Articles | Volume 19, issue 4
https://doi.org/10.5194/bg-19-1021-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-1021-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Sea ice concentration impacts dissolved organic gases in the Canadian Arctic
Plymouth Marine Laboratory, Plymouth, PL1 3DH, UK
Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich,
NR4 7TJ, UK
British Antarctic Survey, Natural Environment Research Council, Madingley Road, High Cross, Cambridge, CB3 0ET, UK
now at: Department of Marine Biology and Oceanography, Institut de Ciències del Mar, Barcelona, 08003, Spain
Anna E. Jones
British Antarctic Survey, Natural Environment Research Council, Madingley Road, High Cross, Cambridge, CB3 0ET, UK
William T. Sturges
Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich,
NR4 7TJ, UK
Philip D. Nightingale
Plymouth Marine Laboratory, Plymouth, PL1 3DH, UK
Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich,
NR4 7TJ, UK
Sustainable Agriculture Systems, Rothamsted Research, North Wyke,
Devon, EX20 2SB, UK
Brent Else
Department of Geography, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
Brian J. Butterworth
Cooperative Institute for Research in Environmental Sciences,
University of Colorado, Boulder, Colorado, USA
NOAA Physical Sciences Laboratory, Boulder, Colorado, USA
Plymouth Marine Laboratory, Plymouth, PL1 3DH, UK
Related authors
Arianna Rocchi, Mark F. Fitzsimons, Preston Akenga, Ana Sotomayor, Elisabet L. Sà, Queralt Güell-Bujons, Magda Vila, Yaiza M. Castillo, Manuel Dall'Osto, Dolors Vaqué, Charel Wohl, Rafel Simó, and Elisa Berdalet
Biogeosciences, 22, 3429–3448, https://doi.org/10.5194/bg-22-3429-2025, https://doi.org/10.5194/bg-22-3429-2025, 2025
Short summary
Short summary
During the PolarChange expedition, volatile alkylamines, important players in nitrogen cycling and cloud formation, were measured in Antarctic waters using a high-sensitivity method. Trimethylamine was the dominant alkylamine in marine particles, associated with nanophytoplankton. Dissolved dimethylamine likely originated from trimethylamine degradation, while diethylamine sources remain unclear. These findings confirm the biological origin of alkylamines in polar marine microbial food webs.
Daniel P. Phillips, Frances E. Hopkins, Thomas G. Bell, Peter S. Liss, Philip D. Nightingale, Claire E. Reeves, Charel Wohl, and Mingxi Yang
Atmos. Chem. Phys., 21, 10111–10132, https://doi.org/10.5194/acp-21-10111-2021, https://doi.org/10.5194/acp-21-10111-2021, 2021
Short summary
Short summary
We present the first measurements of the rate of transfer (flux) of three gases between the atmosphere and the ocean, using a direct flux measurement technique, at a coastal site. We show greater atmospheric loss of acetone and acetaldehyde into the ocean than estimated by global models for the open water; importantly, the acetaldehyde transfer direction is opposite to the model estimates. Measured dimethylsulfide fluxes agreed with a recent model. Isoprene fluxes were too weak to be measured.
Loren Temple, Stuart Young, Thomas Bannan, Stephanie Batten, Stéphane Bauguitte, Hugh Coe, Eve Grant, Stuart Lacy, James Lee, Emily Matthews, Dominika Pasternak, Samuel Rogers, Andrew Rollins, Jake Vallow, Mingxi Yang, and Pete Edwards
EGUsphere, https://doi.org/10.5194/egusphere-2025-3678, https://doi.org/10.5194/egusphere-2025-3678, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
Sulfur dioxide (SO2) is a key precursor to aerosol formation, particularly in remote marine environments, ultimately affecting cloud properties and climate. Accurate quantification of atmospheric SO2 is therefore crucial. This work compares a custom-built laser-based instrument to two commercial SO2 analysers during measurements from a large research aircraft. Our results show that this custom-built system offers greater sensitivity at time resolutions required for aircraft measurements.
Arianna Rocchi, Mark F. Fitzsimons, Preston Akenga, Ana Sotomayor, Elisabet L. Sà, Queralt Güell-Bujons, Magda Vila, Yaiza M. Castillo, Manuel Dall'Osto, Dolors Vaqué, Charel Wohl, Rafel Simó, and Elisa Berdalet
Biogeosciences, 22, 3429–3448, https://doi.org/10.5194/bg-22-3429-2025, https://doi.org/10.5194/bg-22-3429-2025, 2025
Short summary
Short summary
During the PolarChange expedition, volatile alkylamines, important players in nitrogen cycling and cloud formation, were measured in Antarctic waters using a high-sensitivity method. Trimethylamine was the dominant alkylamine in marine particles, associated with nanophytoplankton. Dissolved dimethylamine likely originated from trimethylamine degradation, while diethylamine sources remain unclear. These findings confirm the biological origin of alkylamines in polar marine microbial food webs.
Brian J. Butterworth, Brent G. T. Else, Kristina A. Brown, Christopher J. Mundy, William J. Williams, Lina M. Rotermund, and Gijs de Boer
EGUsphere, https://doi.org/10.5194/egusphere-2025-1802, https://doi.org/10.5194/egusphere-2025-1802, 2025
Short summary
Short summary
Observations of carbon dioxide transfer between water and air were measured at a seasonally ice-covered marine location using the eddy covariance method. The goal was to determine how sea ice influences water-air transfer of carbon dioxide by season. During full ice cover in winter, ice acted as a barrier to transfer. In spring, melt water absorbed carbon dioxide from the air. In fall, freezing released carbon dioxide from water to the air.
James Brean, David C. S. Beddows, Eija Asmi, Aki Virkkula, Lauriane L. J. Quéléver, Mikko Sipilä, Floortje Van Den Heuvel, Thomas Lachlan-Cope, Anna Jones, Markus Frey, Angelo Lupi, Jiyeon Park, Young Jun Yoon, Rolf Weller, Giselle L. Marincovich, Gabriela C. Mulena, Roy M. Harrison, and Manuel Dall'Osto
Atmos. Chem. Phys., 25, 1145–1162, https://doi.org/10.5194/acp-25-1145-2025, https://doi.org/10.5194/acp-25-1145-2025, 2025
Short summary
Short summary
Our results emphasise how understanding the geographical variation in surface types across the Antarctic is key to understanding secondary aerosol sources.
Alex T. Archibald, Bablu Sinha, Maria R. Russo, Emily Matthews, Freya A. Squires, N. Luke Abraham, Stephane J.-B. Bauguitte, Thomas J. Bannan, Thomas G. Bell, David Berry, Lucy J. Carpenter, Hugh Coe, Andrew Coward, Peter Edwards, Daniel Feltham, Dwayne Heard, Jim Hopkins, James Keeble, Elizabeth C. Kent, Brian A. King, Isobel R. Lawrence, James Lee, Claire R. Macintosh, Alex Megann, Bengamin I. Moat, Katie Read, Chris Reed, Malcolm J. Roberts, Reinhard Schiemann, David Schroeder, Timothy J. Smyth, Loren Temple, Navaneeth Thamban, Lisa Whalley, Simon Williams, Huihui Wu, and Mingxi Yang
Earth Syst. Sci. Data, 17, 135–164, https://doi.org/10.5194/essd-17-135-2025, https://doi.org/10.5194/essd-17-135-2025, 2025
Short summary
Short summary
Here, we present an overview of the data generated as part of the North Atlantic Climate System Integrated Study (ACSIS) programme that are available through dedicated repositories at the Centre for Environmental Data Analysis (CEDA; www.ceda.ac.uk) and the British Oceanographic Data Centre (BODC; bodc.ac.uk). The datasets described here cover the North Atlantic Ocean, the atmosphere above (it including its composition), and Arctic sea ice.
Sankirna D. Joge, Anoop S. Mahajan, Shrivardhan Hulswar, Christa A. Marandino, Martí Galí, Thomas G. Bell, Mingxi Yang, and Rafel Simó
Biogeosciences, 21, 4453–4467, https://doi.org/10.5194/bg-21-4453-2024, https://doi.org/10.5194/bg-21-4453-2024, 2024
Short summary
Short summary
Dimethyl sulfide (DMS) is the largest natural source of sulfur in the atmosphere and leads to the formation of cloud condensation nuclei. DMS emissions and quantification of their impacts have large uncertainties, but a detailed study on the range of emissions and drivers of their uncertainty is missing to date. The emissions are calculated from the seawater DMS concentrations and a flux parameterization. Here we quantify the differences in the effect of flux parameterizations used in models.
Marco Paglione, David C. S. Beddows, Anna Jones, Thomas Lachlan-Cope, Matteo Rinaldi, Stefano Decesari, Francesco Manarini, Mara Russo, Karam Mansour, Roy M. Harrison, Andrea Mazzanti, Emilio Tagliavini, and Manuel Dall'Osto
Atmos. Chem. Phys., 24, 6305–6322, https://doi.org/10.5194/acp-24-6305-2024, https://doi.org/10.5194/acp-24-6305-2024, 2024
Short summary
Short summary
Applying factor analysis techniques to H-NMR spectra, we present the organic aerosol (OA) source apportionment of PM1 samples collected in parallel at two Antarctic stations, namely Signy and Halley, allowing investigation of aerosol–climate interactions in an unperturbed atmosphere. Our results show remarkable differences between pelagic (open-ocean) and sympagic (sea-ice-influenced) air masses and indicate that various sources and processes are controlling Antarctic aerosols.
Magdalena Pühl, Anke Roiger, Alina Fiehn, Alan M. Gorchov Negron, Eric A. Kort, Stefan Schwietzke, Ignacio Pisso, Amy Foulds, James Lee, James L. France, Anna E. Jones, Dave Lowry, Rebecca E. Fisher, Langwen Huang, Jacob Shaw, Prudence Bateson, Stephen Andrews, Stuart Young, Pamela Dominutti, Tom Lachlan-Cope, Alexandra Weiss, and Grant Allen
Atmos. Chem. Phys., 24, 1005–1024, https://doi.org/10.5194/acp-24-1005-2024, https://doi.org/10.5194/acp-24-1005-2024, 2024
Short summary
Short summary
In April–May 2019 we carried out an airborne field campaign in the southern North Sea with the aim of studying methane emissions of offshore gas installations. We determined methane emissions from elevated methane measured downstream of the sampled installations. We compare our measured methane emissions with estimated methane emissions from national and global annual inventories. As a result, we find inconsistencies of inventories and large discrepancies between measurements and inventories.
Xavier Faïn, David M. Etheridge, Kévin Fourteau, Patricia Martinerie, Cathy M. Trudinger, Rachael H. Rhodes, Nathan J. Chellman, Ray L. Langenfelds, Joseph R. McConnell, Mark A. J. Curran, Edward J. Brook, Thomas Blunier, Grégory Teste, Roberto Grilli, Anthony Lemoine, William T. Sturges, Boris Vannière, Johannes Freitag, and Jérôme Chappellaz
Clim. Past, 19, 2287–2311, https://doi.org/10.5194/cp-19-2287-2023, https://doi.org/10.5194/cp-19-2287-2023, 2023
Short summary
Short summary
We report on a 3000-year record of carbon monoxide (CO) levels in the Southern Hemisphere's high latitudes by combining ice core and firn air measurements with modern direct atmospheric samples. Antarctica [CO] remained stable (–835 to 1500 CE), decreased during the Little Ice Age, and peaked around 1985 CE. Such evolution reflects stable biomass burning CO emissions before industrialization, followed by growth from CO anthropogenic sources, which decline after 1985 due to improved combustion.
Richard P. Sims, Mohamed M. M. Ahmed, Brian J. Butterworth, Patrick J. Duke, Stephen F. Gonski, Samantha F. Jones, Kristina A. Brown, Christopher J. Mundy, William J. Williams, and Brent G. T. Else
Ocean Sci., 19, 837–856, https://doi.org/10.5194/os-19-837-2023, https://doi.org/10.5194/os-19-837-2023, 2023
Short summary
Short summary
Using a small research vessel based out of Cambridge Bay in the Kitikmeot Sea (Canadian Arctic Archipelago), we were able to make measurements of surface ocean pCO2 shortly after sea ice breakup for 4 consecutive years. We compare our measurements to previous underway measurements and the two ongoing ocean carbon observatories in the region. We identify high interannual variability and a potential bias in previous estimates due to lower pCO2 in bays and inlets.
Amelia M. H. Bond, Markus M. Frey, Jan Kaiser, Jörg Kleffmann, Anna E. Jones, and Freya A. Squires
Atmos. Chem. Phys., 23, 5533–5550, https://doi.org/10.5194/acp-23-5533-2023, https://doi.org/10.5194/acp-23-5533-2023, 2023
Short summary
Short summary
Atmospheric nitrous acid (HONO) amount fractions measured at Halley Research Station, Antarctica, were found to be low. Vertical fluxes of HONO from the snow were also measured and agree with the estimated HONO production rate from photolysis of snow nitrate. In a simple box model of HONO sources and sinks, there was good agreement between the measured flux and amount fraction. HONO was found to be an important OH radical source at Halley.
Flavienne Bruyant, Rémi Amiraux, Marie-Pier Amyot, Philippe Archambault, Lise Artigue, Lucas Barbedo de Freitas, Guislain Bécu, Simon Bélanger, Pascaline Bourgain, Annick Bricaud, Etienne Brouard, Camille Brunet, Tonya Burgers, Danielle Caleb, Katrine Chalut, Hervé Claustre, Véronique Cornet-Barthaux, Pierre Coupel, Marine Cusa, Fanny Cusset, Laeticia Dadaglio, Marty Davelaar, Gabrièle Deslongchamps, Céline Dimier, Julie Dinasquet, Dany Dumont, Brent Else, Igor Eulaers, Joannie Ferland, Gabrielle Filteau, Marie-Hélène Forget, Jérome Fort, Louis Fortier, Martí Galí, Morgane Gallinari, Svend-Erik Garbus, Nicole Garcia, Catherine Gérikas Ribeiro, Colline Gombault, Priscilla Gourvil, Clémence Goyens, Cindy Grant, Pierre-Luc Grondin, Pascal Guillot, Sandrine Hillion, Rachel Hussherr, Fabien Joux, Hannah Joy-Warren, Gabriel Joyal, David Kieber, Augustin Lafond, José Lagunas, Patrick Lajeunesse, Catherine Lalande, Jade Larivière, Florence Le Gall, Karine Leblanc, Mathieu Leblanc, Justine Legras, Keith Lévesque, Kate-M. Lewis, Edouard Leymarie, Aude Leynaert, Thomas Linkowski, Martine Lizotte, Adriana Lopes dos Santos, Claudie Marec, Dominique Marie, Guillaume Massé, Philippe Massicotte, Atsushi Matsuoka, Lisa A. Miller, Sharif Mirshak, Nathalie Morata, Brivaela Moriceau, Philippe-Israël Morin, Simon Morisset, Anders Mosbech, Alfonso Mucci, Gabrielle Nadaï, Christian Nozais, Ingrid Obernosterer, Thimoté Paire, Christos Panagiotopoulos, Marie Parenteau, Noémie Pelletier, Marc Picheral, Bernard Quéguiner, Patrick Raimbault, Joséphine Ras, Eric Rehm, Llúcia Ribot Lacosta, Jean-François Rontani, Blanche Saint-Béat, Julie Sansoulet, Noé Sardet, Catherine Schmechtig, Antoine Sciandra, Richard Sempéré, Caroline Sévigny, Jordan Toullec, Margot Tragin, Jean-Éric Tremblay, Annie-Pier Trottier, Daniel Vaulot, Anda Vladoiu, Lei Xue, Gustavo Yunda-Guarin, and Marcel Babin
Earth Syst. Sci. Data, 14, 4607–4642, https://doi.org/10.5194/essd-14-4607-2022, https://doi.org/10.5194/essd-14-4607-2022, 2022
Short summary
Short summary
This paper presents a dataset acquired during a research cruise held in Baffin Bay in 2016. We observed that the disappearance of sea ice in the Arctic Ocean increases both the length and spatial extent of the phytoplankton growth season. In the future, this will impact the food webs on which the local populations depend for their food supply and fisheries. This dataset will provide insight into quantifying these impacts and help the decision-making process for policymakers.
Brent G. T. Else, Araleigh Cranch, Richard P. Sims, Samantha Jones, Laura A. Dalman, Christopher J. Mundy, Rebecca A. Segal, Randall K. Scharien, and Tania Guha
The Cryosphere, 16, 3685–3701, https://doi.org/10.5194/tc-16-3685-2022, https://doi.org/10.5194/tc-16-3685-2022, 2022
Short summary
Short summary
Sea ice helps control how much carbon dioxide polar oceans absorb. We compared ice cores from two sites to look for differences in carbon chemistry: one site had thin ice due to strong ocean currents and thick snow; the other site had thick ice, thin snow, and weak currents. We did find some differences in small layers near the top and the bottom of the cores, but for most of the ice volume the chemistry was the same. This result will help build better models of the carbon sink in polar oceans.
Linh N. T. Nguyen, Harro A. J. Meijer, Charlotte van Leeuwen, Bert A. M. Kers, Hubertus A. Scheeren, Anna E. Jones, Neil Brough, Thomas Barningham, Penelope A. Pickers, Andrew C. Manning, and Ingrid T. Luijkx
Earth Syst. Sci. Data, 14, 991–1014, https://doi.org/10.5194/essd-14-991-2022, https://doi.org/10.5194/essd-14-991-2022, 2022
Short summary
Short summary
We present 20-year flask sample records of atmospheric CO2, O2, and APO from the stations Lutjewad (the Netherlands), Mace Head (Ireland), and Halley (Antarctica). Data from Lutjewad and Mace Head show similar long-term trends and seasonal cycles, agreeing with measurements from another station (Weybourne, UK). Measurements from Halley agree partly with those conducted by other institutes. From our 2002–2018 Lutjewad and Mace Head records, we find good agreement for global ocean carbon uptake.
Matthew W. Christensen, Andrew Gettelman, Jan Cermak, Guy Dagan, Michael Diamond, Alyson Douglas, Graham Feingold, Franziska Glassmeier, Tom Goren, Daniel P. Grosvenor, Edward Gryspeerdt, Ralph Kahn, Zhanqing Li, Po-Lun Ma, Florent Malavelle, Isabel L. McCoy, Daniel T. McCoy, Greg McFarquhar, Johannes Mülmenstädt, Sandip Pal, Anna Possner, Adam Povey, Johannes Quaas, Daniel Rosenfeld, Anja Schmidt, Roland Schrödner, Armin Sorooshian, Philip Stier, Velle Toll, Duncan Watson-Parris, Robert Wood, Mingxi Yang, and Tianle Yuan
Atmos. Chem. Phys., 22, 641–674, https://doi.org/10.5194/acp-22-641-2022, https://doi.org/10.5194/acp-22-641-2022, 2022
Short summary
Short summary
Trace gases and aerosols (tiny airborne particles) are released from a variety of point sources around the globe. Examples include volcanoes, industrial chimneys, forest fires, and ship stacks. These sources provide opportunistic experiments with which to quantify the role of aerosols in modifying cloud properties. We review the current state of understanding on the influence of aerosol on climate built from the wide range of natural and anthropogenic laboratories investigated in recent decades.
Stefan Metzger, David Durden, Sreenath Paleri, Matthias Sühring, Brian J. Butterworth, Christopher Florian, Matthias Mauder, David M. Plummer, Luise Wanner, Ke Xu, and Ankur R. Desai
Atmos. Meas. Tech., 14, 6929–6954, https://doi.org/10.5194/amt-14-6929-2021, https://doi.org/10.5194/amt-14-6929-2021, 2021
Short summary
Short summary
The key points are the following. (i) Integrative observing system design can multiply the information gain of surface–atmosphere field measurements. (ii) Catalyzing numerical simulations and first-principles machine learning open up observing system simulation experiments to novel applications. (iii) Use cases include natural climate solutions, emission inventory validation, urban air quality, and industry leak detection.
Daniel P. Phillips, Frances E. Hopkins, Thomas G. Bell, Peter S. Liss, Philip D. Nightingale, Claire E. Reeves, Charel Wohl, and Mingxi Yang
Atmos. Chem. Phys., 21, 10111–10132, https://doi.org/10.5194/acp-21-10111-2021, https://doi.org/10.5194/acp-21-10111-2021, 2021
Short summary
Short summary
We present the first measurements of the rate of transfer (flux) of three gases between the atmosphere and the ocean, using a direct flux measurement technique, at a coastal site. We show greater atmospheric loss of acetone and acetaldehyde into the ocean than estimated by global models for the open water; importantly, the acetaldehyde transfer direction is opposite to the model estimates. Measured dimethylsulfide fluxes agreed with a recent model. Isoprene fluxes were too weak to be measured.
Yuanxu Dong, Mingxi Yang, Dorothee C. E. Bakker, Vassilis Kitidis, and Thomas G. Bell
Atmos. Chem. Phys., 21, 8089–8110, https://doi.org/10.5194/acp-21-8089-2021, https://doi.org/10.5194/acp-21-8089-2021, 2021
Short summary
Short summary
Eddy covariance (EC) is the most direct method for measuring air–sea CO2 flux from ships. However, uncertainty in EC air–sea CO2 fluxes has not been well quantified. Here we show that with the state-of-the-art gas analysers, instrumental noise no longer contributes significantly to the CO2 flux uncertainty. Applying an appropriate averaging timescale (1–3 h) and suitable air–sea CO2 fugacity threshold (at least 20 µatm) to EC flux data enables an optimal analysis of the gas transfer velocity.
Max Thomas, Johannes C. Laube, Jan Kaiser, Samuel Allin, Patricia Martinerie, Robert Mulvaney, Anna Ridley, Thomas Röckmann, William T. Sturges, and Emmanuel Witrant
Atmos. Chem. Phys., 21, 6857–6873, https://doi.org/10.5194/acp-21-6857-2021, https://doi.org/10.5194/acp-21-6857-2021, 2021
Short summary
Short summary
CFC gases are destroying the Earth's life-protecting ozone layer. We improve understanding of CFC destruction by measuring the isotopic fingerprint of the carbon in the three most abundant CFCs. These are the first such measurements in the main region where CFCs are destroyed – the stratosphere. We reconstruct the atmospheric isotope histories of these CFCs back to the 1950s by measuring air extracted from deep snow and using a model. The model and the measurements are generally consistent.
Shona E. Wilde, Pamela A. Dominutti, Grant Allen, Stephen J. Andrews, Prudence Bateson, Stephane J.-B. Bauguitte, Ralph R. Burton, Ioana Colfescu, James France, James R. Hopkins, Langwen Huang, Anna E. Jones, Tom Lachlan-Cope, James D. Lee, Alastair C. Lewis, Stephen D. Mobbs, Alexandra Weiss, Stuart Young, and Ruth M. Purvis
Atmos. Chem. Phys., 21, 3741–3762, https://doi.org/10.5194/acp-21-3741-2021, https://doi.org/10.5194/acp-21-3741-2021, 2021
Short summary
Short summary
We use airborne measurements to evaluate the speciation of volatile organic compound (VOC) emissions from offshore oil and gas (O&G) installations in the North Sea. The composition of emissions varied across regions associated with either gas, condensate or oil extraction, demonstrating that VOC emissions are not uniform across the whole O&G sector. We compare our results to VOC source profiles in the UK emissions inventory, showing these emissions are not currently fully characterized.
James L. France, Prudence Bateson, Pamela Dominutti, Grant Allen, Stephen Andrews, Stephane Bauguitte, Max Coleman, Tom Lachlan-Cope, Rebecca E. Fisher, Langwen Huang, Anna E. Jones, James Lee, David Lowry, Joseph Pitt, Ruth Purvis, John Pyle, Jacob Shaw, Nicola Warwick, Alexandra Weiss, Shona Wilde, Jonathan Witherstone, and Stuart Young
Atmos. Meas. Tech., 14, 71–88, https://doi.org/10.5194/amt-14-71-2021, https://doi.org/10.5194/amt-14-71-2021, 2021
Short summary
Short summary
Measuring emission rates of methane from installations is tricky, and it is even more so when those installations are located offshore. Here, we show the aircraft set-up and demonstrate an effective methodology for surveying emissions from UK and Dutch offshore oil and gas installations. We present example data collected from two campaigns to demonstrate the challenges and solutions encountered during these surveys.
David C. Loades, Mingxi Yang, Thomas G. Bell, Adam R. Vaughan, Ryan J. Pound, Stefan Metzger, James D. Lee, and Lucy J. Carpenter
Atmos. Meas. Tech., 13, 6915–6931, https://doi.org/10.5194/amt-13-6915-2020, https://doi.org/10.5194/amt-13-6915-2020, 2020
Short summary
Short summary
The loss of ozone to the sea surface was measured from the south coast of the UK and was found to be more rapid than previous observations over the open ocean. This is likely a consequence of different chemistry and biology in coastal environments. Strong winds appeared to speed up the loss of ozone. A better understanding of what influences ozone loss over the sea will lead to better model estimates of total ozone in the troposphere.
Cited articles
Abbatt, J. P. D., Leaitch, W. R., Aliabadi, A. A., Bertram, A. K., Blanchet, J.-P., Boivin-Rioux, A., Bozem, H., Burkart, J., Chang, R. Y. W., Charette, J., Chaubey, J. P., Christensen, R. J., Cirisan, A., Collins, D. B., Croft, B., Dionne, J., Evans, G. J., Fletcher, C. G., Galí, M., Ghahremaninezhad, R., Girard, E., Gong, W., Gosselin, M., Gourdal, M., Hanna, S. J., Hayashida, H., Herber, A. B., Hesaraki, S., Hoor, P., Huang, L., Hussherr, R., Irish, V. E., Keita, S. A., Kodros, J. K., Köllner, F., Kolonjari, F., Kunkel, D., Ladino, L. A., Law, K., Levasseur, M., Libois, Q., Liggio, J., Lizotte, M., Macdonald, K. M., Mahmood, R., Martin, R. V., Mason, R. H., Miller, L. A., Moravek, A., Mortenson, E., Mungall, E. L., Murphy, J. G., Namazi, M., Norman, A.-L., O'Neill, N. T., Pierce, J. R., Russell, L. M., Schneider, J., Schulz, H., Sharma, S., Si, M., Staebler, R. M., Steiner, N. S., Thomas, J. L., von Salzen, K., Wentzell, J. J. B., Willis, M. D., Wentworth, G. R., Xu, J.-W., and Yakobi-Hancock, J. D.: Overview paper: New insights into aerosol and climate in the Arctic, Atmos. Chem. Phys., 19, 2527–2560, https://doi.org/10.5194/acp-19-2527-2019, 2019.
Ahmed, M., Else, B. G. T., Burgers, T. M., and Papakyriakou, T.: Variability
of Surface Water pCO2 in the Canadian Arctic Archipelago From 2010 to 2016,
J. Geophys. Res.-Oceans, 124, 1876–1896, https://doi.org/10.1029/2018JC014639, 2019.
Ahmed, M. M. M., Else, B. G. T., Capelle, D., Miller, L. A., and
Papakyriakou, T.: Underestimation of surface pCO2 and air-sea CO2 fluxes due
to freshwater stratification in an Arctic shelf sea, Hudson Bay, Elem. Sci.
Anthr., 9, 1–21, 2020.
Amundsen Science Data Collection: TSG and CTD data collected by the CCGS
Amundsen in the Canadian Arctic. Processed data, TSG Version 2, CTD Version
1, available at: https://polardata.ca/, Canadian Cryospheric Information Network
(CCIN), ArcticNet Inc., Québec, Canada,
https://doi.org/10.5884/12715, 2017.
Ardyna, M., Babin, M., Gosselin, M., Devred, E., Bélanger, S., Matsuoka, A., and Tremblay, J.-É.: Parameterization of vertical Chlorophyll a in the Arctic Ocean: impact of the subsurface chlorophyll maximum on regional, seasonal, and annual primary production estimates, Biogeosciences, 10, 4383–4404, https://doi.org/10.5194/bg-10-4383-2013, 2013.
Arnold, S. R., Spracklen, D. V., Williams, J., Yassaa, N., Sciare, J., Bonsang, B., Gros, V., Peeken, I., Lewis, A. C., Alvain, S., and Moulin, C.: Evaluation of the global oceanic isoprene source and its impacts on marine organic carbon aerosol, Atmos. Chem. Phys., 9, 1253–1262, https://doi.org/10.5194/acp-9-1253-2009, 2009.
Arrigo, K. R., Matrai, P. A., and Van Dijken, G. L.: Primary productivity in
the Arctic Ocean: Impacts of complex optical properties and subsurface
chlorophyll maxima on large-scale estimates, J. Geophys. Res.-Oceans,
116, 1–15, https://doi.org/10.1029/2011JC007273, 2011.
Baker, A. R., Turner, S. M., Broadgate, W. J., Thompson, A., McFiggans, G.
B., Vesperini, O., Nightingal, P. D., Liss, P. S., and Jickells, T. D.:
Distribution and sea-air fluxes of biogenic trace gases in the eastern
Atlantic Ocean, Global Biogeochem. Cy., 14, 871–886,
https://doi.org/10.1029/1999GB001219, 2000.
Barber, D. G., Hop, H., Mundy, C. J., Else, B., Dmitrenko, I. A., Tremblay,
J. E., Ehn, J. K., Assmy, P., Daase, M., Candlish, L. M., and Rysgaard, S.:
Selected physical, biological and biogeochemical implications of a rapidly
changing Arctic Marginal Ice Zone, Prog. Oceanogr., 139, 122–150,
https://doi.org/10.1016/j.pocean.2015.09.003, 2015.
Bates, K. H., Jacob, D. J., Wang, S., Hornbrook, R. S., Apel, E. C., Kim, M.
J., Millet, D. B., Wells, K. C., Chen, X., Brewer, J. F., Ray, E. A.,
Commane, R., Diskin, G. S., and Wofsy, S. C.: The global budget of
atmospheric methanol: new constraints on secondary, oceanic, and terrestrial
sources, J. Geophys. Res.-Atmos., 126, 1–23, https://doi.org/10.1029/2020jd033439, 2021.
Beale, R., Dixon, J. L., Arnold, S. R., Liss, P. S., and Nightingale, P. D.:
Methanol, acetaldehyde, and acetone in the surface waters of the Atlantic
Ocean, J. Geophys. Res.-Oceans, 118, 5412–5425, https://doi.org/10.1002/jgrc.20322,
2013.
Beale, R., Dixon, J. L., Smyth, T. J., and Nightingale, P. D.: Annual study
of oxygenated volatile organic compounds in UK shelf waters, Mar. Chem.,
171, 96–106, https://doi.org/10.1016/j.marchem.2015.02.013, 2015.
Beaupré-Laperrière, A., Mucci, A., and Thomas, H.: The recent state and variability of the carbonate system of the Canadian Arctic Archipelago and adjacent basins in the context of ocean acidification, Biogeosciences, 17, 3923–3942, https://doi.org/10.5194/bg-17-3923-2020, 2020.
Booge, D., Schlundt, C., Bracher, A., Endres, S., Zäncker, B., and Marandino, C. A.: Marine isoprene production and consumption in the mixed layer of the surface ocean – a field study over two oceanic regions, Biogeosciences, 15, 649–667, https://doi.org/10.5194/bg-15-649-2018, 2018.
Bouillon, R. C., Lee, P. A., De Mora, S. J., Levasseur, M., and Lovejoy, C.:
Vernal distribution of dimethylsulphide, dimethylsulphoniopropionate, and
dimethylsulphoxide in the North Water in 1998, Deep. Res. Pt II, 49, 5171–5189, https://doi.org/10.1016/S0967-0645(02)00184-4, 2002.
Broadgate, W. J., Liss, P. S., Penkett, S. A., and Penkett, A.: Seasonal
emissions of isoprene and other reactive hydrocarbon gases from the ocean,
Geophys. Res. Lett., 24, 2675–2678, https://doi.org/10.1029/97GL02736, 1997.
de Bruyn, W. J., Clark, C. D., Pagel, L., and Singh, H.: Loss rates of
acetone in filtered and unfiltered coastal seawater, Mar. Chem., 150,
39–44, https://doi.org/10.1016/j.marchem.2013.01.003, 2013.
de Bruyn, W. J., Clark, C. D., Senstad, M., Barashy, O., and Hok, S.: The
biological degradation of acetaldehyde in coastal seawater, Mar. Chem., 192,
13–21, https://doi.org/10.1016/j.marchem.2017.02.008, 2017.
de Bruyn, W. J., Clark, C. D., Harrison, A. W., Senstad, M., and Hok, S.: The
degradation of acetaldehyde in estuary waters in Southern California, USA,
Environ. Sci. Pollut. Res., 28, 35811–35821, https://doi.org/10.1007/s11356-021-13232-x, 2021.
de Bruyn, W. J., Clark, C. D., Pagel, L., and Takehara, C.: Photochemical
production of formaldehyde, acetaldehyde and acetone from chromophoric
dissolved organic matter in coastal waters, J. Photochem. Photobiol. A
Chem., 226, 16–22, https://doi.org/10.1016/j.jphotochem.2011.10.002, 2011.
Burgers, T. M., Tremblay, J.-É., Else, B. G. T., and Papakyriakou, T. N.:
Estimates of net community production from multiple approaches surrounding
the spring ice-edge bloom in Baffin Bay, Elem. Sci. Anthr., 8,
https://doi.org/10.1525/elementa.013, 2020.
Burt, W. J., Thomas, H., Miller, L. A., Granskog, M. A., Papakyriakou, T. N., and Pengelly, L.: Inorganic carbon cycling and biogeochemical processes in an Arctic inland sea (Hudson Bay), Biogeosciences, 13, 4659–4671, https://doi.org/10.5194/bg-13-4659-2016, 2016.
Butterworth, B. J. and Miller, S. D.: Air-sea exchange of carbon dioxide in
the Southern Ocean and Antarctic marginal ice zone, Geophys. Res. Lett., 43, 7223–7230,
https://doi.org/10.1002/2016GL069581, 2016.
Chen, Q., Sherwen, T., Evans, M., and Alexander, B.: DMS oxidation and sulfur aerosol formation in the marine troposphere: a focus on reactive halogen and multiphase chemistry, Atmos. Chem. Phys., 18, 13617–13637, https://doi.org/10.5194/acp-18-13617-2018, 2018.
Collins, D. B., Burkart, J., Chang, R. Y.-W., Lizotte, M., Boivin-Rioux, A., Blais, M., Mungall, E. L., Boyer, M., Irish, V. E., Massé, G., Kunkel, D., Tremblay, J.-É., Papakyriakou, T., Bertram, A. K., Bozem, H., Gosselin, M., Levasseur, M., and Abbatt, J. P. D.: Frequent ultrafine particle formation and growth in Canadian Arctic marine and coastal environments, Atmos. Chem. Phys., 17, 13119–13138, https://doi.org/10.5194/acp-17-13119-2017, 2017.
Dai, A., Luo, D., Song, M., and Liu, J.: Arctic amplification is caused by
sea-ice loss under increasing CO2, Nat. Commun., 10, 1–13,
https://doi.org/10.1038/s41467-018-07954-9, 2019.
Dall'Osto, M., Beddows, D. C. S., Tunved, P., Krejci, R., Ström, J.,
Hansson, H. C., Yoon, Y. J., Park, K. T., Becagli, S., Udisti, R., Onasch,
T., Ódowd, C. D., Simó, R., and Harrison, R. M.: Arctic sea ice melt
leads to atmospheric new particle formation, Sci. Rep., 7, 1–10,
https://doi.org/10.1038/s41598-017-03328-1, 2017.
Dall'Osto, M., Geels, C., Beddows, D. C. S., Boertmann, D., Lange, R.,
Nøjgaard, J. K., Harrison, R. M., Simo, R., Skov, H., and Massling, A.:
Regions of open water and melting sea ice drive new particle formation in
North East Greenland, Sci. Rep., 8, 1–10,
https://doi.org/10.1038/s41598-018-24426-8, 2018.
Dani, K. G. S. and Loreto, F.: Trade-Off Between Dimethyl Sulfide and
Isoprene Emissions from Marine Phytoplankton, Trends Plant Sci., 22, 1–12,
https://doi.org/10.1016/j.tplants.2017.01.006, 2017.
Davie-Martin, C. L., Giovannoni, S. J., Behrenfeld, M. J., Penta, W. B., and
Halsey, K. H.: Seasonal and spatial variability in the biogenic production
and consumption of volatile organic compounds (VOCs) by marine plankton in
the North Atlantic Ocean, Front. Mar. Sci., 7, 1–15,
https://doi.org/10.3389/fmars.2020.611870, 2020.
Dixon, J. L. and Nightingale, P. D.: Fine-scale variability in methanol uptake and oxidation: from the microlayer to 1000 m, Biogeosciences, 9, 2961–2972, https://doi.org/10.5194/bg-9-2961-2012, 2012.
Dixon, J. L., Beale, R., and Nightingale, P. D.: Rapid biological oxidation of methanol in the tropical Atlantic: significance as a microbial carbon source, Biogeosciences, 8, 2707–2716, https://doi.org/10.5194/bg-8-2707-2011, 2011.
Dixon, J. L., Beale, R., and Nightingale, P. D.: Production of methanol,
acetaldehyde, and acetone in the Atlantic Ocean, Geophys. Res. Lett.,
40, 4700–4705, https://doi.org/10.1002/grl.50922, 2013.
Dixon, J. L., Beale, R., Sargeant, S. L., Tarran, G. A., and Nightingale, P.
D.: Microbial acetone oxidation in coastal seawater, Front. Microb.,
5, 1–9, https://doi.org/10.3389/fmicb.2014.00243, 2014.
Dong, Y., Yang, M., Bakker, D. C. E., Liss, P. S., Kitidis, V., Brown, I.,
Chierici, M., Fransson, A., and Bell, T. G.: Near-Surface Stratification Due
to Ice Melt Biases Arctic Air-Sea CO2 Flux Estimates, Geophys. Res. Lett.,
48, 1–10, https://doi.org/10.1029/2021GL095266, 2021.
Galbally, I. E., Lawson, S. J., Weeks, I. A., Bentley, S. T., Gillett, R.
W., Meyer, M., and Goldstein, A. H.: Volatile organic compounds in marine air
at Cape Grim, Australia, Environ. Chem., 4, 178–182,
https://doi.org/10.1071/EN07024, 2007.
Galí, M. and Simó, R.: Occurrence and cycling of dimethylated
sulfur compounds in the Arctic during summer receding of the ice edge, Mar.
Chem., 122, 105–117, https://doi.org/10.1016/j.marchem.2010.07.003, 2010.
Galí, M., Levasseur, M., Devred, E., Simó, R., and Babin, M.: Sea-surface dimethylsulfide (DMS) concentration from satellite data at global and regional scales, Biogeosciences, 15, 3497–3519, https://doi.org/10.5194/bg-15-3497-2018, 2018.
Galí, M., Devred, E., Babin, M., and Levasseur, M.: Decadal increase in
Arctic dimethylsulfide emission, P. Natl. Acad. Sci. USA, 116,
19311–19317, https://doi.org/10.1073/pnas.1904378116, 2019.
Galí, M., Lizotte, M., Kieber, D. J., Randelhoff, A., Hussherr, R.,
Xue, L., Dinasquet, J., Babin, M., Rehm, E., and Levasseur, M.: DMS emissions
from the Arctic marginal ice zone, Elem. Sci. Anthr., 9, 1–31,
https://doi.org/10.1525/elementa.2020.00113, 2021.
Gourdal, M., Lizotte, M., Massé, G., Gosselin, M., Poulin, M., Scarratt, M., Charette, J., and Levasseur, M.: Dimethyl sulfide dynamics in first-year sea ice melt ponds in the Canadian Arctic Archipelago, Biogeosciences, 15, 3169–3188, https://doi.org/10.5194/bg-15-3169-2018, 2018.
Granskog, M. A., Pavlov, A. K., Sagan, S., Kowalczuk, P., Raczkowska, A., and
Stedmon, C. A.: Effect of sea-ice melt on inherent optical properties and
vertical distribution of solar radiant heating in Arctic surface waters, J. Geophys. Res.-Oceans, 120, 775–791, https://doi.org/10.1002/2015JC011107,
2015.
Hackenberg, S. C., Andrews, S. J., Airs, R., Arnold, S. R., Bouman, H. A.,
Brewin, R. J. W., Chance, R. J., Cummings, D., Dall'Olmo, G., Lewis, A. C.,
Minaeian, J. K., Reifel, K. M., Small, A., Tarran, G. A., Tilstone, G. H.,
and Carpenter, L. J.: Potential controls of isoprene in the surface ocean,
Global Biogeochem. Cy., 31, 644–662, https://doi.org/10.1002/2016GB005531, 2017.
Halsey, K. H., Giovannoni, S. J., Graus, M., Zhao, Y., Landry, Z., Thrash,
J. C., Vergin, K. L., and de Gouw, J. A.: Biological cycling of volatile
organic carbon by phytoplankton and bacterioplankton, Limnol. Oceanogr.,
62, 2650–2661, https://doi.org/10.1002/lno.10596, 2017.
Hayashida, H., Carnat, G., Galí, M., Monahan, A. H., Mortenson, E.,
Sou, T., and Steiner, N. S.: Spatiotemporal Variability in Modeled Bottom Ice
and Sea Surface Dimethylsulfide Concentrations and Fluxes in the Arctic
During 1979–2015, Global Biogeochem. Cy., 34, e2019GB006456, https://doi.org/10.1029/2019GB006456,
2020.
Hudson, E. D., Okuda, K., and Ariya, P. A.: Determination of acetone in
seawater using derivatization solid-phase microextraction, Anal. Bioanal.
Chem., 388, 1275–1282, https://doi.org/10.1007/s00216-007-1324-x, 2007.
Hulswar, S., Simo, R., Galí, M., Bell, T., Lana, A., Inamdar, S., Halloran, P. R., Manville, G., and Mahajan, A. S.: Third Revision of the Global Surface Seawater Dimethyl Sulfide Climatology (DMS-Rev3), Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2021-236, in review, 2021.
Huntington, H. P., Carey, M., Apok, C., Forbes, B. C., Fox, S., Holm, L. K.,
Ivanova, A., Jaypoody, J., Noongwook, G., and Stammler, F.: Climate change in
context: putting people first in the Arctic, Reg. Environ. Chang., 19,
1217–1223, https://doi.org/10.1007/s10113-019-01478-8, 2019.
Jarníková, T., Dacey, J., Lizotte, M., Levasseur, M., and Tortell, P.: The distribution of methylated sulfur compounds, DMS and DMSP, in Canadian subarctic and Arctic marine waters during summer 2015, Biogeosciences, 15, 2449–2465, https://doi.org/10.5194/bg-15-2449-2018, 2018.
Johnson, M. T.: A numerical scheme to calculate temperature and salinity dependent air-water transfer velocities for any gas, Ocean Sci., 6, 913–932, https://doi.org/10.5194/os-6-913-2010, 2010.
Kaimal, J. C. and Finnigan, J. J.: Atmospheric boundary layer flows – their
structure and measurement, Oxford University Press., https://doi.org/10.1093/oso/9780195062397.001.0001, 1994.
Kameyama, S., Tanimoto, H., Inomata, S., Tsunogai, U., Ooki, A., Takeda, S.,
Obata, H., Tsuda, A., and Uematsu, M.: High-resolution measurement of
multiple volatile organic compounds dissolved in seawater using equilibrator
inlet-proton transfer reaction-mass spectrometry (EI-PTR-MS), Mar. Chem.,
122, 59–73, https://doi.org/10.1016/j.marchem.2010.08.003, 2010.
Kameyama, S., Tanimoto, H., Inomata, S., Suzuki, K., Komatsu, D. D., Hirota,
A., Konno, U., and Tsunogai, U.: Application of PTR-MS to an incubation
experiment of the marine diatom Thalassiosira pseudonana, Geochem. J.,
45, 355–363, https://doi.org/10.2343/geochemj.1.0127, 2011.
Kieber, R., Zhou, X., and Mopper, K.: Formation of carbonyl-compounds from
UV-induced photodegradation of humic substances in natural-waters – fate of
riverine carbon in the sea, Limnol. Oceanogr., 35, 1503–1515,
1990.
Kiene, R. P. and Bates, T. S.: Biological removal of dimethyl sulphide from
sea water, Nature, 345, 702–705, https://doi.org/10.1038/258748a0, 1990.
Kim, M. J., Novak, G. A., Zoerb, M. C., Yang, M., Blomquist, B. W., Huebert,
B. J., Cappa, C. D., and Bertram, T. H.: Air-Sea exchange of biogenic
volatile organic compounds and the impact on aerosol particle size
distributions, Geophys. Res. Lett., 44, 3887–3896,
https://doi.org/10.1002/2017GL072975, 2017.
Köllner, F., Schneider, J., Willis, M. D., Klimach, T., Helleis, F., Bozem, H., Kunkel, D., Hoor, P., Burkart, J., Leaitch, W. R., Aliabadi, A. A., Abbatt, J. P. D., Herber, A. B., and Borrmann, S.: Particulate trimethylamine in the summertime Canadian high Arctic lower troposphere, Atmos. Chem. Phys., 17, 13747–13766, https://doi.org/10.5194/acp-17-13747-2017, 2017.
Lana, A., Bell, T. G., Simó, R., Vallina, S. M., Ballabrera-Poy, J.,
Kettle, A. J., Dachs, J., Bopp, L., Saltzman, E. S., Stefels, J., Johnson,
J. E., and Liss, P. S.: An updated climatology of surface dimethlysulfide
concentrations and emission fluxes in the global ocean, Global Biogeochem. Cy., 25, GB1004, https://doi.org/10.1029/2010GB003850, 2011.
Levasseur, M.: Impact of Arctic meltdown on the microbial cycling of
sulphur, Nat. Geosci., 6, 691–700, https://doi.org/10.1038/ngeo1910, 2013.
Liss, P. S. and Slater, P. G.: Flux of Gases across the Air-Sea Interface,
Nature, 247, 181–184, https://doi.org/10.1038/247181a0, 1974.
Lizotte, M., Levasseur, M., Galindo, V., Gourdal, M., Gosselin, M., Tremblay, J.-É., Blais, M., Charette, J., and Hussherr, R.: Phytoplankton and dimethylsulfide dynamics at two contrasting Arctic ice edges, Biogeosciences, 17, 1557–1581, https://doi.org/10.5194/bg-17-1557-2020, 2020.
Loose, B., McGillis, W. R., Perovich, D., Zappa, C. J., and Schlosser, P.: A parameter model of gas exchange for the seasonal sea ice zone, Ocean Sci., 10, 17–28, https://doi.org/10.5194/os-10-17-2014, 2014.
Luce, M., Levasseur, M., Scarratt, M. G., Michaud, S., Royer, S. J., Kiene,
R., Lovejoy, C., Gosselin, M., Poulin, M., Gratton, Y., and Lizotte, M.:
Distribution and microbial metabolism of dimethylsulfoniopropionate and
dimethylsulfide during the 2007 Arctic ice minimum, J. Geophys. Res.-Oceans,
116, 4–11, https://doi.org/10.1029/2010JC006914, 2011.
Mahmood, R., von Salzen, K., Norman, A.-L., Galí, M., and Levasseur, M.: Sensitivity of Arctic sulfate aerosol and clouds to changes in future surface seawater dimethylsulfide concentrations, Atmos. Chem. Phys., 19, 6419–6435, https://doi.org/10.5194/acp-19-6419-2019, 2019.
Marandino, C. A., de Bruyn, W. J., Miller, S. D., Prather, M. J., and
Saltzman, E. S.: Oceanic uptake and the global atmospheric acetone budget,
Geophys. Res. Lett., 32, 1–4, https://doi.org/10.1029/2005GL023285, 2005.
Markus, T., Stroeve, J. C., and Miller, J.: Recent changes in Arctic sea ice
melt onset, freezeup, and melt season length, J. Geophys. Res.-Oceans,
114, 1–14, https://doi.org/10.1029/2009JC005436, 2009.
Martin, J., Tremblay, J. É., Gagnon, J., Tremblay, G., Lapoussière,
A., Jose, C., Poulin, M., Gosselin, M., Gratton, Y., and Michel, C.:
Prevalence, structure and properties of subsurface chlorophyll maxima in
Canadian Arctic waters, Mar. Ecol. Prog. Ser., 412, 69–84,
https://doi.org/10.3354/meps08666, 2010.
Massicotte, P., Bécu, G., Lambert-Girard, S., Leymarie, E., and Babin,
M.: Estimating underwater light regime under spatially heterogeneous sea ice
in the Arctic, Appl. Sci., 8, 1–19, https://doi.org/10.3390/app8122693, 2018.
Matsunaga, S., Mochida, M., Saito, T., and Kawamura, K.: In situ measurement
of isoprene in the marine air and surface seawater from the western North
Pacific, Atmos. Environ., 36, 6051–6057,
https://doi.org/10.1016/S1352-2310(02)00657-X, 2002.
McLaughlin, F. A., Carmack, E. C., Ingram, R. G., Williams, W. J., and
Michel, C.: Chapter 31: Oceanography of the Northwest Passage, The Sea,
14, 1211–1242, 2004.
Medeiros, D. J., Blitz, M. A., James, L., Speak, T. H., and Seakins, P. W.:
Kinetics of the Reaction of OH with Isoprene over a Wide Range of
Temperature and Pressure Including Direct Observation of Equilibrium with
the OH Adducts, J. Phys. Chem. A, 122, 7239–7255, https://doi.org/10.1021/acs.jpca.8b04829, 2018.
Meier, W. N., Hovelsrud, G. K., VanOort, B. E. H., Key, J. R., Kovacs, K.,
Michel, C., Haas, C., Granskog, M. A., Gerland, S., Perovich, D. K.,
Makshtas, A., and Reist, J. D.: Arctic sea ice in transformation: A review of
recent observed changes and impacts on biology and human activity, Rev.
Geophys., 51, 185–217, https://doi.org/10.1002/ 2013RG000431, 2014.
Melling, H., Gratton, Y., and Ingram, G.: Ocean circulation within the North
Water polynya of Baffin Bay, Atmos. Ocean, 39, 301–325,
https://doi.org/10.1080/07055900.2001.9649683, 2001.
Miller, L. A., Burgers, T. M., Burt, W. J., Granskog, M. A., and
Papakyriakou, T. N.: Air-Sea CO2 Flux Estimates in Stratified Arctic Coastal
Waters: How Wrong Can We Be?, Geophys. Res. Lett., 46, 235–243,
https://doi.org/10.1029/2018GL080099, 2019.
Mincer, T. J. and Aicher, A. C.: Methanol production by a broad phylogenetic
array of marine phytoplankton, PLoS One, 11, 1–17,
https://doi.org/10.1371/journal.pone.0150820, 2016.
Mopper, K. and Stahovec, W. L.: Sources and sinks of low molecular weight
organic carbonyl compounds in seawater, Mar. Chem., 19, 305–321,
https://doi.org/10.1016/0304-4203(86)90052-6, 1986.
Motard-Côté, J., Levasseur, M., Scarratt, M. G., Michaud, S.,
Gratton, Y., Rivkin, R. B., Keats, K., Gosselin, M., Tremblay, J. É.,
Kiene, R. P., and Lovejoy, C.: Distribution and metabolism of
dimethylsulfoniopropionate (DMSP) and phylogenetic affiliation of
DMSP-assimilating bacteria in northern Baffin Bay/Lancaster Sound, J. Geophys. Res.-Oceans, 117, C00G11, https://doi.org/10.1029/2011JC007330, 2012.
Münchow, A., Falkner, K. K., and Melling, H.: Baffin Island and West
Greenland Current Systems in northern Baffin Bay, Prog. Oceanogr., 132,
305–317, https://doi.org/10.1016/j.pocean.2014.04.001, 2015.
Mungall, E. L., Croft, B., Lizotte, M., Thomas, J. L., Murphy, J. G., Levasseur, M., Martin, R. V., Wentzell, J. J. B., Liggio, J., and Abbatt, J. P. D.: Dimethyl sulfide in the summertime Arctic atmosphere: measurements and source sensitivity simulations, Atmos. Chem. Phys., 16, 6665–6680, https://doi.org/10.5194/acp-16-6665-2016, 2016.
Mungall, E. L., Abbatt, J. P. D., Wentzell, J. J. B., Lee, A. K. Y., Thomas,
J. L., Blais, M., Gosselin, M., Miller, L. A., Papakyriakou, T., Willis, M.
D., and Liggio, J.: A novel source of oxygenated volatile organic compounds
in the summertime marine Arctic boundary layer, P. Natl. Acad. Sci. USA,
114, 6203–6208, https://doi.org/10.1073/pnas.1620571114, 2017.
Mungall, E. L., Abbatt, J. P. D., Wentzell, J. J. B., Wentworth, G. R., Murphy, J. G., Kunkel, D., Gute, E., Tarasick, D. W., Sharma, S., Cox, C. J., Uttal, T., and Liggio, J.: High gas-phase mixing ratios of formic and acetic acid in the High Arctic, Atmos. Chem. Phys., 18, 10237–10254, https://doi.org/10.5194/acp-18-10237-2018, 2018.
Nightingale, P. D., Malin, G., Law, C. S., Watson, J., Liss, P. S., and
Liddicoat, I.: In situ evaluation of air-sea gas exchange parameterizations
using novel conservative and volatile tracers, Global Biogeochem. Cy.,
14, 373–387, https://doi.org/10.1029/1999GB900091, 2000.
Ooki, A., Nomura, D., Nishino, S., Kikuchi, T., and Yokouchi, Y.: A
global-scale map of isoprene and volatile organic iodine in surface seawater
of the Arctic, Northwest Pacific, Indian, and Southern Oceans, J. Geophys. Res.-Oceans, 120, 4108–4128, https://doi.org/10.1002/2014JC010519, 2015.
Ooki, A., Shida, R., Otsu, M., Onishi, H., Kobayashi, N., Iida, T., Nomura,
D., Suzuki, K., Yamaoka, H., and Takatsu, T.: Isoprene production in seawater
of Funka Bay, Hokkaido, Japan, J. Oceanogr., 75, 485–501,
https://doi.org/10.1007/s10872-019-00517-6, 2019.
Paasonen, P., Asmi, A., Petäjä, T., Kajos, M. K.,
Äijälä, M., Junninen, H., Holst, T., Abbatt, J. P. D., Arneth,
A., Birmili, W., Van Der Gon, H. D., Hamed, A., Hoffer, A., Laakso, L.,
Laaksonen, A., Richard Leaitch, W., Plass-Dülmer, C., Pryor, S. C.,
Räisänen, P., Swietlicki, E., Wiedensohler, A., Worsnop, D. R.,
Kerminen, V. M., and Kulmala, M.: Warming-induced increase in aerosol number
concentration likely to moderate climate change, Nat. Geosci., 6,
438–442, https://doi.org/10.1038/ngeo1800, 2013.
Palmer, P. I. and Shaw, S. L.: Quantifying global marine isoprene fluxes
using MODIS chlorophyll observations, Geophys. Res. Lett., 32, 1–5,
https://doi.org/10.1029/2005GL022592, 2005.
Park, K., Kim, I., Choi, J. O., Lee, Y., Jung, J., Ha, S. Y., Kim, J. H., and
Zhang, M.: Unexpectedly high dimethyl sulfide concentration in high-latitude
Arctic sea ice melt ponds, Environ. Sci. Process. Impacts, 21,
1642–1649, https://doi.org/10.1039/c9em00195f, 2019.
Pavlov, A. K., Granskog, M. A., Stedmon, C. A., Ivanov, B. V., Hudson, S. R.,
and Falk-Petersen, S.: Contrasting optical properties of surface waters
across the Fram Strait and its potential biological implications, J. Mar.
Syst., 143, 62–72, https://doi.org/10.1016/j.jmarsys.2014.11.001, 2015.
Pernov, J. B., Bossi, R., Lebourgeois, T., Nøjgaard, J. K., Holzinger, R., Hjorth, J. L., and Skov, H.: Atmospheric VOC measurements at a High Arctic site: characteristics and source apportionment, Atmos. Chem. Phys., 21, 2895–2916, https://doi.org/10.5194/acp-21-2895-2021, 2021.
Perrette, M., Yool, A., Quartly, G. D., and Popova, E. E.: Near-ubiquity of ice-edge blooms in the Arctic, Biogeosciences, 8, 515–524, https://doi.org/10.5194/bg-8-515-2011, 2011.
Prinsenberg, S. J. and Hamilton, J.: Monitoring the volume, freshwater and
heat fluxes passing through Lancaster sound in the Canadian arctic
archipelago, Atmos. Ocean, 43, 1–22, https://doi.org/10.3137/ao.430101, 2005.
Prytherch, J., Brooks, I. M., Crill, P. M., Thornton, B. F., Salisbury, D.
J., Tjernström, M., Anderson, L. G., Geibel, M. C., and Humborg, C.:
Direct determination of the air-sea CO2 gas transfer velocity in Arctic sea
ice regions, Geophys. Res. Lett., 44, 3770–3778,
https://doi.org/10.1002/2017GL073593, 2017.
Randelhoff, A., Oziel, L., Massicotte, P., Bécu, G., Galí, M.,
Lacour, L., Dumont, D., Vladoiu, A., Marec, C., Bruyant, F., Houssais, M.
N., Tremblay, J. É., Deslongchamps, G., and Babin, M.: The evolution of
light and vertical mixing across a phytoplankton ice-edge bloom, Elementa,
7, 20, https://doi.org/10.1525/elementa.357, 2019.
Ratte, M., Bujok, O., Spitzy, A., and Rudolph, J.: Photochemical alkene
formation in seawater from dissolved organic carbon: Results from laboratory
experiments, J. Geophys. Res., 103, 5707–5717, 1998.
Rodríguez-Ros, P., Galí, M., Cortés, P., Robinson, C. M.,
Antoine, D., Wohl, C., Yang, M. X., and Simó, R.: Remote Sensing
Retrieval of Isoprene Concentrations in the Southern Ocean, Geophys. Res.
Lett., 47, 1–10, https://doi.org/10.1029/2020GL087888, 2020.
Sargeant, S. L., Colin Murrell, J., Nightingale, P. D., and Dixon, J. L.:
Seasonal variability in microbial methanol utilisation in coastal waters of
the western English Channel, Mar. Ecol. Prog. Ser., 550, 53–64, 2016.
Sargeant, S. L., Murrell, J. C., Nightingale, P. D., and Dixon, J. L.: Basin-scale variability of microbial methanol uptake in the Atlantic Ocean, Biogeosciences, 15, 5155–5167, https://doi.org/10.5194/bg-15-5155-2018, 2018.
Schlundt, C., Tegtmeier, S., Lennartz, S. T., Bracher, A., Cheah, W., Krüger, K., Quack, B., and Marandino, C. A.: Oxygenated volatile organic carbon in the western Pacific convective center: ocean cycling, air–sea gas exchange and atmospheric transport, Atmos. Chem. Phys., 17, 10837–10854, https://doi.org/10.5194/acp-17-10837-2017, 2017.
Shadwick, E. H., Trull, T. W., Thomas, H., and Gibson, J. A. E.:
Vulnerability of polar oceans to anthropogenic acidification: Comparison of
arctic and antarctic seasonal cycles, Sci. Rep., 3, 2339, https://doi.org/10.1038/srep02339,
2013.
Sharma, S., Chan, E., Ishizawa, M., Toom-Sauntry, D., Gong, S. L., Li, S.
M., Tarasick, D. W., Leaitch, W. R., Norman, A., Quinn, P. K., Bates, T. S.,
Levasseur, M., Barrie, L. A., and Maenhaut, W.: Influence of transport and
ocean ice extent on biogenic aerosol sulfur in the Arctic atmosphere, J.
Geophys. Res.-Atmos., 117, D12209, https://doi.org/10.1029/2011JD017074, 2012.
Shaw, S. L., Gantt, B., and Meskhidze, N.: Production and Emissions of Marine
Isoprene and Monoterpenes: A Review, Adv. Meteorol., 2010, 1–24,
https://doi.org/10.1155/2010/408696, 2010.
Sheehan, C. E. and Petrou, K.: Dimethylated sulfur production in batch
cultures of Southern Ocean phytoplankton, Biogeochemistry, 147, 53–69,
https://doi.org/10.1007/s10533-019-00628-8, 2020.
Simó, R.: Production of atmospheric sulfur by oceanic plankton:
Biogeochemical, ecological and evolutionary links, Trends Ecol. Evol.,
16, 287–294, https://doi.org/10.1016/S0169-5347(01)02152-8, 2001.
Simó, R., Grimalt, J. O., and Albaigés, J.: Dissolved
dimethylsulphide, dimethylsulphoniopropionate and dimethylsulphoxide in
western Mediterranean waters, Deep. Res. Pt. II, 44, 929–950,
https://doi.org/10.1016/S0967-0645(96)00099-9, 1997.
Sjostedt, S. J., Leaitch, W. R., Levasseur, M., Scarratt, M., Michaud, S.,
Motard-Cté, J., Burkhart, J. H., and Abbatt, J. P. D.: Evidence for the
uptake of atmospheric acetone and methanol by the Arctic Ocean during late
summer DMS-Emission plumes, J. Geophys. Res.-Atmos., 117, 1–15,
https://doi.org/10.1029/2011JD017086, 2012.
Spreen, G., Kaleschke, L., and Heygster, G.: Sea ice remote sensing using
AMSR-E 89-GHz channels, J. Geophys. Res.-Oceans, 113, 1–14,
https://doi.org/10.1029/2005JC003384, 2008.
Steiner, N. S., Bowman, J., Campbell, K., Chierici, M., Eronen-Rasimus, E.,
Falardeau, M., Flores, H., Fransson, A., Herr, H., Insley, S. J., Kauko, H.
M., Lannuzel, D., Loseto, L., Lynnes, A., Majewski, A., Meiners, K. M.,
Miller, L. A., Michel, L. N., Moreau, S., Nacke, M., Nomura, D., Tedesco,
L., van Franeker, J. A., van Leeuwe, M. A., and Wongpan, P.: Climate change
impacts on sea-ice ecosystems and associated ecosystem services, Elementa,
9, 1–55, https://doi.org/10.1525/elementa.2021.00007, 2021.
Taddei, S., Toscano, P., Gioli, B., Matese, A., Miglietta, F., Vaccari, F.
P., Zaldei, A., Custer, T., and Williams, J.: Carbon dioxide and acetone
air-sea fluxes over the southern Atlantic, Environ. Sci. Technol., 43,
5218–5222, https://doi.org/10.1021/es8032617, 2009.
Tedetti, M. and Semperv, R.: Penetration of Ultraviolet Radiation in the
Marine Environment, A Review, Photochem. Photobiol., 82, 389–397,
https://doi.org/10.1562/2005-11-09-lR-733, 2006.
Tran, S., Bonsang, B., Gros, V., Peeken, I., Sarda-Esteve, R., Bernhardt, A., and Belviso, S.: A survey of carbon monoxide and non-methane hydrocarbons in the Arctic Ocean during summer 2010, Biogeosciences, 10, 1909–1935, https://doi.org/10.5194/bg-10-1909-2013, 2013.
Tremblay, S., Picard, J.-C., Bachelder, J. O., Lutsch, E., Strong, K., Fogal, P., Leaitch, W. R., Sharma, S., Kolonjari, F., Cox, C. J., Chang, R. Y.-W., and Hayes, P. L.: Characterization of aerosol growth events over Ellesmere Island during the summers of 2015 and 2016, Atmos. Chem. Phys., 19, 5589–5604, https://doi.org/10.5194/acp-19-5589-2019, 2019.
Wang, S., Hornbrook, R. S., Hills, A., Emmons, L. K., Tilmes, S., Lamarque,
J., Jimenez, J. L., Campuzano-Jost, P., Nault, B. A., Crounse, J. D.,
Wennberg, P. O., Ryerson, T. B., Thompson, C. R., Peischl, J., Moore, F.,
Nance, D., Hall, B., Elkins, J., Tanner, D., Huey, L. G., Hall, S. R.,
Ullmann, K., Orlando, J. J., Tyndall, G. S., Flocke, F. M., Ray, E.,
Hanisco, T. F., Wolfe, G. M., St. Clair, J., Commane, R., Daube, B.,
Barletta, B., Blake, D. R., Weinzierl, B., Dollner, M., Conley, A., Vitt,
F., Wofsy, S. C., Riemer, D. D., and Apel, E. C.: Atmospheric Acetaldehyde:
Importance of Air-Sea Exchange and a Missing Source in the Remote
Troposphere, Geophys. Res. Lett., 46, 2019GL082034,
https://doi.org/10.1029/2019GL082034, 2019.
Wang, S., Apel, E. C., Schwantes, R. H., Bates, K. H., Jacob, D. J.,
Fischer, E. V., Hornbrook, R. S., Hills, A. J., Emmons, L. K., Pan, L. L.,
Honomichl, S., Tilmes, S., Lamarque, J. F., Yang, M., Marandino, C. A.,
Saltzman, E. S., de Bruyn, W., Kameyama, S., Tanimoto, H., Omori, Y., Hall,
S. R., Ullmann, K., Ryerson, T. B., Thompson, C. R., Peischl, J., Daube, B.
C., Commane, R., McKain, K., Sweeney, C., Thames, A. B., Miller, D. O.,
Brune, W. H., Diskin, G. S., DiGangi, J. P., and Wofsy, S. C.: Global
Atmospheric Budget of Acetone: Air-Sea Exchange and the Contribution to
Hydroxyl Radicals, 125, e2020JD032553, https://doi.org/10.1029/2020JD032553, 2020a.
Wang, Z., Li, Z., Zeng, J., Liang, S., Zhang, P., Tang, F., Chen, S., and Ma,
X.: Spatial and Temporal Variations of Arctic Sea Ice From 2002 to 2017,
Earth Sp. Sci., 7, 1–20, https://doi.org/10.1029/2020EA001278, 2020b.
Williams, J., Holzinger, R., Gros, V., Xu, X., Atlas, E., and Wallace, D. W.
R.: Measurements of organic species in air and seawater from the tropical
Atlantic, Geophys. Res. Lett., 31, 1–5, https://doi.org/10.1029/2004GL020012, 2004.
Wittek, B., Carnat, G., Tison, J. L., and Gypens, N.: Response of
dimethylsulfoniopropionate (DMSP) and dimethylsulfoxide (DMSO) cell quotas
to salinity and temperature shifts in the sea-ice diatom Fragilariopsis
cylindrus, Polar Biol., 43, 483–494, https://doi.org/10.1007/s00300-020-02651-0,
2020.
Wohl, C., Capelle, D., Jones, A., Sturges, W. T., Nightingale, P. D., Else, B. G. T., and Yang, M.: Segmented flow coil equilibrator coupled to a proton-transfer-reaction mass spectrometer for measurements of a broad range of volatile organic compounds in seawater, Ocean Sci., 15, 925–940, https://doi.org/10.5194/os-15-925-2019, 2019.
Wohl, C., Brown, I., Kitidis, V., Jones, A. E., Sturges, W. T., Nightingale, P. D., and Yang, M.: Underway seawater and atmospheric measurements of volatile organic compounds in the Southern Ocean, Biogeosciences, 17, 2593–2619, https://doi.org/10.5194/bg-17-2593-2020, 2020.
Wohl, C., Jones, A., Sturges, W., Nightingale, P., Else, B., Butterworth, B., and Yang, M.: Shipborne Dissolved Organic Gas Measurements in Depth Profiles and Underway Seawater (Methanol, Acetone, Acetaldehyde, DMS, Isoprene) Amundsen 2017, Waterloo, Canada: Canadian Cryospheric Information Network (CCIN) [data set], https://doi.org/10.21963/13249, 2021.
Yang, M., Blomquist, B. W., Fairall, C. W., Archer, S. D., and Huebert, B.
J.: air–sea exchange of dimethylsulfide in the Southern Ocean:
Measurements from SO GasEx compared to temperate and tropical regions, J.
Geophys. Res., 116, 1–17, https://doi.org/10.1029/2010JC006526, 2011.
Yang, M., Nightingale, P. D., Beale, R., Liss, P. S., Blomquist, B. W., and
Fairall, C. W.: Atmospheric deposition of methanol over the Atlantic Ocean.,
P. Natl. Acad. Sci. USA, 110, 20034–20039,
https://doi.org/10.1073/pnas.1317840110, 2013a.
Yang, M., Archer, S. D., Blomquist, B. W., Ho, D. T., Lance, V. P., and
Torres, R. J.: Lagrangian evolution of DMS during the Southern Ocean gas
exchange experiment: The effects of vertical mixing and biological community
shift, J. Geophys. Res.-Oceans, 118, 6774–6790,
https://doi.org/10.1002/2013JC009329, 2013b.
Yang, M., Blomquist, B. W., and Nightingale, P. D.: Air-sea exchange of
methanol and acetone during HiWinGS: Estimation of air phase, water phase
gas transfer velocities, J. Geophys. Res.-Oceans, 119, 7308–7323,
https://doi.org/10.1002/2014JC010227, 2014a.
Yang, M., Beale, R., Liss, P., Johnson, M., Blomquist, B., and Nightingale, P.: Air–sea fluxes of oxygenated volatile organic compounds across the Atlantic Ocean, Atmos. Chem. Phys., 14, 7499–7517, https://doi.org/10.5194/acp-14-7499-2014, 2014b.
Zhang, M., Park, K. T., Yan, J., Park, K., Wu, Y., Jang, E., Gao, W., Tan,
G., Wang, J., and Chen, L.: Atmospheric dimethyl sulfide and its significant
influence on the sea-to-air flux calculation over the Southern Ocean, Prog.
Oceanogr., 186, 102392, https://doi.org/10.1016/j.pocean.2020.102392, 2020.
Zhang, X. H., Liu, J., Liu, J., Yang, G., Xue, C. X., Curson, A. R. J., and
Todd, J. D.: Biogenic production of DMSP and its degradation to DMS – their
roles in the global sulfur cycle, Sci. China Life Sci., 62, 1296–1319,
https://doi.org/10.1007/s11427-018-9524-y, 2019.
Zheng, G., Kuang, C., Uin, J., Watson, T., and Wang, J.: Large contribution of organics to condensational growth and formation of cloud condensation nuclei (CCN) in the remote marine boundary layer, Atmos. Chem. Phys., 20, 12515–12525, https://doi.org/10.5194/acp-20-12515-2020, 2020.
Zhou, X. and Mopper, K.: Photochemical production of low-molecular-weight
carbonyl compounds in seawater and surface microlayer and their air-sea
exchange, Mar. Chem., 56, 201–213, https://doi.org/10.1016/S0304-4203(96)00076-X,
1997.
Zhu, Y. and Kieber, D. J.: Wavelength- and Temperature-Dependent Apparent
Quantum Yields for Photochemical Production of Carbonyl Compounds in the
North Pacific Ocean, Environ. Sci. Technol., 52, 1929–1939,
https://doi.org/10.1021/acs.est.7b05462, 2018.
Zhu, Y. and Kieber, D. J.: Concentrations and Photochemistry of
Acetaldehyde, Glyoxal, and Methylglyoxal in the Northwest Atlantic Ocean,
Environ. Sci. Technol., 53, 9512–9521, https://doi.org/10.1021/acs.est.9b01631,
2019.
Short summary
We measured concentrations of five different organic gases in seawater in the high Arctic during summer. We found higher concentrations near the surface of the water column (top 5–10 m) and in areas of partial ice cover. This suggests that sea ice influences the concentrations of these gases. These gases indirectly exert a slight cooling effect on the climate, and it is therefore important to measure the levels accurately for future climate predictions.
We measured concentrations of five different organic gases in seawater in the high Arctic during...
Altmetrics
Final-revised paper
Preprint