Articles | Volume 19, issue 5
https://doi.org/10.5194/bg-19-1395-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-1395-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Bacterial and eukaryotic intact polar lipids point to in situ production as a key source of labile organic matter in hadal surface sediment of the Atacama Trench
Edgart Flores
CORRESPONDING AUTHOR
Programa de Postgrado en Oceanografía, Departamento de
Oceanografía, Facultad de Ciencias Naturales y Oceanográficas,
Universidad de Concepción, Concepción, Chile
Departamento de Oceanografía, Universidad de Concepción,
Casilla 160-C, Concepción, Chile
Millennium Institute of Oceanography, Universidad de Concepción,
Concepción, Chile
Sebastian I. Cantarero
Department of Geological Sciences and Institute of Arctic and Alpine
Research, University of Colorado Boulder, Boulder, CO 80309, USA
Paula Ruiz-Fernández
Programa de Postgrado en Oceanografía, Departamento de
Oceanografía, Facultad de Ciencias Naturales y Oceanográficas,
Universidad de Concepción, Concepción, Chile
Departamento de Oceanografía, Universidad de Concepción,
Casilla 160-C, Concepción, Chile
Millennium Institute of Oceanography, Universidad de Concepción,
Concepción, Chile
Nadia Dildar
Department of Geological Sciences and Institute of Arctic and Alpine
Research, University of Colorado Boulder, Boulder, CO 80309, USA
Matthias Zabel
MARUM – Center for Marine Environmental Sciences and Department of
Geosciences, University of Bremen, 28334 Bremen, Germany
Osvaldo Ulloa
Departamento de Oceanografía, Universidad de Concepción,
Casilla 160-C, Concepción, Chile
Millennium Institute of Oceanography, Universidad de Concepción,
Concepción, Chile
Julio Sepúlveda
CORRESPONDING AUTHOR
Millennium Institute of Oceanography, Universidad de Concepción,
Concepción, Chile
Department of Geological Sciences and Institute of Arctic and Alpine
Research, University of Colorado Boulder, Boulder, CO 80309, USA
Related authors
No articles found.
Joshua Coupe, Nicole S. Lovenduski, Luise S. Gleason, Michael N. Levy, Kristen Krumhardt, Keith Lindsay, Charles Bardeen, Clay Tabor, Cheryl Harrison, Kenneth G. MacLeod, Siddhartha Mitra, and Julio Sepúlveda
Geosci. Model Dev., 18, 8217–8234, https://doi.org/10.5194/gmd-18-8217-2025, https://doi.org/10.5194/gmd-18-8217-2025, 2025
Short summary
Short summary
We have developed a new feature in the atmosphere and ocean components of the Community Earth System Model version 2 by implementing ultraviolet (UV) radiation inhibition of photosynthesis of four marine phytoplankton functional groups represented in the Marine Biogeochemistry Library. The new feature is tested with varying levels of UV radiation, and it will enable an analysis of an asteroid impact’s effect on the ozone layer and how that affects the base of the marine food web.
Babette A.A. Hoogakker, Catherine Davis, Yi Wang, Stephanie Kusch, Katrina Nilsson-Kerr, Dalton S. Hardisty, Allison Jacobel, Dharma Reyes Macaya, Nicolaas Glock, Sha Ni, Julio Sepúlveda, Abby Ren, Alexandra Auderset, Anya V. Hess, Katrin J. Meissner, Jorge Cardich, Robert Anderson, Christine Barras, Chandranath Basak, Harold J. Bradbury, Inda Brinkmann, Alexis Castillo, Madelyn Cook, Kassandra Costa, Constance Choquel, Paula Diz, Jonas Donnenfield, Felix J. Elling, Zeynep Erdem, Helena L. Filipsson, Sebastián Garrido, Julia Gottschalk, Anjaly Govindankutty Menon, Jeroen Groeneveld, Christian Hallmann, Ingrid Hendy, Rick Hennekam, Wanyi Lu, Jean Lynch-Stieglitz, Lélia Matos, Alfredo Martínez-García, Giulia Molina, Práxedes Muñoz, Simone Moretti, Jennifer Morford, Sophie Nuber, Svetlana Radionovskaya, Morgan Reed Raven, Christopher J. Somes, Anja S. Studer, Kazuyo Tachikawa, Raúl Tapia, Martin Tetard, Tyler Vollmer, Xingchen Wang, Shuzhuang Wu, Yan Zhang, Xin-Yuan Zheng, and Yuxin Zhou
Biogeosciences, 22, 863–957, https://doi.org/10.5194/bg-22-863-2025, https://doi.org/10.5194/bg-22-863-2025, 2025
Short summary
Short summary
Paleo-oxygen proxies can extend current records, constrain pre-anthropogenic baselines, provide datasets necessary to test climate models under different boundary conditions, and ultimately understand how ocean oxygenation responds on longer timescales. Here we summarize current proxies used for the reconstruction of Cenozoic seawater oxygen levels. This includes an overview of the proxy's history, how it works, resources required, limitations, and future recommendations.
David J. Harning, Jonathan H. Raberg, Jamie M. McFarlin, Yarrow Axford, Christopher R. Florian, Kristín B. Ólafsdóttir, Sebastian Kopf, Julio Sepúlveda, Gifford H. Miller, and Áslaug Geirsdóttir
Hydrol. Earth Syst. Sci., 28, 4275–4293, https://doi.org/10.5194/hess-28-4275-2024, https://doi.org/10.5194/hess-28-4275-2024, 2024
Short summary
Short summary
As human-induced global warming progresses, changes to Arctic precipitation are expected, but predictions are limited by an incomplete understanding of past changes in the hydrological system. Here, we measured water isotopes, a common tool to reconstruct past precipitation, from lakes, streams, and soils across Iceland. These data will allow robust reconstruction of past precipitation changes in Iceland in future studies.
Sebastian I. Cantarero, Edgart Flores, Harry Allbrook, Paulina Aguayo, Cristian A. Vargas, John E. Tamanaha, J. Bentley C. Scholz, Lennart T. Bach, Carolin R. Löscher, Ulf Riebesell, Balaji Rajagopalan, Nadia Dildar, and Julio Sepúlveda
Biogeosciences, 21, 3927–3958, https://doi.org/10.5194/bg-21-3927-2024, https://doi.org/10.5194/bg-21-3927-2024, 2024
Short summary
Short summary
Our study explores lipid remodeling in response to environmental stress, specifically how cell membrane chemistry changes. We focus on intact polar lipids in a phytoplankton community exposed to diverse stressors in a mesocosm experiment. The observed remodeling indicates acyl chain recycling for energy storage in intact polar lipids during stress, reallocating resources based on varying growth conditions. This understanding is essential to grasp the system's impact on cellular pools.
Nicolò Ardenghi, David J. Harning, Jonathan H. Raberg, Brooke R. Holman, Thorvaldur Thordarson, Áslaug Geirsdóttir, Gifford H. Miller, and Julio Sepúlveda
Clim. Past, 20, 1087–1123, https://doi.org/10.5194/cp-20-1087-2024, https://doi.org/10.5194/cp-20-1087-2024, 2024
Short summary
Short summary
Analysing a sediment record from Stóra Viðarvatn (NE Iceland), we reveal how natural factors and human activities influenced environmental changes (erosion, wildfires) over the last 11 000 years. We found increased fire activity around 3000 and 1500 years ago, predating human settlement, likely driven by natural factors like precipitation shifts. Declining summer temperatures increased erosion vulnerability, exacerbated by farming and animal husbandry, which in turn may have reduced wildfires.
David J. Harning, Brooke Holman, Lineke Woelders, Anne E. Jennings, and Julio Sepúlveda
Biogeosciences, 20, 229–249, https://doi.org/10.5194/bg-20-229-2023, https://doi.org/10.5194/bg-20-229-2023, 2023
Short summary
Short summary
In order to better reconstruct the geologic history of the North Water Polynya, we provide modern validations and calibrations of lipid biomarker proxies in Baffin Bay. We find that sterols, rather than HBIs, most accurately capture the current extent of the North Water Polynya and will be a valuable tool to reconstruct its past presence or absence. Our local temperature calibrations for GDGTs and OH-GDGTs reduce the uncertainty present in global temperature calibrations.
Julia Gensel, Marc Steven Humphries, Matthias Zabel, David Sebag, Annette Hahn, and Enno Schefuß
Biogeosciences, 19, 2881–2902, https://doi.org/10.5194/bg-19-2881-2022, https://doi.org/10.5194/bg-19-2881-2022, 2022
Short summary
Short summary
We investigated organic matter (OM) and plant-wax-derived biomarkers in sediments and plants along the Mkhuze River to constrain OM's origin and transport pathways within South Africa's largest freshwater wetland. Presently, it efficiently captures OM, so neither transport from upstream areas nor export from the swamp occurs. Thus, we emphasize that such geomorphological features can alter OM provenance, questioning the assumption of watershed-integrated information in downstream sediments.
David J. Harning, Brooke Holman, Lineke Woelders, Anne E. Jennings, and Julio Sepúlveda
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-177, https://doi.org/10.5194/bg-2021-177, 2021
Manuscript not accepted for further review
Short summary
Short summary
In order to better reconstruct the geologic history of the North Water Polynya, we provide modern validations and calibrations of lipid biomarker proxies in Baffin Bay. We find that sterols, rather than HBIs, most accurately capture the current extent of the North Water Polynya and will be a valuable tool to reconstruct its past presence/absence. Our local temperature calibrations for alkenones, GDGTs and OH-GDGTs reduce the uncertainty present in global temperature calibrations.
Jonathan H. Raberg, David J. Harning, Sarah E. Crump, Greg de Wet, Aria Blumm, Sebastian Kopf, Áslaug Geirsdóttir, Gifford H. Miller, and Julio Sepúlveda
Biogeosciences, 18, 3579–3603, https://doi.org/10.5194/bg-18-3579-2021, https://doi.org/10.5194/bg-18-3579-2021, 2021
Short summary
Short summary
BrGDGT lipids are a proxy for temperature in lake sediments, but other parameters like pH can influence them, and seasonality can affect the temperatures they record. We find a warm-season bias at 43 new high-latitude sites. We also present a new method that deconvolves the effects of temperature, pH, and conductivity and generate global calibrations for these variables. Our study provides new paleoclimate tools, insight into brGDGTs at the biochemical level, and a new method for future study.
David J. Harning, Anne E. Jennings, Denizcan Köseoğlu, Simon T. Belt, Áslaug Geirsdóttir, and Julio Sepúlveda
Clim. Past, 17, 379–396, https://doi.org/10.5194/cp-17-379-2021, https://doi.org/10.5194/cp-17-379-2021, 2021
Short summary
Short summary
Today, the waters north of Iceland are characterized by high productivity that supports a diverse food web. However, it is not known how this may change and impact Iceland's economy with future climate change. Therefore, we explored how the local productivity has changed in the past 8000 years through fossil and biogeochemical indicators preserved in Icelandic marine mud. We show that this productivity relies on the mixing of Atlantic and Arctic waters, which migrate north under warming.
Cited articles
Ahumada, R.: Producción y destino de la biomasa fitoplanctónica en
un sistema de bahías en Chile central: una hipótesis, Biol.
Pesq. Chile, 18, 53–66, 1989.
Allemann, M. N. and Allen, E. E.: Genetic suppression of lethal mutations in
fatty acid biosynthesis mediated by a secondary lipid synthase, Appl.
Environ. Microbiol., 87, e00035-21, https://doi.org/10.1128/AEM.00035-21, 2021.
Allen, E. E., Facciotti, D., and Bartlett, D. H.: Monounsaturated but not
polyunsaturated fatty acids are required for growth of the deep-sea
bacteriumPhotobacterium profundum SS9 at high pressure and low temperature,
Appl. Environ. Microbiol., 65, 1710–1720, 1999.
Angel, M.: Detrital organic fluxes through pelagic ecosystems, in: Flows of
energy and materials in marine ecosystems, Springer, Boston, MA, 475–516, https://doi.org/10.1007/978-1-4757-0387-0_19, 1984.
Angel, M. V.: Ocean trench conservation, Environmentalist, 2, 1–17, 1982.
Araki, S., Eichenberger, W., Sakurai, T., and Sato, N.: Distribution of
diacylglycerylhydroxymethyltrimethyl-β-alanine (DGTA) and
phosphatidylcholine in brown algae, Plant Cell Physiol., 32, 623–628, 1991.
Baird, B.: Biomass and community structure of the abyssal microbiota
determined from basin and Puerto Rico trench sediments, Benthic Ecol.
Sediment. Process. Venezuela Basin – Past Present, 61, 217–213, 1985.
Bao, R., Strasser, M., McNichol, A. P., Haghipour, N., McIntyre, C., Wefer,
G., and Eglinton, T. I.: Tectonically-triggered sediment and carbon export
to the Hadal zone, Nat. Commun., 9, 1–8, 2018.
Barridge, J. K. and Shively, J.: Phospholipids of the Thiobacilli, J.
Bacteriol., 95, 2182–2185, 1968.
Batrakov, S. G. and Nikitin, D. I.: Lipid composition of the
phosphatidylcholine-producing bacterium Hyphomicrobium vulgare NP-160,
Biochim. Biophys. Acta BBA-Lipids Lipid Metab., 1302, 129–137, 1996.
Benning, C., Huang, Z.-H., and Gage, D. A.: Accumulation of a novel
glycolipid and a betaine lipid in cells of Rhodobacter sphaeroides grown
under phosphate limitation, Arch. Biochem. Biophys., 317, 103–111, 1995.
Bergé, J.-P. and Barnathan, G.: Fatty acids from lipids of marine
organisms: molecular biodiversity, roles as biomarkers, biologically active
compounds, and economical aspects, Mar. Biotechnol. I, 96, 49–125, 2005.
Biddle, J. F., Lipp, J. S., Lever, M. A., Lloyd, K. G., Sørensen, K. B.,
Anderson, R., Fredricks, H. F., Elvert, M., Kelly, T. J., Schrag, D. P., Sogin, M. L., Brenchley, J. E., Teske, A., House, C. H., and Hinrichs, K.-U.: Heterotrophic Archaea dominate sedimentary subsurface ecosystems off
Peru, P. Natl. Acad. Sci. USA, 103, 3846–3851, 2006.
Billett, D., Lampitt, R., Rice, A., and Mantoura, R.: Seasonal sedimentation
of phytoplankton to the deep-sea benthos, Nature, 302, 520–522, 1983.
Bligh, E. G. and Dyer, W. J.: A rapid method of total lipid extraction and
purification, Can. J. Biochem. Physiol., 37, 911–917, 1959.
Boyer, G. M., Schubotz, F., Summons, R. E., Woods, J., and Shock, E. L.:
Carbon oxidation state in microbial polar lipids suggests adaptation to hot
spring temperature and redox gradients, Front. Microbiol., 11, 229, https://doi.org/10.3389/fmicb.2020.00229, 2020.
Brandsma, J., Hopmans, E. C., Philippart, C. J. M., Veldhuis, M. J. W., Schouten, S., and Sinninghe Damsté, J. S.: Low temporal variation in the intact polar lipid composition of North Sea coastal marine water reveals limited chemotaxonomic value, Biogeosciences, 9, 1073–1084, https://doi.org/10.5194/bg-9-1073-2012, 2012.
Bühring, S. I., Kamp, A., Wörmer, L., Ho, S., and Hinrichs, K.-U.:
Functional structure of laminated microbial sediments from a supratidal
sandy beach of the German Wadden Sea (St. Peter-Ording), J. Sea Res., 85,
463–473, 2014.
Cañavate, J. P., Armada, I., and Hachero-Cruzado, I.: Interspecific
variability in phosphorus-induced lipid remodelling among marine eukaryotic
phytoplankton, New Phytol., 213, 700–713, 2017.
Cantarero, S. I., Henríquez-Castillo, C., Dildar, N., Vargas, C. A.,
Von Dassow, P., Cornejo-D'Ottone, M., and Sepúlveda, J.:
Size-fractionated contribution of microbial biomass to suspended organic
matter in the eastern Tropical South Pacific oxygen minimum zone, Front.
Mar. Sci., 7, 745 pp., 2020.
Carini, P., Van Mooy, B. A., Thrash, J. C., White, A., Zhao, Y., Campbell,
E. O., Fredricks, H. F., and Giovannoni, S. J.: SAR11 lipid renovation in
response to phosphate starvation, P. Natl. Acad. Sci. USA, 112, 7767–7772,
2015.
Clarke, K. and Gorley, R.: Getting started with PRIMER v7, Primer-E Plymouth
Plymouth Mar. Lab., 20, 1–18, 2015.
da Costa, E., Amaro, H. M., Melo, T., Guedes, A. C., and Domingues, M. R.:
Screening for polar lipids, antioxidant, and anti-inflammatory activities of
Gloeothece sp. lipid extracts pursuing new phytochemicals from
cyanobacteria, J. Appl. Phycol., 32, 3015–3030, 2020.
Danovaro, R., Della Croce, N., Dell'Anno, A., and Pusceddu, A.: A depocenter
of organic matter at 7800 m depth in the SE Pacific Ocean, Deep-Sea Res.
Pt. I, 50, 1411–1420, 2003.
Danovaro, R., Snelgrove, P. V., and Tyler, P.: Challenging the paradigms of
deep-sea ecology, Trends Ecol. Evol., 29, 465–475, 2014.
DeLong, E. F. and Yayanos, A. A.: Adaptation of the membrane lipids of a
deep-sea bacterium to changes in hydrostatic pressure, Science, 228,
1101–1103, 1985.
Dembitsky, V. M.: Betaine ether-linked glycerolipids: chemistry and biology,
Prog. Lipid Res., 35, 1–51, 1996.
Dowhan, W.: Molecular basis for membrane phospholipid diversity: why are
there so many lipids?, Annu. Rev. Biochem., 66, 199–232, 1997.
Eichenberger, W. and Gribi, C.: Lipids of Pavlova lutheri: cellular site and
metabolic role of DGCC, Phytochemistry, 45, 1561–1567, 1997.
Eloe, E. A., Shulse, C. N., Fadrosh, D. W., Williamson, S. J., Allen, E. E.,
and Bartlett, D. H.: Compositional differences in particle-associated and
free-living microbial assemblages from an extreme deep-ocean environment,
Environ. Microbiol. Rep., 3, 449–458, 2011.
Fang, J., Barcelona, M. J., Nogi, Y., and Kato, C.: Biochemical implications
and geochemical significance of novel phospholipids of the extremely
barophilic bacteria from the Marianas Trench at 11,000 m, Deep-Sea Res. Pt. I, 47, 1173–1182, 2000.
Fernández-Urruzola, I., Ulloa, O., Glud, R., Pinkerton, M., Schneider
W., Wenzhöfer, F., and Escribano, R: Plankton respiration in the Atacama
Trench region: Implications for particulate organic carbon fux into the
hadal realm, Limnol. Oceanogr., 66, 3134–3148, https://doi.org/10.1002/lno.11866, 2021.
Fischer, J. P., Ferdelman, T. G., D'Hondt, S., Røy, H., and Wenzhöfer, F.: Oxygen penetration deep into the sediment of the South Pacific gyre, Biogeosciences, 6, 1467–1478, https://doi.org/10.5194/bg-6-1467-2009, 2009.
Flores, E.: EdgartFlores/IPLs-Atacama-Trench-, v1.0.0, Zenodo [data set], https://doi.org/10.5281/zenodo.6325647, 2022.
Gao, Y., Du, X. Xu, W., Fan, R., Zhang, X., Yang, S., Chen, X., Lv, J.,
and Luo, Z.: Fungal diversity in deep sea sediments from east yap trench and
their denitrification potential, Geomicrobiol. J., 37, 848–858, 2020.
Gašparović, B., Penezić, A., Frka, S., Kazazić, S., Lampitt,
R. S., Holguin, F. O., Sudasinghe, N., and Schaub, T.: Particulate
sulfur-containing lipids: Production and cycling from the epipelagic to the
abyssopelagic zone, Deep-Sea Res. Pt. I, 134, 12–22,
2018.
Geiger, O., Röhrs, V., Weissenmayer, B., Finan, T. M., and Thomas-Oates,
J. E.: The regulator gene phoB mediates phosphate stress-controlled
synthesis of the membrane lipid diacylglyceryl-N, N, N-trimethylhomoserine
in Rhizobium (Sinorhizobium) meliloti, Mol. Microbiol., 32, 63–73, 1999.
Glud, R. N., Wenzhöfer, F., Middelboe, M., Oguri, K., Turnewitsch, R.,
Canfield, D. E., and Kitazato, H.: High rates of microbial carbon turnover
in sediments in the deepest oceanic trench on Earth, Nat. Geosci., 6,
284–288, 2013.
Glud, R. N., Berg, P., Thamdrup, B., Larsen, M., Stewart, H. A., Jamieson,
A. J., Glud, A., Oguri, K., Sanei, H., Rowden, A. A., and Wenzhöfer, F.: Hadal
trenches are dynamic hotspots for early diagenesis in the deep sea, Commun.
Earth Environ., 2, 1–8, 2021.
Goldfine, H.: Bacterial membranes and lipid packing theory, J. Lipid Res.,
25, 1501–1507, 1984.
Goldfine, H. and Hagen, P.-O.: N-Methyl groups in bacterial lipids III.
phospholipids of hyphomicrobia, J. Bacteriol., 95, 367–375, 1968.
Gombos, Z., Várkonyi, Z., Hagio, M., Iwaki, M., Kovács, L.,
Masamoto, K., Itoh, S., and Wada, H.: Phosphatidylglycerol requirement for
the function of electron acceptor plastoquinone QB in the photosystem II
reaction center, Biochemistry, 41, 3796–3802, 2002.
Gómez-Consarnau, L., González, J. M., Coll-Lladó, M., Gourdon,
P., Pascher, T., Neutze, R., Pedrós-Alió, C., and Pinhassi, J.:
Light stimulates growth of proteorhodopsin-containing marine Flavobacteria,
Nature, 445, 210–213, 2007.
Gooday, A. J., Bett, B. J., Escobar, E., Ingole, B., Levin, L. A., Neira,
C., Raman, A. V., and Sellanes, J.: Habitat heterogeneity and its influence
on benthic biodiversity in oxygen minimum zones, Mar. Ecol., 31, 125–147,
2010.
Gounaris, K. and Barber, J.: Monogalactosyldiacylglycerol: the most abundant
polar lipid in nature, Trends Biochem. Sci., 8, 378–381, 1983.
Gutiérrez, M. H., Vera J., Srain B., Quiñones, R. A., Wörmer L.,
Hinrichs K.-U., and Pantoja, S.: Biochemical fingerprints of marine fungi:
implications for trophic and biogeochemical studies, Aquat. Microb. Ecol., 84, 75–90, https://doi.org/10.3354/ame01927,
2020.
Guan, H., Chen, L., Luo, M., Liu, L., Mao, S., Ge, H., Zhang, M., Fang, J.,
and Chen, D.: Composition and origin of lipid biomarkers in the surface
sediments from the southern Challenger Deep, Mariana Trench, Geosci. Front.,
10, 351–360, 2019.
Grabowski, E., Letelier, R. M., Laws, E. A., and Karl, D. M.: Coupling
carbon and energy fluxes in the North Pacific Subtropical Gyre, Nat.
Commun., 10, 1895, https://doi.org/10.1038/s41467-019-09772-z, 2019.
Hand, K., Bartlett, D., Fryer, P., Peoples, L., Williford, K., Hofmann, A.,
and Cameron, J.: Discovery of novel structures at 10.7 km depth in the
Mariana Trench may reveal chemolithoautotrophic microbial communities, Deep-Sea Res. Pt. I, 160, 103238, https://doi.org/10.1016/j.dsr.2020.103238, 2020.
Harvey, H. R., Fallon, R. D., and Patton, J. S.: The effect of organic
matter and oxygen on the degradation of bacterial membrane lipids in marine
sediments, Geochim. Cosmochim. Ac., 50, 795–804, 1986.
Harwood, J. L.: Membrane lipids in algae, in: Lipids in photosynthesis:
structure, function and genetics, Springer, Dordrecht, 53–64, https://doi.org/10.1007/0-306-48087-5_3, 1998.
Hedges, J. I., Baldock, J. A., Gélinas, Y., Lee, C., Peterson, M., and
Wakeham, S. G.: Evidence for non-selective preservation of organic matter in
sinking marine particles, Nature, 409, 801–804, 2001.
Heinz, E.: Enzymatic reactions in galactolipid biosynthesis, in: Lipids and
lipid polymers in higher plants, Springer, Berlin, Heidelberg, 102–120, https://doi.org/10.1007/978-3-642-66632-2_6, 1977.
Hiraoka, S., Hirai, M., Matsui, Y., Makabe, A., Minegishi, H., Tsuda, M.,
Rastelli, E., Danovaro, R., Corinaldesi, C., Kitahashi, T., Tasumi, E., Nishizawa, M., Takai, K., Nomaki, H., and Nunoura, T.:
Microbial community and geochemical analyses of trans-trench sediments for
understanding the roles of hadal environments, ISME J., 14, 740–756, 2020.
Houston, J.: Variability of precipitation in the Atacama Desert: its causes
and hydrological impact, Int. J. Climatol. J. R. Meteorol. Soc., 26,
2181–2198, 2006.
Hunter, J. E.: Phytoplankton lipidomics: lipid dynamics in response to
microalgal stressors, PhD Thesis, University of Southampton, https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.675198 (last access: 3 March 2022), 2015.
Ichino, M. C., Clark, M. R., Drazen, J. C., Jamieson, A., Jones, D. O.,
Martin, A. P., Rowden, A. A., Shank, T. M., Yancey, P. H., and Ruhl, H. A.:
The distribution of benthic biomass in hadal trenches: a modelling approach
to investigate the effect of vertical and lateral organic matter transport
to the seafloor, Deep-Sea Res. Pt. I, 100, 21–33, 2015.
Imhoff, J. F.: Taxonomy and physiology of phototrophic purple bacteria and
green sulfur bacteria, in: Anoxygenic photosynthetic bacteria, Springer, Dordrecht,
1–15, https://doi.org/10.1007/0-306-47954-0_1, 1995.
Inthorn, M., Wagner, T., Scheeder, G., and Zabel, M.: Lateral transport
controls distribution, quality, and burial of organic matter along
continental slopes in high-productivity areas, Geology, 34, 205–208, 2006.
Itou, M., Matsumura, I., and Noriki, S.: A large flux of particulate matter
in the deep Japan Trench observed just after the 1994 Sanriku-Oki
earthquake, Deep-Sea Res. Pt. I, 47, 1987–1998, 2000.
Itoh, M., Kawamura, K., Kitahashi, T., Kojima, S., Katagiri, H., and
Shimanaga, M.: Bathymetric patterns of meiofaunal abundance and biomass
associated with the Kuril and Ryukyu trenches, western North Pacific Ocean,
Deep-Sea Res. Pt. I, 58, 86–97, 2011.
Jahnke, R. A. and Jahnke, D. B.: Rates of C, N, P and Si recycling and
denitrification at the US Mid-Atlantic continental slope depocenter, Deep-Sea Res. Pt. I, 47, 1405–1428, 2000.
Jahnke, R. A., Reimers, C. E., and Craven, D. B.: Intensification of
recycling of organic matter at the sea floor near ocean margins, Nature,
348, 50–54, 1990.
Jamieson, A. J., Fujii, T., Mayor, D. J., Solan, M., and Priede, I. G.:
Hadal trenches: the ecology of the deepest places on Earth, Trends Ecol.
Evol., 25, 190–197, 2010.
Jebbar, M., Franzetti, B., Girard, E., and Oger, P.: Microbial diversity and
adaptation to high hydrostatic pressure in deep-sea hydrothermal vents
prokaryotes, Extremophiles, 19, 721–740, 2015.
Kalisch, B., Dörmann, P., and Hölzl, G.: DGDG and glycolipids in
plants and algae, Lipids Plant Algae Dev., 86, 51–83, 2016.
Kaneda, T.: Iso-and anteiso-fatty acids in bacteria: biosynthesis, function,
and taxonomic significance, Microbiol. Mol. Biol. Rev., 55, 288–302, 1991.
Kato, C., Masui, N., and Horikoshi, K.: Properties of obligately barophilic
bacteria isolated from a sample of deep-sea sediment from the Izu-Bonin
trench, Oceanogr. Lit. Rev., 1, 53–54, 1997.
Kato, M., Adachi, K., Hajiro-Nakanishi, K., Ishigaki, E., Sano, H., and
Miyachi, S.: betaine lipid from Pavolova lutheri, Phytochemistry, 37, 279–280, https://doi.org/10.1016/0031-9422(94)85041-0, 1994.
Kioka, A., Schwestermann, T., Moernaut, J., Ikehara, K., Kanamatsu, T.,
Eglinton, T. I., and Strasser, M.: Event stratigraphy in a hadal oceanic
trench: The Japan trench as sedimentary archive recording recurrent giant
subduction zone earthquakes and their role in organic carbon export to the
deep sea, Front. Earth Sci., 7, 319, https://doi.org/10.3389/feart.2019.00319, 2019.
Koblížek, M., Falkowski, P. G., and Kolber, Z. S.: Diversity and
distribution of photosynthetic bacteria in the Black Sea, Deep-Sea Res. Pt.
II, 53, 1934–1944, 2006.
Koga, Y. and Morii, H.: Biosynthesis of ether-type polar lipids in archaea
and evolutionary considerations, Microbiol. Mol. Biol. Rev., 71, 97–120,
2007.
Komatsu, H. and Chong, P. L.-G.: Low permeability of liposomal membranes
composed of bipolar tetraether lipids from thermoacidophilic archaebacterium
Sulfolobus acidocaldarius, Biochemistry, 37, 107–115, 1998.
Lam, P., Jensen, M. M., Lavik, G., McGinnis, D. F., Müller, B.,
Schubert, C. J., Amann, R., Thamdrup, B., and Kuypers, M. M.: Linking
crenarchaeal and bacterial nitrification to anammox in the Black Sea, P.
Natl. Acad. Sci. USA, 104, 7104–7109, 2007.
Lechevalier, H.: Chemotaxonomic use of lipids-an overview, Microb. Lipids,
1, 869–902, 1988.
Leduc, D., Rowden, A. A., Glud, R. N., Wenzhöfer, F., Kitazato, H., and
Clark, M. R.: Comparison between infaunal communities of the deep floor and
edge of the Tonga Trench: possible effects of differences in organic matter
supply, Deep-Sea Res. Pt. I, 116, 264–275, 2016.
Lipp, J. S. and Hinrichs, K.-U.: Structural diversity and fate of intact
polar lipids in marine sediments, Geochim. Cosmochim. Ac., 73, 6816–6833,
2009a.
Lipp, J. S., Morono, Y., Inagaki, F., and Hinrichs, K.-U.: Significant
contribution of Archaea to extant biomass in marine subsurface sediments,
Nature, 454, 991–994, 2008.
Liu, J., Zheng, Y., Lin, H., Wang, X., Li, M., Liu, Y., Yu, M., Zhao, M.,
Pedentchouk, N., Lea-Smith, D. J., Todd, J. D., Magill, C. R., Zhang, W.-J., Zhou, S., Song, D., Zhong, H., Xin, Y., Min, Y., Tian, J., and Zhang, X.-H.: Proliferation of
hydrocarbon-degrading microbes at the bottom of the Mariana Trench,
Microbiome, 7, 1–13, 2019.
Liu, X., Lipp, J. S., and Hinrichs, K.-U.: Distribution of intact and core
GDGTs in marine sediments, Org. Geochem., 42, 368–375, 2011.
Liu, X.-L., Lipp, J. S., Simpson, J. H., Lin, Y.-S., Summons, R. E., and
Hinrichs, K.-U.: Mono-and dihydroxyl glycerol dibiphytanyl glycerol
tetraethers in marine sediments: Identification of both core and intact
polar lipid forms, Geochim. Cosmochim. Ac., 89, 102–115, 2012.
Logemann, J., Graue, J., Köster, J., Engelen, B., Rullkötter, J., and Cypionka, H.: A laboratory experiment of intact polar lipid degradation in sandy sediments, Biogeosciences, 8, 2547–2560, https://doi.org/10.5194/bg-8-2547-2011, 2011.
López-Lara, I. M., Sohlenkamp, C., and Geiger, O.: Membrane lipids in
plant-associated bacteria: their biosyntheses and possible functions, Mol.
Plant. Microbe Interact., 16, 567–579, 2003.
Lund, E. D. and Chu, F.-L. E.: Phospholipid biosynthesis in the oyster
protozoan parasite, Perkinsus marinus, Mol. Biochem. Parasitol., 121,
245–253, 2002.
Luo, M., Gieskes, J., Chen, L., Shi, X., and Chen, D.: Provenances,
distribution, and accumulation of organic matter in the southern Mariana
Trench rim and slope: Implication for carbon cycle and burial in hadal
trenches, Mar. Geol., 386, 98–106, 2017.
Macdonald, A.: The effects of pressure on the molecular structure and
physiological functions of cell membranes, Philos. T. R. Soc. Lond. B, 304, 47–68, 1984.
Makula, R.: Phospholipid composition of methane-utilizing bacteria, J.
Bacteriol., 134, 771–777, 1978.
Mangelsdorf, K., Zink, K.-G., Birrien, J.-L., and Toffin, L.: A quantitative
assessment of pressure dependent adaptive changes in the membrane lipids of
a piezosensitive deep sub-seafloor bacterium, Org. Geochem., 36, 1459–1479,
2005.
Martin, J. H., Knauer, G. A., Karl, D. M., and Broenkow, W. W.: VERTEX:
carbon cycling in the northeast Pacific, Deep-Sea Res. Pt. I, 34, 267–285, 1987.
Matys, E., Sepúlveda, J., Pantoja, S., Lange, C., Caniupán, M.,
Lamy, F., and Summons, R. E.: Bacteriohopanepolyols along redox gradients in
the Humboldt Current System off northern Chile, Geobiology, 15, 844–857,
2017.
Mayzaud, P., Virtue, P., and Albessard, E.: Seasonal variations in the lipid
and fatty acid composition of the euphausiid Meganyctiphanes norvegica from
the Ligurian Sea, Mar. Ecol. Prog. Ser., 186, 199–210, 1999.
Mirzaei, A., Rahmati, M., and Ahmadi, M.: A new method for hierarchical
clustering combination, Intell. Data Anal., 12, 549–571, 2008.
Murata, N. and Siegenthaler, P.-A.: Lipids in photosynthesis: an overview,
Lipids Photosynth. Struct. Funct. Genet., 6, 1–20, 1998.
Nichols, D. S., Miller, M. R., Davies, N. W., Goodchild, A., Raftery, M.,
and Cavicchioli, R.: Cold adaptation in the Antarctic archaeon
Methanococcoides burtonii involves membrane lipid unsaturation, J.
Bacteriol., 186, 8508–8515, 2004.
Nunoura, T., Takaki, Y., Hirai, M., Shimamura, S., Makabe, A., Koide, O.,
Kikuchi, T., Miyazaki, J., Koba, K., Yoshida, N., Sunamura, M., and Takai, K.: Hadal
biosphere: insight into the microbial ecosystem in the deepest ocean on
Earth, P. Natl. Acad. Sci. USA, 112, E1230–E1236, 2015.
Nunoura, T., Hirai, M., Yoshida-Takashima, Y., Nishizawa, M., Kawagucci, S.,
Yokokawa, T., Miyazaki, J., Koide, O., Makita, H., Takaki, Y., Sunamura, M., and Takai, K.:
Distribution and niche separation of planktonic microbial communities in the
water columns from the surface to the hadal waters of the Japan Trench under
the Eutrophic Ocean, Front. Microbiol., 7, 1261, https://doi.org/10.3389/fmicb.2016.01261, 2016.
Nunoura, T., Nishizawa, M., Hirai, M., Shimamura, S., Harnvoravongchai P.,
Koide, O., Morono, Y., Fukui, T., Inagaki, F., Miyazaki, J., Takaki, Y., and
Takai, K.: Microbial Diversity in Sediments from the Bottom of the Challenger
Deep, the Mariana Trench, Microbes Environ., 33, 186–194, 2018.
Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P., O'hara,
R., Simpson, G., Solymos, P., Stevens, M., and Wagner, H.: Community
ecology package, R Package Version, 2, 2013.
Oliver, J. D. and Colwell, R. R.: Extractable lipids of gram-negative marine
bacteria: phospholipid composition, J. Bacteriol., 114, 897–908, 1973.
Patton, S., Lee, R. F., and Benson, A. A.: The presence of unusually high
levels of lysophosphatidylethanolamine in a wax ester-synthesizing copepod
(Calanus plumchrus), Biochim. Biophys. Acta BBA-Lipids Lipid Metab., 270,
479–488, 1972.
Periasamy, N., Teichert, H., Weise, K., Vogel, R. F., and Winter, R.:
Effects of temperature and pressure on the lateral organization of model
membranes with functionally reconstituted multidrug transporter LmrA,
Biochim. Biophys. Acta BBA-Biomembr., 1788, 390–401, 2009.
Petersen, S. O., Henriksen, K., Blackburn, T. H., and King, G. M.: A
comparison of phospholipid and chloroform fumigation analyses for biomass in
soil: potentials and limitations, FEMS Microbiol. Lett., 85, 257–267, 1991.
Pitcher, A., Villanueva, L., Hopmans, E. C., Schouten, S., Reichart, G.-J., and Sinninghe Damsté, J. S.: Niche segregation of ammonia-oxidizing archaea and anammox bacteria in the Arabian Sea oxygen minimum zone, ISME J., 5, 1896–1904, https://doi.org/10.1038/ismej.2011.60, 2011.
Poff, K. E., Leu, A. O., Eppley, J. M., Karl, D. M., and DeLong, E. F.:
Microbial dynamics of elevated carbon flux in the open ocean's abyss, P.
Natl. Acad. Sci. USA, 118, 4, https://doi.org/10.1073/pnas.2018269118, 2021.
Pond, D. and Harris, R.: The lipid composition of the coccolithophore
Emiliania huxleyi and its possible ecophysiological significance, J. Mar.
Biol. Assoc. U. K., 76, 579–594, 1996.
Popendorf, K. J., Tanaka, T., Pujo-Pay, M., Lagaria, A., Courties, C., Conan, P., Oriol, L., Sofen, L. E., Moutin, T., and Van Mooy, B. A. S.: Gradients in intact polar diacylglycerolipids across the Mediterranean Sea are related to phosphate availability, Biogeosciences, 8, 3733–3745, https://doi.org/10.5194/bg-8-3733-2011, 2011a.
Popendorf, K. J., Lomas, M. W., and Van Mooy, B. A.: Microbial sources of
intact polar diacylglycerolipids in the Western North Atlantic Ocean, Org.
Geochem., 42, 803–811, 2011b.
Ratledge, C. and Wilkinson, S. G.: Microbial lipids, Academic press, https://doi.org/10.1002/abio.370110506, 1988.
Rex, M. A., Etter, R. J., Morris, J. S., Crouse, J., McClain, C. R.,
Johnson, N. A., Stuart, C. T., Deming, J. W., Thies, R., and Avery, R.:
Global bathymetric patterns of standing stock and body size in the deep-sea
benthos, Mar. Ecol. Prog. Ser., 317, 1–8, 2006.
Řezanka, T. and Sigler, K.: Odd-numbered very-long-chain fatty acids
from the microbial, animal and plant kingdoms, Prog. Lipid Res., 48,
206–238, 2009.
Řezanka, T., Viden, I., Go, J., Dor, I., and Dembitsky, V.: Polar lipids
and fatty acids of three wild cyanobacterial strains of the genus
Chroococcidiopsis, Folia Microbiol., 48, 781–786, 2003.
Rossel, P. E., Elvert, M., Ramette, A., Boetius, A., and Hinrichs, K.-U.:
Factors controlling the distribution of anaerobic methanotrophic communities
in marine environments: evidence from intact polar membrane lipids, Geochim.
Cosmochim. Ac., 75, 164–184, 2011.
Rütters, H., Sass, H., Cypionka, H., and Rullkötter, J.:
Monoalkylether phospholipids in the sulfate-reducing bacteria Desulfosarcina
variabilis and Desulforhabdus amnigenus, Arch. Microbiol., 176, 435–442,
2001.
Sabbatini, A., Morigi, C., Negri, A., and Gooday, A. J.: Soft-shelled
benthic foraminifera from a hadal site (7800 m water depth) in the Atacama
Trench (SE Pacific): preliminary observations, J. Micropalaeontol., 21,
131–135, 2002.
Sakurai, I., Shen, J.-R., Leng, J., Ohashi, S., Kobayashi, M., and Wada, H.:
Lipids in oxygen-evolving photosystem II complexes of cyanobacteria and
higher plants, J. Biochem., 140, 201–209, 2006.
Sato, N.: Betaine lipids, Bot. Mag. Shokubutsu-Gaku-Zasshi, 105, 185–197,
1992.
Sato, N., Hagio, M., Wada, H., and Tsuzuki, M.: Requirement of
phosphatidylglycerol for photosynthetic function in thylakoid membranes,
P. Natl. Acad. Sci. USA, 97, 10655–10660, 2000.
Schauberger, C., Middelboe, M., Larsen, M., Peoples, L. M., Bartlett, D. H.,
Kirpekar, F., Rowden, A. A., Wenzhöfer, F., Thamdrup, B., and Glud, R.
N.: Spatial variability of prokaryotic and viral abundances in the Kermadec
and Atacama Trench regions, Limnol. Oceanogr., 66, 2095–2109, 2021.
Schneider, W., Fuenzalida, R., Garcés-Vargas, J., Bravo, L., and Lange,
C.: Extensión vertical y horizontal de la zona de mínima
oxígeno en el Pacífico Sur Oriental, Gayana Concepc., 70, 79–82,
2006.
Schouten, S., Middelburg, J. J., Hopmans, E. C., and Damsté, J. S. S.:
Fossilization and degradation of intact polar lipids in deep subsurface
sediments: a theoretical approach, Geochim. Cosmochim. Ac., 74, 3806–3814,
2010.
Schubotz, F., Wakeham, S. G., Lipp, J. S., Fredricks, H. F., and Hinrichs,
K.-U.: Detection of microbial biomass by intact polar membrane lipid
analysis in the water column and surface sediments of the Black Sea,
Environ. Microbiol., 11, 2720–2734, 2009.
Schubotz, F., Meyer-Dombard, D., Bradley, A. S., Fredricks, H. F., Hinrichs,
K.-U., Shock, E., and Summons, R. E.: Spatial and temporal variability of
biomarkers and microbial diversity reveal metabolic and community
flexibility in Streamer Biofilm Communities in the Lower Geyser Basin,
Yellowstone National Park, Geobiology, 11, 549–569, 2013.
Schubotz, F., Xie, S., Lipp, J. S., Hinrichs, K.-U., and Wakeham, S. G.: Intact polar lipids in the water column of the eastern tropical North Pacific: abundance and structural variety of non-phosphorus lipids, Biogeosciences, 15, 6481–6501, https://doi.org/10.5194/bg-15-6481-2018, 2018.
Schwestermann, T., Eglinton, T., Haghipour, N., McNichol, A., Ikehara, K.,
and Strasser, M.: Event-dominated transport, provenance, and burial of
organic carbon in the Japan Trench, Earth Planet. Sci. Lett., 563, 116870, https://doi.org/10.1016/j.epsl.2021.116870,
2021.
Sebastián, M., Smith, A. F., González, J. M., Fredricks, H. F., Van
Mooy, B., Koblížek, M., Brandsma, J., Koster, G., Mestre, M.,
Mostajir, B., Pitta, P., Postle, A. D., Sánchez, P., Gasol, J. M., Scanlan, D. J., and Chen, Y.: Lipid remodelling is a widespread strategy in
marine heterotrophic bacteria upon phosphorus deficiency, ISME J., 10,
968–978, 2016.
Shaw, N.: Lipid composition as a guide to the classification of bacteria,
Adv. Appl. Microbiol., 17, 63–108, 1974.
Siegenthaler, P.-A.: Molecular organization of acyl lipids in photosynthetic
membranes of higher plants, in: Lipids in photosynthesis: structure,
function and genetics, Springer, 119–144, https://doi.org/10.1007/0-306-48087-5_7, 1998.
Siliakus, M. F., van der Oost, J., and Kengen, S. W.: Adaptations of
archaeal and bacterial membranes to variations in temperature, pH and
pressure, Extremophiles, 21, 651–670, 2017.
Smith, C.: Chemosynthesis in the deep-sea: life without the sun, Biogeosciences Discuss., 9, 17037–17052, https://doi.org/10.5194/bgd-9-17037-2012, 2012.
Sohlenkamp, C., López-Lara, I. M., and Geiger, O.: Biosynthesis of
phosphatidylcholine in bacteria, Prog. Lipid Res., 42, 115–162, 2003.
Somero, G. N.: Adaptations to high hydrostatic pressure, Annu. Rev.
Physiol., 54, 557–577, 1992.
Stockton, W. L. and DeLaca, T. E.: Food falls in the deep sea: occurrence,
quality, and significance, Deep-Sea Res. Pt. I, 29,
157–169, 1982.
Sturt, H. F., Summons, R. E., Smith, K., Elvert, M., and Hinrichs, K.-U.:
Intact polar membrane lipids in prokaryotes and sediments deciphered by
high-performance liquid chromatography/electrospray ionization multistage
mass spectrometry – new biomarkers for biogeochemistry and microbial
ecology, Rapid Commun. Mass Spectrom., 18, 617–628, 2004.
Suzuki, R. and Shimodaira, H.: Pvclust: an R package for assessing the
uncertainty in hierarchical clustering, Bioinformatics, 22, 1540–1542,
2006.
Ta, K., Peng, X., Xu, H., Du, M., Chen, S., Li, J., and Zhang, C.:
Distributions and sources of glycerol dialkyl glycerol tetraethers in
sediment cores from the Mariana subduction zone, J. Geophys. Res.-Biogeo., 124, 857–869, 2019.
Tamburini, C., Boutrif, M., Garel, M., Colwell, R. R., and Deming, J. W.:
Prokaryotic responses to hydrostatic pressure in the ocean – a review,
Environ. Microbiol., 15, 1262–1274, 2013.
Tarn, J., Peoples, L. M., Hardy, K., Cameron, J., and Bartlett, D. H.:
Identification of free-living and particle-associated microbial communities
present in hadal regions of the Mariana Trench, Front. Microbiol., 7, 665, https://doi.org/10.3389/fmicb.2016.00665,
2016.
Thompson Jr., G. A.: Lipids and membrane function in green algae, Biochim.
Biophys. Acta BBA-Lipids Lipid Metab., 1302, 17–45, 1996.
Turnewitsch, R., Falahat, S., Stehlikova, J., Oguri, K., Glud, R. N.,
Middelboe, M., Kitazato, H., Wenzhöfer, F., Ando, K., Fujio, S., and
Yanagimoto, D.: Recent sediment dynamics in hadal trenches: evidence for the
influence of higher-frequency (tidal, near-inertial) fluid dynamics, Deep-Sea Res. Pt. I, 90, 125–138, 2014.
Van Mooy, B. A. and Fredricks, H. F.: Bacterial and eukaryotic intact polar
lipids in the eastern subtropical South Pacific: water-column distribution,
planktonic sources, and fatty acid composition, Geochim. Cosmochim. Ac.,
74, 6499–6516, 2010.
Van Mooy, B. A., Rocap, G., Fredricks, H. F., Evans, C. T., and Devol, A.
H.: Sulfolipids dramatically decrease phosphorus demand by picocyanobacteria
in oligotrophic marine environments, P. Natl. Acad. Sci. USA, 103,
8607–8612, 2006.
Van Mooy, B. A., Fredricks, H. F., Pedler, B. E., Dyhrman, S. T., Karl, D.
M., Koblížek, M., Lomas, M. W., Mincer, T. J., Moore, L. R.,
Moutin, T., Rappé, M. S., and Webb, E. A.: Phytoplankton in the ocean use non-phosphorus lipids
in response to phosphorus scarcity, Nature, 458, 69–72, 2009.
Vardi, A., Van Mooy, B. A., Fredricks, H. F., Popendorf, K. J., Ossolinski,
J. E., Haramaty, L., and Bidle, K. D.: Viral glycosphingolipids induce lytic
infection and cell death in marine phytoplankton, Science, 326, 861–865,
2009.
Vargas, C. A., Cantarero, S. I., Sepúlveda, J., Galán, A., De
Pol-Holz, R., Walker, B., Schneider, W., Farías, L., D'Ottone, M. C.,
Walker, J., Xu, X., and Salisbury, J.: A source of isotopically light organic carbon in a
low-pH anoxic marine zone, Nat. Commun., 12, 1–11, 2021.
Volkman, J., Jeffrey, S., Nichols, P., Rogers, G., and Garland, C.: Fatty
acid and lipid composition of 10 species of microalgae used in mariculture,
J. Exp. Mar. Biol. Ecol., 128, 219–240, 1989.
Wada, H. and Murata, N.: Membrane lipids in cyanobacteria, in: Lipids in
photosynthesis: structure, function and genetics, Springer, 65–81, https://doi.org/10.1007/0-306-48087-5_4, 1998.
Wada, H. and Murata, N.: The essential role of phosphatidylglycerol in
photosynthesis, Photosynth. Res., 92, 205–215, 2007.
Wakeham, S. G., Lee, C., Farrington, J. W., and Gagosian, R. B.:
Biogeochemistry of particulate organic matter in the oceans: results from
sediment trap experiments, Deep-Sea Res. Pt. I, 31,
509–528, 1984.
Wakeham, S. G., Turich, C., Schubotz, F., Podlaska, A., Li, X. N., Varela,
R., Astor, Y., Saenz, J. P., Rush, D., Damste, J. S. S., Summons, R. E., Scranton, M. I. Taylor, G. T., and Hinrichs, K. -U.:
Biomarkers, chemistry and microbiology show chemoautotrophy in a multilayer
chemocline in the Cariaco Basin, Deep-Sea Res. Pt. I, 63,
133–156, 2012.
Warnes, G., Bolker, B., Bonebakker, L., Gentleman, R., Liaw, W., Lumley, T.,
Maechler, M., Magnusson, A., Moeller, S., Schwartz, M., Venables, B., and Galili, T.: gplots: various R programming tools for plotting data, R package
version 2.16.0.2015, https://github.com/talgalili/gplots (last access: 3 March 2022), 2015.
Warton, D. I., Wright, S. T., and Wang, Y.: Distance-based multivariate
analyses confound location and dispersion effects, Methods Ecol. Evol., 3,
89–101, 2012.
Weijers, J. W., Schouten, S., van den Donker, J. C., Hopmans, E. C., and
Damsté, J. S. S.: Environmental controls on bacterial tetraether
membrane lipid distribution in soils, Geochim. Cosmochim. Ac., 71,
703–713, 2007.
Wenzhöfer, F.: The Expedition SO261 of the Research Vessel SONNE to the
Atacama Trench in the Pacific Ocean in 2018, Rep. Polar Mar. Res., 729, 1–111,
2019.
Wenzhöfer, F., Oguri, K., Middelboe, M., Turnewitsch, R., Toyofuku, T.,
Kitazato, H., and Glud, R. N.: Benthic carbon mineralization in hadal
trenches: Assessment by in situ O2 microprofile measurements, Deep-Sea Res.
Pt. I, 116, 276–286, 2016.
Wenzhöfer, F.: The Expedition SO261 of the Research Vessel SONNE to the Atacama Trench in the Pacific Ocean in 2018, Rep. Polar Mar. Res., 729, 1–111, 2019.
Westrich, J. T. and Berner, R. A.: The role of sedimentary organic matter in
bacterial sulphate reduction – the G model tested, Limnol. Oceanogr., 29,
236–249, 1984.
White, D., Bobbie, R., King, J., Nickels, J., and Amoe, P.: Lipid analysis
of sediments for microbial biomass and community structure, in: Methodology
for biomass determinations and microbial activities in sediments, ASTM
International, 673, 87–103, 1979.
Winter, R.: Effect of lipid chain length, temperature, pressure and
composition on the lateral organisation and phase behavior of lipid
bilayer/gramicidin mixtures, Biophys. J., 1, 153A–153A, 2002.
Winter, R. and Jeworrek, C.: Effect of pressure on membranes, Soft Matter,
5, 3157–3173, 2009.
Wörmer, L., Lipp, J. S., Schröder, J. M., and Hinrichs, K.-U.:
Application of two new LC–ESI–MS methods for improved detection of intact
polar lipids (IPLs) in environmental samples, Org. Geochem., 59, 10–21,
2013.
Xu, Y., Ge, H., and Fang, J.: Biogeochemistry of hadal trenches: Recent
developments and future perspectives, Deep-Sea Res. Pt. II, 155, 19–26, https://doi.org/10.1016/j.dsr2.2018.10.006, 2018.
Xu, Y., Wu, W., Xiao, W., Ge, H., Wei, Y., Yin, X., Yao, H., Lipp, S. J., Pan, B., and Hinrichs, K. U.: Intact ether lipids in trench sediments related to archaeal community and environmental conditions in the deepest ocean, J. Geophys. Res.-Biogeo., 125, e2019JG005431, https://doi.org/10.1029/2019JG005431, 2020a.
Xu, Y., Jia, Z., Xiao, W., Fang, J., Wang, Y., Luo, M., Wenzhöfer, F.,
Rowden, A. A., and Glud, R. N.: Glycerol dialkyl glycerol tetraethers in
surface sediments from three Pacific trenches: Distribution, source and
environmental implications, Org. Geochem., 147, 104079, https://doi.org/10.1016/j.orggeochem.2020.104079, 2020b.
Xu, Y., Li, X., Luo, M., Xiao, W., Fang, J., Rashid, H., Peng, Y., Li, W.,
Wenzhöfer, F., Rowden, A. A., and Glud, R. N.: Distribution, Source, and
Burial of Sedimentary Organic Carbon in Kermadec and Atacama Trenches, J.
Geophys. Res.-Biogeo., 126, e2020JG006189, https://doi.org/10.1029/2020JG006189, 2021.
Yano, Y., Nakayama, A., Ishihara, K., and Saito, H.: Adaptive changes in
membrane lipids of barophilic bacteria in response to changes in growth
pressure, Appl. Environ. Microbiol., 64, 479–485, 1998.
Zheng, Y., Wang, J., Zhou, S., Zhang, Y., Liu, J., Xue, C. X., Williams, B. T., Zhao, X., Zhao, L., Zhu, X-Y., Sun, C., Zhang, H-H., Xiao, T., Yang, G-P., Todd, J. D., and Zhang, X. H.: Bacteria are important dimethylsulfoniopropionate producers in marine aphotic and high-pressure environments, Nat. Commun., 11, 1–12, https://doi.org/10.1038/s41467-020-18434-4, 2020.
Zhong, H., Lehtovirta-Morley, L., Liu, J., Zheng, Y., Lin, H., Song, D.,
Todd, J. D., Tian, J., and Zhang, X.-H.: Novel insights into the
Thaumarchaeota in the deepest oceans: their metabolism and potential
adaptation mechanisms, Microbiome, 8, 1–16, 2020.
Zhukova, N. V.: Variation in microbial biomass and community structure in
sediments of Peter the Great Bay (Sea of Japan/East Sea), as estimated from
fatty acid biomarkers, Ocean Sci. J., 40, 34–42, 2005.
Short summary
In this study, we investigate the chemical diversity and abundance of microbial lipids as markers of organic matter sources in the deepest points of the Atacama Trench sediments and compare them to similar lipid stocks in shallower surface sediments and in the overlying water column. We evaluate possible organic matter provenance and some potential chemical adaptations of the in situ microbial community to the extreme conditions of high hydrostatic pressure in hadal realm.
In this study, we investigate the chemical diversity and abundance of microbial lipids as...
Altmetrics
Final-revised paper
Preprint