Articles | Volume 17, issue 18
https://doi.org/10.5194/bg-17-4559-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-17-4559-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Chemical destaining and the delta correction for blue intensity measurements of stained lake subfossil trees
Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski,
G5L 3A1, Canada
Centre d'études nordiques, Université du Québec à Rimouski, Rimouski,
G5L 3A1, Canada
Dominique Arseneault
Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski,
G5L 3A1, Canada
Centre d'études nordiques, Université du Québec à Rimouski, Rimouski,
G5L 3A1, Canada
Étienne Boucher
Département de Géographie, GEOTOP and Centre d'études nordiques, Université du Québec à Montréal, Montréal,
H3A 0B9, Canada
Shulong Yu
Key Laboratory of Tree-ring Ecology of Uigur Autonomous Region and Key Laboratory of Tree-ring
Physical and Chemical Research, Institute of Desert Meteorology, China Meteorological Administration,
Ürümqi, 830002, China
Steeven Ouellet
Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski,
G5L 3A1, Canada
Gwenaëlle Chaillou
Canada Research Chair in the Geochemistry of Coastal Hydrogeosystems, Québec-Océan, UQAR/ISMER,
Rimouski, G5L 3A1, Canada
Ann Delwaide
Département de Géographie, Université Laval, Québec City,
G1V 0A6, Canada
Lily Wang
Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Science,
Beijing, 100101, China
Related authors
No articles found.
William A. Nesbitt, Samuel W. Stevens, Alfonso O. Mucci, Lennart Gerke, Toste Tanhua, Gwénaëlle Chaillou, and Douglas W. R. Wallace
EGUsphere, https://doi.org/10.5194/egusphere-2025-2400, https://doi.org/10.5194/egusphere-2025-2400, 2025
Short summary
Short summary
We use 20 years of oxygen measurements and recent carbon data with a tracer-calibrated 1D model to quantify oxygen loss and inorganic carbon accumulation in the deep waters of the Gulf and St. Lawrence Estuary. We further utilize the model to give a first estimate of the impact of adding pure oxygen, a by-product from green hydrogen production to these deep waters. Results show this could restore oxygen to year-2000 levels, but full recovery would require a larger input.
Aude Flamand, Jean-François Lapierre, and Gwénaëlle Chaillou
EGUsphere, https://doi.org/10.5194/egusphere-2024-2945, https://doi.org/10.5194/egusphere-2024-2945, 2024
Short summary
Short summary
In the context of climate change, increasing rates of coastal erosion and thawing of permafrost increase the fluxes of solutes to the Arctic Ocean. However, the fate of this newly mobilized material is still unclear and may alter ocean chemistry. We have explored the lateral inputs of carbon from coastal permafrost bluffs to the ocean via beaches in Kugmallit Bay. Our findings highlight that beaches may act as a permanent or transient terrestrial carbon sink, limiting its lateral export.
Martine Lizotte, Bennet Juhls, Atsushi Matsuoka, Philippe Massicotte, Gaëlle Mével, David Obie James Anikina, Sofia Antonova, Guislain Bécu, Marine Béguin, Simon Bélanger, Thomas Bossé-Demers, Lisa Bröder, Flavienne Bruyant, Gwénaëlle Chaillou, Jérôme Comte, Raoul-Marie Couture, Emmanuel Devred, Gabrièle Deslongchamps, Thibaud Dezutter, Miles Dillon, David Doxaran, Aude Flamand, Frank Fell, Joannie Ferland, Marie-Hélène Forget, Michael Fritz, Thomas J. Gordon, Caroline Guilmette, Andrea Hilborn, Rachel Hussherr, Charlotte Irish, Fabien Joux, Lauren Kipp, Audrey Laberge-Carignan, Hugues Lantuit, Edouard Leymarie, Antonio Mannino, Juliette Maury, Paul Overduin, Laurent Oziel, Colin Stedmon, Crystal Thomas, Lucas Tisserand, Jean-Éric Tremblay, Jorien Vonk, Dustin Whalen, and Marcel Babin
Earth Syst. Sci. Data, 15, 1617–1653, https://doi.org/10.5194/essd-15-1617-2023, https://doi.org/10.5194/essd-15-1617-2023, 2023
Short summary
Short summary
Permafrost thaw in the Mackenzie Delta region results in the release of organic matter into the coastal marine environment. What happens to this carbon-rich organic matter as it transits along the fresh to salty aquatic environments is still underdocumented. Four expeditions were conducted from April to September 2019 in the coastal area of the Beaufort Sea to study the fate of organic matter. This paper describes a rich set of data characterizing the composition and sources of organic matter.
Mathilde Jutras, Alfonso Mucci, Gwenaëlle Chaillou, William A. Nesbitt, and Douglas W. R. Wallace
Biogeosciences, 20, 839–849, https://doi.org/10.5194/bg-20-839-2023, https://doi.org/10.5194/bg-20-839-2023, 2023
Short summary
Short summary
The deep waters of the lower St Lawrence Estuary and gulf have, in the last decades, experienced a strong decline in their oxygen concentration. Below 65 µmol L-1, the waters are said to be hypoxic, with dire consequences for marine life. We show that the extent of the hypoxic zone shows a seven-fold increase in the last 20 years, reaching 9400 km2 in 2021. After a stable period at ~ 65 µmol L⁻¹ from 1984 to 2019, the oxygen level also suddenly decreased to ~ 35 µmol L-1 in 2020.
Ignacio Hermoso de Mendoza, Etienne Boucher, Fabio Gennaretti, Aliénor Lavergne, Robert Field, and Laia Andreu-Hayles
Geosci. Model Dev., 15, 1931–1952, https://doi.org/10.5194/gmd-15-1931-2022, https://doi.org/10.5194/gmd-15-1931-2022, 2022
Short summary
Short summary
We modify the numerical model of forest growth MAIDENiso by explicitly simulating snow. This allows us to use the model in boreal environments, where snow is dominant. We tested the performance of the model before and after adding snow, using it at two Canadian sites to simulate tree-ring isotopes and comparing with local observations. We found that modelling snow improves significantly the simulation of the hydrological cycle, the plausibility of the model and the simulated isotopes.
Philippe Massicotte, Rainer M. W. Amon, David Antoine, Philippe Archambault, Sergio Balzano, Simon Bélanger, Ronald Benner, Dominique Boeuf, Annick Bricaud, Flavienne Bruyant, Gwenaëlle Chaillou, Malik Chami, Bruno Charrière, Jing Chen, Hervé Claustre, Pierre Coupel, Nicole Delsaut, David Doxaran, Jens Ehn, Cédric Fichot, Marie-Hélène Forget, Pingqing Fu, Jonathan Gagnon, Nicole Garcia, Beat Gasser, Jean-François Ghiglione, Gaby Gorsky, Michel Gosselin, Priscillia Gourvil, Yves Gratton, Pascal Guillot, Hermann J. Heipieper, Serge Heussner, Stanford B. Hooker, Yannick Huot, Christian Jeanthon, Wade Jeffrey, Fabien Joux, Kimitaka Kawamura, Bruno Lansard, Edouard Leymarie, Heike Link, Connie Lovejoy, Claudie Marec, Dominique Marie, Johannie Martin, Jacobo Martín, Guillaume Massé, Atsushi Matsuoka, Vanessa McKague, Alexandre Mignot, William L. Miller, Juan-Carlos Miquel, Alfonso Mucci, Kaori Ono, Eva Ortega-Retuerta, Christos Panagiotopoulos, Tim Papakyriakou, Marc Picheral, Louis Prieur, Patrick Raimbault, Joséphine Ras, Rick A. Reynolds, André Rochon, Jean-François Rontani, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Yuan Shen, Guisheng Song, Dariusz Stramski, Eri Tachibana, Alexandre Thirouard, Imma Tolosa, Jean-Éric Tremblay, Mickael Vaïtilingom, Daniel Vaulot, Frédéric Vaultier, John K. Volkman, Huixiang Xie, Guangming Zheng, and Marcel Babin
Earth Syst. Sci. Data, 13, 1561–1592, https://doi.org/10.5194/essd-13-1561-2021, https://doi.org/10.5194/essd-13-1561-2021, 2021
Short summary
Short summary
The MALINA oceanographic expedition was conducted in the Mackenzie River and the Beaufort Sea systems. The sampling was performed across seven shelf–basin transects to capture the meridional gradient between the estuary and the open ocean. The main goal of this research program was to better understand how processes such as primary production are influencing the fate of organic matter originating from the surrounding terrestrial landscape during its transition toward the Arctic Ocean.
Cited articles
Anchukaitis, K. J., Wilson, R., Briffa, K. R., Büntgen, U., Cook, E. R.,
D'Arrigo, R., Davi, N., Esper, J., Frank, D., Gunnarson, B. E., Hegerl, G.,
Helama, S., Klesse, S., Krusic, P. J., Linderholm, H. W., Myglan, V.,
Osborn, T. J., Zhang, P., Rydval, M., Schneider, L., Schurer, A., Wiles, G.,
and Zorita, E.: Last millennium Northern Hemisphere summer temperatures from
tree rings: Part II, spatially resolved reconstructions, Quat. Sci. Rev.,
163, 1–22, https://doi.org/10.1016/j.quascirev.2017.02.020, 2017.
Anschutz, P., Dedieu, K., Desmazes, F., and Chaillou, G.: Speciation,
oxidation state, and reactivity of particulate manganese in marine
sediments, Chem. Geol., 218, 265–279, https://doi.org/10.1016/j.chemgeo.2005.01.008,
2005.
Arseneault, D., Dy, B., Gennaretti, F., Autin, J., and Bégin, Y.:
Developing millennial tree ring chronologies in the fire-prone North
American boreal forest, J. Quat. Sci., 28, 283–292, https://doi.org/10.1002/jqs.2612,
2013.
Björklund, J., Gunnarson, B. E., Seftigen, K., Zhang, P., and Linderholm,
H. W.: Using adjusted Blue Intensity data to attain high-quality summer
temperature information: A case study from Central Scandinavia, The
Holocene, 25, 547–556, https://doi.org/10.1177/0959683614562434, 2015.
Björklund, J., von Arx, G., Nievergelt, D., Wilson, R., Van den Bulcke,
J., Günther, B., Loader, N. J., Rydval, M., Fonti, P., Scharnweber, T.,
Andreu-Hayles, L., Büntgen, U., D'Arrigo, R., Davi, N., De Mil, T.,
Esper, J., Gärtner, H., Geary, J., Gunnarson, B. E., Hartl, C., Hevia,
A., Song, H., Janecka, K., Kaczka, R. J., Kirdyanov, A. V., Kochbeck, M.,
Liu, Y., Meko, M., Mundo, I., Nicolussi, K., Oelkers, R., Pichler, T.,
Sánchez-Salguero, R., Schneider, L., Schweingruber, F., Timonen, M.,
Trouet, V., Van Acker, J., Verstege, A., Villalba, R., Wilmking, M., and
Frank, D.: Scientific Merits and Analytical Challenges of Tree-Ring
Densitometry, Rev. Geophys., 57, 1224–1264, https://doi.org/10.1029/2019RG000642, 2019.
Björklund, J. A., Gunnarson, B. E., Seftigen, K., Esper, J., and Linderholm, H. W.: Blue intensity and density from northern Fennoscandian tree rings, exploring the potential to improve summer temperature reconstructions with earlywood information, Clim. Past, 10, 877–885, https://doi.org/10.5194/cp-10-877-2014, 2014.
Borggaard, O. K.: Selective extraction of amorphous iron oxides by EDTA from
selected silicates and mixtures of amorphous and crystallline iron oxides,
Clay Miner., 17, 365–368, https://doi.org/10.1180/claymin.1982.017.3.09, 1982.
Bortleson, G. C. and Lee, G. F.: Phosphorus, iron, and manganese
distribution in sediment cores of six Wisconsin lakes, Limnol. Oceanogr.,
19, 794–801, https://doi.org/10.4319/lo.1974.19.5.0794, 1974.
Briffa, K. R. and Melvin, T. M.: A Closer Look at Regional Curve
Standardization of Tree-Ring Records: Justification of the Need, a Warning
of Some Pitfalls, and Suggested Improvements in Its Application, in:
Dendroclimatology: Progress and Prospects, edited by: Hughes, M. K.,
Swetnam, T. W., and Diaz, H. F., pp. 113–145, Springer Netherlands, Dordrecht,
2011.
Bunn, A. G.: A dendrochronology program library in R (dplR),
Dendrochronologia, 26, 115–124, https://doi.org/10.1016/j.dendro.2008.01.002, 2008.
Campbell, R., McCarroll, D., Loader, N. J., Grudd, H., Robertson, I., and
Jalkanen, R.: Blue intensity in Pinus sylvestris tree-rings: developing a
new palaeoclimate proxy, The Holocene, 17, 821–828,
https://doi.org/10.1177/0959683607080523, 2007.
Chester, R. and Hughes, M. J.: The trace element geochemistry of a North
Pacific pelagic clay core, Deep Sea Res. Oceanogr. Abstr., 16, 639–654,
https://doi.org/10.1016/0011-7471(69)90064-3, 1969.
Davison, W.: Iron and manganese in lakes, Earth-Sci. Rev., 34, 119–163,
https://doi.org/10.1016/0012-8252(93)90029-7, 1993.
Davison, W., Woof, C., and Rigg, E.: The dynamics of iron and manganese in a
seasonally anoxic lake; direct measurement of fluxes using sediment traps,
Limnol. Oceanogr., 27, 987–1003, https://doi.org/10.4319/lo.1982.27.6.0987, 1982.
Environment Canada: Canadian climate normals or averages 1981–2010,
available at: https://climate.weather.gc.ca/climate_normals/index_e.html, last access: 14 March 2020.
Esper, J., Frank, D. C., Wilson, R. J. S., and Briffa, K. R.: Effect of
scaling and regression on reconstructed temperature amplitude for the past
millennium, Geophys. Res. Lett., 32, L07711, https://doi.org/10.1029/2004GL021236, 2005.
Esper, J., Düthorn, E., Krusic, P. J., Timonen, M., and Büntgen, U.:
Northern European summer temperature variations over the Common Era from
integrated tree-ring density records, J. Quat. Sci., 29, 487–494,
https://doi.org/10.1002/jqs.2726, 2014.
Fors, Y., Jalilehvand, F., Damian Risberg, E., Björdal, C., Phillips, E.,
and Sandström, M.: Sulfur and iron analyses of marine archaeological
wood in shipwrecks from the Baltic Sea and Scandinavian waters, J. Archaeol.
Sci., 39, 2521–2532, https://doi.org/10.1016/j.jas.2012.03.006, 2012.
Fors, Y., Grudd, H., Rindby, A., Jalilehvand, F., Sandström, M., Cato,
I., and Bornmalm, L.: Sulfur and iron accumulation in three
marine-archaeological shipwrecks in the Baltic Sea: The Ghost, the Crown and
the Sword, Sci. Rep., 4, 4222, https://doi.org/10.1038/srep04222, 2014.
Frank, D. and Esper, J.: Characterization and climate response patterns of a
high-elevation, multi-species tree-ring network in the European Alps,
Dendrochronologia, 22, 107–121, https://doi.org/10.1016/j.dendro.2005.02.004, 2005.
Gennaretti, F., Arseneault, D., and Bégin, Y.: Millennial
disturbance-driven forest stand dynamics in the Eastern Canadian taiga
reconstructed from subfossil logs, J. Ecol., 102, 1612–1622,
https://doi.org/10.1111/1365-2745.12315, 2014a.
Gennaretti, F., Arseneault, D., and Bégin, Y.: Millennial stocks and
fluxes of large woody debris in lakes of the North American taiga, J. Ecol.,
102, 367–380, https://doi.org/10.1111/1365-2745.12198, 2014b.
Gennaretti, F., Arseneault, D., Nicault, A., Perreault, L., and Bégin,
Y.: Volcano-induced regime shifts in millennial tree-ring chronologies from
northeastern North America, P. Natl. Acad. Sci., 111, 10077,
https://doi.org/10.1073/pnas.1324220111, 2014c.
Grudd, H., Briffa, K. R., Karlén, W., Bartholin, T. S., Jones, P. D., and
Kromer, B.: A 7400-year tree-ring chronology in northern Swedish Lapland:
natural climatic variability expressed on annual to millennial timescales,
The Holocene, 12, 657–665, https://doi.org/10.1191/0959683602hl578rp, 2002.
Gupta, S. K. and Chen, K. Y.: Partitioning of Trace Metals in Selective
Chemical Fractions of Nearshore Sediments, Environ. Lett., 10, 129–158,
https://doi.org/10.1080/00139307509435816, 1975.
Harris, I., Jones, P. D., Osborn, T. J., and Lister, D. H.: Updated
high-resolution grids of monthly climatic observations – the CRU TS3.10
Dataset, Int. J. Climatol., 34, 623–642, https://doi.org/10.1002/joc.3711, 2014.
Helama, S., Melvin, T. M., and Briffa, K. R.: Regional curve standardization:
State of the art, The Holocene, 27, 172–177, https://doi.org/10.1177/0959683616652709,
2017.
Hyacinthe, C., Bonneville, S., and Van Cappellen, P.: Reactive iron(III) in
sediments: Chemical versus microbial extractions, Geochim. Cosmochim. Ac.,
70, 4166–4180, https://doi.org/10.1016/j.gca.2006.05.018, 2006.
Kaczka, R. J., Spyt, B., Janecka, K., Beil, I., Büntgen, U.,
Scharnweber, T., Nievergelt, D., and Wilmking, M.: Different maximum latewood
density and blue intensity measurements techniques reveal similar results,
Dendrochronologia, 49, 94–101, https://doi.org/10.1016/j.dendro.2018.03.005, 2018.
KNMI Climate Explorer: Instrumental temperature data, available at: https://climexp.knmi.nl/start.cgi, last access: 15 September 2020.
Kostka, J. E. and Luther, G. W.: Partitioning and speciation of solid phase
iron in saltmarsh sediments, Geochim. Cosmochim. Ac., 58, 1701–1710,
https://doi.org/10.1016/0016-7037(94)90531-2, 1994.
McCarroll, D., Pettigrew, E., Luckman, A., Guibal, F., and Edouard, J.-L.:
Blue Reflectance Provides a Surrogate for Latewood Density of High-latitude
Pine Tree Rings, Arct. Antarct. Alp. Res., 34, 450–453,
https://doi.org/10.1080/15230430.2002.12003516, 2002.
McCarroll, D., Loader, N. J., Jalkanen, R., Gagen, M. H., Grudd, H.,
Gunnarson, B. E., Kirchhefer, A. J., Friedrich, M., Linderholm, H. W.,
Lindholm, M., Boettger, T., Los, S. O., Remmele, S., Kononov, Y. M.,
Yamazaki, Y. H., Young, G. H., and Zorita, E.: A 1200-year multiproxy record
of tree growth and summer temperature at the northern pine forest limit of
Europe, The Holocene, 23, 471–484, https://doi.org/10.1177/0959683612467483, 2013.
Nürnberg, G. K. and Dillon, P. J.: Iron budgets in temperate lakes, Can.
J. Fish. Aquat. Sci., 50, 1728–1737, https://doi.org/10.1139/f93-194, 1993.
Österreicher, A., Weber, G., Leuenberger, M., and Nicolussi, K.:
Exploring blue intensity-comparison of blue intensity and MXD data from
Alpine spruce trees, TRACE–Tree Rings, Archaeol. Climatol. Ecol., 13,
56–61, https://doi.org/10.2312/GFZ.b103-15069, 2015.
Payette, S.: The range limit of boreal tree species in Québec-Labrador:
an ecological and palaeoecological interpretation, Palaeoecol. Perspect.
Veg. Can.-Festschr. Honour JC Ritchie, 79, 7–30,
https://doi.org/10.1016/0034-6667(93)90036-T, 1993.
Pelé, C., Guilminot, E., Labroche, S., Lemoine, G., and Baron, G.: Iron
removal from waterlogged wood: Extraction by electrophoresis and chemical
treatments, Stud. Conserv., 60, 155–171,
https://doi.org/10.1179/2047058413Y.0000000110, 2015.
R Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, available at: https://www.R-project.org/, last access: 15 September 2020.
Rydval, M., Larsson, L.-Å., McGlynn, L., Gunnarson, B. E., Loader, N.
J., Young, G. H. F., and Wilson, R.: Blue intensity for dendroclimatology:
Should we have the blues? Experiments from Scotland, Dendrochronologia, 32,
191–204, https://doi.org/10.1016/j.dendro.2014.04.003, 2014.
Rydval, M., Loader, N. J., Gunnarson, B. E., Druckenbrod, D. L., Linderholm,
H. W., Moreton, S. G., Wood, C. V., and Wilson, R.: Reconstructing 800 years
of summer temperatures in Scotland from tree rings, Clim. Dynam., 49,
2951–2974, https://doi.org/10.1007/s00382-016-3478-8, 2017.
Sheppard, P. R.: Overcoming extraneous wood color variation during
low-magnification reflected-light image analysis of conifer tree rings, Wood
Fiber Sci., 31, 106–115, 1999.
Sheppard, P. R. and Wiedenhoeft, A.: An advancement in removing extraneous
color from wood for low-magnification reflected-light image analysis of
conifer tree rings, Wood Fiber Sci., 39, 173–183, 2007.
St. George, S. and Esper, J.: Concord and discord among Northern Hemisphere
paleotemperature reconstructions from tree rings, Quat. Sci. Rev., 203,
278–281, https://doi.org/10.1016/j.quascirev.2018.11.013, 2019.
Tessier, A., Campbell, P. G. C., and Bisson, M.: Sequential extraction
procedure for the speciation of particulate trace metals, Anal. Chem., 51,
844–851, https://doi.org/10.1021/ac50043a017, 1979.
Wang, F., Arseneault, D., Boucher, É., Galipaud Gloaguen, G., Deharte,
A., Yu, S., and Trou-kechout, N.: Temperature sensitivity of blue intensity,
maximum latewood density, and ring width data of black spruce tree rings in
the eastern Canadian taiga, Dendrochronologia, submitted, 2020a.
Wang, F., Arseneault, D., Boucher, É., Yu, S., Ouellet, S., Chaillou,
G., Delwaide, A., and Wang, L.: Data for Chemical de-staining and the delta correction for blue intensity measurements of stained lake subfossil trees (Version 1), Zenodo, https://doi.org/10.5281/zenodo.3930493, 2020b.
Wang, L., Payette, S., and Bégin, Y.: 1300-year tree-ring width and
density series based on living, dead and subfossil black spruce at tree-line
in Subarctic Quebec, Canada, The Holocene, 11, 333–341,
https://doi.org/10.1191/095968301674769686, 2001.
Wigley, T. M. L., Briffa, K. R., and Jones, P. D.: On the Average Value of
Correlated Time Series, with Applications in Dendroclimatology and
Hydrometeorology, J. Clim. Appl. Meteorol., 23, 201–213,
https://doi.org/10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2,
1984.
Wilson, R., Rao, R., Rydval, M., Wood, C., Larsson, L.-Å., and Luckman,
B. H.: Blue Intensity for dendroclimatology: The BC blues: A case study from
British Columbia, Canada, The Holocene, 24, 1428–1438,
https://doi.org/10.1177/0959683614544051, 2014.
Wilson, R., Anchukaitis, K., Briffa, K., Büntgen, U., Cook, E.,
D'Arrigo, R., Davi, N., Esper, J., Frank, D., Gunnarson, B., Hegerl, G.,
Klesse, S., Krusic, P., Linderholm, H., Myglan, V., Peng, Z., Rydval, M.,
Schneider, L., Schurer, A., Wiles, G., and Zorita, E.: Last millennium northern
hemisphere summer temperatures from tree rings: Part I: The long term
context, Quat. Sci. Rev. 134, 1–18,
https://doi.org/10.1016/j.quascirev.2015.12.005, 2016.
Wilson, R., Anchukaitis, K., Andreu-Hayles, L., Cook, E., D'Arrigo, R.,
Davi, N., Haberbauer, L., Krusic, P., Luckman, B., Morimoto, D., Oelkers,
R., Wiles, G., and Wood, C.: Improved dendroclimatic calibration using blue
intensity in the southern Yukon, The Holocene, 29, 1817–1830,
https://doi.org/10.1177/0959683619862037, 2019.
Yang, K. C.: Growth ring contrast enhancement and the differentiation of
sapwood and heartwood zones, Wood Fiber Sci., 19, 339–342, 2007.
Zang, C. and Biondi, F.: treeclim: an R package for the numerical
calibration of proxy-climate relationships, Ecography, 38, 431–436,
https://doi.org/10.1111/ecog.01335, 2015.
Zaw, M. and Chiswell, B.: Iron and manganese dynamics in lake water, Water
Res., 33, 1900–1910, https://doi.org/10.1016/S0043-1354(98)00360-1, 1999.
Zhang, J. and Xi, S.: Research on the decoloration of waterlogged bamboo slips,
Sci. Conserv. Archaeol., 15, 37–42, 2003 (in Chinese with English abstract).
Short summary
Wood stain is challenging the use of the blue intensity technique for dendroclimatic reconstructions. Using stained subfossil trees from eastern Canadian lakes, we compared chemical destaining approaches with the
delta bluemathematical correction of blue intensity data. Although no chemical treatment was completely efficient, the delta blue method is unaffected by the staining problem and thus is promising for climate reconstructions based on lake subfossil material.
Wood stain is challenging the use of the blue intensity technique for dendroclimatic...
Altmetrics
Final-revised paper
Preprint