Articles | Volume 18, issue 11
https://doi.org/10.5194/bg-18-3485-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-3485-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Archaeal intact polar lipids in polar waters: a comparison between the Amundsen and Scotia seas
Charlotte L. Spencer-Jones
CORRESPONDING AUTHOR
Department of Geography, Durham University, Lower Mountjoy, South
Road, Durham, DH1 3LE, UK
Erin L. McClymont
Department of Geography, Durham University, Lower Mountjoy, South
Road, Durham, DH1 3LE, UK
Nicole J. Bale
NIOZ Royal Netherlands Institute for Sea Research, Department of
Marine Microbiology and Biogeochemistry, P.O. Box 59, 1790 AB Den Burg,
Texel, the Netherlands
Ellen C. Hopmans
NIOZ Royal Netherlands Institute for Sea Research, Department of
Marine Microbiology and Biogeochemistry, P.O. Box 59, 1790 AB Den Burg,
Texel, the Netherlands
Stefan Schouten
NIOZ Royal Netherlands Institute for Sea Research, Department of
Marine Microbiology and Biogeochemistry, P.O. Box 59, 1790 AB Den Burg,
Texel, the Netherlands
Department of Earth Sciences, Utrecht University, Utrecht, the
Netherlands
Juliane Müller
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine
Research, 27568 Bremerhaven, Germany
E. Povl Abrahamsen
British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3
0ET, UK
Claire Allen
British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3
0ET, UK
Torsten Bickert
MARUM – Center for Marine Environmental Sciences, University of Bremen, Leobener Str. 8, 28359, Bremen, Germany
Claus-Dieter Hillenbrand
British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3
0ET, UK
Elaine Mawbey
British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3
0ET, UK
Victoria Peck
British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3
0ET, UK
Aleksandra Svalova
School of Natural and Environmental Sciences, Newcastle University,
Newcastle-upon-Tyne, NE1 7RU, UK
James A. Smith
British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3
0ET, UK
Related authors
Erin L. McClymont, Michael J. Bentley, Dominic A. Hodgson, Charlotte L. Spencer-Jones, Thomas Wardley, Martin D. West, Ian W. Croudace, Sonja Berg, Darren R. Gröcke, Gerhard Kuhn, Stewart S. R. Jamieson, Louise Sime, and Richard A. Phillips
Clim. Past, 18, 381–403, https://doi.org/10.5194/cp-18-381-2022, https://doi.org/10.5194/cp-18-381-2022, 2022
Short summary
Short summary
Sea ice is important for our climate system and for the unique ecosystems it supports. We present a novel way to understand past Antarctic sea-ice ecosystems: using the regurgitated stomach contents of snow petrels, which nest above the ice sheet but feed in the sea ice. During a time when sea ice was more extensive than today (24 000–30 000 years ago), we show that snow petrel diet had varying contributions of fish and krill, which we interpret to show changing sea-ice distribution.
Devika Varma, Laura Villanueva, Nicole J. Bale, Pierre Offre, Gert-Jan Reichart, and Stefan Schouten
Biogeosciences, 21, 4875–4888, https://doi.org/10.5194/bg-21-4875-2024, https://doi.org/10.5194/bg-21-4875-2024, 2024
Short summary
Short summary
Archaeal hydroxylated tetraether lipids are increasingly used as temperature indicators in marine settings, but the factors influencing their distribution are still unclear. Analyzing membrane lipids of two thaumarchaeotal strains showed that the growth phase of the cultures does not affect the lipid distribution, but growth temperature profoundly affects the degree of cyclization of these lipids. Also, the abundance of these lipids is species-specific and is not influenced by temperature.
Guangnan Wu, Klaas G. J. Nierop, Bingjie Yang, Stefan Schouten, Gert-Jan Reichart, and Peter Kraal
EGUsphere, https://doi.org/10.5194/egusphere-2024-3192, https://doi.org/10.5194/egusphere-2024-3192, 2024
Short summary
Short summary
Estuaries store and process large amounts of carbon, making them vital to the global carbon cycle. In the Port of Rotterdam, we studied the source of organic matter (OM) in sediments and how it influences OM breakdown. We found that marine OM degrades faster than land OM, and human activities like dredging can accelerate this by exposing sediments to oxygen. Our findings highlight the impact of human activities on carbon storage in estuaries, which is key for managing estuarine carbon dynamics.
Anna Cutmore, Nicole Bale, Rick Hennekam, Bingjie Yang, Darci Rush, Gert-Jan Reichart, Ellen C. Hopmans, and Stefan Schouten
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-59, https://doi.org/10.5194/cp-2024-59, 2024
Preprint under review for CP
Short summary
Short summary
As human activities lower marine oxygen levels, understanding the impact on the marine nitrogen cycle is vital. The Black Sea, which became oxygen-deprived 9,600 years ago, offers key insights. By studying organic compounds linked to nitrogen cycle processes, we found that 7,200 years ago, the Black Sea's nitrogen cycle significantly altered due to severe deoxygenation. This suggests that continued marine oxygen decline could similarly alter the marine nitrogen cycle, affecting vital ecosystems.
Tsai-Wen Lin, Tommaso Tesi, Jens Hefter, Hendrik Grotheer, Jutta Wollenburg, Florian Adolphi, Henning Bauch, Alessio Nogarotto, Juliane Müller, and Gesine Mollenhauer
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-60, https://doi.org/10.5194/cp-2024-60, 2024
Preprint under review for CP
Short summary
Short summary
In order to understand the mechanisms governing permafrost organic matter re-mobilization, we investigated organic matter composition during past intervals of rapid sea-level rise, of inland warming, and of dense sea-ice cover in the Laptev Sea. We find that sea-level rise resulted in wide-spread erosion and transport of permafrost materials to the ocean, but erosion is mitigated by regional dense sea ice cover. Factors like inland warming or floods increase permafrost mobilization locally.
James D. Annan, Julia C. Hargreaves, Thorsten Mauritsen, Erin McClymont, and Sze Ling Ho
Clim. Past, 20, 1989–1999, https://doi.org/10.5194/cp-20-1989-2024, https://doi.org/10.5194/cp-20-1989-2024, 2024
Short summary
Short summary
We have created a new global surface temperature reconstruction of the climate of the mid-Pliocene Warm Period, representing the period roughly 3.2 million years before the present day. We estimate that the globally averaged mean temperature was around 3.9 °C warmer than it was in pre-industrial times, but there is significant uncertainty in this value.
Joseph A. Ruggiero, Reed P. Scherer, Joseph Mastro, Cesar G. Lopez, Marcus Angus, Evie Unger-Harquail, Olivia Quartz, Amy Leventer, and Claus-Dieter Hillenbrand
J. Micropalaeontol., 43, 323–336, https://doi.org/10.5194/jm-43-323-2024, https://doi.org/10.5194/jm-43-323-2024, 2024
Short summary
Short summary
We quantify sea surface temperature (SST) in the past Southern Ocean using the diatom Fragilariopsis kerguelensis that displays variable population with SST. We explore the use of this relatively new proxy by applying it to sediment assemblages from the Sabrina Coast and Amundsen Sea. We find that Amundsen Sea and Sabrina Coast F. kerguelensis populations are different from each other. An understanding of F. kerguelensis dynamics may help us generate an SST proxy to apply to ancient sediments.
Indrani Das, Jowan Barnes, James Smith, Renata Constantino, Sidney Hemming, and Laurie Padman
EGUsphere, https://doi.org/10.5194/egusphere-2024-1564, https://doi.org/10.5194/egusphere-2024-1564, 2024
Short summary
Short summary
George VI Ice Shelf (GVIIS) on the Antarctic Peninsula is currently thinning and the glaciers feeding it are accelerating. Geologic evidence indicates that GVIIS had disintegrated several thousand years ago due to ocean and atmosphere warming. Here, we use remote sensing and numerical modeling to show that strain thinning reduces buttressing of grounded ice, creating a positive feedback of accelerated ice inflow to the southern GVIIS, likely making it more vulnerable than the northern sector.
Jim Marschalek, Edward Gasson, Tina van de Flierdt, Claus-Dieter Hillenbrand, Martin Siegert, and Liam Holder
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-104, https://doi.org/10.5194/gmd-2024-104, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Ice sheet models can help predict how Antarctica's ice sheets respond to environmental change, and such models benefit from comparison to geological data. Here, we use an ice sheet model output, plus other data, to predict the erosion of debris and trace its transport to where it is deposited on the ocean floor. This allows the results of ice sheet modelling to be directly and quantitively compared to real-world data, helping to reduce uncertainty regarding Antarctic sea level contribution.
Szabina Karancz, Lennart J. de Nooijer, Bas van der Wagt, Marcel T. J. van der Meer, Sambuddha Misra, Rick Hennekam, Zeynep Erdem, Julie Lattaud, Negar Haghipour, Stefan Schouten, and Gert-Jan Reichart
EGUsphere, https://doi.org/10.5194/egusphere-2024-1915, https://doi.org/10.5194/egusphere-2024-1915, 2024
Short summary
Short summary
Changes in upwelling intensity of the Benguela upwelling region during the last glacial motivated us to investigate the local CO2-history during the last glacial to interglacial transition. Using various geochemical tracers on archives from both intermediate and surface waters reveal enhanced storage of carbon at depth during the last glacial maximum. An efficient biological pump likely prevented outgassing of CO2 from intermediate depth to the atmosphere.
Jack T. R. Wilkin, Sev Kender, Rowan Dejardin, Claire S. Allen, Victoria L. Peck, George E. A. Swann, Erin L. McClymont, James D. Scourse, Kate Littler, and Melanie J. Leng
J. Micropalaeontol., 43, 165–186, https://doi.org/10.5194/jm-43-165-2024, https://doi.org/10.5194/jm-43-165-2024, 2024
Short summary
Short summary
The sub-Antarctic island of South Georgia has a dynamic glacial history and is sensitive to climate change. Using benthic foraminifera and various geochemical proxies, we reconstruct inner–middle shelf productivity and infer glacial evolution since the late deglacial, identifying new mid–late-Holocene glacial readvances. Fursenkoina fusiformis acts as a good proxy for productivity.
Lauren E. Burton, Alan M. Haywood, Julia C. Tindall, Aisling M. Dolan, Daniel J. Hill, Erin L. McClymont, Sze Ling Ho, and Heather L. Ford
Clim. Past, 20, 1177–1194, https://doi.org/10.5194/cp-20-1177-2024, https://doi.org/10.5194/cp-20-1177-2024, 2024
Short summary
Short summary
The Pliocene (~ 3 million years ago) is of interest because its warm climate is similar to projections of the future. We explore the role of atmospheric carbon dioxide in forcing sea surface temperature during the Pliocene by combining climate model outputs with palaeoclimate proxy data. We investigate whether this role changes seasonally and also use our data to suggest a new estimate of Pliocene climate sensitivity. More data are needed to further explore the results presented.
Allison P. Lepp, Lauren E. Miller, John B. Anderson, Matt O'Regan, Monica C. M. Winsborrow, James A. Smith, Claus-Dieter Hillenbrand, Julia S. Wellner, Lindsay O. Prothro, and Evgeny A. Podolskiy
The Cryosphere, 18, 2297–2319, https://doi.org/10.5194/tc-18-2297-2024, https://doi.org/10.5194/tc-18-2297-2024, 2024
Short summary
Short summary
Shape and surface texture of silt-sized grains are measured to connect marine sediment records with subglacial water flow. We find that grain shape alteration is greatest in glaciers where high-energy drainage events and abundant melting of surface ice are inferred and that the surfaces of silt-sized sediments preserve evidence of glacial transport. Our results suggest grain shape and texture may reveal whether glaciers previously experienced temperate conditions with more abundant meltwater.
Zoë Rebecca van Kemenade, Zeynep Erdem, Ellen Christine Hopmans, Jaap Smede Sinninghe Damsté, and Darci Rush
Biogeosciences, 21, 1517–1532, https://doi.org/10.5194/bg-21-1517-2024, https://doi.org/10.5194/bg-21-1517-2024, 2024
Short summary
Short summary
The California Current system (CCS) hosts the eastern subtropical North Pacific oxygen minimum zone (ESTNP OMZ). This study shows anaerobic ammonium oxidizing (anammox) bacteria cause a loss of bioavailable nitrogen (N) in the ESTNP OMZ throughout the late Quaternary. Anammox occurred during both glacial and interglacial periods and was driven by the supply of organic matter and changes in ocean currents. These findings may have important consequences for biogeochemical models of the CCS.
Vera Dorothee Meyer, Jürgen Pätzold, Gesine Mollenhauer, Isla S. Castañeda, Stefan Schouten, and Enno Schefuß
Clim. Past, 20, 523–546, https://doi.org/10.5194/cp-20-523-2024, https://doi.org/10.5194/cp-20-523-2024, 2024
Short summary
Short summary
The climatic factors sustaining vegetation in the Sahara during the African humid period (AHP) are still not fully understood. Using biomarkers in a marine sediment core from the eastern Mediterranean, we infer variations in Mediterranean (winter) and monsoonal (summer) rainfall in the Nile river watershed around the AHP. We find that winter and summer rain enhanced during the AHP, suggesting that Mediterranean moisture supported the monsoon in sustaining the “green Sahara”.
Wee Wei Khoo, Juliane Müller, Oliver Esper, Wenshen Xiao, Christian Stepanek, Paul Gierz, Gerrit Lohmann, Walter Geibert, Jens Hefter, and Gesine Mollenhauer
EGUsphere, https://doi.org/10.5194/egusphere-2024-246, https://doi.org/10.5194/egusphere-2024-246, 2024
Short summary
Short summary
Using a multiproxy approach, we analyzed biomarkers and diatom assemblages from a marine sediment core from the Powell Basin, Weddell Sea. The results reveal the first continuous coastal Antarctic sea ice record since the Last Penultimate Glacial. Our findings contribute valuable insights into past glacial-interglacial sea ice response to a changing climate and enhance our understanding of the ocean-sea ice-ice shelf interactions and dynamics.
Tobias Roylands, Robert G. Hilton, Erin L. McClymont, Mark H. Garnett, Guillaume Soulet, Sébastien Klotz, Mathis Degler, Felipe Napoleoni, and Caroline Le Bouteiller
Earth Surf. Dynam., 12, 271–299, https://doi.org/10.5194/esurf-12-271-2024, https://doi.org/10.5194/esurf-12-271-2024, 2024
Short summary
Short summary
Chemical weathering of sedimentary rocks can release carbon dioxide and consume oxygen. We present a new field-based method to measure the exchange of these gases in real time, which allows us to directly compare the amount of reactants and products. By studying two sites with different rock types, we show that the chemical composition is an important factor in driving the weathering reactions. Locally, the carbon dioxide release changes alongside temperature and precipitation.
Katrin Hättig, Devika Varma, Stefan Schouten, and Marcel T. J. van der Meer
Clim. Past, 19, 1919–1930, https://doi.org/10.5194/cp-19-1919-2023, https://doi.org/10.5194/cp-19-1919-2023, 2023
Short summary
Short summary
Water isotopes, both hydrogen and oxygen, correlate with the salinity of the sea. Here we reconstruct the surface seawater isotopic composition during the last deglaciation based on the measured hydrogen isotopic composition of alkenones, organic compounds derived from haptophyte algae, and compared it to oxygen isotopes of calcite shells produced in the bottom water. Our results suggest that surface seawater experienced more freshening during the last 20 000 years than the bottom seawater.
Julia Rieke Hagemann, Lester Lembke-Jene, Frank Lamy, Maria-Elena Vorrath, Jérôme Kaiser, Juliane Müller, Helge W. Arz, Jens Hefter, Andrea Jaeschke, Nicoletta Ruggieri, and Ralf Tiedemann
Clim. Past, 19, 1825–1845, https://doi.org/10.5194/cp-19-1825-2023, https://doi.org/10.5194/cp-19-1825-2023, 2023
Short summary
Short summary
Alkenones and glycerol dialkyl glycerol tetraether lipids (GDGTs) are common biomarkers for past water temperatures. In high latitudes, determining temperature reliably is challenging. We analyzed 33 Southern Ocean sediment surface samples and evaluated widely used global calibrations for both biomarkers. For GDGT-based temperatures, previously used calibrations best reflect temperatures >5° C; (sub)polar temperature bias necessitates a new calibration which better aligns with modern values.
Benoit S. Lecavalier, Lev Tarasov, Greg Balco, Perry Spector, Claus-Dieter Hillenbrand, Christo Buizert, Catherine Ritz, Marion Leduc-Leballeur, Robert Mulvaney, Pippa L. Whitehouse, Michael J. Bentley, and Jonathan Bamber
Earth Syst. Sci. Data, 15, 3573–3596, https://doi.org/10.5194/essd-15-3573-2023, https://doi.org/10.5194/essd-15-3573-2023, 2023
Short summary
Short summary
The Antarctic Ice Sheet Evolution constraint database version 2 (AntICE2) consists of a large variety of observations that constrain the evolution of the Antarctic Ice Sheet over the last glacial cycle. This includes observations of past ice sheet extent, past ice thickness, past relative sea level, borehole temperature profiles, and present-day bedrock displacement rates. The database is intended to improve our understanding of past Antarctic changes and for ice sheet model calibrations.
Georgia R. Grant, Jonny H. T. Williams, Sebastian Naeher, Osamu Seki, Erin L. McClymont, Molly O. Patterson, Alan M. Haywood, Erik Behrens, Masanobu Yamamoto, and Katelyn Johnson
Clim. Past, 19, 1359–1381, https://doi.org/10.5194/cp-19-1359-2023, https://doi.org/10.5194/cp-19-1359-2023, 2023
Short summary
Short summary
Regional warming will differ from global warming, and climate models perform poorly in the Southern Ocean. We reconstruct sea surface temperatures in the south-west Pacific during the mid-Pliocene, a time 3 million years ago that represents the long-term outcomes of 3 °C warming, which is expected for the future. Comparing these results to climate model simulations, we show that the south-west Pacific region will warm by 1 °C above the global average if atmospheric CO2 remains above 350 ppm.
Nora Richter, Ellen C. Hopmans, Danica Mitrović, Pedro M. Raposeiro, Vítor Gonçalves, Ana C. Costa, Linda A. Amaral-Zettler, Laura Villanueva, and Darci Rush
Biogeosciences, 20, 2065–2098, https://doi.org/10.5194/bg-20-2065-2023, https://doi.org/10.5194/bg-20-2065-2023, 2023
Short summary
Short summary
Bacteriohopanepolyols (BHPs) are a diverse class of lipids produced by bacteria across a wide range of environments. This study characterizes the diversity of BHPs in lakes and coastal lagoons in the Azores Archipelago, as well as a co-culture enriched for methanotrophs. We highlight the potential of BHPs as taxonomic markers for bacteria associated with certain ecological niches, which can be preserved in sedimentary records.
Bjørg Risebrobakken, Mari F. Jensen, Helene R. Langehaug, Tor Eldevik, Anne Britt Sandø, Camille Li, Andreas Born, Erin Louise McClymont, Ulrich Salzmann, and Stijn De Schepper
Clim. Past, 19, 1101–1123, https://doi.org/10.5194/cp-19-1101-2023, https://doi.org/10.5194/cp-19-1101-2023, 2023
Short summary
Short summary
In the observational period, spatially coherent sea surface temperatures characterize the northern North Atlantic at multidecadal timescales. We show that spatially non-coherent temperature patterns are seen both in further projections and a past warm climate period with a CO2 level comparable to the future low-emission scenario. Buoyancy forcing is shown to be important for northern North Atlantic temperature patterns.
Maria-Elena Vorrath, Juliane Müller, Paola Cárdenas, Thomas Opel, Sebastian Mieruch, Oliver Esper, Lester Lembke-Jene, Johan Etourneau, Andrea Vieth-Hillebrand, Niko Lahajnar, Carina B. Lange, Amy Leventer, Dimitris Evangelinos, Carlota Escutia, and Gesine Mollenhauer
Clim. Past, 19, 1061–1079, https://doi.org/10.5194/cp-19-1061-2023, https://doi.org/10.5194/cp-19-1061-2023, 2023
Short summary
Short summary
Sea ice is important to stabilize the ice sheet in Antarctica. To understand how the global climate and sea ice were related in the past we looked at ancient molecules (IPSO25) from sea-ice algae and other species whose dead cells accumulated on the ocean floor over time. With chemical analyses we could reconstruct the history of sea ice and ocean temperatures of the past 14 000 years. We found out that sea ice became less as the ocean warmed, and more phytoplankton grew towards today's level.
Michael J. Bentley, James A. Smith, Stewart S. R. Jamieson, Margaret R. Lindeman, Brice R. Rea, Angelika Humbert, Timothy P. Lane, Christopher M. Darvill, Jeremy M. Lloyd, Fiamma Straneo, Veit Helm, and David H. Roberts
The Cryosphere, 17, 1821–1837, https://doi.org/10.5194/tc-17-1821-2023, https://doi.org/10.5194/tc-17-1821-2023, 2023
Short summary
Short summary
The Northeast Greenland Ice Stream is a major outlet of the Greenland Ice Sheet. Some of its outlet glaciers and ice shelves have been breaking up and retreating, with inflows of warm ocean water identified as the likely reason. Here we report direct measurements of warm ocean water in an unusual lake that is connected to the ocean beneath the ice shelf in front of the 79° N Glacier. This glacier has not yet shown much retreat, but the presence of warm water makes future retreat more likely.
James W. Marschalek, Edward Gasson, Tina van de Flierdt, Claus-Dieter Hillenbrand, Martin J. Siegert, and Liam Holder
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-8, https://doi.org/10.5194/gmd-2023-8, 2023
Revised manuscript not accepted
Short summary
Short summary
Ice sheet models can help predict how Antarctica’s ice sheets respond to environmental change; such models benefit from comparison to geological data. Here, we use ice sheet model results, plus other data, to predict the erosion of Antarctic debris and trace its transport to where it is deposited on the ocean floor. This allows the results of ice sheet modelling to be directly and quantitively compared to real-world data, helping to reduce uncertainty regarding Antarctic sea level contribution.
James A. Smith, Louise Callard, Michael J. Bentley, Stewart S. R. Jamieson, Maria Luisa Sánchez-Montes, Timothy P. Lane, Jeremy M. Lloyd, Erin L. McClymont, Christopher M. Darvill, Brice R. Rea, Colm O'Cofaigh, Pauline Gulliver, Werner Ehrmann, Richard S. Jones, and David H. Roberts
The Cryosphere, 17, 1247–1270, https://doi.org/10.5194/tc-17-1247-2023, https://doi.org/10.5194/tc-17-1247-2023, 2023
Short summary
Short summary
The Greenland Ice Sheet is melting at an accelerating rate. To understand the significance of these changes we reconstruct the history of one of its fringing ice shelves, known as 79° N ice shelf. We show that the ice shelf disappeared 8500 years ago, following a period of enhanced warming. An important implication of our study is that 79° N ice shelf is susceptible to collapse when atmospheric and ocean temperatures are ~2°C warmer than present, which could occur by the middle of this century.
Pauline Cornuault, Thomas Westerhold, Heiko Pälike, Torsten Bickert, Karl-Heinz Baumann, and Michal Kucera
Biogeosciences, 20, 597–618, https://doi.org/10.5194/bg-20-597-2023, https://doi.org/10.5194/bg-20-597-2023, 2023
Short summary
Short summary
We generated high-resolution records of carbonate accumulation rate from the Miocene to the Quaternary in the tropical Atlantic Ocean to characterize the variability in pelagic carbonate production during warm climates. It follows orbital cycles, responding to local changes in tropical conditions, as well as to long-term shifts in climate and ocean chemistry. These changes were sufficiently large to play a role in the carbon cycle and global climate evolution.
Kasia K. Śliwińska, Helen K. Coxall, David K. Hutchinson, Diederik Liebrand, Stefan Schouten, and Agatha M. de Boer
Clim. Past, 19, 123–140, https://doi.org/10.5194/cp-19-123-2023, https://doi.org/10.5194/cp-19-123-2023, 2023
Short summary
Short summary
We provide a sea surface temperature record from the Labrador Sea (ODP Site 647) based on organic geochemical proxies across the late Eocene and early Oligocene. Our study reveals heterogenic cooling of the Atlantic. The cooling of the North Atlantic is difficult to reconcile with the active Atlantic Meridional Overturning Circulation (AMOC). We discuss possible explanations like uncertainty in the data, paleogeography and atmospheric CO2 boundary conditions, model weaknesses, and AMOC activity.
Paul R. Holland, Gemma K. O'Connor, Thomas J. Bracegirdle, Pierre Dutrieux, Kaitlin A. Naughten, Eric J. Steig, David P. Schneider, Adrian Jenkins, and James A. Smith
The Cryosphere, 16, 5085–5105, https://doi.org/10.5194/tc-16-5085-2022, https://doi.org/10.5194/tc-16-5085-2022, 2022
Short summary
Short summary
The Antarctic Ice Sheet is losing ice, causing sea-level rise. However, it is not known whether human-induced climate change has contributed to this ice loss. In this study, we use evidence from climate models and palaeoclimate measurements (e.g. ice cores) to suggest that the ice loss was triggered by natural climate variations but is now sustained by human-forced climate change. This implies that future greenhouse-gas emissions may influence sea-level rise from Antarctica.
Carolien M. H. van der Weijst, Koen J. van der Laan, Francien Peterse, Gert-Jan Reichart, Francesca Sangiorgi, Stefan Schouten, Tjerk J. T. Veenstra, and Appy Sluijs
Clim. Past, 18, 1947–1962, https://doi.org/10.5194/cp-18-1947-2022, https://doi.org/10.5194/cp-18-1947-2022, 2022
Short summary
Short summary
The TEX86 proxy is often used by paleoceanographers to reconstruct past sea-surface temperatures. However, the origin of the TEX86 signal in marine sediments has been debated since the proxy was first proposed. In our paper, we show that TEX86 carries a mixed sea-surface and subsurface temperature signal and should be calibrated accordingly. Using our 15-million-year record, we subsequently show how a TEX86 subsurface temperature record can be used to inform us on past sea-surface temperatures.
Xavier Crosta, Karen E. Kohfeld, Helen C. Bostock, Matthew Chadwick, Alice Du Vivier, Oliver Esper, Johan Etourneau, Jacob Jones, Amy Leventer, Juliane Müller, Rachael H. Rhodes, Claire S. Allen, Pooja Ghadi, Nele Lamping, Carina B. Lange, Kelly-Anne Lawler, David Lund, Alice Marzocchi, Katrin J. Meissner, Laurie Menviel, Abhilash Nair, Molly Patterson, Jennifer Pike, Joseph G. Prebble, Christina Riesselman, Henrik Sadatzki, Louise C. Sime, Sunil K. Shukla, Lena Thöle, Maria-Elena Vorrath, Wenshen Xiao, and Jiao Yang
Clim. Past, 18, 1729–1756, https://doi.org/10.5194/cp-18-1729-2022, https://doi.org/10.5194/cp-18-1729-2022, 2022
Short summary
Short summary
Despite its importance in the global climate, our knowledge of Antarctic sea-ice changes throughout the last glacial–interglacial cycle is extremely limited. As part of the Cycles of Sea Ice Dynamics in the Earth system (C-SIDE) Working Group, we review marine- and ice-core-based sea-ice proxies to provide insights into their applicability and limitations. By compiling published records, we provide information on Antarctic sea-ice dynamics over the past 130 000 years.
Dieter R. Tetzner, Elizabeth R. Thomas, Claire S. Allen, and Mackenzie M. Grieman
Clim. Past, 18, 1709–1727, https://doi.org/10.5194/cp-18-1709-2022, https://doi.org/10.5194/cp-18-1709-2022, 2022
Short summary
Short summary
Changes in the Southern Hemisphere westerly winds are drivers of recent environmental changes in West Antarctica. However, our understanding of this relationship is limited by short and sparse observational records. Here we present the first regional wind study based on the novel use of diatoms preserved in Antarctic ice cores. Our results demonstrate that diatom abundance is the optimal record for reconstructing wind strength variability over the Southern Hemisphere westerly wind belt.
Stefan Mulitza, Torsten Bickert, Helen C. Bostock, Cristiano M. Chiessi, Barbara Donner, Aline Govin, Naomi Harada, Enqing Huang, Heather Johnstone, Henning Kuhnert, Michael Langner, Frank Lamy, Lester Lembke-Jene, Lorraine Lisiecki, Jean Lynch-Stieglitz, Lars Max, Mahyar Mohtadi, Gesine Mollenhauer, Juan Muglia, Dirk Nürnberg, André Paul, Carsten Rühlemann, Janne Repschläger, Rajeev Saraswat, Andreas Schmittner, Elisabeth L. Sikes, Robert F. Spielhagen, and Ralf Tiedemann
Earth Syst. Sci. Data, 14, 2553–2611, https://doi.org/10.5194/essd-14-2553-2022, https://doi.org/10.5194/essd-14-2553-2022, 2022
Short summary
Short summary
Stable isotope ratios of foraminiferal shells from deep-sea sediments preserve key information on the variability of ocean circulation and ice volume. We present the first global atlas of harmonized raw downcore oxygen and carbon isotope ratios of various planktonic and benthic foraminiferal species. The atlas is a foundation for the analyses of the history of Earth system components, for finding future coring sites, and for teaching marine stratigraphy and paleoceanography.
Joanne S. Johnson, Ryan A. Venturelli, Greg Balco, Claire S. Allen, Scott Braddock, Seth Campbell, Brent M. Goehring, Brenda L. Hall, Peter D. Neff, Keir A. Nichols, Dylan H. Rood, Elizabeth R. Thomas, and John Woodward
The Cryosphere, 16, 1543–1562, https://doi.org/10.5194/tc-16-1543-2022, https://doi.org/10.5194/tc-16-1543-2022, 2022
Short summary
Short summary
Recent studies have suggested that some portions of the Antarctic Ice Sheet were less extensive than present in the last few thousand years. We discuss how past ice loss and regrowth during this time would leave its mark on geological and glaciological records and suggest ways in which future studies could detect such changes. Determining timing of ice loss and gain around Antarctica and conditions under which they occurred is critical for preparing for future climate-warming-induced changes.
Dieter R. Tetzner, Claire S. Allen, and Elizabeth R. Thomas
The Cryosphere, 16, 779–798, https://doi.org/10.5194/tc-16-779-2022, https://doi.org/10.5194/tc-16-779-2022, 2022
Short summary
Short summary
The presence of diatoms in Antarctic ice cores has been scarcely documented and poorly understood. Here we present a detailed analysis of the spatial and temporal distribution of the diatom record preserved in a set of Antarctic ice cores. Our results reveal that the timing and amount of diatoms deposited present a strong geographical division. This study highlights the potential of the diatom record preserved in Antarctic ice cores to provide useful information about past environmental changes.
Erin L. McClymont, Michael J. Bentley, Dominic A. Hodgson, Charlotte L. Spencer-Jones, Thomas Wardley, Martin D. West, Ian W. Croudace, Sonja Berg, Darren R. Gröcke, Gerhard Kuhn, Stewart S. R. Jamieson, Louise Sime, and Richard A. Phillips
Clim. Past, 18, 381–403, https://doi.org/10.5194/cp-18-381-2022, https://doi.org/10.5194/cp-18-381-2022, 2022
Short summary
Short summary
Sea ice is important for our climate system and for the unique ecosystems it supports. We present a novel way to understand past Antarctic sea-ice ecosystems: using the regurgitated stomach contents of snow petrels, which nest above the ice sheet but feed in the sea ice. During a time when sea ice was more extensive than today (24 000–30 000 years ago), we show that snow petrel diet had varying contributions of fish and krill, which we interpret to show changing sea-ice distribution.
Matthew Chadwick, Claire S. Allen, Louise C. Sime, Xavier Crosta, and Claus-Dieter Hillenbrand
Clim. Past, 18, 129–146, https://doi.org/10.5194/cp-18-129-2022, https://doi.org/10.5194/cp-18-129-2022, 2022
Short summary
Short summary
Algae preserved in marine sediments have allowed us to reconstruct how much winter sea ice was present around Antarctica during a past time period (130 000 years ago) when the climate was warmer than today. The patterns of sea-ice increase and decrease vary between different parts of the Southern Ocean. The Pacific sector has a largely stable sea-ice extent, whereas the amount of sea ice in the Atlantic sector is much more variable with bigger decreases and increases than other regions.
Zoë R. van Kemenade, Laura Villanueva, Ellen C. Hopmans, Peter Kraal, Harry J. Witte, Jaap S. Sinninghe Damsté, and Darci Rush
Biogeosciences, 19, 201–221, https://doi.org/10.5194/bg-19-201-2022, https://doi.org/10.5194/bg-19-201-2022, 2022
Short summary
Short summary
Anaerobic ammonium oxidation (anammox) is an important nitrogen-removal process in the ocean. We assess the distribution of bacteriohopanetetrol-x (BHT-x), used to trace past anammox, along a redox gradient in the water column of the Benguela upwelling system. BHT-x / BHT ratios of >0.18 correspond to the presence of living anammox bacteria and oxygen levels <50 μmol L−1. This allows for a more robust application of BHT-x to trace past marine anammox and deoxygenation in dynamic marine systems.
Nele Lamping, Juliane Müller, Jens Hefter, Gesine Mollenhauer, Christian Haas, Xiaoxu Shi, Maria-Elena Vorrath, Gerrit Lohmann, and Claus-Dieter Hillenbrand
Clim. Past, 17, 2305–2326, https://doi.org/10.5194/cp-17-2305-2021, https://doi.org/10.5194/cp-17-2305-2021, 2021
Short summary
Short summary
We analysed biomarker concentrations on surface sediment samples from the Antarctic continental margin. Highly branched isoprenoids and GDGTs are used for reconstructing recent sea-ice distribution patterns and ocean temperatures respectively. We compared our biomarker-based results with data obtained from satellite observations and estimated from a numerical model and find reasonable agreements. Further, we address caveats and provide recommendations for future investigations.
Cécile L. Blanchet, Rik Tjallingii, Anja M. Schleicher, Stefan Schouten, Martin Frank, and Achim Brauer
Clim. Past, 17, 1025–1050, https://doi.org/10.5194/cp-17-1025-2021, https://doi.org/10.5194/cp-17-1025-2021, 2021
Short summary
Short summary
The Mediterranean Sea turned repeatedly into an oxygen-deprived basin during the geological past, as evidenced by distinct sediment layers called sapropels. We use here records of the last sapropel S1 retrieved in front of the Nile River to explore the relationships between riverine input and seawater oxygenation. We decipher the seasonal cycle of fluvial input and seawater chemistry as well as the decisive influence of primary productivity on deoxygenation at millennial timescales.
Markus Raitzsch, Jelle Bijma, Torsten Bickert, Michael Schulz, Ann Holbourn, and Michal Kučera
Clim. Past, 17, 703–719, https://doi.org/10.5194/cp-17-703-2021, https://doi.org/10.5194/cp-17-703-2021, 2021
Short summary
Short summary
At approximately 14 Ma, the East Antarctic Ice Sheet expanded to almost its current extent, but the role of CO2 in this major climate transition is not entirely known. We show that atmospheric CO2 might have varied on 400 kyr cycles linked to the eccentricity of the Earth’s orbit. The resulting change in weathering and ocean carbon cycle affected atmospheric CO2 in a way that CO2 rose after Antarctica glaciated, helping to stabilize the climate system on its way to the “ice-house” world.
Nadine T. Smit, Laura Villanueva, Darci Rush, Fausto Grassa, Caitlyn R. Witkowski, Mira Holzheimer, Adriaan J. Minnaard, Jaap S. Sinninghe Damsté, and Stefan Schouten
Biogeosciences, 18, 1463–1479, https://doi.org/10.5194/bg-18-1463-2021, https://doi.org/10.5194/bg-18-1463-2021, 2021
Short summary
Short summary
Soils from an everlasting fire (gas seep) in Sicily, Italy, reveal high relative abundances of novel uncultivated mycobacteria and unique 13C-depleted mycocerosic acids (multi-methyl branched fatty acids) close to the main gas seep. Our results imply that mycocerosic acids in combination with their depleted δ13C values offer a new biomarker tool to study the role of soil mycobacteria as hydrocarbon consumers in the modern and past global carbon cycle.
Maria-Elena Vorrath, Juliane Müller, Lorena Rebolledo, Paola Cárdenas, Xiaoxu Shi, Oliver Esper, Thomas Opel, Walter Geibert, Práxedes Muñoz, Christian Haas, Gerhard Kuhn, Carina B. Lange, Gerrit Lohmann, and Gesine Mollenhauer
Clim. Past, 16, 2459–2483, https://doi.org/10.5194/cp-16-2459-2020, https://doi.org/10.5194/cp-16-2459-2020, 2020
Short summary
Short summary
We tested the applicability of the organic biomarker IPSO25 for sea ice reconstructions in the industrial era at the western Antarctic Peninsula. We successfully evaluated our data with satellite sea ice observations. The comparison with marine and ice core records revealed that sea ice interpretations must consider climatic and sea ice dynamics. Sea ice biomarker production is mainly influenced by the Southern Annular Mode, while the El Niño–Southern Oscillation seems to have a minor impact.
Chris S. M. Turney, Richard T. Jones, Nicholas P. McKay, Erik van Sebille, Zoë A. Thomas, Claus-Dieter Hillenbrand, and Christopher J. Fogwill
Earth Syst. Sci. Data, 12, 3341–3356, https://doi.org/10.5194/essd-12-3341-2020, https://doi.org/10.5194/essd-12-3341-2020, 2020
Short summary
Short summary
The Last Interglacial (129–116 ka) experienced global temperatures and sea levels higher than today. The direct contribution of warmer conditions to global sea level (thermosteric) are uncertain. We report a global network of sea surface temperatures. We find mean global annual temperature anomalies of 0.2 ± 0.1˚C and an early maximum peak of 0.9 ± 0.1˚C. Our reconstruction suggests warmer waters contributed on average 0.08 ± 0.1 m and a peak contribution of 0.39 ± 0.1 m to global sea level.
Appy Sluijs, Joost Frieling, Gordon N. Inglis, Klaas G. J. Nierop, Francien Peterse, Francesca Sangiorgi, and Stefan Schouten
Clim. Past, 16, 2381–2400, https://doi.org/10.5194/cp-16-2381-2020, https://doi.org/10.5194/cp-16-2381-2020, 2020
Short summary
Short summary
We revisit 15-year-old reconstructions of sea surface temperatures in the Arctic Ocean for the late Paleocene and early Eocene epochs (∼ 57–53 million years ago) based on the distribution of fossil membrane lipids of archaea preserved in Arctic Ocean sediments. We find that improvements in the methods over the past 15 years do not lead to different results. However, data quality is now higher and potential biases better characterized. Results confirm remarkable Arctic warmth during this time.
Kelly A. Hogan, Robert D. Larter, Alastair G. C. Graham, Robert Arthern, James D. Kirkham, Rebecca L. Totten, Tom A. Jordan, Rachel Clark, Victoria Fitzgerald, Anna K. Wåhlin, John B. Anderson, Claus-Dieter Hillenbrand, Frank O. Nitsche, Lauren Simkins, James A. Smith, Karsten Gohl, Jan Erik Arndt, Jongkuk Hong, and Julia Wellner
The Cryosphere, 14, 2883–2908, https://doi.org/10.5194/tc-14-2883-2020, https://doi.org/10.5194/tc-14-2883-2020, 2020
Short summary
Short summary
The sea-floor geometry around the rapidly changing Thwaites Glacier is a key control on warm ocean waters reaching the ice shelf and grounding zone beyond. This area was previously unsurveyed due to icebergs and sea-ice cover. The International Thwaites Glacier Collaboration mapped this area for the first time in 2019. The data reveal troughs over 1200 m deep and, as this region is thought to have only ungrounded recently, provide key insights into the morphology beneath the grounded ice sheet.
Heike H. Zimmermann, Kathleen R. Stoof-Leichsenring, Stefan Kruse, Juliane Müller, Ruediger Stein, Ralf Tiedemann, and Ulrike Herzschuh
Ocean Sci., 16, 1017–1032, https://doi.org/10.5194/os-16-1017-2020, https://doi.org/10.5194/os-16-1017-2020, 2020
Short summary
Short summary
This study targets high-resolution, diatom-specific sedimentary ancient DNA using a DNA metabarcoding approach. Diatom DNA has been preserved with substantial taxonomic richness in the eastern Fram Strait over the past 30 000 years with taxonomic composition being dominated by cold-water and sea-ice-associated diatoms. Taxonomic reorganisations took place after the Last Glacial Maximum and after the Younger Dryas. Peak proportions of pennate diatoms might indicate past sea-ice presence.
Erin L. McClymont, Heather L. Ford, Sze Ling Ho, Julia C. Tindall, Alan M. Haywood, Montserrat Alonso-Garcia, Ian Bailey, Melissa A. Berke, Kate Littler, Molly O. Patterson, Benjamin Petrick, Francien Peterse, A. Christina Ravelo, Bjørg Risebrobakken, Stijn De Schepper, George E. A. Swann, Kaustubh Thirumalai, Jessica E. Tierney, Carolien van der Weijst, Sarah White, Ayako Abe-Ouchi, Michiel L. J. Baatsen, Esther C. Brady, Wing-Le Chan, Deepak Chandan, Ran Feng, Chuncheng Guo, Anna S. von der Heydt, Stephen Hunter, Xiangyi Li, Gerrit Lohmann, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, W. Richard Peltier, Christian Stepanek, and Zhongshi Zhang
Clim. Past, 16, 1599–1615, https://doi.org/10.5194/cp-16-1599-2020, https://doi.org/10.5194/cp-16-1599-2020, 2020
Short summary
Short summary
We examine the sea-surface temperature response to an interval of climate ~ 3.2 million years ago, when CO2 concentrations were similar to today and the near future. Our geological data and climate models show that global mean sea-surface temperatures were 2.3 to 3.2 ºC warmer than pre-industrial climate, that the mid-latitudes and high latitudes warmed more than the tropics, and that the warming was particularly enhanced in the North Atlantic Ocean.
Jan Erik Arndt, Robert D. Larter, Claus-Dieter Hillenbrand, Simon H. Sørli, Matthias Forwick, James A. Smith, and Lukas Wacker
The Cryosphere, 14, 2115–2135, https://doi.org/10.5194/tc-14-2115-2020, https://doi.org/10.5194/tc-14-2115-2020, 2020
Short summary
Short summary
We interpret landforms on the seabed and investigate sediment cores to improve our understanding of the past ice sheet development in this poorly understood part of Antarctica. Recent crack development of the Brunt ice shelf has raised concerns about its stability and the security of the British research station Halley. We describe ramp-shaped bedforms that likely represent ice shelf grounding and stabilization locations of the past that may reflect an analogue to the process going on now.
Elisabeth Dietze, Kai Mangelsdorf, Andrei Andreev, Cornelia Karger, Laura T. Schreuder, Ellen C. Hopmans, Oliver Rach, Dirk Sachse, Volker Wennrich, and Ulrike Herzschuh
Clim. Past, 16, 799–818, https://doi.org/10.5194/cp-16-799-2020, https://doi.org/10.5194/cp-16-799-2020, 2020
Short summary
Short summary
Long-term climate change impacts on fire, vegetation and permafrost in the Arctic are uncertain. Here, we show the high potential of organic compounds from low-temperature biomass burning to serve as proxies for surface fires in lake deposits. During warm periods of the last 430 000 years, surface fires are closely linked to the larch taiga forest with its moss–lichen ground vegetation that isolates the permafrost. They have reduced in warm–wet, spruce–dominated and cool–dry steppe environments.
Maria Luisa Sánchez-Montes, Erin L. McClymont, Jeremy M. Lloyd, Juliane Müller, Ellen A. Cowan, and Coralie Zorzi
Clim. Past, 16, 299–313, https://doi.org/10.5194/cp-16-299-2020, https://doi.org/10.5194/cp-16-299-2020, 2020
Short summary
Short summary
In this paper, we present new climate reconstructions in SW Alaska from recovered marine sediments in the Gulf of Alaska. We find that glaciers reached the Gulf of Alaska during a cooling climate 2.9 million years ago, and after that the Cordilleran Ice Sheet continued growing during a global drop in atmospheric CO2 levels. Cordilleran Ice Sheet growth could have been supported by an increase in heat supply to the SW Alaska and warm ocean evaporation–mountain precipitation mechanisms.
Juan Pablo Corella, Niccolo Maffezzoli, Carlos Alberto Cuevas, Paul Vallelonga, Andrea Spolaor, Giulio Cozzi, Juliane Müller, Bo Vinther, Carlo Barbante, Helle Astrid Kjær, Ross Edwards, and Alfonso Saiz-Lopez
Clim. Past, 15, 2019–2030, https://doi.org/10.5194/cp-15-2019-2019, https://doi.org/10.5194/cp-15-2019-2019, 2019
Short summary
Short summary
This study provides the first reconstruction of atmospheric iodine levels in the Arctic during the last 11 700 years from an ice core record in coastal Greenland. Dramatic shifts in iodine level variability coincide with abrupt climatic transitions in the North Atlantic. Since atmospheric iodine levels have significant environmental and climatic implications, this study may serve as a past analog to predict future changes in Arctic climate in response to global warming.
Anna Mikis, Katharine R. Hendry, Jennifer Pike, Daniela N. Schmidt, Kirsty M. Edgar, Victoria Peck, Frank J. C. Peeters, Melanie J. Leng, Michael P. Meredith, Chloe L. C. Jones, Sharon Stammerjohn, and Hugh Ducklow
Biogeosciences, 16, 3267–3282, https://doi.org/10.5194/bg-16-3267-2019, https://doi.org/10.5194/bg-16-3267-2019, 2019
Short summary
Short summary
Antarctic marine calcifying organisms are threatened by regional climate change and ocean acidification. Future projections of regional carbonate production are challenging due to the lack of historical data combined with complex climate variability. We present a 6-year record of flux, morphology and geochemistry of an Antarctic planktonic foraminifera, which shows that their growth is most sensitive to sea ice dynamics and is linked with the El Niño–Southern Oscillation.
Maria-Elena Vorrath, Juliane Müller, Oliver Esper, Gesine Mollenhauer, Christian Haas, Enno Schefuß, and Kirsten Fahl
Biogeosciences, 16, 2961–2981, https://doi.org/10.5194/bg-16-2961-2019, https://doi.org/10.5194/bg-16-2961-2019, 2019
Short summary
Short summary
The study highlights new approaches in the investigation of past sea ice in Antarctica to reconstruct the climate conditions in earth's history and reveal its future development under global warming. We examined the distribution of organic remains from different algae at the Western Antarctic Peninsula and compared it to fossil and satellite records. We evaluated IPSO25 – the sea ice proxy for the Southern Ocean with 25 carbon atoms – as a useful tool for sea ice reconstructions in this region.
Darci Rush, Helen M. Talbot, Marcel T. J. van der Meer, Ellen C. Hopmans, Ben Douglas, and Jaap S. Sinninghe Damsté
Biogeosciences, 16, 2467–2479, https://doi.org/10.5194/bg-16-2467-2019, https://doi.org/10.5194/bg-16-2467-2019, 2019
Short summary
Short summary
Sapropels are layers of sediment that regularly occur in the Mediterranean. They indicate periods when the Mediterranean Sea water contained no oxygen, a gas vital for most large organisms. This research investigated a key process in the nitrogen cycle (anaerobic ammonium oxidation, anammox), which removes nitrogen – an important nutrient to algae – from the water, during sapropel events. Using lipids to trace this process, we found that anammox was active during the no-oxygen times.
Robert D. Larter, Kelly A. Hogan, Claus-Dieter Hillenbrand, James A. Smith, Christine L. Batchelor, Matthieu Cartigny, Alex J. Tate, James D. Kirkham, Zoë A. Roseby, Gerhard Kuhn, Alastair G. C. Graham, and Julian A. Dowdeswell
The Cryosphere, 13, 1583–1596, https://doi.org/10.5194/tc-13-1583-2019, https://doi.org/10.5194/tc-13-1583-2019, 2019
Short summary
Short summary
We present high-resolution bathymetry data that provide the most complete and detailed imagery of any Antarctic palaeo-ice stream bed. These data show how subglacial water was delivered to and influenced the dynamic behaviour of the ice stream. Our observations provide insights relevant to understanding the behaviour of modern ice streams and forecasting the contributions that they will make to future sea level rise.
Gabriella M. Weiss, David Chivall, Sebastian Kasper, Hideto Nakamura, Fiz da Costa, Philippe Soudant, Jaap S. Sinninghe Damsté, Stefan Schouten, and Marcel T. J. van der Meer
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-147, https://doi.org/10.5194/bg-2019-147, 2019
Preprint withdrawn
Short summary
Short summary
In this study, we used four different haptophyte species and six different organic compounds to investigate the relationship between organic matter synthesis and salinity. We showed that creation in different parts of the cell (chloroplast versus cytosol) determined which compounds retain a correlation between their hydrogen isotopes and salinity. This is important for using hydrogen isotopes to reconstruct salinity in the geologic record.
Marijke W. de Bar, Jenny E. Ullgren, Robert C. Thunnell, Stuart G. Wakeham, Geert-Jan A. Brummer, Jan-Berend W. Stuut, Jaap S. Sinninghe Damsté, and Stefan Schouten
Biogeosciences, 16, 1705–1727, https://doi.org/10.5194/bg-16-1705-2019, https://doi.org/10.5194/bg-16-1705-2019, 2019
Short summary
Short summary
We analyzed sediment traps from the Cariaco Basin, the tropical Atlantic and the Mozambique Channel to evaluate seasonal imprints in the concentrations and fluxes of long-chain diols (LDIs), in addition to the long-chain diol index proxy (sea surface temperature proxy) and the diol index (upwelling indicator). Despite significant degradation, LDI-derived temperatures were very similar for the sediment traps and seafloor sediments, and corresponded to annual mean sea surface temperatures.
Marijke W. de Bar, Dave J. Stolwijk, Jerry F. McManus, Jaap S. Sinninghe Damsté, and Stefan Schouten
Clim. Past, 14, 1783–1803, https://doi.org/10.5194/cp-14-1783-2018, https://doi.org/10.5194/cp-14-1783-2018, 2018
Short summary
Short summary
We present a past sea surface temperature and paleoproductivity record over the last 150 000 years for ODP Site 1234 (Chilean margin). We tested the applicability of long-chain diol proxies for the reconstrucion of SST (LDI), past upwelling conditions (diol index), and nutrient concentrations (NDI). The LDI likely reflects past temperature changes, but the diol index and NDI are perhaps more indicative of Proboscia diatom productivity rather than upwelling and/or nutrient conditions.
Sergio Balzano, Julie Lattaud, Laura Villanueva, Sebastiaan W. Rampen, Corina P. D. Brussaard, Judith van Bleijswijk, Nicole Bale, Jaap S. Sinninghe Damsté, and Stefan Schouten
Biogeosciences, 15, 5951–5968, https://doi.org/10.5194/bg-15-5951-2018, https://doi.org/10.5194/bg-15-5951-2018, 2018
Short summary
Short summary
We tried to identify the microbes which biosynthesize a class of lipids widespread in seawater, the long chain alkyl diols (LCDs). We could not find any microorganism likely involved in the production of LCDs. The amounts of LCDs found are too high to be produced by living organisms and are likely to be part of the refractory organic matter persisting for long periods in the water column.
Julian D. Hartman, Francesca Sangiorgi, Ariadna Salabarnada, Francien Peterse, Alexander J. P. Houben, Stefan Schouten, Henk Brinkhuis, Carlota Escutia, and Peter K. Bijl
Clim. Past, 14, 1275–1297, https://doi.org/10.5194/cp-14-1275-2018, https://doi.org/10.5194/cp-14-1275-2018, 2018
Short summary
Short summary
We reconstructed sea surface temperatures for the Oligocene and Miocene periods (34–11 Ma) based on archaeal lipids from a site close to the Wilkes Land coast, Antarctica. Our record suggests generally warm to temperate surface waters: on average 17 °C. Based on the lithology, glacial and interglacial temperatures could be distinguished, showing an average 3 °C offset. The long-term temperature trend resembles the benthic δ18O stack, which may have implications for ice volume reconstructions.
Dominic A. Hodgson, Kelly Hogan, James M. Smith, James A. Smith, Claus-Dieter Hillenbrand, Alastair G. C. Graham, Peter Fretwell, Claire Allen, Vicky Peck, Jan-Erik Arndt, Boris Dorschel, Christian Hübscher, Andrew M. Smith, and Robert Larter
The Cryosphere, 12, 2383–2399, https://doi.org/10.5194/tc-12-2383-2018, https://doi.org/10.5194/tc-12-2383-2018, 2018
Short summary
Short summary
We studied the Coats Land ice margin, Antarctica, providing a multi-disciplinary geophysical assessment of the ice sheet configuration through its last advance and retreat; a description of the physical constraints on the stability of the past and present ice and future margin based on its submarine geomorphology and ice-sheet geometry; and evidence that once detached from the bed, the ice shelves in this region were predisposed to rapid retreat back to coastal grounding lines.
Julie Lattaud, Frédérique Kirkels, Francien Peterse, Chantal V. Freymond, Timothy I. Eglinton, Jens Hefter, Gesine Mollenhauer, Sergio Balzano, Laura Villanueva, Marcel T. J. van der Meer, Ellen C. Hopmans, Jaap S. Sinninghe Damsté, and Stefan Schouten
Biogeosciences, 15, 4147–4161, https://doi.org/10.5194/bg-15-4147-2018, https://doi.org/10.5194/bg-15-4147-2018, 2018
Short summary
Short summary
Long-chain diols (LCDs) are biomarkers that occur widespread in marine environments and also in lakes and rivers. In this study, we looked at the distribution of LCDs in three river systems (Godavari, Danube, and Rhine) in relation to season, precipitation, and temperature. We found out that the LCDs are likely being produced in calm areas of the river systems and that marine LCDs have a different distribution than riverine LCDs.
Marc A. Besseling, Ellen C. Hopmans, R. Christine Boschman, Jaap S. Sinninghe Damsté, and Laura Villanueva
Biogeosciences, 15, 4047–4064, https://doi.org/10.5194/bg-15-4047-2018, https://doi.org/10.5194/bg-15-4047-2018, 2018
Short summary
Short summary
Benthic archaea comprise a significant part of the total prokaryotic biomass in marine sediments. Here, we compared the archaeal diversity and intact polar lipid (IPL) composition in both surface and subsurface sediments with different oxygen regimes in the Arabian Sea oxygen minimum zone. The oxygenated sediments were dominated by Thaumarchaeota and IPL-GDGT-0. The anoxic sediment contained highly diverse archaeal communities and high relative abundances of IPL-GDGT-1 to -4.
Nicole J. Bale, Tracy A. Villareal, Ellen C. Hopmans, Corina P. D. Brussaard, Marc Besseling, Denise Dorhout, Jaap S. Sinninghe Damsté, and Stefan Schouten
Biogeosciences, 15, 1229–1241, https://doi.org/10.5194/bg-15-1229-2018, https://doi.org/10.5194/bg-15-1229-2018, 2018
Short summary
Short summary
Associations between diatoms and N-fixing cyanobacteria (diatom–diazotroph associations, DDAs) play an important role in the N cycle of the tropical North Atlantic. Heterocysts are the site of N fixation and contain unique glycolipids. We measured these glycolipids in the water column and surface sediment from the tropical North Atlantic. We found a significant correlation between the concentration of glycolipid and of DDAs, strengthening their application as biomarkers.
Rowan Dejardin, Sev Kender, Claire S. Allen, Melanie J. Leng, George E. A. Swann, and Victoria L. Peck
J. Micropalaeontol., 37, 25–71, https://doi.org/10.5194/jm-37-25-2018, https://doi.org/10.5194/jm-37-25-2018, 2018
Martina Sollai, Ellen C. Hopmans, Nicole J. Bale, Anchelique Mets, Lisa Warden, Matthias Moros, and Jaap S. Sinninghe Damsté
Biogeosciences, 14, 5789–5804, https://doi.org/10.5194/bg-14-5789-2017, https://doi.org/10.5194/bg-14-5789-2017, 2017
Short summary
Short summary
The Baltic Sea is characterized by recurring summer phytoplankton blooms, dominated by a few cyanobacterial species. These bacteria are able to use dinitrogen gas as the source for nitrogen and produce very specific lipids. We analyzed these lipids in a sediment core to study their presence over the past 7000 years. This reveals that cyanobacterial blooms have not only occurred in the last decades but were common at times when the Baltic was connected to the North Sea.
Gabriella M. Weiss, Eva Y. Pfannerstill, Stefan Schouten, Jaap S. Sinninghe Damsté, and Marcel T. J. van der Meer
Biogeosciences, 14, 5693–5704, https://doi.org/10.5194/bg-14-5693-2017, https://doi.org/10.5194/bg-14-5693-2017, 2017
Short summary
Short summary
Algal-derived compounds allow us to make assumptions about environmental conditions in the past. In order to better understand how organisms record environmental conditions, we grew microscopic marine algae at different light intensities, salinities, and alkalinities in a temperature-controlled environment. We determined how these environmental parameters affected specific algal-derived compounds, especially their relative deuterium content, which seems to be mainly affected by salinity.
Paul E. Bachem, Bjørg Risebrobakken, Stijn De Schepper, and Erin L. McClymont
Clim. Past, 13, 1153–1168, https://doi.org/10.5194/cp-13-1153-2017, https://doi.org/10.5194/cp-13-1153-2017, 2017
Short summary
Short summary
We present a high-resolution multi-proxy study of the Norwegian Sea, covering the 5.33 to 3.14 Ma time window within the Pliocene. We show that large-scale climate transitions took place during this warmer than modern time, most likely in response to ocean gateway transformations. Strong warming at 4.0 Ma in the Norwegian Sea, when regions closer to Greenland cooled, indicate that increased northward ocean heat transport may be compatible with expanding glaciation and Arctic sea ice growth.
Julie Lattaud, Denise Dorhout, Hartmut Schulz, Isla S. Castañeda, Enno Schefuß, Jaap S. Sinninghe Damsté, and Stefan Schouten
Clim. Past, 13, 1049–1061, https://doi.org/10.5194/cp-13-1049-2017, https://doi.org/10.5194/cp-13-1049-2017, 2017
Short summary
Short summary
The study of past sedimentary records from coastal margins allows us to reconstruct variations in terrestrial input into the marine realm and to gain insight into continental climatic variability. The study of two sediment cores close to river mouths allowed us to show the potential of long-chain diols as riverine input proxy.
Laura F. Korte, Geert-Jan A. Brummer, Michèlle van der Does, Catarina V. Guerreiro, Rick Hennekam, Johannes A. van Hateren, Dirk Jong, Chris I. Munday, Stefan Schouten, and Jan-Berend W. Stuut
Atmos. Chem. Phys., 17, 6023–6040, https://doi.org/10.5194/acp-17-6023-2017, https://doi.org/10.5194/acp-17-6023-2017, 2017
Short summary
Short summary
We collected Saharan dust at the Mauritanian coast as well as in the deep the North Atlantic Ocean, along a transect at 12 °N, using an array of moored sediment traps. We demonstrated that the lithogenic particles collected in the ocean are from the same source as dust collected on the African coast. With increasing distance from the source, lithogenic elements associated with clay minerals become more important relative to quartz which is settling out faster. Seasonality is prominent, but weak.
Sandra Mariam Heinzelmann, Nicole Jane Bale, Laura Villanueva, Danielle Sinke-Schoen, Catharina Johanna Maria Philippart, Jaap Smede Sinninghe Damsté, Stefan Schouten, and Marcel Teunis Jan van der Meer
Biogeosciences, 13, 5527–5539, https://doi.org/10.5194/bg-13-5527-2016, https://doi.org/10.5194/bg-13-5527-2016, 2016
Short summary
Short summary
In order to understand microbial communities in the environment it is necessary to assess their metabolic potential. The hydrogen isotopic composition of fatty acids has been shown to be promising tool to study the general metabolism of microorganisms in pure culture. Here we showed that it is possible to study seasonal changes in the general metabolism of the whole community by studying the hydrogen isotopic composition of fatty acids.
Douwe S. Maat, Nicole J. Bale, Ellen C. Hopmans, Jaap S. Sinninghe Damsté, Stefan Schouten, and Corina P. D. Brussaard
Biogeosciences, 13, 1667–1676, https://doi.org/10.5194/bg-13-1667-2016, https://doi.org/10.5194/bg-13-1667-2016, 2016
Short summary
Short summary
This study shows that the phytoplankter Micromonas pusilla alters its lipid composition when the macronutrient phosphate is in low supply. This reduction in phospholipids is directly dependent on the strength of the limitation. Furthermore we show that, when M. pusilla is infected by viruses, lipid remodeling is lower. The study was carried out to investigate how phytoplankton and its viruses are affected by environmental factors and how this affects food web dynamics.
M. Rodrigo-Gámiz, S. W. Rampen, H. de Haas, M. Baas, S. Schouten, and J. S. Sinninghe Damsté
Biogeosciences, 12, 6573–6590, https://doi.org/10.5194/bg-12-6573-2015, https://doi.org/10.5194/bg-12-6573-2015, 2015
Short summary
Short summary
This research reports a test of the applicability of three organic-derived temperature proxies (UK'37, TEX86 and LDI) at high latitudes around Iceland. A range of samples including suspended particular material (SPM), trapped descending particles and surface sediments were collected to test the different proxies in the water column and the sediment.The combination of three independent SST organic proxies provided important information about seasonality and differences in habitat depth.
M. Sollai, E. C. Hopmans, S. Schouten, R. G. Keil, and J. S. Sinninghe Damsté
Biogeosciences, 12, 4725–4737, https://doi.org/10.5194/bg-12-4725-2015, https://doi.org/10.5194/bg-12-4725-2015, 2015
Short summary
Short summary
The distribution of Thaumarchaeota and anammox bacteria in the water column of the eastern tropical North Pacific (ETNP) oxygen-deficient zone (ODZ) was investigated by collecting suspended particulate matter (SPM) and analyzing it for the content of specific intact polar lipids (IPLs) produced by the two microbial groups. We found a clear niche segregation in the distribution of the two groups in the coastal waters of the ETNP but a partial overlap of their niches in the open-water setting.
C. Bottini, E. Erba, D. Tiraboschi, H. C. Jenkyns, S. Schouten, and J. S. Sinninghe Damsté
Clim. Past, 11, 383–402, https://doi.org/10.5194/cp-11-383-2015, https://doi.org/10.5194/cp-11-383-2015, 2015
A. de Kluijver, P. L. Schoon, J. A. Downing, S. Schouten, and J. J. Middelburg
Biogeosciences, 11, 6265–6276, https://doi.org/10.5194/bg-11-6265-2014, https://doi.org/10.5194/bg-11-6265-2014, 2014
A. Sluijs, L. van Roij, G. J. Harrington, S. Schouten, J. A. Sessa, L. J. LeVay, G.-J. Reichart, and C. P. Slomp
Clim. Past, 10, 1421–1439, https://doi.org/10.5194/cp-10-1421-2014, https://doi.org/10.5194/cp-10-1421-2014, 2014
S. K. Lengger, Y. A. Lipsewers, H. de Haas, J. S. Sinninghe Damsté, and S. Schouten
Biogeosciences, 11, 201–216, https://doi.org/10.5194/bg-11-201-2014, https://doi.org/10.5194/bg-11-201-2014, 2014
D. S. Maat, N. J. Bale, E. C. Hopmans, A.-C. Baudoux, J. S. Sinninghe Damsté, S. Schouten, and C. P. D. Brussaard
Biogeosciences, 11, 185–194, https://doi.org/10.5194/bg-11-185-2014, https://doi.org/10.5194/bg-11-185-2014, 2014
N. J. Bale, L. Villanueva, E. C. Hopmans, S. Schouten, and J. S. Sinninghe Damsté
Biogeosciences, 10, 7195–7206, https://doi.org/10.5194/bg-10-7195-2013, https://doi.org/10.5194/bg-10-7195-2013, 2013
F. O. Nitsche, K. Gohl, R. D. Larter, C.-D. Hillenbrand, G. Kuhn, J. A. Smith, S. Jacobs, J. B. Anderson, and M. Jakobsson
The Cryosphere, 7, 249–262, https://doi.org/10.5194/tc-7-249-2013, https://doi.org/10.5194/tc-7-249-2013, 2013
Related subject area
Biogeochemistry: Organic Biogeochemistry
Methods to characterize type, relevance, and interactions of organic matter and microorganisms in fluids along the flow path of a geothermal facility
Microbial strong organic-ligand production is tightly coupled to iron in hydrothermal plumes
Ocean liming effects on dissolved organic matter dynamics
Results from a multi-laboratory ocean metaproteomic intercomparison: effects of LC-MS acquisition and data analysis procedures
Controls on the composition of hydroxylated isoprenoidal glycerol dialkyl glycerol tetraethers (isoGDGTs) in cultivated ammonia-oxidizing Thaumarchaeota
Reviews and syntheses: Opportunities for robust use of peak intensities from high-resolution mass spectrometry in organic matter studies
Elemental stoichiometry of particulate organic matter across the Atlantic Ocean
Lipid remodeling in phytoplankton exposed to multi-environmental drivers in a mesocosm experiment
Molecular-level carbon traits of fine roots: unveiling adaptation and decomposition under flooded conditions
Contrasting seasonal patterns in particle aggregation and DOM transformation in a sub-Arctic fjord
Environmental controls on the distribution of brGDGTs and brGMGTs across the Seine River basin (NW France): implications for bacterial tetraethers as a proxy for riverine runoff
Latitudinal distribution of biomarkers across the western Arctic Ocean and the Bering Sea: an approach to assess sympagic and pelagic algal production
Sinking fate and carbon export of zooplankton fecal pellets: insights from time-series sediment trap observations in the northern South China Sea
Low cobalt inventories in the Amundsen and Ross seas driven by high demand for labile cobalt uptake among native phytoplankton communities
Potential bioavailability of representative pyrogenic organic matter compounds in comparison to natural dissolved organic matter pools
Distributions of bacteriohopanepolyols in lakes and coastal lagoons of the Azores Archipelago
Recently fixed carbon fuels microbial activity several meters below the soil surface
Environmental and hydrologic controls on sediment and organic carbon export from a subalpine catchment: insights from a time series
Climate and geology overwrite land use effects on soil organic nitrogen cycling on a continental scale
Compositions of dissolved organic matter in the ice-covered waters above the Aurora hydrothermal vent system, Gakkel Ridge, Arctic Ocean
Organic matter characteristics of a rapidly eroding permafrost cliff in NE Siberia (Lena Delta, Laptev Sea region)
Microbial labilization and diversification of pyrogenic dissolved organic matter
Bacterial and eukaryotic intact polar lipids point to in situ production as a key source of labile organic matter in hadal surface sediment of the Atacama Trench
What can we learn from amino acids about oceanic organic matter cycling and degradation?
Bacteriohopanetetrol-x: constraining its application as a lipid biomarker for marine anammox using the water column oxygen gradient of the Benguela upwelling system
Active and passive fluxes of carbon, nitrogen, and phosphorus in the northern South China Sea
Cyanobacteria net community production in the Baltic Sea as inferred from profiling pCO2 measurements
Reviews and syntheses: Heterotrophic fixation of inorganic carbon – significant but invisible flux in environmental carbon cycling
Revised fractional abundances and warm-season temperatures substantially improve brGDGT calibrations in lake sediments
Reproducible determination of dissolved organic matter photosensitivity
Technical note: Uncovering the influence of methodological variations on the extractability of iron-bound organic carbon
Anthropocene climate warming enhances autochthonous carbon cycling in an upland Arctic lake, Disko Island, West Greenland
Novel hydrocarbon-utilizing soil mycobacteria synthesize unique mycocerosic acids at a Sicilian everlasting fire
Alkenone isotopes show evidence of active carbon concentrating mechanisms in coccolithophores as aqueous carbon dioxide concentrations fall below 7 µmol L−1
Seasonal variability and sources of in situ brGDGT production in a permanently stratified African crater lake
Sediment release of dissolved organic matter to the oxygen minimum zone off Peru
Better molecular preservation of organic matter in an oxic than in a sulfidic depositional environment: evidence from Thalassiphora pelagica (Dinoflagellata, Eocene) cysts
Assessing branched tetraether lipids as tracers of soil organic carbon transport through the Carminowe Creek catchment (southwest England)
The nonconservative distribution pattern of organic matter in the Rajang, a tropical river with peatland in its estuary
Predominance of hexamethylated 6-methyl branched glycerol dialkyl glycerol tetraethers in the Mariana Trench: source and environmental implication
High-pH and anoxic conditions during soil organic matter extraction increases its electron-exchange capacity and ability to stimulate microbial Fe(III) reduction by electron shuttling
Sterol preservation in hypersaline microbial mats
Structural elucidation and environmental distributions of butanetriol and pentanetriol dialkyl glycerol tetraethers (BDGTs and PDGTs)
Distribution and degradation of terrestrial organic matter in the sediments of peat-draining rivers, Sarawak, Malaysian Borneo
Validation of carbon isotope fractionation in algal lipids as a pCO2 proxy using a natural CO2 seep (Shikine Island, Japan)
Composition and cycling of dissolved organic matter from tropical peatlands of coastal Sarawak, Borneo, revealed by fluorescence spectroscopy and parallel factor analysis
Latitudinal variations in δ30Si and δ15N signatures along the Peruvian shelf: quantifying the effects of nutrient utilization versus denitrification over the past 600 years
Diapycnal dissolved organic matter supply into the upper Peruvian oxycline
Composition and vertical flux of particulate organic matter to the oxygen minimum zone of the central Baltic Sea: impact of a sporadic North Sea inflow
Main drivers of transparent exopolymer particle distribution across the surface Atlantic Ocean
Alessio Leins, Danaé Bregnard, Andrea Vieth-Hillebrand, Stefanie Poetz, Florian Eichinger, Guillaume Cailleau, Pilar Junier, and Simona Regenspurg
Biogeosciences, 21, 5457–5479, https://doi.org/10.5194/bg-21-5457-2024, https://doi.org/10.5194/bg-21-5457-2024, 2024
Short summary
Short summary
Organic matter and microbial fluid analysis are rarely considered in the geothermal industry and research. However, they can have a significant impact on the efficiency of geothermal energy production. We found a high diversity of organic compound compositions in our samples and were able to differentiate them with respect to different sources (e.g. artificial and biogenic). Furthermore, the microbial diversity undergoes significant changes within the flow path of a geothermal power plant.
Colleen L. Hoffman, Patrick J. Monreal, Justine B. Albers, Alastair J. M. Lough, Alyson E. Santoro, Travis Mellett, Kristen N. Buck, Alessandro Tagliabue, Maeve C. Lohan, Joseph A. Resing, and Randelle M. Bundy
Biogeosciences, 21, 5233–5246, https://doi.org/10.5194/bg-21-5233-2024, https://doi.org/10.5194/bg-21-5233-2024, 2024
Short summary
Short summary
Hydrothermally derived iron can be transported kilometers away from deep-sea vents, representing a significant flux of vital micronutrients to the ocean. However, the mechanisms that support the stabilization of dissolved iron remain elusive. Using electrochemical, spectrometry, and genomic methods, we demonstrated that strong ligands exert an important control on iron in plumes, and high-affinity iron-binding siderophores were identified in several hydrothermal plume samples for the first time.
Chiara Santinelli, Silvia Valsecchi, Simona Retelletti Brogi, Giancarlo Bachi, Giovanni Checcucci, Mirco Guerrazzi, Elisa Camatti, Stefano Caserini, Arianna Azzellino, and Daniela Basso
Biogeosciences, 21, 5131–5141, https://doi.org/10.5194/bg-21-5131-2024, https://doi.org/10.5194/bg-21-5131-2024, 2024
Short summary
Short summary
Ocean liming is a technique proposed to mitigate ocean acidification. Every action we take has an impact on the environment and the effects on the invisible world are often overlooked. With this study, we show that lime addition impacts the dynamics of dissolved organic matter, one of the largest reservoirs of carbon on Earth, representing the main source of energy for marine microbes. Further studies to assess the impacts on marine ecosystems are therefore crucial before taking any action.
Mak A. Saito, Jaclyn K. Saunders, Matthew R. McIlvin, Erin M. Bertrand, John A. Breier, Margaret Mars Brisbin, Sophie M. Colston, Jaimee R. Compton, Tim J. Griffin, W. Judson Hervey, Robert L. Hettich, Pratik D. Jagtap, Michael Janech, Rod Johnson, Rick Keil, Hugo Kleikamp, Dagmar Leary, Lennart Martens, J. Scott P. McCain, Eli Moore, Subina Mehta, Dawn M. Moran, Jaqui Neibauer, Benjamin A. Neely, Michael V. Jakuba, Jim Johnson, Megan Duffy, Gerhard J. Herndl, Richard Giannone, Ryan Mueller, Brook L. Nunn, Martin Pabst, Samantha Peters, Andrew Rajczewski, Elden Rowland, Brian Searle, Tim Van Den Bossche, Gary J. Vora, Jacob R. Waldbauer, Haiyan Zheng, and Zihao Zhao
Biogeosciences, 21, 4889–4908, https://doi.org/10.5194/bg-21-4889-2024, https://doi.org/10.5194/bg-21-4889-2024, 2024
Short summary
Short summary
The ability to assess the functional capabilities of microbes in the environment is of increasing interest. Metaproteomics, the ability to measure proteins across microbial populations, has been increasing in capability and popularity in recent years. Here, an international team of scientists conducted an intercomparison study using samples collected from the North Atlantic Ocean and observed consistency in the peptides and proteins identified, their functions, and their taxonomic origins.
Devika Varma, Laura Villanueva, Nicole J. Bale, Pierre Offre, Gert-Jan Reichart, and Stefan Schouten
Biogeosciences, 21, 4875–4888, https://doi.org/10.5194/bg-21-4875-2024, https://doi.org/10.5194/bg-21-4875-2024, 2024
Short summary
Short summary
Archaeal hydroxylated tetraether lipids are increasingly used as temperature indicators in marine settings, but the factors influencing their distribution are still unclear. Analyzing membrane lipids of two thaumarchaeotal strains showed that the growth phase of the cultures does not affect the lipid distribution, but growth temperature profoundly affects the degree of cyclization of these lipids. Also, the abundance of these lipids is species-specific and is not influenced by temperature.
William Kew, Allison Myers-Pigg, Christine H. Chang, Sean M. Colby, Josie Eder, Malak M. Tfaily, Jeffrey Hawkes, Rosalie K. Chu, and James C. Stegen
Biogeosciences, 21, 4665–4679, https://doi.org/10.5194/bg-21-4665-2024, https://doi.org/10.5194/bg-21-4665-2024, 2024
Short summary
Short summary
Natural organic matter (NOM) is often studied via Fourier transform mass spectrometry (FTMS), which identifies organic molecules as mass spectra peaks. The intensity of peaks is data that is often discarded due to technical concerns. We review the theory behind these concerns and show they are supported empirically. However, simulations show that ecological analyses of NOM data that include FTMS peak intensities are often valid. This opens a path for robust use of FTMS peak intensities for NOM.
Adam J. Fagan, Tatsuro Tanioka, Alyse A. Larkin, Jenna A. Lee, Nathan S. Garcia, and Adam C. Martiny
Biogeosciences, 21, 4239–4250, https://doi.org/10.5194/bg-21-4239-2024, https://doi.org/10.5194/bg-21-4239-2024, 2024
Short summary
Short summary
Climate change is anticipated to influence the biological pump by altering phytoplankton nutrient distribution. In our research, we collected measurements of particulate matter concentrations during two oceanographic field studies. We observed systematic variations in organic matter concentrations and ratios across the Atlantic Ocean. From statistical modeling, we determined that these variations are associated with differences in the availability of essential nutrients for phytoplankton growth.
Sebastian I. Cantarero, Edgart Flores, Harry Allbrook, Paulina Aguayo, Cristian A. Vargas, John E. Tamanaha, J. Bentley C. Scholz, Lennart T. Bach, Carolin R. Löscher, Ulf Riebesell, Balaji Rajagopalan, Nadia Dildar, and Julio Sepúlveda
Biogeosciences, 21, 3927–3958, https://doi.org/10.5194/bg-21-3927-2024, https://doi.org/10.5194/bg-21-3927-2024, 2024
Short summary
Short summary
Our study explores lipid remodeling in response to environmental stress, specifically how cell membrane chemistry changes. We focus on intact polar lipids in a phytoplankton community exposed to diverse stressors in a mesocosm experiment. The observed remodeling indicates acyl chain recycling for energy storage in intact polar lipids during stress, reallocating resources based on varying growth conditions. This understanding is essential to grasp the system's impact on cellular pools.
Mengke Wang, Peng Zhang, Huishan Li, Guisen Deng, Deliang Kong, Sifang Kong, and Junjian Wang
Biogeosciences, 21, 2691–2704, https://doi.org/10.5194/bg-21-2691-2024, https://doi.org/10.5194/bg-21-2691-2024, 2024
Short summary
Short summary
We developed and applied complementary analyses to characterize molecular-level carbon traits for water-grown and soil-grown fine roots. The adaptive strategy of developing more labile carbon in water-grown roots accelerated root decomposition and counteracted the decelerated effects of anoxia on decomposition, highlighting an indirect effect of environmental change on belowground carbon cycling.
Maria G. Digernes, Yasemin V. Bodur, Martí Amargant-Arumí, Oliver Müller, Jeffrey A. Hawkes, Stephen G. Kohler, Ulrike Dietrich, Marit Reigstad, and Maria Lund Paulsen
EGUsphere, https://doi.org/10.5194/egusphere-2024-1314, https://doi.org/10.5194/egusphere-2024-1314, 2024
Short summary
Short summary
Dissolved (DOM) and particulate organic matter (POM) are in constant exchange, but usually studied as distinct entities. We investigated the dynamics between POM and DOM in a sub-Arctic fjord across different seasons by conducting bi-monthly aggregation-dissolution experiments. During the productive period, POM concentrations increased in the experiment while DOM molecules became more recalcitrant. During the winter period, POM concentrations decreased whereas DOM molecules became more labile.
Zhe-Xuan Zhang, Edith Parlanti, Christelle Anquetil, Jérôme Morelle, Anniet M. Laverman, Alexandre Thibault, Elisa Bou, and Arnaud Huguet
Biogeosciences, 21, 2227–2252, https://doi.org/10.5194/bg-21-2227-2024, https://doi.org/10.5194/bg-21-2227-2024, 2024
Short summary
Short summary
Bacterial tetraethers have important implications for palaeoclimate reconstruction. However, fundamental understanding of how these lipids are transformed from land to sea and which environmental factors influence their distributions is lacking. Here, we investigate the sources of brGDGTs and brGMGTs and the factors controlling their distributions in a large dataset (n=237). We propose a novel proxy (RIX) to trace riverine runoff, which is applicable in modern systems and in paleorecord.
Youcheng Bai, Marie-Alexandrine Sicre, Jian Ren, Vincent Klein, Haiyan Jin, and Jianfang Chen
Biogeosciences, 21, 689–709, https://doi.org/10.5194/bg-21-689-2024, https://doi.org/10.5194/bg-21-689-2024, 2024
Short summary
Short summary
Algal biomarkers were used to assess sea ice and pelagic algal production across the western Arctic Ocean with changing sea-ice conditions. They show three distinct areas along with a marked latitudinal gradient of sea ice over pelagic algal production in surface sediments that are reflected by the H-Print index. Our data also show that efficient grazing consumption accounted for the dramatic decrease of diatom-derived biomarkers in sediments compared to that of particulate matter.
Hanxiao Wang, Zhifei Liu, Jiaying Li, Baozhi Lin, Yulong Zhao, Xiaodong Zhang, Junyuan Cao, Jingwen Zhang, Hongzhe Song, and Wenzhuo Wang
Biogeosciences, 20, 5109–5123, https://doi.org/10.5194/bg-20-5109-2023, https://doi.org/10.5194/bg-20-5109-2023, 2023
Short summary
Short summary
The sinking of zooplankton fecal pellets is a key process in the marine biological carbon pump. This study presents carbon export of four shapes of fecal pellets from two time-series sediment traps in the South China Sea. The results show that the sinking fate of fecal pellets is regulated by marine primary productivity, deep-dwelling zooplankton community, and deep-sea currents in the tropical marginal sea, thus providing a new perspective for exploring the carbon cycle in the world ocean.
Rebecca J. Chmiel, Riss M. Kell, Deepa Rao, Dawn M. Moran, Giacomo R. DiTullio, and Mak A. Saito
Biogeosciences, 20, 3997–4027, https://doi.org/10.5194/bg-20-3997-2023, https://doi.org/10.5194/bg-20-3997-2023, 2023
Short summary
Short summary
Cobalt is an important micronutrient for plankton, yet it is often scarce throughout the oceans. A 2017/2018 expedition to coastal Antarctica, including regions of the Amundsen Sea and the Ross Sea, discovered lower concentrations of cobalt compared to two past expeditions in 2005 and 2006, particularly for the type of cobalt preferred as a nutrient by phytoplankton. This loss may be due to changing inputs of other nutrients, causing higher uptake of cobalt by plankton over the last decade.
Emily B. Graham, Hyun-Seob Song, Samantha Grieger, Vanessa A. Garayburu-Caruso, James C. Stegen, Kevin D. Bladon, and Allison N. Myers-Pigg
Biogeosciences, 20, 3449–3457, https://doi.org/10.5194/bg-20-3449-2023, https://doi.org/10.5194/bg-20-3449-2023, 2023
Short summary
Short summary
Intensifying wildfires are increasing pyrogenic organic matter (PyOM) production and its impact on water quality. Recent work indicates that PyOM may have a greater impact on aquatic biogeochemistry than previously assumed, driven by higher bioavailability. We provide a full assessment of the potential bioavailability of PyOM across its chemical spectrum. We indicate that PyOM can be actively transformed within the river corridor and, therefore, may be a growing source of riverine C emissions.
Nora Richter, Ellen C. Hopmans, Danica Mitrović, Pedro M. Raposeiro, Vítor Gonçalves, Ana C. Costa, Linda A. Amaral-Zettler, Laura Villanueva, and Darci Rush
Biogeosciences, 20, 2065–2098, https://doi.org/10.5194/bg-20-2065-2023, https://doi.org/10.5194/bg-20-2065-2023, 2023
Short summary
Short summary
Bacteriohopanepolyols (BHPs) are a diverse class of lipids produced by bacteria across a wide range of environments. This study characterizes the diversity of BHPs in lakes and coastal lagoons in the Azores Archipelago, as well as a co-culture enriched for methanotrophs. We highlight the potential of BHPs as taxonomic markers for bacteria associated with certain ecological niches, which can be preserved in sedimentary records.
Andrea Scheibe, Carlos A. Sierra, and Marie Spohn
Biogeosciences, 20, 827–838, https://doi.org/10.5194/bg-20-827-2023, https://doi.org/10.5194/bg-20-827-2023, 2023
Short summary
Short summary
We explored carbon cycling in soils in three climate zones in Chile down to a depth of 6 m, using carbon isotopes. Our results show that microbial activity several meters below the soil surface is mostly fueled by recently fixed carbon and that strong decomposition of soil organic matter only occurs in the upper decimeters of the soils. The study shows that different layers of the critical zone are tightly connected and that processes in the deep soil depend on recently fixed carbon.
Melissa Sophia Schwab, Hannah Gies, Chantal Valérie Freymond, Maarten Lupker, Negar Haghipour, and Timothy Ian Eglinton
Biogeosciences, 19, 5591–5616, https://doi.org/10.5194/bg-19-5591-2022, https://doi.org/10.5194/bg-19-5591-2022, 2022
Short summary
Short summary
The majority of river studies focus on headwater or floodplain systems, while often neglecting intermediate river segments. Our study on the subalpine Sihl River bridges the gap between streams and lowlands and demonstrates that moderately steep river segments are areas of significant instream alterations, modulating the export of organic carbon over short distances.
Lisa Noll, Shasha Zhang, Qing Zheng, Yuntao Hu, Florian Hofhansl, and Wolfgang Wanek
Biogeosciences, 19, 5419–5433, https://doi.org/10.5194/bg-19-5419-2022, https://doi.org/10.5194/bg-19-5419-2022, 2022
Short summary
Short summary
Cleavage of proteins to smaller nitrogen compounds allows microorganisms and plants to exploit the largest nitrogen reservoir in soils and is considered the bottleneck in soil organic nitrogen cycling. Results from soils covering a European transect show that protein turnover is constrained by soil geochemistry, shifts in climate and associated alterations in soil weathering and should be considered as a driver of soil nitrogen availability with repercussions on carbon cycle processes.
Muhammed Fatih Sert, Helge Niemann, Eoghan P. Reeves, Mats A. Granskog, Kevin P. Hand, Timo Kekäläinen, Janne Jänis, Pamela E. Rossel, Bénédicte Ferré, Anna Silyakova, and Friederike Gründger
Biogeosciences, 19, 2101–2120, https://doi.org/10.5194/bg-19-2101-2022, https://doi.org/10.5194/bg-19-2101-2022, 2022
Short summary
Short summary
We investigate organic matter composition in the Arctic Ocean water column. We collected seawater samples from sea ice to deep waters at six vertical profiles near an active hydrothermal vent and its plume. In comparison to seawater, we found that the organic matter in waters directly affected by the hydrothermal plume had different chemical composition. We suggest that hydrothermal processes may influence the organic matter distribution in the deep ocean.
Charlotte Haugk, Loeka L. Jongejans, Kai Mangelsdorf, Matthias Fuchs, Olga Ogneva, Juri Palmtag, Gesine Mollenhauer, Paul J. Mann, P. Paul Overduin, Guido Grosse, Tina Sanders, Robyn E. Tuerena, Lutz Schirrmeister, Sebastian Wetterich, Alexander Kizyakov, Cornelia Karger, and Jens Strauss
Biogeosciences, 19, 2079–2094, https://doi.org/10.5194/bg-19-2079-2022, https://doi.org/10.5194/bg-19-2079-2022, 2022
Short summary
Short summary
Buried animal and plant remains (carbon) from the last ice age were freeze-locked in permafrost. At an extremely fast eroding permafrost cliff in the Lena Delta (Siberia), we found this formerly frozen carbon well preserved. Our results show that ongoing degradation releases substantial amounts of this carbon, making it available for future carbon emissions. This mobilisation at the studied cliff and also similarly eroding sites bear the potential to affect rivers and oceans negatively.
Aleksandar I. Goranov, Andrew S. Wozniak, Kyle W. Bostick, Andrew R. Zimmerman, Siddhartha Mitra, and Patrick G. Hatcher
Biogeosciences, 19, 1491–1514, https://doi.org/10.5194/bg-19-1491-2022, https://doi.org/10.5194/bg-19-1491-2022, 2022
Short summary
Short summary
Wildfire-derived molecules are ubiquitous in the aquatic environment, but their biological fate remains understudied. We have evaluated the compositional changes that occur to wildfire-derived molecules after incubation with soil microbes. We observe a significant degradation but also a production of numerous new labile molecules. Our results indicate that wildfire-derived molecules can be broken down and the carbon and nitrogen therein can be incorporated into microbial food webs.
Edgart Flores, Sebastian I. Cantarero, Paula Ruiz-Fernández, Nadia Dildar, Matthias Zabel, Osvaldo Ulloa, and Julio Sepúlveda
Biogeosciences, 19, 1395–1420, https://doi.org/10.5194/bg-19-1395-2022, https://doi.org/10.5194/bg-19-1395-2022, 2022
Short summary
Short summary
In this study, we investigate the chemical diversity and abundance of microbial lipids as markers of organic matter sources in the deepest points of the Atacama Trench sediments and compare them to similar lipid stocks in shallower surface sediments and in the overlying water column. We evaluate possible organic matter provenance and some potential chemical adaptations of the in situ microbial community to the extreme conditions of high hydrostatic pressure in hadal realm.
Birgit Gaye, Niko Lahajnar, Natalie Harms, Sophie Anna Luise Paul, Tim Rixen, and Kay-Christian Emeis
Biogeosciences, 19, 807–830, https://doi.org/10.5194/bg-19-807-2022, https://doi.org/10.5194/bg-19-807-2022, 2022
Short summary
Short summary
Amino acids were analyzed in a large number of samples of particulate and dissolved organic matter from coastal regions and the open ocean. A statistical analysis produced two new biogeochemical indicators. An indicator of sinking particle and sediment degradation (SDI) traces the degradation of organic matter from the surface waters into the sediments. A second indicator shows the residence time of suspended matter in the ocean (RTI).
Zoë R. van Kemenade, Laura Villanueva, Ellen C. Hopmans, Peter Kraal, Harry J. Witte, Jaap S. Sinninghe Damsté, and Darci Rush
Biogeosciences, 19, 201–221, https://doi.org/10.5194/bg-19-201-2022, https://doi.org/10.5194/bg-19-201-2022, 2022
Short summary
Short summary
Anaerobic ammonium oxidation (anammox) is an important nitrogen-removal process in the ocean. We assess the distribution of bacteriohopanetetrol-x (BHT-x), used to trace past anammox, along a redox gradient in the water column of the Benguela upwelling system. BHT-x / BHT ratios of >0.18 correspond to the presence of living anammox bacteria and oxygen levels <50 μmol L−1. This allows for a more robust application of BHT-x to trace past marine anammox and deoxygenation in dynamic marine systems.
Jia-Jang Hung, Ching-Han Tung, Zong-Ying Lin, Yuh-ling Lee Chen, Shao-Hung Peng, Yen-Huei Lin, and Li-Shan Tsai
Biogeosciences, 18, 5141–5162, https://doi.org/10.5194/bg-18-5141-2021, https://doi.org/10.5194/bg-18-5141-2021, 2021
Short summary
Short summary
We report measured active and passive fluxes and their controlling mechanisms in the northern South China Sea (NSCS). The total fluxes were higher than most reports in open oceans, indicating the significance of NSCS in atmospheric CO2 uptake and in storing that CO2 in the ocean’s interior. Winter cooling and extreme events enhanced nutrient availability and elevated fluxes. Global warming may have profound impacts on reducing ocean’s uptake and storage of CO2 in subtropical–tropical oceans.
Jens Daniel Müller, Bernd Schneider, Ulf Gräwe, Peer Fietzek, Marcus Bo Wallin, Anna Rutgersson, Norbert Wasmund, Siegfried Krüger, and Gregor Rehder
Biogeosciences, 18, 4889–4917, https://doi.org/10.5194/bg-18-4889-2021, https://doi.org/10.5194/bg-18-4889-2021, 2021
Short summary
Short summary
Based on profiling pCO2 measurements from a field campaign, we quantify the biomass production of a cyanobacteria bloom in the Baltic Sea, the export of which would foster deep water deoxygenation. We further demonstrate how this biomass production can be accurately reconstructed from long-term surface measurements made on cargo vessels in combination with modelled temperature profiles. This approach enables a better understanding of a severe concern for the Baltic’s good environmental status.
Alexander Braun, Marina Spona-Friedl, Maria Avramov, Martin Elsner, Federico Baltar, Thomas Reinthaler, Gerhard J. Herndl, and Christian Griebler
Biogeosciences, 18, 3689–3700, https://doi.org/10.5194/bg-18-3689-2021, https://doi.org/10.5194/bg-18-3689-2021, 2021
Short summary
Short summary
It is known that CO2 fixation by photoautotrophic organisms is the major sink from the atmosphere. While biologists are aware that CO2 fixation also occurs in heterotrophic organisms, this route of inorganic carbon, and its quantitative role, is hardly recognized in biogeochemistry. We demonstrate that a considerable amount of CO2 is fixed annually through anaplerotic reactions in heterotrophic organisms, and a significant quantity of inorganic carbon is temporally sequestered in biomass.
Jonathan H. Raberg, David J. Harning, Sarah E. Crump, Greg de Wet, Aria Blumm, Sebastian Kopf, Áslaug Geirsdóttir, Gifford H. Miller, and Julio Sepúlveda
Biogeosciences, 18, 3579–3603, https://doi.org/10.5194/bg-18-3579-2021, https://doi.org/10.5194/bg-18-3579-2021, 2021
Short summary
Short summary
BrGDGT lipids are a proxy for temperature in lake sediments, but other parameters like pH can influence them, and seasonality can affect the temperatures they record. We find a warm-season bias at 43 new high-latitude sites. We also present a new method that deconvolves the effects of temperature, pH, and conductivity and generate global calibrations for these variables. Our study provides new paleoclimate tools, insight into brGDGTs at the biochemical level, and a new method for future study.
Alec W. Armstrong, Leanne Powers, and Michael Gonsior
Biogeosciences, 18, 3367–3390, https://doi.org/10.5194/bg-18-3367-2021, https://doi.org/10.5194/bg-18-3367-2021, 2021
Short summary
Short summary
Living things decay into organic matter, which can dissolve into water (like tea brewing). Tea receives its color by absorbing light. Similarly, this material absorbs light, which can then cause chemical reactions that change it. By measuring changes in these optical properties, we found that materials from some places are more sensitive to light than others. Comparing sensitivity to light helps us understand where these materials come from and what happens as they move through water.
Ben J. Fisher, Johan C. Faust, Oliver W. Moore, Caroline L. Peacock, and Christian März
Biogeosciences, 18, 3409–3419, https://doi.org/10.5194/bg-18-3409-2021, https://doi.org/10.5194/bg-18-3409-2021, 2021
Short summary
Short summary
Organic carbon can be protected from microbial degradation in marine sediments through association with iron minerals on 1000-year timescales. Despite the importance of this carbon sink, our spatial and temporal understanding of iron-bound organic carbon interactions globally is poor. Here we show that caution must be applied when comparing quantification of iron-bound organic carbon extracted by different methods as the extraction strength and method specificity can be highly variable.
Mark A. Stevenson, Suzanne McGowan, Emma J. Pearson, George E. A. Swann, Melanie J. Leng, Vivienne J. Jones, Joseph J. Bailey, Xianyu Huang, and Erika Whiteford
Biogeosciences, 18, 2465–2485, https://doi.org/10.5194/bg-18-2465-2021, https://doi.org/10.5194/bg-18-2465-2021, 2021
Short summary
Short summary
We link detailed stable isotope and biomarker analyses from the catchments of three Arctic upland lakes on Disko Island (West Greenland) to a recent dated sediment core to understand how carbon cycling has changed over the past ~500 years. We find that the carbon deposited in sediments in these upland lakes is predominately sourced from in-lake production due to the catchment's limited terrestrial vegetation and elevation and that recent increases in algal production link with climate change.
Nadine T. Smit, Laura Villanueva, Darci Rush, Fausto Grassa, Caitlyn R. Witkowski, Mira Holzheimer, Adriaan J. Minnaard, Jaap S. Sinninghe Damsté, and Stefan Schouten
Biogeosciences, 18, 1463–1479, https://doi.org/10.5194/bg-18-1463-2021, https://doi.org/10.5194/bg-18-1463-2021, 2021
Short summary
Short summary
Soils from an everlasting fire (gas seep) in Sicily, Italy, reveal high relative abundances of novel uncultivated mycobacteria and unique 13C-depleted mycocerosic acids (multi-methyl branched fatty acids) close to the main gas seep. Our results imply that mycocerosic acids in combination with their depleted δ13C values offer a new biomarker tool to study the role of soil mycobacteria as hydrocarbon consumers in the modern and past global carbon cycle.
Marcus P. S. Badger
Biogeosciences, 18, 1149–1160, https://doi.org/10.5194/bg-18-1149-2021, https://doi.org/10.5194/bg-18-1149-2021, 2021
Short summary
Short summary
Reconstructing ancient atmospheric CO2 is an important aim of palaeoclimate science in order to understand the Earth's climate system. One method, the alkenone proxy based on molecular fossils of coccolithophores, has been recently shown to be ineffective at low-to-moderate CO2 levels. In this paper I show that this is likely due to changes in the biogeochemistry of the coccolithophores when there is low carbon availability, but for much of the Cenozoic the alkenone proxy should have utility.
Loes G. J. van Bree, Francien Peterse, Allix J. Baxter, Wannes De Crop, Sigrid van Grinsven, Laura Villanueva, Dirk Verschuren, and Jaap S. Sinninghe Damsté
Biogeosciences, 17, 5443–5463, https://doi.org/10.5194/bg-17-5443-2020, https://doi.org/10.5194/bg-17-5443-2020, 2020
Short summary
Short summary
Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are used as a paleothermometer based on their temperature dependence in global soils, but aquatic production complicates their use in lakes. BrGDGTs in the water column of Lake Chala, East Africa, respond to oxygen conditions and mixing. Changes in their signal can be linked to bacterial community composition rather than membrane adaptation to changing conditions. Their integrated signal in the sediment reflects mean air temperature.
Alexandra N. Loginova, Andrew W. Dale, Frédéric A. C. Le Moigne, Sören Thomsen, Stefan Sommer, David Clemens, Klaus Wallmann, and Anja Engel
Biogeosciences, 17, 4663–4679, https://doi.org/10.5194/bg-17-4663-2020, https://doi.org/10.5194/bg-17-4663-2020, 2020
Short summary
Short summary
We measured dissolved organic carbon (DOC), nitrogen (DON) and matter (DOM) optical properties in pore waters and near-bottom waters of the eastern tropical South Pacific off Peru. The difference between diffusion-driven and net fluxes of DOC and DON and qualitative changes in DOM optical properties suggested active microbial utilisation of the released DOM at the sediment–water interface. Our results suggest that the sediment release of DOM contributes to microbial processes in the area.
Gerard J. M. Versteegh, Alexander J. P. Houben, and Karin A. F. Zonneveld
Biogeosciences, 17, 3545–3561, https://doi.org/10.5194/bg-17-3545-2020, https://doi.org/10.5194/bg-17-3545-2020, 2020
Short summary
Short summary
Anoxic sediments mostly contain much more organic matter than oxic ones, and therefore organic matter in anoxic settings is often considered to be preserved better than in oxic settings. However, through the analysis of the same fossil dinoflagellate cyst species from both oxic and anoxic settings, we show that at a molecular level the preservation in the oxic sediments may be better since in the anoxic setting the cyst macromolecule has been altered by postdepositional modification.
Jingjing Guo, Miriam Glendell, Jeroen Meersmans, Frédérique Kirkels, Jack J. Middelburg, and Francien Peterse
Biogeosciences, 17, 3183–3201, https://doi.org/10.5194/bg-17-3183-2020, https://doi.org/10.5194/bg-17-3183-2020, 2020
Short summary
Short summary
The fluxes of soil organic carbon (OC) transport from land to sea are poorly constrained, mostly due to the lack of a specific tracer for soil OC. Here we evaluate the use of specific molecules derived from soil bacteria as a tracer for soil OC in a small river catchment. We find that the initial soil signal is lost upon entering the aquatic environment. However, the local environmental history of the catchment is reflected by these molecules in the lake sediments that act as their sink.
Zhuo-Yi Zhu, Joanne Oakes, Bradley Eyre, Youyou Hao, Edwin Sien Aun Sia, Shan Jiang, Moritz Müller, and Jing Zhang
Biogeosciences, 17, 2473–2485, https://doi.org/10.5194/bg-17-2473-2020, https://doi.org/10.5194/bg-17-2473-2020, 2020
Short summary
Short summary
Samples were collected in August 2016 in the Rajang River and its estuary, with tropical forest in the river basin and peatland in the estuary. Organic matter composition was influenced by transportation in the river basin, whereas peatland added clear biodegraded parts to the fluvial organic matter, which implies modification of the initial lability and/or starting points in the subsequent degradation and alternation processes after the organic matter enters the sea.
Wenjie Xiao, Yasong Wang, Yongsheng Liu, Xi Zhang, Linlin Shi, and Yunping Xu
Biogeosciences, 17, 2135–2148, https://doi.org/10.5194/bg-17-2135-2020, https://doi.org/10.5194/bg-17-2135-2020, 2020
Short summary
Short summary
The hadal zone (6–11 km depth) is the least explored habitat on Earth. We studied microbial branched glycerol dialkyl glycerol tetraethers (brGDGTs) in the Challenger Deep, Mariana Trench. One unique feature is the strong predominance of 6-methyl brGDGT, which likely reflects an adaption of brGDGT-producing bacteria to alkaline seawater and low temperature. BrGDGTs, with elemental and isotopic data, suggest an autochthonous product for brGDGT. A new approach is proposed for brGDGT sourcing.
Yuge Bai, Edisson Subdiaga, Stefan B. Haderlein, Heike Knicker, and Andreas Kappler
Biogeosciences, 17, 683–698, https://doi.org/10.5194/bg-17-683-2020, https://doi.org/10.5194/bg-17-683-2020, 2020
Short summary
Short summary
Biogeochemical processes of SOM are key for greenhouse gas emission and water quality. We extracted SOM by water or by NaOH–HCl under oxic–anoxic conditions. Chemical and anoxic extractions lead to higher SOM electron exchange capacities, resulting in stimulation of microbial Fe(III) reduction. Therefore, aqueous pH-neutral SOM extracts should be used to reflect environmental SOM redox processes, and artifacts of chemical extractions need to be considered when evaluating SOM redox processes.
Yan Shen, Volker Thiel, Pablo Suarez-Gonzalez, Sebastiaan W. Rampen, and Joachim Reitner
Biogeosciences, 17, 649–666, https://doi.org/10.5194/bg-17-649-2020, https://doi.org/10.5194/bg-17-649-2020, 2020
Short summary
Short summary
Today, sterols are widespread in plants, animals, and fungi but are almost absent in the oldest rocks. Microbial mats, representing the earliest complex ecosystems on Earth, were omnipresent in Precambrian marine environments and may have degraded the sterols at that time. Here we analyze the distribution of sterols through a microbial mat. This provides insight into how variations in biological and nonbiological factors affect the preservation of sterols in modern and ancient microbial mats.
Sarah Coffinet, Travis B. Meador, Lukas Mühlena, Kevin W. Becker, Jan Schröder, Qing-Zeng Zhu, Julius S. Lipp, Verena B. Heuer, Matthew P. Crump, and Kai-Uwe Hinrichs
Biogeosciences, 17, 317–330, https://doi.org/10.5194/bg-17-317-2020, https://doi.org/10.5194/bg-17-317-2020, 2020
Short summary
Short summary
This study deals with two membrane lipids called BDGTs and PDGTs. Membrane lipids are molecules forming the cell envelope of all organisms. Different organisms produce different lipids thus they can be used to detect the presence of specific organisms in the environment. We analyzed the structure of these new lipids and looked for potential producers. We found that they are likely made by microbes emitting methane below the sediment surface and could be used to track these specific microbes.
Ying Wu, Kun Zhu, Jing Zhang, Moritz Müller, Shan Jiang, Aazani Mujahid, Mohd Fakharuddin Muhamad, and Edwin Sien Aun Sia
Biogeosciences, 16, 4517–4533, https://doi.org/10.5194/bg-16-4517-2019, https://doi.org/10.5194/bg-16-4517-2019, 2019
Short summary
Short summary
Our understanding of terrestrial organic matter (TOM) in tropical peat-draining rivers remains limited, especially in Southeast Asia. We explored the characteristics of TOM via bulk parameters and lignin phenols of sediment in Malaysia. This showed that the most important plant source of the organic matter in these rivers is woody angiosperm C3 plants with limited diagenetic alteration. This slower degradation of TOM may be a link to higher total nitrogen content, especially for the small river.
Caitlyn R. Witkowski, Sylvain Agostini, Ben P. Harvey, Marcel T. J. van der Meer, Jaap S. Sinninghe Damsté, and Stefan Schouten
Biogeosciences, 16, 4451–4461, https://doi.org/10.5194/bg-16-4451-2019, https://doi.org/10.5194/bg-16-4451-2019, 2019
Short summary
Short summary
Carbon dioxide concentrations (pCO2) in the atmosphere play an integral role in Earth system dynamics, especially climate. Past climates help us understand future ones, but reconstructing pCO2 over the geologic record remains a challenge. This research demonstrates new approaches for exploring past pCO2 via the carbon isotope fractionation in general algal lipids, which we test over a high CO2 gradient from a naturally occurring CO2 seep.
Yongli Zhou, Patrick Martin, and Moritz Müller
Biogeosciences, 16, 2733–2749, https://doi.org/10.5194/bg-16-2733-2019, https://doi.org/10.5194/bg-16-2733-2019, 2019
Short summary
Short summary
We found that peatlands in coastal Sarawak, Borneo, export extremely humified organic matter, which dominates the riverine organic matter pool and conservatively mixes with seawater, while the freshly produced fraction is low and stable in concentration at all salinities. We estimated that terrigenous fractions, which showed high photolability, still account for 20 % of the coastal dissolved organic carbon pool, implying the importance of peat-derived organic matter in the coastal carbon cycle.
Kristin Doering, Claudia Ehlert, Philippe Martinez, Martin Frank, and Ralph Schneider
Biogeosciences, 16, 2163–2180, https://doi.org/10.5194/bg-16-2163-2019, https://doi.org/10.5194/bg-16-2163-2019, 2019
Alexandra N. Loginova, Sören Thomsen, Marcus Dengler, Jan Lüdke, and Anja Engel
Biogeosciences, 16, 2033–2047, https://doi.org/10.5194/bg-16-2033-2019, https://doi.org/10.5194/bg-16-2033-2019, 2019
Short summary
Short summary
High primary production in the Peruvian upwelling system is followed by rapid heterotrophic utilization of organic matter and supports the formation of one of the most intense oxygen minimum zones (OMZs) in the world. Here, we estimated vertical fluxes of oxygen and dissolved organic matter (DOM) from the surface to the OMZ. Our results suggest that DOM remineralization substantially reduces oxygen concentration in the upper water column and controls the shape of the upper oxycline.
Carolina Cisternas-Novoa, Frédéric A. C. Le Moigne, and Anja Engel
Biogeosciences, 16, 927–947, https://doi.org/10.5194/bg-16-927-2019, https://doi.org/10.5194/bg-16-927-2019, 2019
Short summary
Short summary
We investigate the composition and vertical fluxes of POM in two deep basins of the Baltic Sea (GB: Gotland Basin and LD: Landsort Deep). The two basins showed different O2 regimes resulting from the intrusion of oxygen-rich water from the North Sea that ventilated the deep waters in GB, but not in LD.
In GB, O2 intrusions lead to a high abundance of manganese oxides that aggregate with POM, altering its composition and vertical flux and contributing to a higher POC transfer efficiency in GB.
Marina Zamanillo, Eva Ortega-Retuerta, Sdena Nunes, Pablo Rodríguez-Ros, Manuel Dall'Osto, Marta Estrada, Maria Montserrat Sala, and Rafel Simó
Biogeosciences, 16, 733–749, https://doi.org/10.5194/bg-16-733-2019, https://doi.org/10.5194/bg-16-733-2019, 2019
Short summary
Short summary
Many marine microorganisms produce polysaccharide-rich transparent exopolymer particles (TEPs) for rather unknown reasons but with important consequences for the ocean carbon cycle, sea–air gas exchange and formation of organic aerosols. Here we compare surface–ocean distributions of TEPs and physical, chemical and biological variables along a N–S transect in the Atlantic Ocean. Our data suggest that phytoplankton and not bacteria are the main TEP producers, and solar radiation acts as a sink.
Cited articles
Alderkamp, A.-C., Mills, M. M., van Dijken, G. L., Laan, P., Thuroczy,
C.-E., Gerringa, L. J. A., de Baar, H. J. W., Payne, C. D., Visser, R. J.
W., Buma, A. G. J., and Arrigo, K. R.: Iron from melting glaciers fuels
phytoplankton blooms in the Amundsen Sea (Southern Ocean): Phytoplankton
characteristics and productivity, Deep-Sea Res. Pt. II, 71–76, 32–48, https://doi.org/10.1016/j.dsr2.2012.03.005, 2012.
Allen, C. S., Peck, V. L., Graham, A. G. C., Blagbrough, H., Robinson, M. W.,
and McClymont, E.: RRS James Clark Ross Marine Science Cruises JR257 and
JR254e, March–April 2012, British Antarctic Survey, Cambridge, UK,
https://www.bodc.ac.uk/resources/inventories/cruise_inventory/reports/jr257_254e.pdf, 2012.
Allen, C. S., Venables, H. J., and Yelland, M. J.: RRS James Clark Ross (74JC) cruise JR20120327 (JR254E, JR257, JR272A), National Oceanography Center, British Oceanographic Data Center BODC, available at: https://www.bodc.ac.uk/data/documents/cruise/11431/, last access: 22 March 2021.
Alonso-Saez, L., Sanchez, O., Gasol, J. M., Balague, V., and Pedros-Alio, C.:
Winter-to-summer changes in the composition and single-cell activity of
near-surface Arctic prokaryotes, Environ. Microbiol., 10, 2444–2454,
https://doi.org/10.1111/j.1462-2920.2008.01674.x, 2008.
Alonso-Saez, L., Andersson, A., Heinrich, F., and Bertilsson, S.: High
archaeal diversity in Antarctic circumpolar deep waters, Env. Microbiol. Rep., 3, 689–697, https://doi.org/10.1111/j.1758-2229.2011.00282.x, 2011.
Arrigo, K. and van Dijken, G.: Phytoplankton dynamics within 37 Antarctic
coastal polynya systems, J. Geophys. Res.-Oceans, 108, 3271,
https://doi.org/10.1029/2002JC001739, 2003.
Atkinson, A., Whitehouse, M. J., Priddle, J., Cripps, G. C., Ward, P., and
Brandon, M. A.: South Georgia, Antarctic: a productive, cold water, pelagic
ecosystem, Mar. Ecol. Prog. Ser., 216, 279–308,
https://doi.org/10.3354/meps216279, 2001.
Bale, N. J., Palatinszky, M., Rijpstra, W. I. C., Herbold, C. W., Wagner, M.,
and Sinninghe Damsté, J. S.: Membrane lipid composition of the moderately
thermophilic ammonia-oxidising archaeon “Candidatus Nitrosotenuis uzonensis” at different growth temperatures, Appl. Environ. Microb., 85, e01332-19, https://doi.org/10.1128/AEM.01332-19, 2019.
Baltar, F., Currie, K., Stuck, E., Roosa, S., and Morales, S. E.: Oceanic
fronts: transition zones for bacterioplankton community composition,
Env. Microbiol. Rep., 8, 132–138,
https://doi.org/10.1111/1758-2229.12362, 2016.
Bathmann, U. V., Scharek, R., Klaas, C., Dubischar, C. D., and Smetacek, V.:
Spring development of phytoplankton biomass and composition in major water
masses of the Atlantic sector of the Southern Ocean,
Deep-Sea Res. Pt. II, 44, 51–67,
https://doi.org/10.1016/S0967-0645(96)00063-X, 1997.
Bauersachs, T., Speelman, E. N., Hopmans, E. C., Reichart, G. J., Schouten,
S., and Sinninghe Damsté, J. S.: Fossilized glycolipids reveal past
oceanic N2 fixation by heterocystous cyanobacteria, P. Natl. Acad. Sci. USA, 107, 19190–19194, https://doi.org/10.1073/pnas.1007526107, 2010.
Besseling, M. A., Hopmans, E. C., Boschman, R. C., Sinninghe Damsté, J. S., and Villanueva, L.: Benthic archaea as potential sources of tetraether membrane lipids in sediments across an oxygen minimum zone, Biogeosciences, 15, 4047–4064, https://doi.org/10.5194/bg-15-4047-2018, 2018.
Besseling, M. A., Hopmans, E. C., Bale, N. J., Schouten, S., Sinninghe Damsté, J. S., and Villanueva, L.: The absence of intact polar
lipid-derived GDGTs in marine waters dominated by Marine Group II:
Implications for lipid biosynthesis in Archaea, Sci. Rep.-UK, 10, 294,
https://doi.org/10.1038/s41598-019-57035-0, 2020.
Brochier-Armanet, C., Boussau, B., Gribaldo, S., and Forterre, P.: Mesophilic
crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota,
Nat. Rev. Microbiol., 6, 245–252, https://doi.org/10.1038/nrmicro1852, 2008.
Cape, M. R., Vernet, M., Kahru, M., and Spreen, G.: Polynya dynamics drive
primary production in the Larsen A and B embayments following ice shelf
collapse, J. Geophys. Res.-Oceans, 119, 572–594,
https://doi.org/10.1002/2013JC009441, 2014.
Carter, L., McCave, I. N., and Williams, M. J. M.: Circulation and water
masses of the Southern Ocean: A Review, in: Developments in Earth and Environmental Sciences – Antarctic Climate Evolution, edited by: Florindo, F. and Siegert, M., Elsevier, Amsterdam, the Netherlands, 85–114, https://doi.org/10.1016/S1571-9197(08)00004-9, 2009.
Church, M. J., DeLong, E. F., Ducklow, H. W., Karner, M. B., Preston, C. M.,
and Karl, D. M.: Abundance and distribution of planktonic Archaea and
Bacteria in the waters west of the Antarctic Peninsula, Limnol. Oceanogr.,
48, 1893–1902, https://doi.org/10.4319/lo.2003.48.5.1893, 2003.
Darfeuil, S., Menot, G., Giraud, X., Rostek, F., Tachikaea, K., Garcia, M.,
and Bard, E.: Sea surface temperature reconstructions over the last 70 kyr
off Portugal: Biomarker data and regional modelling,
Paleoceanogr. Paleoclimatol., 31, 40–65, https://doi.org/10.1002/2015PA002831, 2016.
Delong, E. F., Wu, K. Y., Prezelin, B. B., and Jovine, R. V. M.: High
abundance of archaea in Antarctic marine picoplankton, Nature, 371,
695–697, https://doi.org/10.1038/371695a0, 1994.
Elling, F. J., Konneke, M., Lipp, J. S., Becker, K. W., Gagen, E. J., and
Hinrichs, K. U.: Effects of growth phase on the membrane lipid composition
of the thaumarchaeon Nitrosopumilus maritimus and their implications for
archaeal lipid distributions in the marine environment,
Geochim. Cosmochim. Ac., 141, 579–597, https://doi.org/10.1016/j.gca.2014.07.005, 2014.
Elling, F. J., Konneke, M., Nicol, G. W., Stieglmeier, M., Bayer, B.,
Spieck, E., de la Torre, J. R., Becker, K. W., Thomm, M., Prosser, J. I.,
Herndl, G. J., Schleper, C., and Hinrichs, K. U.: Chemotaxonomic
characterisation of the Thaumarchaeal lipidome, Environ. Microbiol., 19,
2681–2700, https://doi.org/10.1111/1462-2920.13759, 2017.
Etourneau, J., Collins, L. G., Willmott, V., Kim, J.-H., Barbara, L., Leventer, A., Schouten, S., Sinninghe Damsté, J. S., Bianchini, A., Klein, V., Crosta, X., and Massé, G.: Holocene climate variations in the western Antarctic Peninsula: evidence for sea ice extent predominantly controlled by changes in insolation and ENSO variability, Clim. Past, 9, 1431–1446, https://doi.org/10.5194/cp-9-1431-2013, 2013.
Etourneau, J., Sgubin, G., Crosta, X., Swingedouw, D., Willmott, V.,
Barbara, L., Houssais, M.-N., Schouten, S., Sinninghe Damsté, J. S.,
Goosse, H., Escutia, C., Crespin, J., Massé, G., and Kim, J.-H.: Ocean
temperature impact on ice shelf extent in the eastern Antarctic Peninsula,
Nat. Commun., 10, 304, https://doi.org/10.1038/s41467-018-08195-6, 2019.
Evans, T. W., Wormer, L., Lever, M. A., Lipp, J. S., Lagostina, L., Lin, Y.
S., Jorgensen, B. B., and Hinrichs, K. U.: Size and composition of
subseafloor microbial community in the Benguela upwelling area examined from
intact membrane lipid and DNA analysis, Org. Geochem., 111, 86–100,
https://doi.org/10.1016/j.orggeochem.2017.06.008, 2017.
Faraway, J.: faraway: Functions and Datasets for Books by Julian Faraway,
R-Package version 1.0.7, available at: https://CRAN.R-project.org/package=faraway (last access: 22 March 2021), 2016.
Fietz, S., Huguet, C., Rueda, G., Hambach, B., and Rosell-Melé, A.:
Hydroxylated isoprenoidal GDGTs in the Nordic Seas, Mar. Chem., 152, 1–10,
https://doi.org/10.1016/j.marchem.2013.02.007, 2013.
Fietz, S., Ho, S. L., Huguet, C., Rosell-Mele, A., and Martinez-Garcia, A.:
Appraising GDGT-based seawater temperature indices in the Southern Ocean,
Org. Geochem., 102, 93–105,
https://doi.org/10.1016/j.orggeochem.2016.10.003, 2016.
Francis, C. A., Roberts, K. J., Beman, J. M., Santoro, A. E., and Oakley, B.
B.: Ubiquity and diversity of ammonia-oxidizing archaea in water columns and
sediments of the ocean, P. Natl. Acad. Sci. USA, 102, 14683–14688,
https://doi.org/10.1073/pnas.0506625102, 2005.
Freeman, N. M., Munro, D. R., Sprintall, J., Mazloff, M. R., Purkey, S.,
Rosso, I., DeRanek, C. A., and Sweeney, C.: The observed seasonal cycle of
macronutrients in Drake Passage: Relationship to fronts and utility as a
model metric, J. Geophys. Res.-Oceans, 124, 4763–4783,
https://doi.org/10.1029/2019JC015052, 2019.
Gerringa, L. J. A., Alderkamp, A.-C., Laan, P., Thuroczy, C.-E., De Baar, H.
J. W., Mills, M. M., van Dijken, G. L., van Haren, H., and Arrigo, K. R.:
Iron from melting glaciers fuels the phytoplankton blooms in Amundsen Sea
(Southern Ocean): Iron biogeochemistry, Deep-Sea Res. Pt. II, 71–76, 16–31, https://doi.org/10.1016/j.dsr2.2012.03.007, 2012.
Gohl, K.: The Expedition PS104 of the Research Vessel POLARSTERN to the
Amundsen Sea in 2017, Reports on Polar and Marine Research, Helmholtz-Zentrum für Polar- und Meeresforschung, Alfred-Wegener-Institut, Bremerhaven, Germany, 100 pp., https://doi.org/10.2312/BzPM_0712_2017, 2017.
Hallam, S. J., Mincer, T. J., Schleper, C., Preston, C. M., Roberts, K.,
Richardson, P. M., and DeLong, E. F.: Pathways of carbon assimilation and
ammonia oxidation suggested by environmental genomic analyses of marine
Crenarchaeota, Plos Biol., 4, 520–536,
https://doi.org/10.1371/journal.pbio.0040095, 2006.
Hernandez, E. A., Piquet, A. M. T., Lopez, J. L., Buma, A. G. J., and Mac Cormack, W. P.: Marine archaeal community structure from Potter Cove, Antarctica: high
temporal and spatial dominance of the phylum Thaumarchaeota, Polar Biol.,
38, 117–130, https://doi.org/10.1007/s00300-014-1569-8, 2015.
Heywood, K. J., Naveira Garabato, A. C., and Stevens, D. P.: High mixing
rates in the abyssal Southern Ocean, Nature, 415, 1011–1014,
https://doi.org/10.1038/4151011a, 2002.
Hillenbrand, C.-D., Smith, J. A., Hodell, D. A., Greaves, M., Poole, C. R.,
Kender, S., Williams, M., Andersen, T. J., Jernas, P. E., Elderfield, H.,
Klages, J. P., Roberts, S. J., Gohl, K., Larter, R. D., and Kuhn, G.: West
Antarctic Ice Sheet retreat driven by Holocene warm water incursions,
Nature, 547, 43–48, https://doi.org/10.1038/nature22995, 2017.
Ho, S. L., Yamamoto, M., Mollenhauer, G., and Minagawa, M.: Core top TEX86 values in the South and equatorial Pacific, Org. Geochem., 42, 94–99, https://doi.org/10.1016/j.orggeochem.2010.10.012, 2011.
Ho, S. L., Mollenhauer, G., Feitz, S., Martinez-Garcia, A., Lamy, F., Rueda,
G., Schipper, K., Méheust, M., Rosell-Melé, A., Stein, R., and Tiedemann, R.: Appraisal of TEX86 and TEX thermometries in subpolar and polar regions, Geochim. Cosmochim. Ac., 131, 213–226, https://doi.org/10.1016/j.gca.2014.01.001, 2014.
Hu, A. Y., Jiao, N. Z., Zhang, R., and Yang, Z.: Niche partitioning of marine
group I Crenarchaeota in the euphotic and upper mesopelagic zones of the
East China Sea, Appl. Environ. Microb., 77, 7469–7478,
https://doi.org/10.1128/Aem.00294-11, 2011.
Huguet, C., Kim, J.-H., Sinninghe Damsté, J. S., and Schouten, S.:
Reconstruction of sea surface temperature variations in the Arabian Sea over
the last 23 kyr using organic proxies (TEX86 and U ), Paleoceanogr. Paleoclimatol., 21, PA3003, https://doi.org/10.1029/2005PA001215, 2006.
Huguet, C., Urakawa, H., Martens-Habbena, W., Truxal, L., Stahl, D. A., and
Ingalls, A. E.: Changes in intact membrane lipid content of archaeal cells
as an indication of metabolic status, Org. Geochem., 41, 930–934,
https://doi.org/10.1016/j.orggeochem.2010.04.012, 2010.
Huguet, C., Martrat, B., Grimalt, J. O., Sinninghe Damsté, J. S., and
Schouten, S.: Coherent millennial-scale patterns in U and TEX temperature records during the penultimate interglacial-to-glacial cycle in the western Mediterranean, Paleoceanogr. Paleoclimatol., 26, PA2218, https://doi.org/10.1029/2010PA002048, 2011.
Huguet, C., Fietz, S., and Rosell-Melé, A.: Global distribution patterns
of hydroxy glycerol dialkyl glycerol tetraethers, Org. Geochem., 57,
107–118, https://doi.org/10.1016/j.orggeochem.2013.01.010, 2013.
Huguet, C., Fietz, S., Rosell-Mele, A., Daura, X., and Costenaro, L.:
Molecular dynamics simulation study of the effect of glycerol dialkyl
glycerol tetraether hydroxylation on membrane thermostability,
BBA-Biomembranes, 1859, 966–974,
https://doi.org/10.1016/j.bbamem.2017.02.009, 2017.
Hurley, S. J., Lipp, J. S., Close, H. G., Hinrichs, K. U., and Pearson, A.:
Distribution and export of isoprenoid tetraether lipids in suspended
particulate matter from the water column of the Western Atlantic Ocean, Org.
Geochem., 116, 90–102, https://doi.org/10.1016/j.orggeochem.2017.11.010, 2018.
Ingalls, A. E., Shah, S. R., Hansman, R. L., Aluwihare, L. I., Santos, G.
H., Druffel, E. R. M., and Pearson, A.: Quantifying archaeal community
autotrophy in the mesopelagic ocean using natural radiocarbon, P. Natl. Acad. Sci. USA, 103, 6442–6447, https://doi.org/10.1073/pnas.0510157103, 2006.
Ingalls, A. E, Huguet, C., and Truxal, L.: Distribution of Intact and Core
Membrane Lipids of Archaeal Glycerol Dialkyl Glycerol Tetraethers among
Size-Fractionated Particulate Organic Matter in Hood Canal, Puget Sound,
Appl. Environ. Microb., 78, 1480–1490, https://doi.org/10.1128/AEM.07016-11, 2012.
Jacobs, S. S., Hellmer, H. H., and Jenkins, A.: Antarctic ice sheet melting
in the Southeast Pacific, Geophys. Res. Lett., 23, 957–960,
https://doi.org/10.1029/96gl00723, 1996.
Jacobs, S. S., Jenkins, A., Giulivi, C. F., and Dutrieux, P.: Stronger ocean
circulation and increased melting under Pine Island Glacier ice shelf, Nat.
Geosci., 4, 519–523, https://doi.org/10.1038/ngeo1188, 2011.
Jenkins, A., Dutrieux, P., Jacobs, S. S., McPhail, S. D., Perrett, J. R.,
Webb, A. T., and White, D.: Observations beneath Pine Island Glacier in West
Antarctica and implications for its retreat, Nat. Geosci., 3, 468–472,
https://doi.org/10.1038/ngeo890, 2010.
Jenkyns, H. C., Forster, A., Schouten, S., and Sinninghe Damsté, J. S.:
High temperatures in the Late Cretaceous Arctic Ocean, Nature, 432, 888–892,
https://doi.org/10.1038/nature03143, 2004.
Joughin, I., Smith, B. E., and Medley, B.: Marine ice sheet collapse
potentially under way for the Thwaites Glacier Basin, West Antarctica,
Science, 344, 735–738, https://doi.org/10.1126/science.1249055, 2014.
Kalanetra, K. M., Bano, N., and Hollibaugh, J. T.: Ammonia-oxidizing archaea
in the Arctic Ocean and Antarctic coastal waters, Environ. Microbiol., 11,
2434–2445, https://doi.org/10.1111/j.1462-2920.2009.01974.x, 2009.
Kang, S. J., Shin, K. H., and Kim, J. H.: Occurrence and distribution of
hydroxylated isoprenoid glycerol dialkyl glycerol tetraethers (OH-GDGTs) in
the Han River system, South Korea, Acta Geochim., 36, 367–369,
https://doi.org/10.1007/s11631-017-0165-3, 2017.
Kim, J.-G., Park, S.-J., Quan, Z.-X., Jung, M.-Y., Cha, I.-T., Kim, S.-J.,
Kim, K.-H., Yang, E.-J., Kim, Y.-N., Lee, S.-H., and Rhee, S.-K.: Unveiling
abundance and distribution of planktonic bacteria and archaea in a polynya
in Amundsen Sea, Antarctica, Environ. Microbiol., 16, 1566–1578,
https://doi.org/10.1111/1462-2920.12287, 2014.
Kim, J.-H., Schouten, S., Hopmans, E. C., Donner, B., and Sinninghe Damsté, J. S.: Global sediment core-top calibration of the TEX86 paleothermometer in the ocean, Geochim. Cosmochim. Ac., 72, 1154–1173, 2008.
Kim, J.-H., van der Meer, J., Schouten, S., Helmke, P., Willmott, V.,
Sangiorgi, F., Koç, N., Hopmans, E. C., and Sinninghe Damsté, J. S.:
New indices and calibrations derived from the distribution of crenarchaeal
isoprenoid tetraether lipids: Implications for past sea surface temperature
reconstructions, Geochim. Cosmochim. Ac., 74, 4639–4654,
https://doi.org/10.1016/j.gca.2010.05.027, 2010.
Kim, J.-H., Crosta, X., Willmott, V., Renssen, H., Bonnin, J., Helmke, P.,
Schouten, S., and Sinninghe Damsté, J. S.: Holocene subsurface
temperature variability in the eastern Antarctic continental margin,
Geophys. Res. Lett., 39, L06705, https://doi.org/10.1029/2012gl051157, 2012.
Kim, J.-H., Villanueva, L., Zell, C., and Sinninghe Damsté, J. S.:
Biological source and provenance of deep-water derived isoprenoid tetraether
lipids along the Portuguese continental margin, Geochim. Cosmochim. Ac.,
172, 177–204, https://doi.org/10.1016/j.gca.2015.09.010, 2016.
Kirchman, D. L., Elifantz, H., Dittel, A. I., Malmstrom, R. R., and Cottrell,
M. T.: Standing stocks and activity of Archaea and Bacteria in the western
Arctic Ocean, Limnol. Oceanogr., 52, 495–507,
https://doi.org/10.4319/lo.2007.52.2.0495, 2007.
Lee, S. H., Kang, Y.-C., and Fuhrman, J. A.: Imperfect retention of natural
bacterioplankton cells by glass fiber filters, Mar. Ecol. Prog. Ser., 119,
285–290, https://doi.org/10.3354/meps119285, 1995.
Legendre, P. and Legendre, L.: Numerical Ecology, edn. 3, Elsevier,
Oxford, UK, ISBN 978-0-444-53869-7, 2012.
Legendre, P., Oksanen, J., and ter Braak, C. J.: Testing the significance of
canonical axes in redundancy analysis, Methods Ecol. Evol., 2, 269–277,
https://doi.org/10.1111/j.2041-210X.2010.00078.x, 2011.
Lengger, S. K., Hopmans, E. C., Sinninhe Damsté, J. S., and Schouten, S.:
Comparison of extraction and work up techniques for analysis of core and
intact polar tetraether lipids from sedimentary environments, Org. Geochem., 47, 34–40, https://doi.org/10.1016/j.orggeochem.2012.02.009, 2012.
Lengger, S. K., Kraaij, M., Tjallingii, R., Baas, M., Stuut, J.-B., Hopmans,
E. C., Sinninghe Damsté, J. S., and Schouten, S.: Differential
degradation of intact polar and core glycerol dialkyl glycerol tetraether
lipids upon post-depositional oxidation, Org. Geochem., 65, 83–93,
https://doi.org/10.1016/j.orggeochem.2013.10.004, 2013.
Lengger, S. K., Hopmans, E. C., Sinninghe Damsté, J. S., and Schouten,
S.: Fossilization and degradation of archaeal intact polar tetraether lipids
in deeply buried marine sediments (Peru Margin), Geobiology, 12, 212–220,
https://doi.org/10.1111/gbi.12081, 2014.
Lincoln, S. A., Wai, B., Eppley, J. M., Church, M. J., Summons, R. E., and
DeLong, E. F.: Planktonic Euryarchaeota are a significant source of archaeal
tetraether lipids in the ocean, P. Natl. Acad. Sci. USA, 111,
9858–9863, https://doi.org/10.1073/pnas.1409439111, 2014a.
Lincoln, S. A., Wai, B., Eppley, J. M., Church, M. J., Summons, R. E., and
DeLong, E. F.: Reply to Schouten et al.: Marine Group II planktonic
Euryarchaeota are significant contributors to tetraether lipids in the
ocean, P. Natl. Acad. Sci. USA, 111, E4286,
https://doi.org/10.1073/pnas.1416736111, 2014b.
Lipp, J. S. and Hinrichs, K. U.: Structural diversity and fate of intact
polar lipids in marine sediments, Geochim. Cosmochim. Ac., 73, 6816–6833,
https://doi.org/10.1016/j.gca.2009.08.003, 2009.
Lipp, J. S., Morono, Y., Inagaki, F., and Hinrichs, K. U.: Significant
contribution of Archaea to extant biomass in marine subsurface sediments,
Nature, 454, 991–994, https://doi.org/10.1038/nature07174, 2008.
Liu, X. L., Lipp, J. S., Simpson, J. H., Lin, Y. S., Summons, R. E., and
Hinrichs, K. U.: Mono- and dihydroxyl glycerol dibiphytanyl glycerol
tetraethers in marine sediments: Identification of both core and intact
polar lipid forms, Geochim. Cosmochim. Ac., 89, 102–115,
https://doi.org/10.1016/j.gca.2012.04.053, 2012.
Locarnini, R. A., Whitworth, T., and Nowlin, W. D.: The importance of the Scotia Sea on the outflow of Weddell Sea Deep Water, J. Mar. Res., 51,
135–153, https://doi.org/10.1357/0022240933223846, 1993.
Lu, X. X., Liu, X. L., Elling, F. J., Yang, H., Xie, S. C., Song, J. M., Li,
X. G., Yuan, H. M., Li, N., and Hinrichs, K. U.: Hydroxylated isoprenoid
GDGTs in Chinese coastal seas and their potential as a paleotemperature
proxy for mid-to-low latitude marginal seas, Org. Geochem., 89–90, 31–43,
https://doi.org/10.1016/j.orggeochem.2015.10.004, 2015.
Luo, H. W., Tolar, B. B., Swan, B. K., Zhang, C. L. L., Stepanauskas, R.,
Moran, M. A., and Hollibaugh, J. T.: Single-cell genomics shedding light on
marine Thaumarchaeota diversification, Isme J., 8, 732–736,
https://doi.org/10.1038/ismej.2013.202, 2014.
Mankoff, K. D., Jacobs, S. S., Tulaczyk, S. M., and Stammerjohn, S. E.: The
role of Pine Island Glacier ice shelf basal channels in deep-water
upwelling, polynyas and ocean circulation in Pine Island Bay, Antarctica,
Ann. Glaciol., 53, 123–128, https://doi.org/10.3189/2012AoG60A062, 2012.
Massana, R., Taylor, L. J., Murray, A. E., Wu, K. Y., Jeffrey, W. H., and
DeLong, E. F.: Vertical distribution and temporal variation of marine
planktonic archaea in the Gerlache Strait, Antarctica, during early spring,
Limnol. Oceanogr., 43, 607–617, https://doi.org/10.4319/lo.1998.43.4.0607,
1998.
Menviel, L., Timmermann, A., Timm, O. E., and Mouchet, A.: Climate and
biogeochemical response to a rapid melting of the West Antarctic Ice Sheet
during interglacials and implications for future climate, Paleoceanography,
25, PA4231, https://doi.org/10.1029/2009PA001892, 2010.
Merbt, S. N., Stahl, D. A., Casamayor, E. O., Marti, E., Nicol, G. W., and
Prosser, J. I.: Differential photoinhibition of bacterial and archaeal
ammonia oxidation, Fems Microbiol. Lett., 327, 41–46,
https://doi.org/10.1111/j.1574-6968.2011.02457.x, 2012.
Meredith, M. P., Naveira Garabato, A. C., Stevens, D. P., Heywood, K. J.,
and Sanders, R. J.: Deep and Bottom Waters in the Eastern Scotia Sea: Rapid
Changes in Properties and Circulation, J. Phys. Oceanogr., 31, 2157–2168,
https://doi.org/10.1175/1520-0485(2001)031<2157:DABWIT>2.0.CO;2, 2001.
Mincer, T. J., Church, M. J., Taylor, L. T., Preston, C., Kar, D. M., and
DeLong, E. F.: Quantitative distribution of presumptive archaeal and
bacterial nitrifiers in Monterey Bay and the North Pacific Subtropical Gyre,
Environ. Microbiol., 9, 1162–1175,
https://doi.org/10.1111/j.1462-2920.2007.01239.x, 2007.
Mouginot, J., Rignot, E., and Scheuchl, B.: Sustained increase in ice
discharge from the Amundsen Sea Embayment, West Antarctica, from 1973 to
2013, Geophys. Res. Lett., 41, 1576–1584, https://doi.org/10.1002/2013GL059069, 2014.
Murray, A. E., Preston, C. M., Massana, R., Taylor, L. T., Blakis, A., Wu,
K., and DeLong, E. F.: Seasonal and spatial variability of bacterial and
archaeal assemblages in the coastal waters near Anvers Island, Antarctica,
Appl. Environ. Microb., 64, 2585–2595, 1998.
Naveira Garabato, A. C., Heywood, K. J., and Stevens, D. P.: Modification and
pathways of Southern Ocean Deep Waters in the Scotia Sea, Deep-Sea Res. Pt. I, 49, 681–705, https://doi.org/10.1016/S0967-0637(01)00071-1, 2002a.
Naveira Garabato, A. C., Strass, V. H., and Kattner, G.: Fluxes of nutrients
in a three-dimensional meander structure of the Antarctic Polar Front,
Deep-Sea Res. Pt. II, 49, 3771–3792,
https://doi.org/10.1016/S0967-0645(02)00110-8, 2002b.
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn,
D., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P., Stevens,
M. H. H., Szoecs, E., and Wagner, H.: vegan: Community Ecology Package,
R-Package Version 2.5-6, available at: https://CRAN.R-project.org/package=vegan (last access: 22 March 2021), 2019.
Orsi, A. H., Whitworth, T., and Nowlin Jr., W. D.: On the meridional extent
and fronts of the Antarctic Circumpolar Current, Deep-Sea Res. Pt. I, 42, 641–673, https://doi.org/10.1016/0967-0637(95)00021-W, 1995.
Paolo, F. S., Fricker, H. A., and Padman, L.: Volume loss from Antarctic ice
shelves is accelerating, Science, 348, 327–331,
https://doi.org/10.1126/science.aaa0940, 2015.
Park, J., Kuzminov, F. I., Bailleul, B., Yang, E. J., Lee, S., Falkowski, P.
G., and Gorbunov, M. Y.: Light availability rather than Fe controls the
magnitude of massive phytoplankton bloom in the Amundsen Sea polynyas,
Antarctica, Limnol. Oceanogr., 62, 2260–2276,
https://doi.org/10.1002/lno.10565, 2017.
Pitcher, A., Hopmans, E. C., Schouten, S., and Sinninghe Damsté, J. S.:
Separation of core and intact polar archaeal tetraether lipids using silica
columns: Insights into living and fossil biomass contributions,
Org. Geochem., 40, 12–19, https://doi.org/10.1016/j.orggeochem.2008.09.008, 2009.
Pitcher, A., Rychlik, N., Hopmans, E. C., Spieck, E., Rijpstra, W. I. C.,
Ossebaar, J., Schouten, S., Wagner, M., and Sinninghe Damsté, J. S.:
Crenarchaeol dominates the membrane lipids of “Candidatus Nitrososphaera gargensis”, a thermophilic Group I.1b
Archaeon, Isme J., 4, 542–552, https://doi.org/10.1038/ismej.2009.138, 2010.
Pitcher, A., Hopmans, E. C., Mosier, A. C., Park, S. J., Rhee, S. K.,
Francis, C. A., Schouten, S., and Sinninghe Damsté, J. S.: Core and
Intact Polar Glycerol Dibiphytanyl Glycerol Tetraether Lipids of
Ammonia-Oxidizing Archaea Enriched from Marine and Estuarine Sediments,
Appl. Environ. Microb., 77, 3468–3477,
https://doi.org/10.1128/Aem.02758-10, 2011.
Pritchard, H. D., Arthern, R. J., Vaughan, D. G., and Edwards, L. A.:
Extensive dynamic thinning on the margins of the Greenland and Antarctic ice
sheets, Nature, 461, 971–975, https://doi.org/10.1038/nature08471, 2009.
Raes, E. J., Bodrossy, L., van de Kamp, J., Bissett, A., Ostrowski, M.,
Brown, M. V., Sow, S. L. S., Sloyan, B., and Waite, A. M.: Oceanographic
boundaries constrain microbial diversity gradients in the South Pacific
Ocean, P. Natl. Acad. Sci. USA, 115, 8266–8275,
https://doi.org/10.1073/pnas.1719335115, 2018.
Raiswell, R., Benning, L. G., Tranter, M., and Tulaczyk, S.: Bioavailable
iron in the Southern Ocean: the significance of the iceberg conveyor belt,
Geochem. T., 9, 7, https://doi.org/10.1186/1467-4866-9-7, 2008.
Rignot, E. and Jacobs, S. S.: Rapid bottom melting widespread near Antarctic
ice sheet grounding lines, Science, 296, 2020–2023,
https://doi.org/10.1126/science.1070942, 2002.
Rignot, E., Bamber, J. L., Van Den Broeke, M. R., Davis, C., Li, Y. H., Van De Berg, W. J., and Van Meijgaard, E.: Recent Antarctic ice mass loss from radar interferometry and regional climate modelling, Nat. Geosci., 1,
106–110, https://doi.org/10.1038/ngeo102, 2008.
Rignot, E., Jacobs, S., Mouginot, J., and Scheuchl, B.: Ice-Shelf Melting
Around Antarctica, Science, 341, 266–270,
https://doi.org/10.1126/science.1235798, 2013.
Rignot, E., Mouginot, J., Scheuchl, B., Van Den Broeke, M., Van Wessem, M. J., and Morlighem, M.: Four decades of Antarctic ice sheet mass balance from
1979–2017, P. Natl. Acad. Sci. USA, 116, 1095–1103, https://doi.org/10.1073/pnas.1812883116, 2019.
Rubin, S. I.: Carbon and nutrient cycling in the upper water column across
the Polar Frontal Zone and Antarctic Circumpolar Current along
170∘ W, Global Biogeochem. Cy., 17, 1087,
https://doi.org/10.1029/2002GB001900, 2003.
Schouten, S., Hopmans, E. C., Pancost, R. D., and Sinninghe Damsté, J. S.: Widespread occurrence of structurally diverse tetraether membrane
lipids: Evidence for the ubiquitous presence of low-temperature relatives of
hyperthermophiles, P. Natl. Acad. Sci. USA, 97, 14421–14426,
https://doi.org/10.1073/pnas.97.26.14421, 2000.
Schouten, S., Hopmans, E. C., Schefuß, E., and Sinninghe Damsté, J.
S.: Distributional variations in marine crenarchaeotal membrane lipids: a
new tool for reconstructing ancient sea water temperatures?,
Earth Planet. Sc. Lett., 204, 265–274, https://doi.org/10.1016/S0012-821X(02)00979-2,
2002.
Schouten, S., Huguet, C., Hopmans, E. C., Kienhuis, M. V. M., and Sinninghe Damsté, J. S.: Analytical methodology for TEX86 paleothermometry by
high-performance liquid chromatography/atmospheric pressure chemical
ionization-mass spectrometry, Anal. Chem., 79, 2940–2944,
https://doi.org/10.1021/ac062339v, 2007.
Schouten, S., Baas, M., Hopmans, E. C., Reysenbach, A. L., and Sinninghe Damsté, J. S.: Tetraether membrane lipids of Candidatus
“Aciduliprofundum boonei”, a cultivated obligate thermoacidophilic euryarchaeote from deep-sea
hydrothermal vents, Extremophiles, 12, 119–124,
https://doi.org/10.1007/s00792-007-0111-0, 2008.
Schouten, S., Middelburg, J. J., Hopmans, E. C., and Sinninghe Damsté, J.
S.: Fossilization and degradation of intact polar lipids in deep subsurface
sediments: A theoretical approach, Geochim. Cosmochim. Ac., 74, 3806–3814,
https://doi.org/10.1016/j.gca.2010.03.029, 2010.
Schouten, S., Pitcher, A., Hopmans, E. C., Villanueva, L., van Bleijswijk,
J., and Sinninghe Damsté, J. S.: Intact polar and core glycerol
dibiphytanyl glycerol tetraether lipids in the Arabian Sea oxygen minimum
zone: I. Selective preservation and degradation in the water column and
consequences for the TEX86, Geochim. Cosmochim. Ac., 98, 228–243,
https://doi.org/10.1016/j.gca.2012.05.002, 2012.
Schouten, S., Hopmans, E. C., and Sinninghe Damsté, J. S.: The organic
geochemistry of glycerol dialkyl glycerol tetraether lipids: A review, Org.
Geochem., 54, 19–61, https://doi.org/10.1016/j.orggeochem.2012.09.006, 2013a.
Schouten, S., Hopmans, E. C., Rosell-Melé, A., Pearson, A., Adam, P.,
Bauersachs, T., Bard, E., Bernasconi, S. M., Bianchi, T. S., Brocks, J. J.,
Carlson, L. T., Castañeda, I. S., Derenne, S., Selver, A. D., Dutta, K.,
Eglinton, T., Fosse, C., Galy, V., Grice, K., Hinrichs, K. U., Huang, Y.,
Huguet, A., Huguet, C., Hurley, S., Ingalls, A., Jia, G., Keely, B., Knappy,
C., Kondo, M., Krishnan, S., Lincoln, S., Lipp, J., Mangelsdorf, K.,
Martínez-García, A., Ménot, G., Mets, A., Mollenhauer, G.,
Ohkouchi, N., Ossebaar, J., Pagani, M., Pancost, R. D., Pearson, E. J.,
Peterse, F., Reichart, G. J., Schaeffer, P., Schmitt, G., Schwark, L., Shah,
S. R., Smith, R. W., Smittenberg, R. H., Summons, R. E., Takano, Y., Talbot,
H. M., Taylor, K. W. R., Tarozo, R., Uchida, M., Van Dongen, B. E., Van Mooy,
B. A. S., Wang, J., Warren, C., Weijers, J. W. H., Werne, J. P., Woltering, M., Xie, S., Yamamoto, M., Yang, H., Zhang, C. L., Zhang, Y., Zhao, M., and
Sinninghe Damsté, J. S.: An interlaboratory study of TEX86 and BIT
analysis of sediments, extracts, and standard mixtures,
Geochem. Geophy. Geosy., 14, 5263–5265, https://doi.org/10.1002/2013GC004904, 2013b.
Schouten, S., Villanueva, L., Hopmans, E. C., van der Meer, M. T. J., and
Sinninghe Damsté, J. S.: Are Marine Group II Euryarchaeota significant
contributors to tetraether lipids in the ocean?, P. Natl. Acad. Sci. USA, 111, 4285, https://doi.org/10.1073/pnas.1416176111, 2014.
Schubotz, F., Wakeham, S. G., Lipp, J. S., Fredricks, H. F., and Hinrichs, K.
U.: Detection of microbial biomass by intact polar membrane lipid analysis
in the water column and surface sediments of the Black Sea,
Environ. Microbiol., 11, 2720–2734,
https://doi.org/10.1111/j.1462-2920.2009.01999.x, 2009.
Shah, S. R., Mollenhauer, G., Ohkouchi, N., Eglinton, T. I., and Pearson, A.:
Origins of archaeal tetrarther lipids in sediments: Insights from
radiocarbon analysis, Geochim. Cosmochim. Ac., 72, 4577–4594,
https://doi.org/10.1016/j.gca.2008.06.021, 2008.
Shepherd, A., Wingham, D. J., Mansley, J. A. D., and Corr, H. F. J.: Inland
thinning of Pine Island Glacier, West Antarctica, Science, 291, 862–864,
https://doi.org/10.1126/science.291.5505.862, 2001.
Shevenell, A. E., Ingalls, A. E., Dormack, E. W., and Kelly, C.: Holocene
Southern Ocean surface temperature variability west of the Antarctic
Peninsula, Nature, 470, 250–254, https://doi.org/10.1038/nature09751, 2011.
Signori, C. N., Pellizari, V. H., Enrich-Prast, A., and Sievert, S. M.:
Spatiotemporal dynamics of marine bacterial and archaeal communities in
surface waters off the northern Antarctic Peninsula, Deep-Sea Res. Pt. II, 149, 150–160, https://doi.org/10.1016/j.dsr2.2017.12.017, 2018.
Sinninghe Damsté, J. S., van Bentum, E. C., Reichart, G.-J., Pross, J., and Schouten, S.: A CO2 decrease-driven cooling and increased latitudinal
temperature gradient during the mid-Cretaceous Oceanic Anoxic Event 2,
Earth Planet. Sc. Lett., 293, 97–103, https://doi.org/10.1016/j.epsl.2010.02.027,
2010.
Sinninghe Damsté, J. S., Rijpstra, W. I. C., Hopmans, E. C., Jung, M.
Y., Kim, J. G., Rhee, S. K., Stieglmeier, M., and Schleper, C.: Intact polar
and core Glycerol Dibiphytanyl Glycerol Tetraether lipids of Group I. 1a and
I. 1b Thaumarchaeota in soil, Appl. Environ. Microb., 78, 6866–6874,
https://doi.org/10.1128/aem.01681-12, 2012.
Sinninghe Damsté, J. S., Rijpstra, W. I. C., Hopmans, E. C., den Uijl,
M. J., Weijers, J. W. H., and Schouten, S.: The enigmatic structure of the
crenarchaeol isomer, Org. Geochem., 124, 22–28,
https://doi.org/10.1016/j.orggeochem.2018.06.005, 2018.
Smith, J. A., Andersen, T. J., Shortt, M., Truffer, M., Stanton, T. P.,
Bindschadler, R., Dutrieux, P., Jenkins, A., Hillenbrand, C.-D., Ehrmann,
W., Corr, H. F. J., Farley, N., Crowhurst, S., and Vaughan, D. G.: Sub-ice-shelf
sediments record history of 20th Century retreat of Pine Island Glacier,
Nature, 540, 77–80, https://doi.org/10.1038/nature20136, 2017.
Sokolov, S. and Rintoul, S. R.: Circulation structure and distribution of
the Antarctic Circumpolar Current fronts: 1. Mean circumpolar
paths, J. Geophys. Res.-Oceans, 114, C11018, https://doi.org/10.1029/2008JC005248, 2009.
Sollai, M., Villanueva, L., Hopmans, E. C., Reichart, G.-J., and Sinninghe Damsté, J. S.: A combined lipidomic and 16S rRNA gene amplicon sequencing
approach reveals archaeal sources of intact polar lipids in the stratified
Black Sea water column, Geobiology, 17, 91–109, https://doi.org/10.1111/gbi.12316, 2019a.
Sollai, M., Villanueva, L., Hopmans, E. C., Keil, R. G., and Sinninghe Damsté, J. S.: Archaeal sources of intact membrane lipid biomarkers in the oxygen deficient zone of the Eastern Tropical South Pacific, Front. Microbiol., 10, 765, https://doi.org/10.3389/fmicb.2019.00765, 2019b.
Sollich, M., Yoshinaga, M. Y., Hausler, S., Price, R. E., Hinrichs, K. U.,
and Buhring, S. I.: Heat stress dictates microbial lipid composition along a
thermal gradient in marine sediments, Front. Microbiol., 8, 1550,
https://doi.org/10.3389/fmicb.2017.01550, 2017.
Spang, A., Hatzenpichler, R., Brochier-Armanet, C., Rattei, T., Tischler,
P., Spieck, E., Streit, W., Stahl, D. A., Wagner, M., and Schleper, C.:
Distinct gene set in two different lineages of ammonia-oxidizing archaea
supports the phylum Thaumarchaeota, Trends Microbiol., 18, 331–340,
https://doi.org/10.1016/j.tim.2010.06.003, 2010.
St-Laurent, P., Yager, P. L., Sherrell, R. M., Stammerjohn, S. E., and
Dinniman, M. S.: Pathways and supply of dissolved iron in the Amundsen Sea
(Antarctica), J. Geophys. Res.-Oceans, 122, 7135–7162,
https://doi.org/10.1002/2017JC013162, 2017.
Sturt, H. F., Summons, R. E., Smith, K., Elvert, M., and Hinrichs, K. U.:
Intact polar membrane lipids in prokaryotes and sediments deciphered by
high-performance liquid chromatography/electrospray ionization multistage
mass spectrometry – new biomarkers for biogeochemistry and microbial
ecology, Rapid Commun. Mass Sp., 18, 617–628,
https://doi.org/10.1002/rcm.1378, 2004.
Thuroczy, C.-E., Alderkamp, A.-C., Laan, P., Gerringa, L. J. A., Mills, M.
M., Van Dijken, G. L., De Baar, H. J. W., and Arrigo, K. R.: Key role of
organic complexation of iron in sustaining phytoplankton blooms in the Pine
Island and Amundsen Polynyas (Southern Ocean), Deep-Sea Res. Pt. II, 71–76, 49–60, https://doi.org/10.1016/j.dsr2.2012.03.009, 2012.
Tolar, B. B., Ross, M. J., Wallsgrove, N. J., Liu, Q., Aluwihare, L. I.,
Popp, B. N., and Hollibaugh, J. T.: Contribution of ammonia oxidation to
chemoautotrophy in Antarctic coastal waters, Isme J., 10, 2605–2619,
https://doi.org/10.1038/ismej.2016.61, 2016.
Venables, H. J.: JR272A Weddell and Scotia Sea hydrographic section, British
Antarctic Survey, Cambridge, UK,
https://www.bodc.ac.uk/resources/inventories/cruise_inventory/reports/jr272.pdf (last access: 22 March 2021), 2012.
Vernet, M., Geibert, W., Hoppema, M., Brown, P. J., Haas, C., Hellmer, H.
H., Jokat, W., Jullion, L., Mazloff, M., Bakker, D. C. E., Brearley, J. A.,
Croot, P., Hattermann, T., Hauck, J., Hillenbrand, C.-D., Hoppe, C. J. M.,
Huhn, O., Koch, B. P., Lechtenfeld, O. J., Meredith, M. P., Naveira Garabato, A. C., Nöthig, E.-M., Peeken, I., Rutgers van der Loeff, M.
M., Schmidtko, S., Schröder, M., Strass, V. H., Torres-Valdés, S.,
and Verdy, A.: The Weddell Gyre, Southern Ocean: Present knowledge and
future challenges, Rev. Geophys., 57, 623–708,
https://doi.org/10.1029/2018RG000604, 2019.
Wadham, J. L., De'ath, R., Monteiro, F. M., Tranter, M., Ridgwell, A.,
Raiswell, R., and Tulaczyk, S.: The potential role of the Antarctic Ice Sheet
in global biogeochemical cycles, Earth Env. Sci. T. R. So., 104, 55–67, https://doi.org/10.1017/S1755691013000108, 2013.
Wadham, J. L., Hawkings, J. R., Tarasov, L., Gregoire, L. J., Spencer, R. G.
M., Gutjahr, M., Ridgwell, A., and Kohfeld, K. E.: Ice sheets matter for the
global carbon cycle, Nat. Commun., 10, 3567, https://doi.org/10.1038/s41467-019-11394-4, 2019.
Webber, B. G. M., Heywood, K. J., Stevens, D. P., Dutrieux, P., Abrahamsen,
E. P., Jenkins, A., Jacobs, S. S., Ha, H. K., Lee, S. H., and Kim, T. W.:
Mechanisms driving variability in the ocean forcing of Pine Island Glacier,
Nat. Commun., 8, 14507, https://doi.org/10.1038/ncomms14507, 2017.
Weber, Y., Sinninghe Damsté, J. S., Hopmans, E. C., Lehmann, M. F., and
Niemann, H.: Incomplete recovery of intact polar glycerol dialkyl glycerol
tetraethers from lacustrine suspended biomass, Limnol. Oceanogr.-Meth., 15,
782–793, https://doi.org/10.1002/lom3.10198, 2017.
Wilkins, D., Lauro, F. M., Williams, T. J., Demaere, M. Z., Brown, M. V.,
Hoffman, J. M., Andrews-Pfannkoch, C., Mcquaid, J. B., Riddle, M. J.,
Rintoul, S. R., and Cavicchioli, R.: Biogeographic partitioning of Southern
Ocean microorganisms revealed by metagenomics, Environ. Microbiol., 15,
1318–1333, https://doi.org/10.1111/1462-2920.12035, 2013.
Wingham, D. J., Wallis, D. W., and Shepherd, A.: Spatial and temporal
evolution of Pine Island Glacier thinning, 1995–2006, Geophys. Res. Lett.,
36, L17501, https://doi.org/10.1029/2009gl039126, 2009.
Xie, S. T., Lipp, J. S., Wegener, G., Ferdelman, T. G., and Hinrichs, K.-U.:
Turnover of microbial lipid in the deep biosphere and growth of benthic
archaeal populations, P. Natl. Acad. Sci. USA, 100, 6010–6014, https://doi.org/10.1073/pnas.1218569110, 2013.
Xie, S. T., Liu, X. L., Schubotz, F., Wakeham, S. G., and Hinrichs, K.-U.:
Distribution of glycerol ether lipids in the oxygen minimum zone of the
Eastern Tropical North Pacific Ocean, Org. Geochem., 71, 60–71,
https://doi.org/10.1016/j.orggeochem.2014.04.006, 2014.
Yager, P. L., Sherrell, R. M., Stammerjohn, S. E., Alderkamp, A.-C., Schofield,
O., Abrahamsen, E. P., Arrigo, K. R., Bertilsson, S., Garay, D. L., Guerrero,
R., Lowry, K. E., Moksnes, P.-O., Ndungu, K., Post, A. F., Randall-Goodwin,
E., Riemann, L., Severmann, S., Thatje, S., van Dijken, G. L., and Wilson, S.:
ASPIRE: The Amundsen sea Polynya international research expedition,
Oceanography, 25, 40–53, https://doi.org/10.5670/oceanog.2012.73, 2012.
Zeng, Z., Liu, X.-L., Farley, K. R., Wei, J. H., Metcalf, W. W., Summons, R.
E., and Welander, P. V.: GDGT cyclization proteins identify the dominant
archaeal sources of tetraether lipids in the ocean, P. Natl. Acad. Sci. USA, 45, 22505–22511, https://doi.org/10.1073/pnas.1909306116, 2019.
Zhang, Y. G., Pagani, M., and Zhengrong, W.: Ring Index: A new strategy to
evaluate the integrity of TEX86 paleothermometry, Paleoceanography, 31,
220–232, https://doi.org/10.1002/2015PA002848, 2016.
Zhu, C., Wakeham, S. G., Elling, F. J., Basse, A., Mollenhauer, G.,
Versteegh, G. J. M., Konneke, M., and Hinrichs, K.-U.: Stratification of
archaeal membrane lipids in the ocean and implications for adaptation and
chemotaxonomy of planktonic archaea, Environ. Microbiol., 18, 4324–4336,
https://doi.org/10.1111/1462-2920.13289, 2016.
Zwally, H. J., Giovinetto, M. B., Li, J., Cornejo, H. G., Beckley, M. A.,
Brenner, A. C., Saba, J. L., and Yi, D. H.: Mass changes of the Greenland and
Antarctic ice sheets and shelves and contributions to sea-level rise:
1992–2002, J. Glaciol., 51, 509–527,
https://doi.org/10.3189/172756505781829007, 2005.
Short summary
Long-term ocean temperature records are needed to fully understand the impact of West Antarctic Ice Sheet collapse. Glycerol dialkyl glycerol tetraethers (GDGTs) are powerful tools for reconstructing ocean temperature but can be difficult to apply to the Southern Ocean. Our results show active GDGT synthesis in relatively warm depths of the ocean. This research improves the application of GDGT palaeoceanographic proxies in the Southern Ocean.
Long-term ocean temperature records are needed to fully understand the impact of West Antarctic...
Altmetrics
Final-revised paper
Preprint