Articles | Volume 18, issue 12
https://doi.org/10.5194/bg-18-3689-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-3689-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reviews and syntheses: Heterotrophic fixation of inorganic carbon – significant but invisible flux in environmental carbon cycling
Alexander Braun
Institute of Groundwater Ecology, Helmholtz Zentrum München,
Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
Marina Spona-Friedl
Institute of Groundwater Ecology, Helmholtz Zentrum München,
Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
Maria Avramov
Institute of Groundwater Ecology, Helmholtz Zentrum München,
Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
Martin Elsner
Institute of Groundwater Ecology, Helmholtz Zentrum München,
Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
Department of Analytical Chemistry
and Water Chemistry, Technical University of Munich, Munich, Germany
Federico Baltar
Department of Functional and Evolutionary
Ecology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
Thomas Reinthaler
Department of Functional and Evolutionary
Ecology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
Gerhard J. Herndl
Department of Functional and Evolutionary
Ecology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
Department of Marine Microbiology and Biogeochemistry, Royal
Netherlands Institute for Sea Research, Utrecht University, P.O. Box 59, 1790
AB Den Burg, the Netherlands
Christian Griebler
CORRESPONDING AUTHOR
Institute of Groundwater Ecology, Helmholtz Zentrum München,
Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
Department of Functional and Evolutionary
Ecology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
Related authors
No articles found.
Johanna Schlögl, Clemens Karwautz, Lena Cramaro, Wolfgang Wanek, Judith Prommer, Theresa Böckle, Andreas Kappler, Stefan B. Haderlein, and Christian Griebler
EGUsphere, https://doi.org/10.5194/egusphere-2025-2577, https://doi.org/10.5194/egusphere-2025-2577, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Climate change enhances the occurrence of summer droughts and heavy rainfall events in Central Europe. We investigated the response of inorganic nitrogen cycling, redox conditions and microbial community composition to an artificial heavy rain event following a drought in shallow arable soil. Redox conditions changed fast with the hydraulic event triggering nitrogen transport and turnover. Microbial communities reacted moderately in terms of composition but exhibited enzyme activity changes.
This article is included in the Encyclopedia of Geosciences
Riaz Bibi, Mariana Ribas-Ribas, Leonie Jaeger, Carola Lehners, Lisa Gassen, Edgar Cortés, Jochen Wollschläger, Claudia Thölen, Hannelore Waska, Jasper Zöbelein, Thorsten Brinkhoff, Isha Athale, Rüdiger Röttgers, Michael Novak, Anja Engel, Theresa Barthelmeß, Josefine Karnatz, Thomas Reinthaler, Dmytro Spriahailo, Gernot Friedrichs, Falko Schäfer, and Oliver Wurl
EGUsphere, https://doi.org/10.5194/egusphere-2025-1773, https://doi.org/10.5194/egusphere-2025-1773, 2025
Short summary
Short summary
A multidisciplinary mesocosm study was conducted to investigate biogeochemical processes and their relationships in the sea-surface microlayer and underlying water during an induced phytoplankton bloom. Phytoplankton-derived organic matter, fuelled microbial activity and biofilm formation, supporting high bacterial abundance. Distinct temporal patterns in biogeochemical parameters and greater variability in the sea-surface microlayer highlight its influence on air–sea interactions.
This article is included in the Encyclopedia of Geosciences
Mak A. Saito, Jaclyn K. Saunders, Matthew R. McIlvin, Erin M. Bertrand, John A. Breier, Margaret Mars Brisbin, Sophie M. Colston, Jaimee R. Compton, Tim J. Griffin, W. Judson Hervey, Robert L. Hettich, Pratik D. Jagtap, Michael Janech, Rod Johnson, Rick Keil, Hugo Kleikamp, Dagmar Leary, Lennart Martens, J. Scott P. McCain, Eli Moore, Subina Mehta, Dawn M. Moran, Jaqui Neibauer, Benjamin A. Neely, Michael V. Jakuba, Jim Johnson, Megan Duffy, Gerhard J. Herndl, Richard Giannone, Ryan Mueller, Brook L. Nunn, Martin Pabst, Samantha Peters, Andrew Rajczewski, Elden Rowland, Brian Searle, Tim Van Den Bossche, Gary J. Vora, Jacob R. Waldbauer, Haiyan Zheng, and Zihao Zhao
Biogeosciences, 21, 4889–4908, https://doi.org/10.5194/bg-21-4889-2024, https://doi.org/10.5194/bg-21-4889-2024, 2024
Short summary
Short summary
The ability to assess the functional capabilities of microbes in the environment is of increasing interest. Metaproteomics, the ability to measure proteins across microbial populations, has been increasing in capability and popularity in recent years. Here, an international team of scientists conducted an intercomparison study using samples collected from the North Atlantic Ocean and observed consistency in the peptides and proteins identified, their functions, and their taxonomic origins.
This article is included in the Encyclopedia of Geosciences
Weiyi Tang, Bess B. Ward, Michael Beman, Laura Bristow, Darren Clark, Sarah Fawcett, Claudia Frey, François Fripiat, Gerhard J. Herndl, Mhlangabezi Mdutyana, Fabien Paulot, Xuefeng Peng, Alyson E. Santoro, Takuhei Shiozaki, Eva Sintes, Charles Stock, Xin Sun, Xianhui S. Wan, Min N. Xu, and Yao Zhang
Earth Syst. Sci. Data, 15, 5039–5077, https://doi.org/10.5194/essd-15-5039-2023, https://doi.org/10.5194/essd-15-5039-2023, 2023
Short summary
Short summary
Nitrification and nitrifiers play an important role in marine nitrogen and carbon cycles by converting ammonium to nitrite and nitrate. Nitrification could affect microbial community structure, marine productivity, and the production of nitrous oxide – a powerful greenhouse gas. We introduce the newly constructed database of nitrification and nitrifiers in the marine water column and guide future research efforts in field observations and model development of nitrification.
This article is included in the Encyclopedia of Geosciences
Cited articles
Akinyede, R., Taubert, M., Schrumpf, M., Trumbore, S., and Küsel, K.:
Rates of dark CO2 fixation are driven by microbial biomass in a
temperate forest soil, Soil Biol. Biochem., 150, 107950, https://doi.org/10.1016/j.soilbio.2020.107950, 2020.
Alonso-Sáez, L., Galand, P. E., Casamayor, E. O., Pedrós-Alió,
C., and Bertilsson, S.: High bicarbonate assimilation in the dark by Arctic
bacteria, ISME J., 4, 1581–1590, 2010.
Arístegui, J., Gasol, J. M., Duarte, C. M., and Herndl, G. J.: Microbial
oceanography of the dark ocean's pelagic realm, Limnol. Oceanogr., 54,
1501–1529, 2009.
Attwood, P. V.: The structure and the mechanism of action of
pyruvate-carboxylase, Int. J. Biochem. Cell B, 27, 231–249, 1995.
Baltar, F. and Herndl, G. J.: Ideas and perspectives: Is dark carbon fixation relevant for oceanic primary production estimates?, Biogeosciences, 16, 3793–3799, https://doi.org/10.5194/bg-16-3793-2019, 2019.
Baltar, F., Arístegui, J., Sintes, E., Gasol, J. M., Reinthaler, T.,
and Herndl, G. J.: Significance of non-sinking particulate organic carbon and
dark CO2 fixation to heterotrophic carbon demand in the mesopelagic
northeast Atlantic, Geophys. Res. Lett., 37, 1–6, 2010.
Baltar, F., Lundin, D., Palovaara, J., Lekunberri, I., Reinthaler, T.,
Herndl, G. J., and Pinhassi, J.: Prokaryotic responses to ammonium and
organic carbon reveal alternative CO2 fixation pathways and importance
of alkaline phosphatase in the mesopelagic North Atlantic, Front.
Microbiol., 7, 1670, https://doi.org/10.3389/fmicb.2016.01670, 2016.
Baltar, F., Bayer, B., Bednarsek, N., Deppeler, S., Escribano, R., Gonzalez, C. E., Hansman, R. L., Mishra, R. K., Moran, M. A., Repeta, D. J., Robinson, C., Sintes, E., Tamburini, C., Valentin, L. E., and Herndl, G. J.: Towards integrating evolution, metabolism, and
climate change studies of marine ecosystems, Trends Ecol. Evol., 34,
1022–1033, 2019.
Bar-Even, A., Noor, E., and Milo, R.: A survey of carbon fixation pathways
through a quantitative lens, J. Exp. Bot., 63, 2325–2342, 2012.
Bar-On, Y. M., Phillips, R., and Milo, R.: The biomass distribution on Earth,
P. Natl. Acad. Sci. USA, 115, 6506–6511, 2018.
Battley, E. H.: A theoretical study of the thermodynamics of microbial growth
using Saccharomyces cerevisiae and a different free energy equation, Q. Rev. Biol., 88, 69–96,
2013.
Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais,
N., Rödenbeck, C., Arain, M. A., Baldocchi, D., Bonan, G. B., Bondeau,
A., Cescatti, A., Lasslop, G., Lindroth, A., Lomas, M., Luyssaert, S.,
Margolis, H., Oleson, K. W., Roupsard, O., Veenendaal, E., Viovy, N.,
Williams, C., Woodward, F. I., and Papale, D.: Terrestrial gross carbon
dioxide uptake: global distribution and covariation with climate, Science,
329, 834–838, 2010.
Berg, I. A.: Ecological aspects of the distribution of different autotrophic
CO2 fixation pathways, Appl. Environ. Microbiol., 77, 1925–1936, 2011.
Berg, I. A., Kockelkorn, D., Buckel, W., and Fuchs, G.: A
3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide
assimilation pathway in Archaea, Science, 318, 1782–1786, 2007.
Beulig, F., Heuer, V. B., Akob, D. M., Viehweger, B., Elvert, M., Herrmann,
M., Hinrichs, K.-U., and Küsel, K.: Carbon flow from volcanic CO2
into soil microbial communities of a wetland mofette, ISME J., 9, 746–759,
2015.
Bräuer, S. L., Kranzler, K., Goodson, N., Murphy, D., Simon, H. M.,
Baptista, A. M., and Tebo, B. M.: Dark carbon fixation in the Columbia River's
estuarine turbidity maxima: molecular characterization of red-type cbbl genes
and measurement of DIC uptake rates in response to added electron donors,
Estuar. Coast. Shelf S., 36, 1073–1083, 2013.
Burd, A. B., Hansell, D. A., Steinberg, D. K., Anderson, T. R.,
Arístegui, J., Baltar, F., Beaupre, S. R., Buesseler, K. O., De- Hairs,
F., Jackson, G. A., Kadko, D. C., Koppelmann, R., Lampitt, R. S., Nagata,
T., Reinthaler, T., Robinson, C., Robison, B. H., Tamburini, C., and Tanaka,
T.: Assessing the apparent imbalance between geochemical and biochemical
indicators of meso-and bathypelagic biological activity: What the @$#! is
wrong with present calculations of carbon budgets?, Deep-Sea Res. Pt. II,
57, 1557–1571, 2010.
Casamayor, E. O., García-Cantizano, J., Mas, J., and
Pedrós-Alió, C.: Primary production in estuarine oxic/anoxic
interfaces: contribution of microbial dark CO2 fixation in the Ebro
River Salt Wedge Estuary, Mar. Ecol.-Prog. Ser., 215, 49–56, 2001.
Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A.,
DeFries, R., Galloway, J., Heimann, M., Jones, C., Le Quéré, C.,
Myneni, R. B., Piao, S., and Thornton, P.: Carbon and other biogeochemical cycles, in:
Climate change 2013: The physical science basis. Contribution of working
group I to the fifth assessment report of the Intergovernmental Panel on
Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M.,
Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., 465–570,
Cambridge, United Kingdom and New York, NY, USA, Cambridge University Press,
2013.
Cochrane, V. W.: Physiology of fungi, John Wiley, New York, 1958.
Cole, J. J., Findlay, S. E. G., and Pace, M. L.: Bacterial production in
fresh and saltwater ecosystems: a cross-system overview, Mar. Ecol.-Prog.
Ser., 43, 1–10, 1988.
DeLorenzo, S., Bräuer, S. L., Edgmont, C. A., Herfort, L., Tebo, B. M.,
and Zuber, P.: Ubiquitous dissolved inorganic carbon assimilation by marine
bacteria in the Pacific Northwest Coastal Ocean as determined by stable
isotope probing, PLoS ONE, 7, e46695, https://doi.org/10.1371/journal.pone.0046695, 2012.
Detmer, A. E., Giesenhagen, H. C., Trenkel, V. M., Auf dem Venne, H., and
Jochem, F. J.: Phototrophic and heterotrophic pico- and nanoplankton in
anoxic depths of the central Baltic Sea, Mar. Ecol.-Prog. Ser., 99,
197–203, 1993.
Dijkhuizen, L. and Harder, W.: Current views on the regulation of
autotrophic carbon dioxide fixation via the Calvin cycle in bacteria,
Antonie van Leeuwenhoek, 50, 473–487, 1984.
Doronina, N. V. and Trotsenko, Y. A.: The levels of carbon dioxide
assimilation in bacteria with different pathways of 1-carbon metabolism,
Mikrobiologiya, 53, 885–889, 1984.
Ehleringer, J. R., Buchmann, N., and Flanagan, L. B.: Carbon isotope ratios in belowground carbon cycle processes, Ecol. Appl., 10, 412–422, 2000.
Ekendahl, S. and Pedersen, K.: Carbon transformations by attached bacterial populations in granitic ground water from deep crystalline bed-rock of the Stripa research mine, Microbiology, 140, 1565–1573, 1994.
Ensign, S. A., Small, F. J., Allen, J. R., and Sluis, M. K.: New roles for
CO2 in the metabolism of aliphatic epoxides and ketones, Arch.
Microbiol., 169, 179–187, 1998.
Erb, T. J.: Carboxylases in natural and synthetic microbial pathways, Appl.
Environ. Microb., 77, 8466–8477, 2011.
Erb, T. J., Brecht, V., Fuchs, G., Muller, M., and Alber, B. E.: Carboxylation
mechanism and stereochemistry of crotonyl-CoA carboxylase/reductase, a
carboxylating enoyl-thioester reductase, P. Natl. Acad. Sci. USA, 106, 8871–8876, 2009.
Evans Jr., E. A. and Slotin, L.: The utilization of carbon dioxide in the
synthesis of α-ketoglutaric acid, J. Biol. Chem., 136, 301–302, 1940.
Faber, K., Fessner, W. D., and Turner, N. J.: Science of synthesis:
biocatalysis in organic synthesis Vol. 2, 672 pp., Georg Thieme, Stuttgart, 2015.
Feisthauer, S., Wick, L. Y., Kastner, M., Kaschabek, S. R., Schlomann, M., and
Richnow, H. H.: Differences of heterotrophic 13CO2 assimilation by
Pseudomonas knackmussii strain B13 and Rhodococcus opacus 1CP and potential impact on biomarker stable isotope
probing, Environ. Microbiol., 10, 1641–1651, 2008.
Fraga, F., Rios, A., Perez, F., and Figueras, F.: Theoretical limits of
oxygen:carbon and oxygen : nitrogen ratios during photosynthesis and
mineralisation of organic matter in the sea, Mar. Chem., 62, 161–168, 1998.
Fuchs, G.: Biosynthesis of building blocks, in: Biology of the prokaryotes,
edited by: Lengeler, J. W., Drews, G., and Schlegel, H. G., 110–160, Thieme, Stuttgart,
New York, 1999.
Giovannoni, S. J. and Stingl, U.: Molecular diversity and ecology of microbial plankton, Nature, 437, 343–348, https://doi.org/10.1038/nature04158, 2005.
González, J. M., Fernández-Gómez, B., Fernández-Guerra, A.,
Gómez-Consarnau, L., Sánchez, O., Coll-Lladó, M., del Campo, J.,
Escudero, L., Rodríguez-Martínez, R., Alonso-Sáez, L., Latasa,
M., Paulsen, I., Nedashkovskaya, O., Lekumberri, I., Pinhassi, J., and
Pedrós-Alió, C.: Genome analysis of the proteorhodopsin-containing
marine bacterium Polaribacter sp. MED152 (Flavobacteria), P. Natl. Acad.
Sci. USA, 105, 8724–8729, 2008.
Gruber, N., Friedlingstein, P., Field, C., Valentini, R., Heimann, M.,
Richey, J. E., Romero-Lankao, P., Schulze, E. D., and Chen, C.-T. A.: The
vulnerability of the carbon cycle in the 21st century: an assessment of
carbon-climate-human interactions, in: The global carbon cycle: integrating
humans, climate, and the natural world, edited by: Field, C. B. and Raupach, M.
R., 45–76, Island Press, Washington D.C., London, 2004.
Han, L., Yang, K., Kulowski, K., Wendt-Plienkowski, E., Hutchinson, C. R.,
and Vining, L. C.: An acyl-coenzyme A carboxylase encoding gene associated
with jadomycin biosynthesis in Streptomyces venezuelae ISP5230, Microbiol. UK, 146, 903–910, 2000.
Hartman, R. E. and Keen, N. T.: Enzymes catalysing anaplerotic carbon
dioxide fixation in Verticillium albo-atrum, Phytopathol., 63, 947–953, 1973.
Hartman, R. E., Keen, N. T., and Long, M.: Carbon dioxide fixation by
Verticillium albo-atrum, J. Gen. Microbiol., 73, 29–34, 1972.
Heijnen, J. J. and Roels, J. A.: A macroscopic model describing yield and
maintenance relationship in aerobic fermentation processes, Biotechnol.
Bioeng., 23, 739–763, 1981.
Herndl, G. J. and Reinthaler, T.: Microbial control of the dark end of the
biological pump, Nat. Geosci., 6, 718–724, 2013.
Hesselsoe, M., Nielsen, J. L., Roslev, P., and Nielsen, P. H.: Isotope
labeling and microautoradiography of active heterotrophic bacteria on the
basis of assimilation of 14CO2, Appl. Environ. Microb., 71,
646–655, 2005.
Hoppe, H. G., Gocke, K., Koppe, R., and Begler, C.: Bacterial growth and
primary production along a north-south transect of the Atlantic Ocean,
Nature, 416, 168–171, 2002.
Houghton, R. A.: Balancing the global carbon budget, Annu. Rev. Earth Planet.
Sc., 35, 313–347, 2007.
Ingalls, A. E., Shah, S. R., Hansman, R. L., Aluwihare, L. I., Santos, G.
M., Druffel, E. R., and Pearson, A.: Quantifying archaeal community
autotrophy in the mesopelagic ocean using natural radiocarbon, P. Natl. Acad. Sci. USA, 103,
6442–6447, 2006.
Jitrapakdee, S. and Wallace, J. C.: Structure, function and regulation of
pyruvate carboxylase, Biochem. J., 340, 1–16, 1999.
Jitrapakdee, S., St. Maurice, M., Rayment, I., Cleland, W. W., Wallace, J. C.,
and Attwood, P. V.: Structure, mechanism and regulation of pyruvate
carboxylase, Biochem. J., 413, 369–387, 2008.
Kellermann, C., Selesi, D., Lee, N., Hügler, M., Esperschütz, J.,
Hartmann, A., and Griebler, C.: Microbial CO2 fixation potential in a
tar-oil-contaminated porous aquifer, FEMS Microbiol. Ecol., 81, 172–187,
2012.
Kleiber, M., Smith, A. H., and Black, A. L.: Carbonate as precursor of milk
constituents in the intact dairy cow, J. Biol. Chem., 195, 707–714, 1952.
Kornberg, H. L.: Anaplerotic sequences in microbial metabolism, Angew. Chem.
Int. Edit., 4, 558–565, 1965.
Kornberg, H. L. and Krebs, E. H.: Synthesis of cell constituents from
C2-units by a modified tricarboxylic acid cycle, Nature, 179, 988–991,
1957.
Kotelnikova, S. and Pedersen, K.: Distribution and activity of methanogens
and homoacetogens in deep granitic aquifers at Äspö Hard Rock
Laboratory, Sweden, FEMS Microbiol. Ecol., 26, 121–134, 1998.
Krebs, H. A.: Carbon dioxide assimilation in heterotrophic organisms, Nature,
147, 560–563, 1941.
Lazar, C. S., Stoll, W., Lehmann, R., Herrmann, M., Schwab, V. F., Akob, D. M.,
Nawaz, A., Wubet, T., Buscot, F., Totsche, K.-U., and Küsel, K.: Archaeal
diversity and CO2 fixers in carbonate-/siliciclastic-rock groundwater
ecosystems, Archaea, 2136287, 1–13, 2017.
Le Quéré, C., Raupach, M. R., Canadell, J. G., Marland, G., Bopp, L.,
Ciais, P., Conway, T. J., Doney, S. C., Feely, R. A., Foster, P., Friedlingstein, P.,
Gurney, K., Houghton, R. A., House, J. I., Huntingford, C., Levy, P. E.,
Lomas, M. R., Majkut, J., Metzl, N., Ometto, J. P., Peters, G. P., Prentice, I. C., Randerson, J.
T., Running, S. W., Sarmiento, J. L., Schuster, U., Sitch, S.,
Takahashi, T., Viovy, N., van der Werf, G. R., and Woodward, F. I.: Trends in the
sources and sinks of carbon dioxide, Nat. Geosci., 2, 831–836, 2009.
Le Quéré, C., Andrew, R. M., Canadell, J. G., Sitch, S., Korsbakken, J. I., Peters, G. P., Manning, A. C., Boden, T. A., Tans, P. P., Houghton, R. A., Keeling, R. F., Alin, S., Andrews, O. D., Anthoni, P., Barbero, L., Bopp, L., Chevallier, F., Chini, L. P., Ciais, P., Currie, K., Delire, C., Doney, S. C., Friedlingstein, P., Gkritzalis, T., Harris, I., Hauck, J., Haverd, V., Hoppema, M., Klein Goldewijk, K., Jain, A. K., Kato, E., Körtzinger, A., Landschützer, P., Lefèvre, N., Lenton, A., Lienert, S., Lombardozzi, D., Melton, J. R., Metzl, N., Millero, F., Monteiro, P. M. S., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S., O'Brien, K., Olsen, A., Omar, A. M., Ono, T., Pierrot, D., Poulter, B., Rödenbeck, C., Salisbury, J., Schuster, U., Schwinger, J., Séférian, R., Skjelvan, I., Stocker, B. D., Sutton, A. J., Takahashi, T., Tian, H., Tilbrook, B., van der Laan-Luijkx, I. T., van der Werf, G. R., Viovy, N., Walker, A. P., Wiltshire, A. J., and Zaehle, S.: Global Carbon Budget 2016, Earth Syst. Sci. Data, 8, 605–649, https://doi.org/10.5194/essd-8-605-2016, 2016.
Lengger, S. K., Rush, D., Mayser, J. P., Blewett, J., Schwartz-Narbonne, R.,
Talbot, H. B., Middelburg, J. J., Jetten, M. S. M., Schouten, S., Sinninghe
Damsté, J. S., and Pancost, R. D.: Dark carbon fixation in the Arabian Sea
oxygen minimum zone contributes to sedimentary organic carbon (SOM), Global
Biogeochem. Cy., 33, 1715–1732, 2019.
Lliros, M., Alonso-Saéz, L., Gich, F., Plasencia, A., Auguet, O.,
Casamayor, E. O., and Borrego, C. M.: Active bacteria and archaea cells fixing
bicarbonate in the dark along the water column of a stratified eutrophic
lagoon, FEMS Microbiol. Ecol., 77, 370–384, 2011.
Magnabosco, C., Lin, L. H., Dong, H., Bomberg, M., Ghiorse, W., Stan-Lotter,
H., Pedersen, K., Kieft, T. L., van Heerden, E., and Onstott, T. C.: The
biomass and biodiversity of the continental subsurface, Nat. Geosci.,
11, 707–717, 2018.
McMahon, S. and Parnell, J.: Weighing the deep continental biosphere, FEMS
Microbiol. Ecol., 87, 113–120, 2014.
Melzer, E. and O'Leary M. H.: Anapleurotic CO2 fixation by
phosphoenolpyruvate carboxylase in C3 plants, Plant Physiol., 84, 58–60,
1987.
Merlin, C., Masters, M., McAteer, S., and Coulson, A.: Why is carbonic
anhydrase essential to Escherichia coli?, J. Bacteriol., 185, 6415–6424, 2003.
Middelburg, J. J.: Chemoautotrophy in the ocean, Geophy. Res. Lett., 38, 1–4,
2011.
Miltner, A., Richnow, H.-H., Kopinke, F.-D., and Kästner, M.: Assimilation
of CO2 by soil microorganisms and transformation into soil organic
matter, Org. Geochem., 35, 1015–1024, 2004.
Miltner, A., Kopinke, F.-D., Kindler, R., Selesi, D., Hartmann, A., and
Kästner, M.: Non-phototrophic CO2 fixation by soil microorganisms,
Plant Soil, 269, 193–203, 2005.
Molari, M., Manini, E., and Dell'Anno, A.: Dark inorganic carbon fixation
sustains the functioning of benthic deep-sea ecosystems, Global Biogeochem.
Cy., 27, 212–221, 2013.
Morán, X. A. G., Pérez, V., and Fernández, E.: Mismatch between
community respiration and the contribution of heterotrophic bacteria in the
NE Atlantic open ocean: What causes high respiration in oligotrophic waters?,
J. Mar. Res., 65, 545–560, 2007.
Nel, J. A. and Cramer, M. D.: Soil microbial anaplerotic CO2 fixation in
temperate soils, Geoderma, 335, 170–178, 2019.
Noguerola, I., Picazo, A., Lliros, M., Camacho, A., and Borrego, C. M.:
Diversity of freshwater Epsilonproteobacteria and dark inorganic carbon
fixation in the sulphidic redoxcline of a meromictic karstic lake, FEMS
Microbiol. Ecol., 91, fiv086, https://doi.org/10.1093/femsec/fiv086, 2015.
Overbeck, J.: Dark CO2 uptake – biochemical background and its relevance
to in situ bacterial production, Arch. Hydrobiol. Beiheft, 12, 38–47, 1979.
Palovaara, J., Akram, N., Baltar, F., Bunse, C., Forsberg, J., Pedrós-
Alió, C., González, J. M., and Pinhassi, J.: Stimulation of growth
by proteorhodopsin phototrophy involves regulation of central metabolic
pathways in marine planktonic bacteria, P. Natl. Acad. Sci. USA, 111,
E3650–E3658, 2014.
Parkinson, S. M., Killham, K., and Wainwright, M.: Assimilation of
14CO2 by Fusarium oxysporum grown under oligotrophic conditions, Mycol. Res., 94,
959–964, 1990.
Parkinson, S. M., Jones, R., Meharg, A. A., Wainwright, M., and Killham, K.:
The quantity and fate of carbon assimilated from 14CO2 by
Fusarium oxysporum grown under oligotrophic and near oligotrophic conditions, Mycol. Res., 95,
1345–1349, 1991.
Paulmier, A., Kriest, I., and Oschlies, A.: Stoichiometries of remineralisation and denitrification in global biogeochemical ocean models, Biogeosciences, 6, 923–935, https://doi.org/10.5194/bg-6-923-2009, 2009.
Pedersen, K. and Ekendahl, S.: Assimilation of CO2 and introduced
organic compounds by bacterial communities in groundwater from southeastern
Sweden deep crystalline bedrock, Microb. Ecol., 23, 1–14, 1992a.
Pedersen, K. and Ekendahl, S.: Incorporation of CO2 and introduced
organic compounds by bacterial populations in groundwater from deep
crystalline bedrock of Stripa mine, J. Gen. Microbiol., 138, 369–376, 1992b.
Perez, R. C. and Matin, A.: Carbon dioxide assimilation by Thiobacillus novellus under
nutrient-limited mixotrophic conditions, J. Bacteriol., 150, 46–51, 1982.
Reinthaler, T., Van Aken, H. M., and Herndl, G. J.: Major contribution of
autotrophy to microbial carbon cycling in the deep North Atlantic,
Äôs interior, Deep-Sea Res. Pt. II, 57, 1572–1580, 2010.
Robinson, C.: Microbial respiration, the engine of ocean deoxygenation,
Front. Mar. Sci., 5, 533, https://doi.org/10.3389/fmars.2018.00533, 2019.
Robinson, C. and Williams, P. J.: Respiration and its measurement in surface
marine waters, in: Respiration in aquatic ecosystems, edited by: del Giorgio, P. A.
and Williams, P. J., Oxford University Press, Oxford, 2005.
Romanenko, V. I.: Heterotrophic CO2 assimilation by water bacterial
flora, Mikrobiologiya, 33, 679–683, 1964.
Romanenko, V. I., Overbeck, J., and Sorokin, Y. I.: Estimation of production
of heterotrophic bacteria using I4C, in: Techniques for the assessment of microbial production and
decomposition in fresh waters, edited by: Sorokin, Y. I. and Kadota, H., IBP Handbook No. 23, Blackwell, Oxford,
82–85, 1972.
Roslev, P., Larsen, M. B., Jørgensen, D., and Hesselsoe, M.: Use of
heterotrophic CO2 assimilation as a measure of metabolic activity in
planktonic and sessile bacteria, J. Microbiol. Meth., 59, 381–393, 2004.
Santoro, A. L., Bastviken, D., Gudasz, C., Tranvik, L., and Enrich-Prast, A.: Dark
carbon fixation: an important process in lake sediments, PLoS ONE, 8, e65813, https://doi.org/10.1371/journal.pone.0065813,
2013.
Šantrůčková, H., Bird, M. I., Elhottova, D., Novak, J.,
Picek, T., Simek, M., and Tykva, R.: Heterotrophic fixation of CO2 in
soil, Microb. Ecol., 49, 218–225, 2005.
Šantrůčková, H., Kotas, P., Bárta, J., Urich, T.,
Čapek P., Palmtag J., Eloy Alves, R. J., Biasi, C., Diáková, K.,
Gentsch, N., Gittel, A., Guggenberger, G., Hugelius, G., Lashchinsky, N.,
Martikainen, P. J., Mikutta, R., Schleper, C., Schnecker, J., Schwab, C.,
Shibistova, O., Wild, B., and Richter, A.: Significance of dark CO2
fixation in arctic soils, Soil Biol. Biochem., 119, 11–21, 2018.
Sauer, U. and Eikmanns, B. J.: The PEP–pyruvate–oxaloacetate node as the
switch point for carbon flux distribution in bacteria, FEMS Microbiol. Rev.,
29, 765–794, 2005.
Schink, B.: An alternative to the glyoxylate shunt, Mol. Microbiol., 73,
975–977, 2009.
Schinner, F., Concin, R., and Binder, H.: Heterotrophic CO2-fixation
by fungi in dependence on the concentration of the carbon source, Phyton, 22,
81–85, 1982.
Scrutton, M. C.: Assay of enzymes of CO2 metabolism, Method.
Microbiol., 6, Part A, 479–541, 1971.
Signori, C. N., Valentin, J. L., Pollery, R. C. G., and Enrich-Prast, A.:
Temporal variability of dark carbon fixation and bacterial production and
their relation with environmental factors in a tropical estuarine system,
Estuar. Coast., 41, 1089–1101, 2017.
Smith, A. R., Kieft, B., Mueller, R., Fisk, M. R., Mason, O. U., Popa, R.,
and Colwell, F. S.: Carbon fixation and energy metabolisms of a subseafloor
olivine biofilm, ISME J., 13, 1737–1749, 2019.
Spohn, M., Müller, K., Höschen, C., Mueller, C. W., and Marhan, S.:
Dark microbial CO2 fixation in temperate forest soils increases with
CO2 concentrations, Glob. Change Biol., 26, 1926–1935, 2019.
Spona-Friedl, M., Braun, A., Huber, C., Eisenreich, W., Griebler, C.,
Kappler, A., and Elsner, M.: Substrate-dependent CO2-fixation in heterotrophic
bacteria revealed by stable isotope labelling, FEMS Microbiol. Ecol., 96,
fiaa080, https://doi.org/10.1093/femsec/fiaa080, 2020.
Strong, P. J., Xie, S., and Clarke, W. P. Methane as a resource: can the
methanotrophs add value?, Environ. Sci. Technol., 49, 4001–4018, 2015.
Swan, B. K., Martinez-Garcia, M., Preston, C. M., Sczyrba, A., Woyke, T., Lamy, D., Reinthaler, T., Poulton, N. J., Masland, E. D. P., Lluesma Gomez, M., Sieracki, M. E., DeLong, E. F., Herndl, G. J., and Stepanauskas, R.: Potential for chemolithoautotrophy among ubiquitous bacteria
lineages in the dark ocean, Science, 333, 1296–1300, 2011.
Tait, L. W. and Schiel, D. R.: Impacts of temperature on primary productivity
and respiration in naturally structured macroalgal assemblages, PLoS ONE, 8,
e74413, https://doi.org/10.1371/journal.pone.0074413, 2013.
Teiro, E., Fernández, A., Álvarez-Salgado, X. A.,
García-Martín, E. E., Serret, P., and Sobrino, C.: Response of two
marine bacterial isolates to high CO2 concentration, Mar. Ecol.-Prog.
Ser., 453, 27–36, 2012.
Tempest, D. W. and Neijssel, O. M.: Physiological and energetic aspects of
bacterial metabolite overproduction, FEMS Microbiol. Lett., 100, 169–176,
1992.
Tuttle, J. H. and Jannasch, H. W.: Microbial dark assimilation of CO2 in
the Cariaco Trench, Limnol. Oceanogr., 24, 746–753, 1979.
Vasquez-Cardenas, D., Meysman, F. J. R., and Boschker, H. T. S.: A
cross-system comparison of dark carbon fixation in coastal sediments, Global
Biogeochem. Cy., 34, 1–14, 2020.
Vick-Majors, T. J. and Priscu, J. C.: Inorganic carbon fixation in
ice-covered lakes of the McMurdo Dry Valleys, Antarctic Sci., 1–10, https://doi.org/10.1017/S0954102019000075, 2019.
von Stockar, U., Maskow, T., Liu, J., Marison, I. W., and Patiño, R.:
Thermodynamics of microbial growth and metabolism: An analysis of the
current situation, J. Biotechnol., 121, 517–533, 2006.
Wegener, G., Bausch, M., Holler, T., Thang, N. M., Mollar, X. P.,
Kellermann, M. Y., Hinrichs, K. U., and Boetius, A.: Assessing sub-seafloor
microbial activity by combined stable isotope probing with deuterated water
and 13C-bicarbonate, Environ. Microbiol., 14, 1517–1527, 2012.
Werkman, C. H. and Wood, H. G.: Heterotrophic assimilation of carbon dioxide,
in: Advances in Enzymology and Related Areas of Molecular Biology, edited by: Nord,
F. F., 2, 135–182, Interscience Publishers, Inc., 1942.
Whitman, W. B., Coleman, D. C., and Wiebe, W. J.: Prokaryotes: The unseen
majority, P. Natl. Acad. Sci., 95, 6578–6583, 1998.
Wood, H. G. and Stjernholm, R. L.: Assimilation of carbon dioxid by
heterotrophic organisms, in: The Bacteria: A
Treatise on Structure and Function, Vol. 3, edited by: Gunsalus, I. C. and Stanier, R. Y., Biosynthesis Academic Press, New
York, 41–117, 1962.
Wood, H. G. and Werkman, C. H.: The utilisation of CO2 in the
dissimilation of glycerol by the propionic acid bacteria, Biochem. J., 30,
48–53, 1936.
Wood, H. G. and Werkman, C. H.: The utilization of CO2 by the propionic
acid bacteria, Biochem. J., 32, 1262–1271, 1938.
Wood, H. G. and Werkman, C. H.: The position of carbon dioxide-carbon in
succinic acid synthesized by heterotrophic bacteria, J. Biol. Chem., 139,
377–381, 1941.
Wuchter, C., Schouten, S., Boschker, H. T. S., and Sinninghe Damsté, J.
S.: Bicarbonate uptake by marine Crenarchaeota, FEMS Microbiol. Lett., 219,
203–207, 2003.
Yakimov, M. M., La Cono, V., Smedile, F., Crisafi, F., Arcadi, E., Leonardi,
M., Decembrini, F., Catalfamo, M., Bargiela, R., Ferrer, M., Golyshin, P.
N., and Giuliano, L.: Heterotrophic bicarbonate assimilation is the main
process of de novoorganic carbon synthesis in hadal zone of the Hellenic
Trench, the deepest part of Mediterranean Sea, Environ. Microbiol. Rep., 6,
709–722, 2014.
Zhang, Y., Qin, W., Hou, L., Zakem, E. J., Wan, X., Zhao, Z., Liu, L., Hunt,
K. A., Jiao, N., Kao, S.-J., Tang, K., Xie, X., Shen, J., Li, Y., Chen, M.,
Dai, X., Liu, C., Deng, W., Dai, M., Ingalls, A. E., Stahl, D. A., and Herndl,
G. J.: Nitrifier adaptation to low energy flux controls inventory of reduced
nitrogen in the dark ocean, P. Natl. Acad. Sci. USA, 117, 4823–4830, 2020.
Zhao, Y., Liu, P., Rui, J., Cheng, L., Wang, Q., Liu, X., and Yuan, Q.: Dark
carbon fixation and chemolithotrophic microbial community in surface
sediments of the cascade reservoirs, Southwest China, Sci. Total Environ., 698,
134316, https://doi.org/10.1016/j.scitotenv.2019.134316, 2020.
Zhou, W., Liao, J., Guo, Y., Yuan, X., Huang, H., Yuan, T., and Liu, S.:
High dark carbon fixation in the tropical South China Sea, Cont. Shelf Res.,
146, 82–88, 2017.
Zopfi, J., Ferdelman, T. G., Jørgensen, B. B., Teske, A., and Thamdrup,
B.: Influence of water column dynamics on sulfide oxidation and other major
biogeochemical process in the chemocline of Mariager Fjord (Denmark), Mar.
Chem., 74, 29–51, 2001.
Download
- Article
(1789 KB) - Full-text XML
Short summary
It is known that CO2 fixation by photoautotrophic organisms is the major sink from the atmosphere. While biologists are aware that CO2 fixation also occurs in heterotrophic organisms, this route of inorganic carbon, and its quantitative role, is hardly recognized in biogeochemistry. We demonstrate that a considerable amount of CO2 is fixed annually through anaplerotic reactions in heterotrophic organisms, and a significant quantity of inorganic carbon is temporally sequestered in biomass.
It is known that CO2 fixation by photoautotrophic organisms is the major sink from the...
Altmetrics
Final-revised paper
Preprint