Articles | Volume 18, issue 2
https://doi.org/10.5194/bg-18-535-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-535-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Combined effects of ozone and drought stress on the emission of biogenic volatile organic compounds from Quercus robur L.
Arianna Peron
Department of Atmospheric and Cryospheric Sciences, University of Innsbruck, 6020 Innsbruck, Austria
Lisa Kaser
Department of Atmospheric and Cryospheric Sciences, University of Innsbruck, 6020 Innsbruck, Austria
Anne Charlott Fitzky
Department of Forest and Soil Sciences, Forest Ecology, University of Natural Resources and Life Sciences
Vienna (BOKU), 1190 Vienna, Austria
Martin Graus
Department of Atmospheric and Cryospheric Sciences, University of Innsbruck, 6020 Innsbruck, Austria
Heidi Halbwirth
Institut für Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften, Technische
Universität Wien, 1060 Vienna, Austria
Jürgen Greiner
Institut für Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften, Technische
Universität Wien, 1060 Vienna, Austria
Georg Wohlfahrt
Department of Ecology, University of Innsbruck, 6020 Innsbruck,
Austria
Boris Rewald
Department of Forest and Soil Sciences, Forest Ecology, University of Natural Resources and Life Sciences
Vienna (BOKU), 1190 Vienna, Austria
Hans Sandén
Department of Forest and Soil Sciences, Forest Ecology, University of Natural Resources and Life Sciences
Vienna (BOKU), 1190 Vienna, Austria
Department of Atmospheric and Cryospheric Sciences, University of Innsbruck, 6020 Innsbruck, Austria
Related authors
Arianna Peron, Martin Graus, Marcus Striednig, Christian Lamprecht, Georg Wohlfahrt, and Thomas Karl
Atmos. Chem. Phys., 24, 7063–7083, https://doi.org/10.5194/acp-24-7063-2024, https://doi.org/10.5194/acp-24-7063-2024, 2024
Short summary
Short summary
The anthropogenic fraction of non-methane volatile organic compound (NMVOC) emissions associated with biogenic sources (e.g., terpenes) is investigated based on eddy covariance observations. The anthropogenic fraction of terpene emissions is strongly dependent on season. When analyzing volatile chemical product (VCP) emissions in urban environments, we caution that observations from short-term campaigns might over-/underestimate their significance depending on local and seasonal circumstances.
Lisa Kaser, Arianna Peron, Martin Graus, Marcus Striednig, Georg Wohlfahrt, Stanislav Juráň, and Thomas Karl
Atmos. Chem. Phys., 22, 5603–5618, https://doi.org/10.5194/acp-22-5603-2022, https://doi.org/10.5194/acp-22-5603-2022, 2022
Short summary
Short summary
Biogenic volatile organic compounds (e.g., terpenoids) play an essential role in atmospheric chemistry. Urban greening activities need to consider the ozone- and aerosol-forming potential of these compounds released from vegetation. NMVOC emissions in urban environments are complex, and the biogenic component remains poorly quantified. For summer conditions biogenic emissions dominate terpene emissions and heat waves can significantly modulate urban biogenic terpenoid emissions.
Christian Lamprecht, Martin Graus, Marcus Striednig, Michael Stichaner, Werner Jud, Andreas Held, and Thomas Karl
Atmos. Meas. Tech., 18, 5003–5016, https://doi.org/10.5194/amt-18-5003-2025, https://doi.org/10.5194/amt-18-5003-2025, 2025
Short summary
Short summary
Air pollution management requires accurate determination of emissions and emission ratios of air pollutants. In this paper, we explore a new way to resolve excess mixing ratios in turbulent plumes, which allows aggregation of unbiased ensemble averages of air pollutant ratios that can be compared with emission models. The approach is tested in an urban environment and used to resolve emission patterns of nitrogen oxides and carbon dioxide.
Beatriz P. Cazorla, Ana Meijide, Javier Cabello, Julio Peñas, Rodrigo Vargas, Javier Martínez-López, Leonardo Montagnani, Alexander Knohl, Lukas Siebicke, Benimiano Gioli, Jiří Dušek, Ladislav Šigut, Andreas Ibrom, Georg Wohlfahrt, Eugénie Paul-Limoges, Kathrin Fuchs, Antonio Manco, Marian Pavelka, Lutz Merbold, Lukas Hörtnagl, Pierpaolo Duce, Ignacio Goded, Kim Pilegaard, and Domingo Alcaraz-Segura
EGUsphere, https://doi.org/10.5194/egusphere-2025-2835, https://doi.org/10.5194/egusphere-2025-2835, 2025
Short summary
Short summary
We assess whether satellite-derived Ecosystem Functional Types (EFTs) reflect spatial heterogeneity in carbon fluxes across Europe. Using Eddy Covariance data from 50 sites, we show that EFTs capture distinct Net Ecosystem Exchange dynamics and perform slightly better than PFTs. EFTs offer a scalable, annually updatable approach to monitor ecosystem functioning and its interannual variability.
Lorenz Hänchen, Emily Potter, Cornelia Klein, Pierluigi Calanca, Fabien Maussion, Wolfgang Gurgiser, and Georg Wohlfahrt
Hydrol. Earth Syst. Sci., 29, 2727–2747, https://doi.org/10.5194/hess-29-2727-2025, https://doi.org/10.5194/hess-29-2727-2025, 2025
Short summary
Short summary
In semi-arid regions, the timing and duration of the rainy season are crucial for agriculture. This study introduces a new framework for improving estimations of the onset and end of the rainy season by testing how well they fit local vegetation data. We improve the performance of existing methods and present a new one with higher performance. Our findings can help us to make informed decisions about water usage, and the framework can be applied to other regions as well.
Jacob A. Nelson, Sophia Walther, Fabian Gans, Basil Kraft, Ulrich Weber, Kimberly Novick, Nina Buchmann, Mirco Migliavacca, Georg Wohlfahrt, Ladislav Šigut, Andreas Ibrom, Dario Papale, Mathias Göckede, Gregory Duveiller, Alexander Knohl, Lukas Hörtnagl, Russell L. Scott, Jiří Dušek, Weijie Zhang, Zayd Mahmoud Hamdi, Markus Reichstein, Sergio Aranda-Barranco, Jonas Ardö, Maarten Op de Beeck, Dave Billesbach, David Bowling, Rosvel Bracho, Christian Brümmer, Gustau Camps-Valls, Shiping Chen, Jamie Rose Cleverly, Ankur Desai, Gang Dong, Tarek S. El-Madany, Eugenie Susanne Euskirchen, Iris Feigenwinter, Marta Galvagno, Giacomo A. Gerosa, Bert Gielen, Ignacio Goded, Sarah Goslee, Christopher Michael Gough, Bernard Heinesch, Kazuhito Ichii, Marcin Antoni Jackowicz-Korczynski, Anne Klosterhalfen, Sara Knox, Hideki Kobayashi, Kukka-Maaria Kohonen, Mika Korkiakoski, Ivan Mammarella, Mana Gharun, Riccardo Marzuoli, Roser Matamala, Stefan Metzger, Leonardo Montagnani, Giacomo Nicolini, Thomas O'Halloran, Jean-Marc Ourcival, Matthias Peichl, Elise Pendall, Borja Ruiz Reverter, Marilyn Roland, Simone Sabbatini, Torsten Sachs, Marius Schmidt, Christopher R. Schwalm, Ankit Shekhar, Richard Silberstein, Maria Lucia Silveira, Donatella Spano, Torbern Tagesson, Gianluca Tramontana, Carlo Trotta, Fabio Turco, Timo Vesala, Caroline Vincke, Domenico Vitale, Enrique R. Vivoni, Yi Wang, William Woodgate, Enrico A. Yepez, Junhui Zhang, Donatella Zona, and Martin Jung
Biogeosciences, 21, 5079–5115, https://doi.org/10.5194/bg-21-5079-2024, https://doi.org/10.5194/bg-21-5079-2024, 2024
Short summary
Short summary
The movement of water, carbon, and energy from the Earth's surface to the atmosphere, or flux, is an important process to understand because it impacts our lives. Here, we outline a method called FLUXCOM-X to estimate global water and CO2 fluxes based on direct measurements from sites around the world. We go on to demonstrate how these new estimates of net CO2 uptake/loss, gross CO2 uptake, total water evaporation, and transpiration from plants compare to previous and independent estimates.
Arianna Peron, Martin Graus, Marcus Striednig, Christian Lamprecht, Georg Wohlfahrt, and Thomas Karl
Atmos. Chem. Phys., 24, 7063–7083, https://doi.org/10.5194/acp-24-7063-2024, https://doi.org/10.5194/acp-24-7063-2024, 2024
Short summary
Short summary
The anthropogenic fraction of non-methane volatile organic compound (NMVOC) emissions associated with biogenic sources (e.g., terpenes) is investigated based on eddy covariance observations. The anthropogenic fraction of terpene emissions is strongly dependent on season. When analyzing volatile chemical product (VCP) emissions in urban environments, we caution that observations from short-term campaigns might over-/underestimate their significance depending on local and seasonal circumstances.
Joseph Kiem, Albin Hammerle, Leonardo Montagnani, and Georg Wohlfahrt
EGUsphere, https://doi.org/10.5194/egusphere-2024-881, https://doi.org/10.5194/egusphere-2024-881, 2024
Preprint archived
Short summary
Short summary
Albedo is the fraction of solar radiation that is reflected by some surface. The presence of a seasonal snow cover dramatically increases albedo. We made use of a novel snow depth dataset for Austria to investigate likely future changes in albedo up to 2100. In 5 out of the 6 investigated future scenarios a significant decline of albedo could be observed. The associated warming is equivalent to between 0.25 to 5 times the current annual CO2-equivalent emissions of Austria.
Georg Wohlfahrt, Albin Hammerle, Felix M. Spielmann, Florian Kitz, and Chuixiang Yi
Biogeosciences, 20, 589–596, https://doi.org/10.5194/bg-20-589-2023, https://doi.org/10.5194/bg-20-589-2023, 2023
Short summary
Short summary
The trace gas carbonyl sulfide (COS), which is taken up by plant leaves in a process very similar to photosynthesis, is thought to be a promising proxy for the gross uptake of carbon dioxide by plants. Here we propose a new framework for estimating a key metric to that end, the so-called leaf relative uptake rate. The values we deduce by applying principles of plant optimality are considerably lower than published values and may help reduce the uncertainty of the global COS budget.
Sihang Wang, Bin Yuan, Caihong Wu, Chaomin Wang, Tiange Li, Xianjun He, Yibo Huangfu, Jipeng Qi, Xiao-Bing Li, Qing'e Sha, Manni Zhu, Shengrong Lou, Hongli Wang, Thomas Karl, Martin Graus, Zibing Yuan, and Min Shao
Atmos. Chem. Phys., 22, 9703–9720, https://doi.org/10.5194/acp-22-9703-2022, https://doi.org/10.5194/acp-22-9703-2022, 2022
Short summary
Short summary
Volatile organic compound (VOC) emissions from vehicles are measured using online mass spectrometers. Differences between gasoline and diesel vehicles are observed with higher emission factors of most oxygenated VOCs (OVOCs) and heavier aromatics from diesel vehicles. A higher aromatics / toluene ratio could provide good indicators to distinguish emissions from both vehicle types. We show that OVOCs account for significant contributions to VOC emissions from vehicles, especially diesel vehicles.
Helen Claire Ward, Mathias Walter Rotach, Alexander Gohm, Martin Graus, Thomas Karl, Maren Haid, Lukas Umek, and Thomas Muschinski
Atmos. Chem. Phys., 22, 6559–6593, https://doi.org/10.5194/acp-22-6559-2022, https://doi.org/10.5194/acp-22-6559-2022, 2022
Short summary
Short summary
This study examines how cities and their surroundings influence turbulent exchange processes responsible for weather and climate. Analysis of a 4-year observational dataset for the Alpine city of Innsbruck reveals several similarities with other (flat) city centre sites. However, the mountain setting leads to characteristic daily and seasonal flow patterns (valley winds) and downslope windstorms that have a marked effect on temperature, wind speed, turbulence and pollutant concentration.
Camille Abadie, Fabienne Maignan, Marine Remaud, Jérôme Ogée, J. Elliott Campbell, Mary E. Whelan, Florian Kitz, Felix M. Spielmann, Georg Wohlfahrt, Richard Wehr, Wu Sun, Nina Raoult, Ulli Seibt, Didier Hauglustaine, Sinikka T. Lennartz, Sauveur Belviso, David Montagne, and Philippe Peylin
Biogeosciences, 19, 2427–2463, https://doi.org/10.5194/bg-19-2427-2022, https://doi.org/10.5194/bg-19-2427-2022, 2022
Short summary
Short summary
A better constraint of the components of the carbonyl sulfide (COS) global budget is needed to exploit its potential as a proxy of gross primary productivity. In this study, we compare two representations of oxic soil COS fluxes, and we develop an approach to represent anoxic soil COS fluxes in a land surface model. We show the importance of atmospheric COS concentration variations on oxic soil COS fluxes and provide new estimates for oxic and anoxic soil contributions to the COS global budget.
Lisa Kaser, Arianna Peron, Martin Graus, Marcus Striednig, Georg Wohlfahrt, Stanislav Juráň, and Thomas Karl
Atmos. Chem. Phys., 22, 5603–5618, https://doi.org/10.5194/acp-22-5603-2022, https://doi.org/10.5194/acp-22-5603-2022, 2022
Short summary
Short summary
Biogenic volatile organic compounds (e.g., terpenoids) play an essential role in atmospheric chemistry. Urban greening activities need to consider the ozone- and aerosol-forming potential of these compounds released from vegetation. NMVOC emissions in urban environments are complex, and the biogenic component remains poorly quantified. For summer conditions biogenic emissions dominate terpene emissions and heat waves can significantly modulate urban biogenic terpenoid emissions.
Lorenz Hänchen, Cornelia Klein, Fabien Maussion, Wolfgang Gurgiser, Pierluigi Calanca, and Georg Wohlfahrt
Earth Syst. Dynam., 13, 595–611, https://doi.org/10.5194/esd-13-595-2022, https://doi.org/10.5194/esd-13-595-2022, 2022
Short summary
Short summary
To date, farmers' perceptions of hydrological changes do not match analysis of meteorological data. In contrast to rainfall data, we find greening of vegetation, indicating increased water availability in the past decades. The start of the season is highly variable, making farmers' perceptions comprehensible. We show that the El Niño–Southern Oscillation has complex effects on vegetation seasonality but does not drive the greening we observe. Improved onset forecasts could help local farmers.
Lukas Fischer, Martin Breitenlechner, Eva Canaval, Wiebke Scholz, Marcus Striednig, Martin Graus, Thomas G. Karl, Tuukka Petäjä, Markku Kulmala, and Armin Hansel
Atmos. Meas. Tech., 14, 8019–8039, https://doi.org/10.5194/amt-14-8019-2021, https://doi.org/10.5194/amt-14-8019-2021, 2021
Short summary
Short summary
Ecosystems emit biogenic volatile organic compounds (BVOCs), which are then oxidized in the atmosphere, contributing to ozone and secondary aerosol formation. While flux measurements of BVOCs are state of the art, flux measurements of the less volatile oxidation products are difficult to achieve due to inlet losses. Here we present first flux measurements, utilizing a novel PTR3 instrument in combination with a specially designed wall-less inlet we put on top of the Hyytiälä tower in Finland.
Linda M. J. Kooijmans, Ara Cho, Jin Ma, Aleya Kaushik, Katherine D. Haynes, Ian Baker, Ingrid T. Luijkx, Mathijs Groenink, Wouter Peters, John B. Miller, Joseph A. Berry, Jerome Ogée, Laura K. Meredith, Wu Sun, Kukka-Maaria Kohonen, Timo Vesala, Ivan Mammarella, Huilin Chen, Felix M. Spielmann, Georg Wohlfahrt, Max Berkelhammer, Mary E. Whelan, Kadmiel Maseyk, Ulli Seibt, Roisin Commane, Richard Wehr, and Maarten Krol
Biogeosciences, 18, 6547–6565, https://doi.org/10.5194/bg-18-6547-2021, https://doi.org/10.5194/bg-18-6547-2021, 2021
Short summary
Short summary
The gas carbonyl sulfide (COS) can be used to estimate photosynthesis. To adopt this approach on regional and global scales, we need biosphere models that can simulate COS exchange. So far, such models have not been evaluated against observations. We evaluate the COS biosphere exchange of the SiB4 model against COS flux observations. We find that the model is capable of simulating key processes in COS biosphere exchange. Still, we give recommendations for further improvement of the model.
Sebastian Doetterl, Rodrigue K. Asifiwe, Geert Baert, Fernando Bamba, Marijn Bauters, Pascal Boeckx, Benjamin Bukombe, Georg Cadisch, Matthew Cooper, Landry N. Cizungu, Alison Hoyt, Clovis Kabaseke, Karsten Kalbitz, Laurent Kidinda, Annina Maier, Moritz Mainka, Julia Mayrock, Daniel Muhindo, Basile B. Mujinya, Serge M. Mukotanyi, Leon Nabahungu, Mario Reichenbach, Boris Rewald, Johan Six, Anna Stegmann, Laura Summerauer, Robin Unseld, Bernard Vanlauwe, Kristof Van Oost, Kris Verheyen, Cordula Vogel, Florian Wilken, and Peter Fiener
Earth Syst. Sci. Data, 13, 4133–4153, https://doi.org/10.5194/essd-13-4133-2021, https://doi.org/10.5194/essd-13-4133-2021, 2021
Short summary
Short summary
The African Tropics are hotspots of modern-day land use change and are of great relevance for the global carbon cycle. Here, we present data collected as part of the DFG-funded project TropSOC along topographic, land use, and geochemical gradients in the eastern Congo Basin and the Albertine Rift. Our database contains spatial and temporal data on soil, vegetation, environmental properties, and land management collected from 136 pristine tropical forest and cropland plots between 2017 and 2020.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Anna B. Harper, Karina E. Williams, Patrick C. McGuire, Maria Carolina Duran Rojas, Debbie Hemming, Anne Verhoef, Chris Huntingford, Lucy Rowland, Toby Marthews, Cleiton Breder Eller, Camilla Mathison, Rodolfo L. B. Nobrega, Nicola Gedney, Pier Luigi Vidale, Fred Otu-Larbi, Divya Pandey, Sebastien Garrigues, Azin Wright, Darren Slevin, Martin G. De Kauwe, Eleanor Blyth, Jonas Ardö, Andrew Black, Damien Bonal, Nina Buchmann, Benoit Burban, Kathrin Fuchs, Agnès de Grandcourt, Ivan Mammarella, Lutz Merbold, Leonardo Montagnani, Yann Nouvellon, Natalia Restrepo-Coupe, and Georg Wohlfahrt
Geosci. Model Dev., 14, 3269–3294, https://doi.org/10.5194/gmd-14-3269-2021, https://doi.org/10.5194/gmd-14-3269-2021, 2021
Short summary
Short summary
We evaluated 10 representations of soil moisture stress in the JULES land surface model against site observations of GPP and latent heat flux. Increasing the soil depth and plant access to deep soil moisture improved many aspects of the simulations, and we recommend these settings in future work using JULES. In addition, using soil matric potential presents the opportunity to include parameters specific to plant functional type to further improve modeled fluxes.
Christian Lamprecht, Martin Graus, Marcus Striednig, Michael Stichaner, and Thomas Karl
Atmos. Chem. Phys., 21, 3091–3102, https://doi.org/10.5194/acp-21-3091-2021, https://doi.org/10.5194/acp-21-3091-2021, 2021
Short summary
Short summary
The first European SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) wave and associated lockdown provided a unique sensitivity experiment to study air pollution. We find significantly different emission trajectories between classical air pollution and climate gases (e.g., carbon dioxide). The analysis suggests that European policies, shifting residential, public, and commercial energy demand towards cleaner combustion, have helped to improve air quality more than expected.
Yuan Zhang, Ana Bastos, Fabienne Maignan, Daniel Goll, Olivier Boucher, Laurent Li, Alessandro Cescatti, Nicolas Vuichard, Xiuzhi Chen, Christof Ammann, M. Altaf Arain, T. Andrew Black, Bogdan Chojnicki, Tomomichi Kato, Ivan Mammarella, Leonardo Montagnani, Olivier Roupsard, Maria J. Sanz, Lukas Siebicke, Marek Urbaniak, Francesco Primo Vaccari, Georg Wohlfahrt, Will Woodgate, and Philippe Ciais
Geosci. Model Dev., 13, 5401–5423, https://doi.org/10.5194/gmd-13-5401-2020, https://doi.org/10.5194/gmd-13-5401-2020, 2020
Short summary
Short summary
We improved the ORCHIDEE LSM by distinguishing diffuse and direct light in canopy and evaluated the new model with observations from 159 sites. Compared with the old model, the new model has better sunny GPP and reproduced the diffuse light fertilization effect observed at flux sites. Our simulations also indicate different mechanisms causing the observed GPP enhancement under cloudy conditions at different times. The new model has the potential to study large-scale impacts of aerosol changes.
Cited articles
Affek, H. P. and Yakir, D.: Protection by isoprene against singlet oxygen in
leaves, Plant Physiol., 129, 269–277, https://doi.org/10.1104/pp.010909,
2002.
Affek, H. P. and Yakir, D.: Natural abundance carbon isotopes composition of
isoprene reflects incomplete coupling between isoprene synthesis and
photosynthesis carbon flow, Plant Physiol. 131, 1727–1736,
https://doi.org/10.1104/pp.102.012294, 2003.
Allen, C. D., Macalady, A., Chenchouni, H., Bachelet, D., McDowell,
N., Vennetier, M., Kitzberger, T., Gonzales, P., Hogg, T., Rigling, A.,
Breshears, D., Gonzalez, P., Fensham, R., Zhang, Z., Castro, J., Demidova,
N., Lim, J. H., Allard, G., Running, S. W., Semerci, A., and Cobb, N.: A
global overview of drought and heat-induced tree mortalityreveals emerging
climate change risks for forests, Forest Ecol. Manag., 259, 660–684,
https://doi.org/10.1016/j.foreco.2009.09.001, 2010.
Amin, H. S., Atkins, P. T., Russo, R., Brown, A. W., Sive, B., Hallar, A. G., and Huff Hartz, K. E.: Effect of bark beetle infestation on secondary organic
aerosol precursor emissions, Environ. Sci. Technol., 46, 5696–5703,
https://doi.org/10.1021/es204205m, 2012.
Amin, H. S., Russo, R. S., Sive, B., Hoebeke, E. R., Dodson, C., McCubbin I. B., Hallar, A. G., and Huff Hartz, K. E.: Monoterpene emissions from bark beetle infested Engelmann spruce trees, Atmos. Environ., 72, 130–133, https://doi.org/10.1016/j.atmosenv.2013.02.025, 2013.
Atkinson, R. and Arey, J.: Gas-phase tropospheric chemistry of biogenic
volatile organic compounds: a review, Atmos. Environ., 37, 197–219,
https://doi.org/10.1016/S1352-2310(03)00391-1, 2003.
Baier, M., Kandlbinder, A., Golldack, D., and Dietz, K. J.: Oxidative stress
and ozone: perception, signaling and response, Plant Cell Environ., 28,
1012–1020, https://doi.org/10.1111/j.1365-3040.2005.01326.x, 2005.
Baldocchi, D., Guenther, A. B., Harley, P. C., Klinger, L., Zimmerman, P.,
Lamb, B., and Westberg, H.: The fluxes and air chemistry of isoprene above a
deciduous hardwood forest, Philos. T. R. Soc. A., 351, 279–296, https://doi.org/10.1098/rsta.1995.0034, 1995.
Baldwin, I. T., Halitschke, R., Paschold, A., von Dahl, C. C., and Preston,
C. A.: Volatile signaling in plant-plant interactions: “Talking trees” in
the genomics era, Science, 311, 812–815,
https://doi.org/10.1126/science.1118446, 2006.
Barstow, M. and Khela, S.: Quercus robur. The IUCN Red List of Threatened Species 2017: e.T63532A3126467, available at: https://www.iucnredlist.org/species/63532/3126467 (last access: 15 August 2020), 2017.
Beauchamp, J., Wisthaler, A., Hansel, A., Kleist, E., Miebach, M.,
Niinemets, Ü., and Wildt, J.: Ozone induced emissions of biogenic VOC
from tobacco: relationships between ozone uptake and emission of LOX
products, Plant Cell Environ., 28, 1334–1343, https://doi.org/10.1111/j.1365-3040.2005.01383.x, 2005.
Beckett, M., Loreto, F., Velikova, V., Brunetti, C., Di Ferdinando, M.,
Tattini, M., and Farrant, J. M.: Photosynthetic limitations and volatile and
non-volatile isoprenoids in the poikilochlorophyllous resurrection plant
Xerophyta humilis during dehydration and rehydration, Plant Cell Environ., 35, 2061–2074,
https://doi.org/10.1111/j.1365-3040.2012.02536.x, 2012.
Behnke, K., Kleist, E., Uerlings, R., Wildt, J., Rennenberg, H., and
Schnitzler, J. P.: RNAi-mediated suppression of isoprene biosynthesis in
hybrid poplar impacts ozone tolerance, Tree Physiol., 29, 725–736,
https://doi.org/10.1093/treephys/tpp009, 2009.
Benjamin, M. T. and Winer, A. M.: Estimating the ozone-forming potential of
urban trees and shrubs, Atmos. Environ., 32, 53–68,
https://doi.org/10.1016/S1352-2310(97)00176-3, 1998.
Bentley, R., and Haslam, E.: The Shikimate Pathway – A Metabolic Tree with Many Branche, Crit. Rev. Biochem. Mol., 25, 307–384, https://doi.org/10.3109/10409239009090615, 2008.
Berg, A. R., Heald, C. L., Huff Hartz, K. E., Hallar, A. G., Meddens, A. J. H., Hicke, J. A., Lamarque, J.-F., and Tilmes, S.: The impact of bark beetle infestations on monoterpene emissions and secondary organic aerosol formation in western North America, Atmos. Chem. Phys., 13, 3149–3161, https://doi.org/10.5194/acp-13-3149-2013, 2013.
Betz, G. A., Knappe, C., Lapierre, C., Olbrich, M., Welzl, G., Langebartels,
C., Heller, W., Sandermann, H., and Ernst, D.: Ozone affects shikimate
pathway transcripts and monomeric lignin composition in European beech
(Fagus sylvatica L.), Eur. J. Forest Res., 128, 109–116,
https://doi.org/10.1007/s10342-008-0216-8, 2009.
Bourtsoukidis, E., Bonn, B., Dittmann, A., Hakola, H., Hellén, H., and Jacobi, S.: Ozone stress as a driving force of sesquiterpene emissions: a suggested parameterisation, Biogeosciences, 9, 4337–4352, https://doi.org/10.5194/bg-9-4337-2012, 2012.
Bowen, I. S.: The ratio of heat losses by conduction and by evaporation from any water surface, Phys. Rev. E., 27, 779–787, https://doi.org/10.1103/PhysRev.27.779, 1926.
Brilli, F., Barta, C., Fortunati, A., Lerdau, M., Loreto, F., and Centritto,
M.: Response of isoprene emission and carbon metabolism to drought in white
poplar (Populus alba) saplings, New Phytol., 175, 244–254, https://doi.org/10.1111/j.1469-8137.2007.02094.x, 2007.
Brilli, F., Ruuskanen, T. M., Schnitzhofer, R., Müller, M.,
Breitenlechner, M., Bittner, V., and Hansel, A.: Detection of plant
volatiles after leaf wounding and darkening by Proton Transfer Reaction
“Time-of-Flight” Mass Spectrometry (PTR-TOF), PloS One, 6, e20419,
https://doi.org/10.1371/journal.pone.0020419, 2011.
Brilli, F., Gioli, B., Fares, S., Terenzio, Z., Zona, D., Gielen, B., and
Ceulemans, R.: Rapid leaf development drives the seasonal pattern of
volatile organic compound (VOC) fluxes in a “coppiced” bioenergy poplar
plantation, Plant Cell Environ., 39, 539–555, https://doi.org/10.1111/pce.12638, 2016.
Brüggemann, N. and Schnitzler, J. P.: Comparison of isoprene emission,
intercellular isoprene concentration and photosynthetic performance in
water-limited oak (Quercus pubescens Willd. and Quercus robur L.) saplings, Plant Biol., 4, 456–463,
https://doi.org/10.1055/s-2002-34128, 2002.
Cabané, M., Pireaux, J. C., Leger, E., Weber, E., Dizengremel, P.,
Pollet, B., and Lapierre, C.: Condensed lignins are synthesized in poplar
leaves exposed to ozone, Plant Physiol., 134, 586–594,
https://doi.org/10.1104/pp.103.031765, 2004.
Cappellin, L., Karl, T., Probst, M., Ismailova, O., Winkler, P. M.,
Soukoulis, C., Aprea, E., Märk, T. D., Gasperi, F., and Biasioli, F.: On
Quantitative Determination of Volatile Organic Compound Concentrations Using
Proton Transfer Reaction Time-of-Flight Mass Spectrometry, Environ. Sci.
Technol., 46, 2283–2290, https://doi.org/10.1021/es203985t,
2012.
Chaves, M. M., Maroco, J. P., and Pereira, J. S.: Understanding plant responses to drought: from genes to the whole plant, Funct. Plant Biol., 30, 239–264, https://doi.org/10.1071/FP02076, 2003.
Cheng, A. X., Lou, Y. G., Mao, Y. B., Lu, S., Wang, L. J., and Chen, X. Y.:
Plant terpenoids: biosynthesis and ecological functions, J. Integr. Plant
Biol., 49, 179–186, https://doi.org/10.1111/j.1744-7909.2007.00395.x, 2007.
CIRAS-3 Operation Manual V. 2-01, PP-Systems, Amesbury, MA, USA, available at: http://ppsystems.com>80097-1-CIRAS3_Operation_V200 (last access: 6 July 2020), 2018.
Claeys, M., Wang, W., Ion, A. C., Kourtchev, I., Gelencsér, A., and
Maenhaut, W.: Formation of secondary organic aerosols from isoprene and its
gas-phase oxidation products through reaction with hydrogen peroxide, Atmos.
Environ., 38, 4093–4098, https://doi.org/10.1016/j.atmosenv.2004.06.001, 2004.
Cotrozzi, L., Remorini, D., Pellegrini, E., Guidi, L., Lorenzini, G.,
Massai, R., Nali, C., and Landi, M.: Cross-talk between physiological and
metabolic adjustments adopted by Quercus cerris to mitigate the effects of severe drought and realistic future ozone concentrations, Forests, 8, 148, https://doi.org/10.3390/f8050148, 2017.
Croft, K. P. C., Jüttner, F., and Slusarenko, A. J.: Volatile products
of the lipoxygenase pathway evolved from Phaseolus vulgaris L. leaves inoculated with
Pseudomonas syringae pv. phaseolicola, Plant Physiol., 101, 13–24, https://doi.org/10.1104/pp.101.1.13, 1993.
Dai, A.: Increasing drought under global warming in observations and models,
Nat. Clim. Change, 3, 52–58, https://doi.org/10.1038/nclimate1633, 2013.
Dixon, R. A. and Paiva, N. L.: Stress-induced phenylpropanoid metabolism,
Plant Cell, 7, 1085–1097, https://doi.org/10.1105/tpc.7.7.1085, 1995.
Ebel, R. C., Mattheis, J. P., and Buchanan, D. A.: Drought stress of apple
trees alters leaf emissions of volatile compounds, Physiol. Plantarum, 93, 709–712, https://doi.org/10.1111/j.1399-3054.1995.tb05120.x, 1995.
EEA: Air quality in Europe – 2017 report, EEA Report No. 17/20217, European
Environment Agency, Copenhagen, available at: https://www.eea.europa.eu/publications/air-quality-in-europe-2017 (last access: 6 July 2020), 2017.
EFDAC: Species Distribution, European Forest Data Centre, available at: https://ies-ows.jrc.ec.europa.eu/efdac/download/Atlas/pdf/European_forests_an_ecological_overview.pdf (last access: 6 July 2020), 2015.
Ellenberg, H. H.: Vegetation ecology of central Europe, 4th edition, Cambridge University Press, Cambridge, UK, 756 pp., ISBN 9780521115124, 1988.
Fall, R., Karl, T., Hansel, A., Jordan, A., and Lindinger, W.: Volatile
organic compounds emitted after leaf wounding: On-line analysis by
proton-transfer-reaction mass spectrometry, J. Geophys. Res., 104,
15963–15974, https://doi.org/10.1029/1999JD900144, 1999.
Fang, C., Monson, R. K., and Cowling, E. B.: Isoprene emission,
photosynthesis, and growth in sweetgum (Liquidambar styraciflua) seedlings exposed to short- and
long-term drying cycles, Tree Physiol., 16, 441–446,
https://doi.org/10.1093/treephys/16.4.441, 1996.
Farage, P., Long, S., Lechner, E., and Baker, N.: The sequence of change
within the photosynthetic apparatus of wheat following short-term exposure
to ozone, Plant Physiol., 95, 529–535, https://doi.org/10.1104/pp.95.2.529,
1991.
Fares, S., Barta, C., Brilli, F., Centritto, M., Ederli, L., Ferranti, F.,
Pasqualini, S., Reale, L., Tricoli, D., and Loreto, F.: Impact of high ozone
on isoprene emission, photosynthesis and histology of developing Populus alba leaves
directly or indirectly exposed to the pollutant, Physiol. Plantarum, 128,
456–465, https://doi.org/10.1111/j.1399-3054.2006.00750.x,
2006.
Filella, I., Primante, C., Llusiá, J., Martín González, A. M.,
Farré-Armengol, G., Rodrigo, A., Bosch, J., and Peñuelas, J.: Floral
advertisement scent in a changing plant-pollinators market, Sci. Rep.-UK., 3,
3434, doi.org/10.1038/srep03434, 2013.
Fitzky, A. C., Sandén, H., Karl, T., Fares, S., Calfapietra, C., Grote,
R., Saunier, A., and Rewald, B.: The interplay between ozone and urban
vegetation BVOC emissions, ozone deposition, and tree ecophysiology, Front.
For. Glob. Change, 2, p. 50, https://doi.org/10.3389/ffgc.2019.00050, 2019.
Funk, J. L., Mak, J. E., and Lerdau, M. T.: Stress-induced changes in carbon
sources for isoprene production in Populus deltoids, Plant Cell Environ., 27, 747–755,
https://doi.org/10.1111/j.1365-3040.2004.01177.x, 2004.
Geron, C., Guenther, A., and Pierce, T.: An improved model for estimating
emissions of volatile organic compounds from forests in the eastern United
States, J. Geophys. Res., 99, 12773–12791, https://doi.org/10.1029/94JD00246, 1994.
Giacomuzzi, V., Cappellin, L., Khomenko, I., Biasioli, F., Schütz, S.,
Tasin, M., Knight, A. L., and Angeli, S.: Emission of volatile compounds from
apple plants infested with Pandemis heparana larvae, antennal response of conspecific adults, and
preliminary field trial, J. Chem. Ecol., 42, 1265–1280,
https://doi.org/10.1007/s10886-016-0794-8, 2016.
Graus, M., Müller, M., and Hansel, A.: High resolution PTR-TOF:
quantification and formula confirmation of VOC in real time, J. Am. Soc.
Mass Spectr., 21, 1037–1044, https://doi.org/10.1016/j.jasms.2010.02.006, 2010.
Griffin, R. J., Cocker III, D. R., Flagan, R. C., and Seinfeld, J. H.: Organic aerosol formation from oxidation of biogenic hydrocarbons, J. Geophys. Res.-Atmos., 104, 3555–3567, https://doi.org/10.1029/1998JD100049,
1999.
Guenther, A. B., Zimmerman, P. R., Harley, P. C., Monson, R. K., and Fall, R.: Isoprene and monoterpene emission rate variability: Model evaluation and
sensitivity analysis, J. Geophys. Res., 98, 609–617,
https://doi.org/10.1029/93JD00527, 1993.
Guenther, A. B., Hewitt, C. N., Erickson, D., Fall, R., Geron, C., Graedel,
T., Harley, P., Klinger, L., Lerdau, M., McKay, W. A., Pierce, T., Scholes,
B., Steinbrecher, R., Tallamraju, R., Taylor, J., and Zimmermann, P.: A
global model of natural volatile organic compounds emissions, J. Geophys.
Res., 100, 8873–8892, https://doi.org/10.1029/94JD02950, 1995.
Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X.: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions, Geosci. Model Dev., 5, 1471–1492, https://doi.org/10.5194/gmd-5-1471-2012, 2012.
Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J., Donahue, N. M., George, C., Goldstein, A. H., Hamilton, J. F., Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin, M. E., Jimenez, J. L., Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel, Th. F., Monod, A., Prévôt, A. S. H., Seinfeld, J. H., Surratt, J. D., Szmigielski, R., and Wildt, J.: The formation, properties and impact of secondary organic aerosol: current and emerging issues, Atmos. Chem. Phys., 9, 5155–5236, https://doi.org/10.5194/acp-9-5155-2009, 2009.
Hatanaka, A.: The biogeneration of green odor by green leaves,
Phytochemistry, 34, 1201–1218, https://doi.org/10.1016/0031-9422(91)80003-J, 1993.
Heath, R. L.: Modification of the biochemical pathways of plants induced by
ozone: what are the varied routs to change?, Environ. Pollut., 155,
453–463, https://doi.org/10.1016/j.envpol.2008.03.010, 2008.
Heiden, A. C., Hoffmann, T., Kahl, J., Kley, D., Klockow, D., Langebartels,
C., Mehlhorn, H., Sandermann Jr., H., Schraudner, M., Schuh, G., and Wildt,
J.: Emission of volatile organic compounds from ozone-exposed plants, Ecol. Appl., 19, 1160–1167, https://doi.org/10.1890/1051-0761(1999)009[1160:EOVOCF]2.0.CO;2, 1999.
Heiden, A. C., Kobel, K., Langebartels, C., Schuh-Thomas, G., and Wildt, J.:
Emissions of oxygenated volatile organic compounds from plants, part I:
Emissions from lipoxygenase activity, J. Atmos. Chem., 45, 143–172,
https://doi.org/10.1023/A:1024069605420, 2003.
Herrmann, K. M. and Weaver, L. M.: The shikimate pathway, Annu. Rev. Plant Phys., 50, 473–503, https://doi.org/10.1146/annurev.arplant.50.1.473, 1999.
Hollaway, M. J., Arnold, S. R., Challinor, A. J., and Emberson, L. D.: Intercontinental trans-boundary contributions to ozone-induced crop yield losses in the Northern Hemisphere, Biogeosciences, 9, 271–292, https://doi.org/10.5194/bg-9-271-2012, 2012.
Ibrahim, M. A., Nissinen, A., Prozherina, N., Oksanen, E. J., and Holopainen,
J. K.: The influence of exogenous monoterpene treatment and elevated
temperature on growth, physiology, chemical content and headspace volatiles
of 2 carrot cultivars (Daucus carota L.), Environ. Exp. Bot., 56, 95–107, https://doi.org/10.1016/j.envexpbot.2005.01.006, 2006.
IPCC: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.
B., Tignor, M., and Miller, H. L.: Climate Change 2007: The Physical Science
Basis. Contribution of Working Group I to the Fourth Assessment Report of
the Intergovernmental Panel on Climate Change, Cambridge University Press,
Cambridge, UK, and New York, 1007 pp., 2007.
Jolivet, Y., Bagard, M., Cabané, M., Vaultier, M. N., Gandin, A., Afif,
D., Dizengremel P., and Le Thiec, D.: Deciphering the ozone-induced changes
in cellular processes: a prerequisite for ozone risk assessment at the tree
and forest levels, Ann. For. Sci., 73, 923–943, https://doi.org/10.1007/s13595-016-0580-3, 2016.
Jonsson, L.: Impacts of climate change on pedunculate oak (Quercus robur L.) and Phytophthora activity in north and central Europe, Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden, available at: https://lup.lub.lu.se/student-papers/search/publication/2970623 (last access: 15 August 2020), 2012.
Kanagendran, A., Pazouki, L., and Niinemets, Ü.: Differential regulation
of volatile emission from Eucalyptus globulus leaves upon single and combined ozone and
wounding treatments through recovery and relationships with ozone uptake,
Environ. Exp. Bot., 145, 21–38, https://doi.org/10.1016/j.envexpbot.2017.10.012, 2018.
Kangasjärvi, J., Talvinen, L., Utriainen, M., and Karjalainen, R.: Plant
defence systems induced by ozone, Plant Cell Environ., 17, 783–794,
https://doi.org/10.1111/j.1365-3040.1994.tb00173.x, 1994.
Karl, M., Guenther, A., Köble, R., Leip, A., and Seufert, G.: A new European plant-specific emission inventory of biogenic volatile organic compounds for use in atmospheric transport models, Biogeosciences, 6, 1059–1087, https://doi.org/10.5194/bg-6-1059-2009, 2009.
Karl, T., Guenther, A., Lindinger, C., Jordan, A., Fall, R., and Lindinger,
W.: Eddy covariance measurements of oxygenated volatile organic compound
fluxes from crop harvesting using a redesigned proton-transfer-reaction mass
spectrometer, J. Geophys. Res., 106, 24157–24167,
https://doi.org/10.1029/2000JD000112, 2001.
Karl, T., Fall, R., Rosentiel, T. N., Prazeller, P., Larsen, B., Seufert, G.,
and Lindinger, W.: On-line analysis of the 13CO2 labeling of leaf
isoprene suggests multiple subcellular origins of isoprene precursors,
Planta, 215, 894–905, https://doi.org/10.1007/s00425-002-0825-2, 2002.
Karl, T., Harren, F., Warneke, C., de Gouw, J., Grayless, C., and Fall, R.:
Senescing grass crops as regional sources of reactive volatile organic
compounds, J. Geophys. Res., 110, D15302, https://doi.org/10.1029/2005JD005777, 2005.
Karl, T., Guenther, A., Turnipseed, A., Patton, E. G., and Jardine, K.: Chemical sensing of plant stress at the ecosystem scale, Biogeosciences, 5, 1287–1294, https://doi.org/10.5194/bg-5-1287-2008, 2008.
Kessler, A. and Balwin, I. T.: Defensive function of herbivore-induced plant
volatile emissions in nature, Science, 291, 2141–2144,
https://doi.org/10.1126/science.291.5511.2141, 2001.
Khatamian, H., Adedipe, N. O., and Ormrod, D. P.: Soil-water aspects of ozone
phytotoxicity in tomato plants, Plant Soil, 30, 531–541,
https://doi.org/10.1007/BF00010693, 1973.
Kobayashi, K., Miller, J. E., Flagler, R. B., and Heck, W. W.: Model analysis
of interactive effects of ozone and water-stress on the yield of soybean,
Environ. Pollut., 82, 39–45, https://doi.org/10.1016/0269-7491(93)90160-P, 1993.
Kreuzwieser, J., Graus, M., Wisthaler, A., Hansel, A., Rennenberg, H., and
Schnitzler, J. P.: Xylem-transported glucose as additional carbon source for
leaf isoprene formation in Quercus robur, New Phytol., 156, 171–178, https://doi.org/10.1046/j.1469-8137.2002.00516.x, 2002.
Kulmala, M., Suni, T., Lehtinen, K. E. J., Dal Maso, M., Boy, M., Reissell, A., Rannik, Ü., Aalto, P., Keronen, P., Hakola, H., Bäck, J., Hoffmann, T., Vesala, T., and Hari, P.: A new feedback mechanism linking forests, aerosols, and climate, Atmos. Chem. Phys., 4, 557–562, https://doi.org/10.5194/acp-4-557-2004, 2004.
Lak, Z. A., Sandén, H., Mayer, M., Godbold, D. L., and Rewald, B.:
Plasticity of Root Traits under Competition for a Nutrient-Rich Patch
Depends on Tree Species and Possesses a Large Congruency between Intra- and
Interspecific Situations, Forests, 11, 528, https://doi.org/10.3390/f11050528, 2020.
Lal, R.: World soils and the greenhouse effect, IGBP Newsletter, 37, 4–5,
1999.
Laothawornkitkul, J., Taylor, J. E., Paul, N. D., and Hewitt, C. N.: Biogenic
volatile organic compounds in the Earth system, New Phytol., 183, 27–51,
https://doi.org/10.1111/j.1469-8137.2009.02859.x, 2009.
Lee, J. D., Lewis, A. C., Monks, P. S., Jacob, M., Hamilton, J. F., Hopkins,
J. R., Watson, N. M., Saxton, J. E., Ennis, C., Carpenter, L. J., Carslaw, N., Fleming, Z., Bandy, B. J., Oram, D. E., Penkett, S. A., Slemr, J., Norton, E.,
Rickard, A. R., Whalley, L. K., Heard, D. E., Bloss, W. J., Gravestock, T.,
Smit, S. C., Stanton, J., Pilling, M. J., and Jenkin, M. E.: Ozone
photochemistry and elevated isoprene during the UK heatwave of August 2003,
Atmos. Environ., 40, 7598–7613, https://doi.org/10.1016/j.atmosenv.2006.06.057, 2006.
Lehning, A., Zimmer, I., Steinbrecher, R., Hauff, K., Briiggemann, N., and
Schnitzler. J. P.: Isoprene synthase activity and its relation to isoprene
emission in Quercus robur L. leaves, Plant Cell Environ., 22, 495–504,
https://doi.org/10.1046/j.1365-3040.1999.00425.x, 2002.
Lichtenthaler, H. K.: The 1-deoxy-D-xylulose-5-phosphatepathway of
isoprenoid biosynthesis in plants, Annu. Rev. Plant Phys., 50, 47–66, https://doi.org/10.1146/annurev.arplant.50.1.47, 1999.
Lichtenthaler, H. K., Schwendler, J., Disch, A., and Rohmer, M.: Biosynthesis
of isoprenoids in higher plant chloroplasts proceedsvia a
mevalonate-independent pathway, FEBS Lett., 400, 271–274,
https://doi.org/10.1016/S0014-5793(96)01404-4, 1997.
Llusiá, J. and Peñuelas, J.: Changes in terpene content and
emission in potted Mediterranean woody plants under severe drought, Can. J. Botany, 76, 1366–1373, https://doi.org/10.1139/b98-141, 1998.
Loreto, F. and Schnitzler, J. P.: Abiotic stresses and induced BVOC's, Trends
Plant Sci., 15, 154–166, https://doi.org/10.1016/j.tplants.2009.12.006,
2010.
Loreto, F. and Velikova, V.: Isoprene produced by leaves protects the
photosynthetic apparatus against ozone damage, quenches ozone products, and
reduces lipid peroxidation of cellular membranes, Plant Physiol., 127,
1781–1787, https://doi.org/10.1104/pp.010497, 2001.
Loreto, F., Pinelli, P., Manes, F., and Kollist, H.: Impact of ozone on
monoterpene emissions and evidence for an isoprene-like antioxidant action
of monoterpenes emitted by Quercus ilex leaves, Tree Physiol., 24, 361–367,
https://doi.org/10.1093/treephys/24.4.361, 2004.
Löw, M., Herbinger, K., Nunn, A. J., Häberle, K. H., Leuchner, M.,
Heerdt, C., Werner, C., Wipfler, P., Pretzsch, H., Tausz, M., and Matyssek,
R.: Extraordinary drought of 2003 overrules ozone impact on adult beech
trees (Fagus sylvatica), Trees, 20, 539–548, https://doi.org/10.1007/s00468-006-0069-z, 2006.
Maes, K. and Debergh, P. C.: Volatiles emitted from in vitro grown tomato shoots
during abiotic and biotic stress, Plant Cell Tiss. Org., 75, 73–78,
https://doi.org/10.1023/A:1024650006740, 2003.
Maffei, M. E.: Sites of synthesis, biochemistry and functional role of plant
volatiles, S. Afr. J. Bot., 76, 612–631,
https://doi.org/10.1016/j.sajb.2010.03.003, 2010.
Mahmoud, S. S. and Croteau, R. B.: Strategies for transgenic manipulation of
monoterpene biosynthesis in plants, Trends Plant Sci., 7, 366–373,
https://doi.org/10.1016/S1360-1385(02)02303-8, 2002.
Maja, M. M., Kasurinen, A., Yli-Pirilä, P., Joutsensaari, J., Klemola,
T., Holopainen, T., and Holopainen, J.: Contrasting responses of silver
birch VOC emissions to short- and long-term herbivory, Tree Physiol., 34,
241–252, https://doi.org/10.1093/treephys/tpt127, 2014.
Matsui, K.: Green leaf volatiles: hydroperoxide lyase pathway of oxylipin
metabolism, Curr. Opin. Plant Biol., 9, 274–280, https://doi.org/10.1016/j.pbi.2006.03.002, 2006.
McDowell, N., Pockman, W. T., Allen, C. D., Breshears, D. D., Cobb, N., Kolb,
T., Sperry, J., West, A., Williams, D., and Yepez, E. A.: Mechanisms of plant
survival and mortality during drought: why do some plants survive while
others succumb to drought?, New Phytol., 178, 719–739,
https://doi.org/10.1111/j.1469-8137.2008.02436.x, 2008.
Miller, J. D., Arteca, R. N., and Pell, E. J.: Senescence-associated gene
expression during ozone-induced leaf senescence in Arabidopsis, Plant Physiol., 120,
1015–1024, https://doi.org/10.1104/pp.120.4.1015, 1999.
Misztal, P. K., Hewitt, C. N., Wildt, J., Blande, J. D., Eller, A. S. D., Fares, S., Gentner, D. R., Gilman, J. B., Graus, M., Greenberg, J., Guenther, A. B., Hansel, A., Harley, P., Huang, M., Jardine, K., Karl, T., Kaser, L.,
Keutsch, F. N., Kiendler-Scharr, A., Kleist, E., Lerner, B. M., Li, T., Mak,
J., Nölscher, A. C., Schnitzhofer, R., Sinha, V., Thornton, B., Warneke,
C., Wegener, F., Werner, C., Williams, J., Worton, D. R., Yassaa, N., and
Goldstein, A. H.: Atmospheric benzenoid emissions from plants rival those
from fossil fuels, Sci. Rep.-UK., 5, 12064, https://doi.org/10.1038/srep12064, 2015.
Monson, R. K. and Fall, R.: Isoprene emission from aspen leaves, Plant
Physiol., 90, 267–274, https://doi.org/10.1104/pp.90.1.267, 1989.
Müller, J.-F., Stavrakou, T., Wallens, S., De Smedt, I., Van Roozendael, M., Potosnak, M. J., Rinne, J., Munger, B., Goldstein, A., and Guenther, A. B.: Global isoprene emissions estimated using MEGAN, ECMWF analyses and a detailed canopy environment model, Atmos. Chem. Phys., 8, 1329–1341, https://doi.org/10.5194/acp-8-1329-2008, 2008.
Müller, M., Mikoviny, T., Jud, W., D'Anna, B., and Wisthaler, A.: A new
software tool for the analysis of high resolution PTR-TOF mass spectra,
Chemometr. Intell. Lab., 127, 158–165, https://doi.org/10.1016/j.chemolab.2013.06.011, 2013.
Niinemets, Ü.: Mild versus severe stress and BVOC's: thresholds, priming
and consequences, Trends Plant Sci., 15, 145–153,
https://doi.org/10.1016/j.tplants.2009.11.008, 2010.
Niinemets, Ü., Loreto, F., and Reichstein, M.: Physiological and
physicochemical controls on foliar volatile organic compound emissions,
Trends Plant Sci., 9, 180–186, https://doi.org/10.1016/j.tplants.2004.02.006, 2004.
Orlando, J. J., Noziere, B., Tyndall, G. S., Orzechowska, G. E.,Paulson, S. E., and Rudich, Y.: Product studies of the OH-and ozone-initiated oxidation of some monoterpenes, J. Geophys. Res., 105, 11561–11572, https://doi.org/10.1029/2000JD900005, 2000.
Ormeño, E., Mevy, J. P., Vila, B., Bousquet-Melou, A., Greff, S., Bonin,
G., and Fernandez, C.: Water deficit stress induces different monoterpene
and sesquiterpene emission changes in Mediterranean species. Relationship
between terpene emissions and plant water potential, Chemosphere, 67,
276–284, https://doi.org/10.1016/j.chemosphere.2006.10.029,
2007.
Owen, S., Boissard, C., Street, R., Duckham, S., Csiky, O., and Hewitt, C.:
Screening of 18 Mediterranean plant species for volatile organic compound
emissions, Atmos. Environ., 31, 101–117,
https://doi.org/10.1016/S1352-2310(97)00078-2, 1997.
Palmer-Young, E. C., Veit, D., Gershenzon, J., and Schuman, M. C.: The
sesquiterpenes (e)-ß-farnesene and (e)-α-bergamotene quench
ozone but fail to protect the wild tobacco nicotiana attenuata from ozone,
UVB, and drought stresses, PLoS One, 10, e0127296,
https://doi.org/10.1371/journal.pone.0127296, 2015.
Panek, J. A., Kurpius, M. R., and Goldstein, A. H.: An evaluation of ozone
exposure metrics for a seasonally drought-stressed ponderosa pine ecosystem,
Environ. Pollut., 117, 93–100, https://doi.org/10.1016/S0269-7491(01)00155-5, 2002.
Paoletti, E.: Ozone slows stomatal response to light and leaf wounding in a
Mediterranean evergreen broadleaf, Arbutus unedo, Environ. Poll., 134, 439–445,
https://doi.org/10.1016/j.envpol.2004.09.011, 2005.
Paulot, F., Crounse, J. D., Kjaergaard, H. G., Kürten, A., St Clair, J. M., Seinfeld, J. H., and Wennberg, P. O.: Unexpected epoxide formation in the
gas-phase photooxidation of isoprene, Science, 325, 730–733,
https://doi.org/10.1126/science.1172910, 2009.
Pegoraro, E., Rey, A., Greenberg, J., Harley, P., Grace, J., Malhi, Y., and
Guenther, A.: Effect of drought on isoprene emission rates from leaves of
Quercus virginiana Mill, Atmos. Environ., 38, 6149–6156, https://doi.org/10.1016/j.atmosenv.2004.07.028, 2004.
Pellegrini, E., Hoshika, Y., Dusart, N., Cotrozzi, L., Gérard, J., Nali,
C., Vaultier, M.-N., Jolivet, Y., Lorenzini, G., and Paoletti, E.:
Antioxidative responses of 3 oak species under ozone and water stress
conditions, Sci. Total Environ., 647, 390–399, https://doi.org/10.1016/j.scitotenv.2018.07.413, 2019.
Peñuelas, J. and Llusiá, J.: The complexity of factors driving
volatile organic compound emissions by plants, Biol. Plantarum, 44, 481–487,
https://doi.org/10.1023/A:1013797129428, 2001.
Peñuelas, J. and Llusiá, J.: BVOC's: plant defense against climate
warming?, Trends Plant Sci., 8, 105–109, https://doi.org/10.1016/S1360-1385(03)00008-6, 2003.
Peñuelas, J. and Llusiá, J.: Plant VOC emissions: making use of the
unavoidable, Trends Ecol. Evol., 19, 402–404, https://doi.org/10.1016/j.tree.2004.06.002, 2004.
Peñuelas, J. and Munné-Bosch, S.: Isoprenoids: an evolutionary pool
for photoprotection, Trends Plant Sci., 10, 166–169,
https://doi.org/10.1016/j.tplants.2005.02.005, 2005.
Peñuelas, J., Llusiá, J., and Gimeno, B. S.: Effects of ozone
concentrations on biogenic volatile organic compounds emission in the
Mediterranean region, Environ. Pollut., 105, 17–23,
https://doi.org/10.1016/S0269-7491(98)00214-0, 1999.
Pinheiro, C. and Chaves, M. M.: Photosynthesis and drought: can we make
metabolic connections from available data?, J. Exp. Bot., 62, 869–882,
https://doi.org/10.1093/jxb/erq340, 2011.
Pollastrini, M., Desotgiu, R., Camin, F., Ziller, L., Gerosa, G., Marzuoli,
R., and Bussotti, F.: Severe drought events increase the sensitivity to
ozone on poplar clones, Environ. Exp. Bot., 100, 94–104,
https://doi.org/10.1016/j.envexpbot.2013.12.016, 2014.
Portillo-Estrada, M., Kazantsev, T., and Niinemets, Ü.: Fading of
wound-induced volatile release during Populus tremula leaf expansion, J. Plant Res., 130,
157–165, https://doi.org/10.1007/s10265-016-0880-6, 2017.
Rosenstiel, T., Potosnak, M., Griffin, K., Falle, R., and Monson, R. K.:
Increased CO2 uncouples growth from isoprene emission in an agriforest
ecosystem, Nature, 421, 256–259,
https://doi.org/10.1038/nature01312, 2003.
Royal Society: Ground-level ozone in the 21st century: future trends,
impacts and policy implications, Royal Society Science Policy Report, p. 15,
The Royal Society, London, UK, 2008.
Ruzicka, L.: The isoprene rule and the biogenesis of terpenic compounds,
Experientia, 9, 357–367, https://doi.org/10.1007/BF02167631, 1953.
Sandermann, H. and Strominger, J. L.: Purification and properties of
C55-isoprenoid alcohol phosphokinase from Staphylococcus aureus, J. Biol. Chem., 247, 5123–5131, 1972.
Schaub, M., Haeni, M., Calatayud, V., Ferretti, M., and Gottardini, E.: Ozone concentrations are decreasing but exposure remains high in
European forests, ICP Forests, 3, 6 pp., https://doi.org/10.3220/ICP1525258743000, 2018.
Schnitzler, J. P., Graus, M., Kreuzwieser, J., Heizmann, U., Rennenberg, H.,
Wisthaler, A., and Hansel, A.: Contribution of Different Carbon Sources to
Isoprene Biosynthesis in Poplar Leaves, Plant Physiol., 135, 152–160,
https://doi.org/10.1104/pp.103.037374, 2004.
Schwanz, P. and Polle, A.: Differential stress responses of antioxidative
systems to drought in pendunculate oak (Quercus robur) and maritime pine (Pinus pinaster) grown under
high CO2 concentrations, J. Exp. Bot., 52, 133–143,
https://doi.org/10.1093/jexbot/52.354.133, 2001.
Schwender, J., Zeidler, J., Gröner, R., Müller, C., Frocke, M.,
Braun, S., Lichtenthaler, F. W., and Lichtenthaler, H. K.: Incorporation of
1-deoxy-D-xylulose into isoprene and phytol by higher plants and algae, FEBS
Lett., 414, 129–134, https://doi.org/10.1016/S0014-5793(97)01002-8, 1997.
Seco, R., Karl, T., Guenther, A., Hosman, K. P., Pallardy, S. G., Gu, L.,
Geron, C., Harley, P., and Kim, S.: Ecosystem-scale volatile organic
compound fluxes during an extreme drought in a broadleaf temperate forest of
the Missouri Ozarks (central USA), Global Change Biol., 21, 3657–3674,
https://doi.org/10.1111/gcb.12980, 2015.
Sharkey, T. D. and Loreto, F.: Water stress, temperature and light effects
on the capacity for isoprene emission and photo-synthesis of kudzu leaves,
Oecologia, 95, 328–333, https://doi.org/10.1007/BF00320984, 1993.
Sharkey, T. D., Loreto, F., and Delwiche, C. F.: High carbon dioxide and
sun/shade effects on isoprene emission from oak and aspen tree leaves, Plant
Cell Environ., 14, 333–338, https://doi.org/10.1111/j.1365-3040.1991.tb01509.x, 1991.
Siddique, M. R. B., Hamid, A. I. M. S., and Islam, M. S.: Drought stress
effects on water relations of wheat, Bot. Bull. Acad. Sinica, 41, 35–39,
https://doi.org/10.7016/BBAS.200001.0035, 2000.
Silver, G. M. and Fall, R.: Enzymatic synthesis of isoprene from
dimethylallyl diphosphate in aspen leaf extracts, Plant Physiol., 97,
1588–1591, https://doi.org/10.1104/pp.97.4.1588, 1991.
Sindelarova, K., Granier, C., Bouarar, I., Guenther, A., Tilmes, S., Stavrakou, T., Müller, J.-F., Kuhn, U., Stefani, P., and Knorr, W.: Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years, Atmos. Chem. Phys., 14, 9317–9341, https://doi.org/10.5194/acp-14-9317-2014, 2014.
Singsaas, E. L., Lerdau, M., Winter, K., and Sharkey, T. D.: Isoprene
increases thermotolerance of isoprene-emitting species, Plant Physiol., 115,
1413–1420, https://doi.org/10.1104/pp.115.4.1413, 1997.
Slatnar, A., Jakopic, J., Stampar, F., Veberic, R., and Jamnik, P.: The
effect of bioactive compounds on in vitro and in vivo antioxidant activity of different berry juices, PLoS One, 7, e47880,
https://doi.org/10.1371/journal.pone.0047880, 2012.
Steinbrecher, R., Smiatek, G., Köble, R., Seufert, G., Theloke, J.,
Hauff, K., Ciccioli, P., Vautard, R., and Curci, G.: Intra-and inter-annual
variability of VOC emissions from natural and semi-natural vegetation in
Europe and neighboring countries, Atmos. Environ., 43, 1380–1391,
https://doi.org/10.1016/j.atmosenv.2008.09.072, 2009.
Tasin, M., Cappellin, L., and Biasioli, F.: Fast direct injection
mass-spectrometric characterization of stimuli for insect electrophysiology
by proton transfer reaction-time of flight mass-spectrometry (PTR-ToF-MS),
Sensors, 12, 4091–4104, https://doi.org/10.3390/s120404091, 2012.
Tingey, D.: The effect of environmental factors on the emission of biogenic
hydrocarbons from live oak and slash pine, edited by: Bufalini, J. and Arnts, R., Atmospheric Biogenic Hydrocarbons, Butterworth, Stoneham, MA, USA,
53–72, 1981.
Tingey, D., Evans, R., and Gumpertz, M.: Effects of environmental
conditions on isoprene emission from live oak, Planta, 152, 565–570,
https://doi.org/10.1007/BF00380829, 1981.
Tjoelker, M. G., Volin, J. C., Oleksyn, J., and Reich, P. B.: Interaction of
ozone pollution and light effects on photosynthesis in a forest canopy
experiment, Plant Cell Environ., 18, 895–905, https://doi.org/10.1111/j.1365-3040.1995.tb00598.x, 1995.
Toome, M., Randjärv, P., Copolovici, L. Niinemets, Ü., Heinsoo, K.,
Luik, A., and Steffen, M. N.: Leaf rust induced volatile organic compounds
signalling in willow during the infection, Planta, 232, 235–243,
https://doi.org/10.1007/s00425-010-1169-y, 2010.
Umlauf, D., Zapp, J., Becker, H., and Adam, K. P.: Biosynthesis of the
irregular monoterpene artemisia ketone, the sesquiterpene germacrene D and
other isoprenoids in Tanacetum vulgare L. (Asteraceae), Phytochemistry, 65, 2463–2470,
https://doi.org/10.1016/j.phytochem.2004.08.019, 2004.
Unger, N., Harper, K., Zheng, Y., Kiang, N. Y., Aleinov, I., Arneth, A., Schurgers, G., Amelynck, C., Goldstein, A., Guenther, A., Heinesch, B., Hewitt, C. N., Karl, T., Laffineur, Q., Langford, B., A. McKinney, K., Misztal, P., Potosnak, M., Rinne, J., Pressley, S., Schoon, N., and Serça, D.: Photosynthesis-dependent isoprene emission from leaf to planet in a global carbon-chemistry-climate model, Atmos. Chem. Phys., 13, 10243–10269, https://doi.org/10.5194/acp-13-10243-2013, 2013.
Ülker, E. D., Tavşanoğlu, Ç., and Perktaş, U.:
Ecological niche modelling of pedunculate oak (Quercus robur) supports the
“expansion–contraction” model of Pleistocene biogeography, Biol. J. Linn.
Soc., 123, 338–347, https://doi.org/10.1093/biolinnean/blx154, 2018.
Van Hees, A. F. M.: Growth and morphology of pedunculate oak (Quercus robur L.) and beech (Fagus sylvatica L.) seedlings in relation to shading and drought, Ann. Sci. Forest., 54, 9–18, https://doi.org/10.1051/forest:19970102, 1997.
Velikova, V., Tsonev, T., Pinelli, P., Alessio, G. A., and Loreto, F.:
Localized ozone fumigation system for studying ozone effects on
photosynthesis, respiration, electron transport rate and isoprene emission
in field-grown Mediterranean oak species, Tree Physiol., 25, 1523–1532,
https://doi.org/10.1093/treephys/25.12.1523, 2005.
Velikova, V., Sharkey, T. D., and Loreto, F.: Stabilization of thylakoid
membranes in isoprene-emitting plants reduces formation of reactive oxygen
species, Plant Signaling and Behavior, 7, 139–141,
https://doi.org/10.4161/psb.7.1.18521, 2012.
Vitale, M., Salvatori, E., Loreto, F., Fares, S., and Manes, F.:
Physiological responses of Quercus ilex leaves to water stress and acute ozone exposure under controlled conditions, Water Air Soil Poll., 189, 113–125, https://doi.org/10.1007/s11270-007-9560-4, 2008.
Vogt, T.: Phenylpropanoid biosynthesis, Mol. Plant, 3, 2–20,
https://doi.org/10.1093/mp/ssp106, 2010.
Volz, A. and Kley, D.: Evaluation of the Montsouris series of ozone
measurements made in the 19th-century, Nature, 332, 240–242,
https://doi.org/10.1038/332240a0, 1988.
Wenda-Piesik, A.: Volatile organic compound emissions by winter wheat plants
(Triticum aestivum L.) under Fusarium spp, infestation and various abiotic conditions, Pol. J. Environ. Stud., 20, 1335–1342, 2011.
Wildermuth, M. C. and Fall, R.: Light-dependent isoprene emission,
Characterization of a thylakoid-bound isoprene synthase in Salix
discolorchloroplasts, Plant Physiol., 112, 171–182,
https://doi.org/10.1104/pp.112.1.171, 1996.
Wildermuth, M. C. and Fall, R.: Biochemical characterization of stromal and
thylakoid-bound isoforms of isoprene synthase in willow leaves, Plant
Physiol., 116, 1111–1123, https://doi.org/10.1104/pp.116.3.1111, 1998.
Williams, L. E. and Araujo, F. J.: Correlations among predawn leaf, midday
leaf, and midday stem water potential and their correlations with other
measures of soil and plant water status in Vitis vinifera, J. Am. Soc. Hortic. Sci., 127,
448–454, https://doi.org/10.21273/JASHS.127.3.448, 2002.
Wittig, V. E., Ainsworth, E. A., and Long, S. P.: To what extent do current and projected increases in surface ozone affect photosynthesis and stomatal
conductance of trees? A meta-analytic review of the last 3 decades of
experiments, Plant Cell Environ., 30, 1150–1162, https://doi.org/10.1111/j.1365-3040.2007.01717.x, 2007.
Worthington Biochemical Corporation: The Worthington Manual, Freehold, New
York, p. 1943, 1972.
Wootton-Beard, P. C., Moran, A., and Ryan, L.: Stability of the total
antioxidant capacity and total polyphenol content of 23 commercially
available vegetable juices before and after in vitro digestion measured by FRAP,
DPPH, ABTS and Folin–Ciocalteu methods, Food Res. Int., 44, 217–224,
https://doi.org/10.1016/j.foodres.2010.10.033, 2011.
Yener, S., Sánchez-López, J. A., Granitto, P. M., Cappellin, L.,
Märk, T. D., Zimmermann, R., and Biasioli, F.: Rapid and direct volatile
compound profiling of black and green teas (Camellia sinensis) from different countries with PTR-ToF-MS, Talanta, 152, 45–53, https://doi.org/10.1016/j.talanta.2016.01.050, 2016.
Yuan, J. S., Himanen, S. J., Holopainen, J. K., Chen, F., and Stewart, C. N.:
Smelling global climate change: mitigation of function for plant volatile
organic compounds, Trends Ecol. Evol., 24, 323–331, https://doi.org/10.1016/j.tree.2009.01.012, 2009.
Yuan, X., Calatayud, V., Gao, F., Fares, S., Paoletti, E., Tian, Y., and
Feng, Z.: Interaction of drought and ozone exposure on isoprene emission
from extensively cultivated poplar, Plant Cell Environ., 39, 2276–2287,
https://doi.org/10.1111/pce.12798, 2016.
Short summary
Drought events are expected to become more frequent with climate change. Along with these events atmospheric ozone is also expected to increase. Both can stress plants. Here we investigate to what extent these factors modulate the emission of volatile organic compounds (VOCs) from oak plants. We find an antagonistic effect between drought stress and ozone, impacting the emission of different BVOCs, which is indirectly controlled by stomatal opening, allowing plants to control their water budget.
Drought events are expected to become more frequent with climate change. Along with these events...
Altmetrics
Final-revised paper
Preprint