Marquez, Paul Wassmann, Svein Kristiansen, and Carlos M. Duarte
Biogeosciences, 17, 35–45, https://doi.org/10.5194/bg-17-35-2020,https://doi.org/10.5194/bg-17-35-2020, 2020
Short summary
Rates and drivers of Red Sea plankton community metabolism
Daffne C. López-Sandoval, Katherine Rowe, Paloma Carillo-de-Albonoz, Carlos M. Duarte, and Susana Agustí
Biogeosciences, 16, 2983–2995, https://doi.org/10.5194/bg-16-2983-2019,https://doi.org/10.5194/bg-16-2983-2019, 2019
Short summary

Related subject area

Biogeochemistry: Coastal Ocean
Benthic alkalinity fluxes from coastal sediments of the Baltic and North seas: comparing approaches and identifying knowledge gaps
Bryce Van Dam, Nele Lehmann, Mary A. Zeller, Andreas Neumann, Daniel Pröfrock, Marko Lipka, Helmuth Thomas, and Michael Ernst Böttcher
Biogeosciences, 19, 3775–3789, https://doi.org/10.5194/bg-19-3775-2022,https://doi.org/10.5194/bg-19-3775-2022, 2022
Short summary
Investigating the effect of nickel concentration on phytoplankton growth to assess potential side-effects of ocean alkalinity enhancement
Jiaying Abby Guo, Robert Strzepek, Anusuya Willis, Aaron Ferderer, and Lennart Thomas Bach
Biogeosciences, 19, 3683–3697, https://doi.org/10.5194/bg-19-3683-2022,https://doi.org/10.5194/bg-19-3683-2022, 2022
Short summary
Unprecedented summer hypoxia in southern Cape Cod Bay: an ecological response to regional climate change?
Malcolm E. Scully, W. Rockwell Geyer, David Borkman, Tracy L. Pugh, Amy Costa, and Owen C. Nichols
Biogeosciences, 19, 3523–3536, https://doi.org/10.5194/bg-19-3523-2022,https://doi.org/10.5194/bg-19-3523-2022, 2022
Short summary
Interannual variabilities, long-term trends, and regulating factors of low-oxygen conditions in the coastal waters off Hong Kong
Zheng Chen, Bin Wang, Chuang Xu, Zhongren Zhang, Shiyu Li, and Jiatang Hu
Biogeosciences, 19, 3469–3490, https://doi.org/10.5194/bg-19-3469-2022,https://doi.org/10.5194/bg-19-3469-2022, 2022
Short summary
Causes of the extensive hypoxia in the Gulf of Riga in 2018
Stella-Theresa Stoicescu, Jaan Laanemets, Taavi Liblik, Māris Skudra, Oliver Samlas, Inga Lips, and Urmas Lips
Biogeosciences, 19, 2903–2920, https://doi.org/10.5194/bg-19-2903-2022,https://doi.org/10.5194/bg-19-2903-2022, 2022
Short summary

Cited articles

Albright, R., Langdon, C., and Anthony, K. R. N.: Dynamics of seawater carbonate chemistry, production, and calcification of a coral reef flat, central Great Barrier Reef, Biogeosciences, 10, 6747–6758, https://doi.org/10.5194/bg-10-6747-2013, 2013. 
Almahasheer, H., Aljowair, A., Duarte, C. M., and Irigoien, X.: Decadal stability of Red Sea mangroves, Estuar. Coast. Shelf S., 169, 164–172, https://doi.org/10.1016/j.ecss.2015.11.027, 2016. 
Anderson, L. and Dyrssen, D.: Alkalinity and total carbonate in the Arabian Sea. Carbonate depletion in the Red Sea and Persian Gulf, Mar. Chem., 47, 195–202, https://doi.org/10.1016/0304-4203(94)90019-1, 1994. 
Anton, A., Baldry, K., Coker, D., and Duarte, C. M.: Thermal optima and drivers of the low meetabolic rates of seagrass meadows in the Red Sea, Frontiers in Marine Science, in review, 2020. 
Baldry, K., Saderne, V., McCorkle, D. C., Churchill, J. H., Agustí, S., and Duarte, C. M.: Surface Carbonate Chemistry of the Red Sea (offshore and coastal), PANGAEA, https://doi.org/10.1594/PANGAEA.899850, 2019. 
Download
Short summary
The carbon cycling of coastal ecosystems over large spatial scales is not well measured relative to the open ocean. In this study we measure the carbonate system in the three habitats, to measure ecosystem-driven changes compared to offshore waters. We find (1) 70 % of seagrass meadows and mangrove forests show large ecosystem-driven changes, and (2) mangrove forests show strong and consistent trends over large scales, while seagrass meadows display more variability.
Altmetrics
Final-revised paper
Preprint