Articles | Volume 19, issue 11
https://doi.org/10.5194/bg-19-2759-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-2759-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A modern snapshot of the isotopic composition of lacustrine biogenic carbonates – records of seasonal water temperature variability
Institute of Geography, University of Bremen, Celsiusstr. 2, 28359 Bremen, Germany
Franziska Tell
Institute of Geography, University of Bremen, Celsiusstr. 2, 28359 Bremen, Germany
MARUM – Center for Marine Environmental Sciences, University of Bremen, Leobener Str. 8, 28359 Bremen, Germany
Ulrich von Grafenstein
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
Dan Hammarlund
Quaternary Sciences, Department of Geology, Lund University, Sölvegatan 12, 223 62 Lund, Sweden
Henning Kuhnert
MARUM – Center for Marine Environmental Sciences, University of Bremen, Leobener Str. 8, 28359 Bremen, Germany
Bénédicte Minster
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
Related authors
Adrien Deroubaix, Marco Vountas, Benjamin Gaubert, Maria Dolores Andrés Hernández, Stephan Borrmann, Guy Brasseur, Bruna Holanda, Yugo Kanaya, Katharina Kaiser, Flora Kluge, Ovid Oktavian Krüger, Inga Labuhn, Michael Lichtenstern, Klaus Pfeilsticker, Mira Pöhlker, Hans Schlager, Johannes Schneider, Guillaume Siour, Basudev Swain, Paolo Tuccella, Kameswara S. Vinjamuri, Mihalis Vrekoussis, Benjamin Weyland, and John P. Burrows
EGUsphere, https://doi.org/10.5194/egusphere-2024-516, https://doi.org/10.5194/egusphere-2024-516, 2024
Preprint archived
Short summary
Short summary
This study assesses atmospheric composition using air quality models during aircraft campaigns in Europe and Asia, focusing on carbonaceous aerosols and trace gases. While carbon monoxide is well modeled, other pollutants have moderate to weak agreement with observations. Wind speed modeling is reliable for identifying pollution plumes, where models tend to overestimate concentrations. This highlights challenges in accurately modeling aerosol and trace gas composition, particularly in cities.
Adrien Deroubaix, Marco Vountas, Benjamin Gaubert, Maria Dolores Andrés Hernández, Stephan Borrmann, Guy Brasseur, Bruna Holanda, Yugo Kanaya, Katharina Kaiser, Flora Kluge, Ovid Oktavian Krüger, Inga Labuhn, Michael Lichtenstern, Klaus Pfeilsticker, Mira Pöhlker, Hans Schlager, Johannes Schneider, Guillaume Siour, Basudev Swain, Paolo Tuccella, Kameswara S. Vinjamuri, Mihalis Vrekoussis, Benjamin Weyland, and John P. Burrows
EGUsphere, https://doi.org/10.5194/egusphere-2024-521, https://doi.org/10.5194/egusphere-2024-521, 2024
Preprint archived
Short summary
Short summary
This study explores the proportional relationships between carbonaceous aerosols (black and organic carbon) and trace gases using airborne measurements from two campaigns in Europe and East Asia. Differences between regions were found, but air quality models struggled to reproduce them accurately. We show that these proportional relationships can help to constrain models and can be used to infer aerosol concentrations from satellite observations of trace gases, especially in urban areas.
Laia Comas-Bru, Kira Rehfeld, Carla Roesch, Sahar Amirnezhad-Mozhdehi, Sandy P. Harrison, Kamolphat Atsawawaranunt, Syed Masood Ahmad, Yassine Ait Brahim, Andy Baker, Matthew Bosomworth, Sebastian F. M. Breitenbach, Yuval Burstyn, Andrea Columbu, Michael Deininger, Attila Demény, Bronwyn Dixon, Jens Fohlmeister, István Gábor Hatvani, Jun Hu, Nikita Kaushal, Zoltán Kern, Inga Labuhn, Franziska A. Lechleitner, Andrew Lorrey, Belen Martrat, Valdir Felipe Novello, Jessica Oster, Carlos Pérez-Mejías, Denis Scholz, Nick Scroxton, Nitesh Sinha, Brittany Marie Ward, Sophie Warken, Haiwei Zhang, and SISAL Working Group members
Earth Syst. Sci. Data, 12, 2579–2606, https://doi.org/10.5194/essd-12-2579-2020, https://doi.org/10.5194/essd-12-2579-2020, 2020
Short summary
Short summary
This paper presents an updated version of the SISAL (Speleothem Isotope Synthesis and Analysis) database. This new version contains isotopic data from 691 speleothem records from 294 cave sites and new age–depth models, including their uncertainties, for 512 speleothems.
Niels Dutrievoz, Cécile Agosta, Cécile Davrinche, Amaëlle Landais, Sébastien Nguyen, Étienne Vignon, Inès Ollivier, Christophe Leroy-Dos Santos, Elise Fourré, Mathieu Casado, Jonathan Wille, Vincent Favier, Bénédicte Minster, and Frédéric Prié
EGUsphere, https://doi.org/10.5194/egusphere-2025-2590, https://doi.org/10.5194/egusphere-2025-2590, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
In December 2018, an atmospheric river event from the Atlantic reached Dome C, East Antarctica, causing a +18 °C warming, tripled water vapour, and a strong isotopic anomaly in water vapour (+ 17 ‰ for δ18O) at the surface. During the peak of the event, we found 70 % of the water vapour came from local snow sublimation, and 30 % from the atmospheric river itself, highlighting both large-scale advection and local interactions at the surface.
Titouan Tcheng, Elise Fourré, Christophe Leroy-Dos-Santos, Frédéric Parrenin, Emmanuel Le Meur, Frédéric Prié, Olivier Jossoud, Roxanne Jacob, Bénédicte Minster, Olivier Magand, Cécile Agosta, Niels Dutrievoz, Vincent Favier, Léa Baubant, Coralie Lassalle-Bernard, Mathieu Casado, Martin Werner, Alexandre Cauquoin, Laurent Arnaud, Bruno Jourdain, Ghislain Picard, Marie Bouchet, and Amaëlle Landais
EGUsphere, https://doi.org/10.5194/egusphere-2025-2863, https://doi.org/10.5194/egusphere-2025-2863, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Studying Antarctic ice cores is crucial to assess past climate changes, as they hold historical climate data. This study examines multiple ice cores from three sites in coastal Adélie Land to see if combining cores improves data interpretability. It does at two sites, but at a third, wind-driven snow layer mixing limited benefits. We show that using multiple ice cores from one location can better uncover climate history, especially in areas with less wind disturbance.
Aline Mega, Teresa Rodrigues, Emília Salgueiro, Mária Padilha, Henning Kuhnert, and Antje H. L. Voelker
Clim. Past, 21, 919–939, https://doi.org/10.5194/cp-21-919-2025, https://doi.org/10.5194/cp-21-919-2025, 2025
Short summary
Short summary
Our research explores climatic changes during the Early–Middle Pleistocene (1006–750 ka) on the southern Portuguese margin. We found that warm, subtropical-gyre-related conditions dominated. However, those conditions were occasionally interrupted by extreme cold events during the glacial periods. Our data show that these cold events, linked to changes in the North Atlantic's circulation, reached as far south as 36° N and significantly impacted marine ecosystems in the surface ocean.
Inès Ollivier, Hans Christian Steen-Larsen, Barbara Stenni, Laurent Arnaud, Mathieu Casado, Alexandre Cauquoin, Giuliano Dreossi, Christophe Genthon, Bénédicte Minster, Ghislain Picard, Martin Werner, and Amaëlle Landais
The Cryosphere, 19, 173–200, https://doi.org/10.5194/tc-19-173-2025, https://doi.org/10.5194/tc-19-173-2025, 2025
Short summary
Short summary
The role of post-depositional processes taking place at the ice sheet's surface on the water stable isotope signal measured in polar ice cores is not fully understood. Using field observations and modelling results, we show that the original precipitation isotopic signal at Dome C, East Antarctica, is modified by post-depositional processes and provide the first quantitative estimation of their mean impact on the isotopic signal observed in the snow.
Amaelle Landais, Cécile Agosta, Françoise Vimeux, Olivier Magand, Cyrielle Solis, Alexandre Cauquoin, Niels Dutrievoz, Camille Risi, Christophe Leroy-Dos Santos, Elise Fourré, Olivier Cattani, Olivier Jossoud, Bénédicte Minster, Frédéric Prié, Mathieu Casado, Aurélien Dommergue, Yann Bertrand, and Martin Werner
Atmos. Chem. Phys., 24, 4611–4634, https://doi.org/10.5194/acp-24-4611-2024, https://doi.org/10.5194/acp-24-4611-2024, 2024
Short summary
Short summary
We have monitored water vapor isotopes since January 2020 on Amsterdam Island in the Indian Ocean. We show 11 periods associated with abrupt negative excursions of water vapor δ18Ο. Six of these events show a decrease in gaseous elemental mercury, suggesting subsidence of air from a higher altitude. Accurately representing the water isotopic signal during these cold fronts is a real challenge for the atmospheric components of Earth system models equipped with water isotopes.
Adrien Deroubaix, Marco Vountas, Benjamin Gaubert, Maria Dolores Andrés Hernández, Stephan Borrmann, Guy Brasseur, Bruna Holanda, Yugo Kanaya, Katharina Kaiser, Flora Kluge, Ovid Oktavian Krüger, Inga Labuhn, Michael Lichtenstern, Klaus Pfeilsticker, Mira Pöhlker, Hans Schlager, Johannes Schneider, Guillaume Siour, Basudev Swain, Paolo Tuccella, Kameswara S. Vinjamuri, Mihalis Vrekoussis, Benjamin Weyland, and John P. Burrows
EGUsphere, https://doi.org/10.5194/egusphere-2024-516, https://doi.org/10.5194/egusphere-2024-516, 2024
Preprint archived
Short summary
Short summary
This study assesses atmospheric composition using air quality models during aircraft campaigns in Europe and Asia, focusing on carbonaceous aerosols and trace gases. While carbon monoxide is well modeled, other pollutants have moderate to weak agreement with observations. Wind speed modeling is reliable for identifying pollution plumes, where models tend to overestimate concentrations. This highlights challenges in accurately modeling aerosol and trace gas composition, particularly in cities.
Adrien Deroubaix, Marco Vountas, Benjamin Gaubert, Maria Dolores Andrés Hernández, Stephan Borrmann, Guy Brasseur, Bruna Holanda, Yugo Kanaya, Katharina Kaiser, Flora Kluge, Ovid Oktavian Krüger, Inga Labuhn, Michael Lichtenstern, Klaus Pfeilsticker, Mira Pöhlker, Hans Schlager, Johannes Schneider, Guillaume Siour, Basudev Swain, Paolo Tuccella, Kameswara S. Vinjamuri, Mihalis Vrekoussis, Benjamin Weyland, and John P. Burrows
EGUsphere, https://doi.org/10.5194/egusphere-2024-521, https://doi.org/10.5194/egusphere-2024-521, 2024
Preprint archived
Short summary
Short summary
This study explores the proportional relationships between carbonaceous aerosols (black and organic carbon) and trace gases using airborne measurements from two campaigns in Europe and East Asia. Differences between regions were found, but air quality models struggled to reproduce them accurately. We show that these proportional relationships can help to constrain models and can be used to infer aerosol concentrations from satellite observations of trace gases, especially in urban areas.
Christophe Leroy-Dos Santos, Elise Fourré, Cécile Agosta, Mathieu Casado, Alexandre Cauquoin, Martin Werner, Benedicte Minster, Frédéric Prié, Olivier Jossoud, Leila Petit, and Amaëlle Landais
The Cryosphere, 17, 5241–5254, https://doi.org/10.5194/tc-17-5241-2023, https://doi.org/10.5194/tc-17-5241-2023, 2023
Short summary
Short summary
In the face of global warming, understanding the changing water cycle and temperatures in polar regions is crucial. These factors directly impact the balance of ice sheets in the Arctic and Antarctic. By studying the composition of water vapor, we gain insights into climate variations. Our 2-year study at Dumont d’Urville station, Adélie Land, offers valuable data to refine models. Additionally, we demonstrate how modeling aids in interpreting signals from ice core samples in the region.
Antoine Grisart, Mathieu Casado, Vasileios Gkinis, Bo Vinther, Philippe Naveau, Mathieu Vrac, Thomas Laepple, Bénédicte Minster, Frederic Prié, Barbara Stenni, Elise Fourré, Hans Christian Steen-Larsen, Jean Jouzel, Martin Werner, Katy Pol, Valérie Masson-Delmotte, Maria Hoerhold, Trevor Popp, and Amaelle Landais
Clim. Past, 18, 2289–2301, https://doi.org/10.5194/cp-18-2289-2022, https://doi.org/10.5194/cp-18-2289-2022, 2022
Short summary
Short summary
This paper presents a compilation of high-resolution (11 cm) water isotopic records, including published and new measurements, for the last 800 000 years from the EPICA Dome C ice core, Antarctica. Using this new combined water isotopes (δ18O and δD) dataset, we study the variability and possible influence of diffusion at the multi-decadal to multi-centennial scale. We observe a stronger variability at the onset of the interglacial interval corresponding to a warm period.
Stefan Mulitza, Torsten Bickert, Helen C. Bostock, Cristiano M. Chiessi, Barbara Donner, Aline Govin, Naomi Harada, Enqing Huang, Heather Johnstone, Henning Kuhnert, Michael Langner, Frank Lamy, Lester Lembke-Jene, Lorraine Lisiecki, Jean Lynch-Stieglitz, Lars Max, Mahyar Mohtadi, Gesine Mollenhauer, Juan Muglia, Dirk Nürnberg, André Paul, Carsten Rühlemann, Janne Repschläger, Rajeev Saraswat, Andreas Schmittner, Elisabeth L. Sikes, Robert F. Spielhagen, and Ralf Tiedemann
Earth Syst. Sci. Data, 14, 2553–2611, https://doi.org/10.5194/essd-14-2553-2022, https://doi.org/10.5194/essd-14-2553-2022, 2022
Short summary
Short summary
Stable isotope ratios of foraminiferal shells from deep-sea sediments preserve key information on the variability of ocean circulation and ice volume. We present the first global atlas of harmonized raw downcore oxygen and carbon isotope ratios of various planktonic and benthic foraminiferal species. The atlas is a foundation for the analyses of the history of Earth system components, for finding future coring sites, and for teaching marine stratigraphy and paleoceanography.
Laia Comas-Bru, Kira Rehfeld, Carla Roesch, Sahar Amirnezhad-Mozhdehi, Sandy P. Harrison, Kamolphat Atsawawaranunt, Syed Masood Ahmad, Yassine Ait Brahim, Andy Baker, Matthew Bosomworth, Sebastian F. M. Breitenbach, Yuval Burstyn, Andrea Columbu, Michael Deininger, Attila Demény, Bronwyn Dixon, Jens Fohlmeister, István Gábor Hatvani, Jun Hu, Nikita Kaushal, Zoltán Kern, Inga Labuhn, Franziska A. Lechleitner, Andrew Lorrey, Belen Martrat, Valdir Felipe Novello, Jessica Oster, Carlos Pérez-Mejías, Denis Scholz, Nick Scroxton, Nitesh Sinha, Brittany Marie Ward, Sophie Warken, Haiwei Zhang, and SISAL Working Group members
Earth Syst. Sci. Data, 12, 2579–2606, https://doi.org/10.5194/essd-12-2579-2020, https://doi.org/10.5194/essd-12-2579-2020, 2020
Short summary
Short summary
This paper presents an updated version of the SISAL (Speleothem Isotope Synthesis and Analysis) database. This new version contains isotopic data from 691 speleothem records from 294 cave sites and new age–depth models, including their uncertainties, for 512 speleothems.
Cited articles
Andersson, S., Rosqvist, G., Leng, M. J., Wastegård, S., and Blaauw, M.: Late
Holocene climate change in central Sweden inferred from lacustrine stable
isotope data, J. Quaternary Sci., 25, 1305–1316,
https://doi.org/10.1002/jqs.1415, 2010. a, b, c
Andrews, J. E., Coletta, P., Pentecost, A., Riding, R., Dennis, S., Dennis,
P. F., and Spiro, B.: Equilibrium and disequilibrium stable isotope effects
in modern charophyte calcites: implications for palaeoenvironmental studies,
Palaeogeogr. Palaeocl., 204, 101–114,
https://doi.org/10.1016/S0031-0182(03)00725-9, 2004. a, b
Apolinarska, K., Pełechaty, M., and Pronin, E.: Discrepancies between the
stable isotope compositions of water, macrophyte carbonates and organics, and
mollusc shells in the littoral zone of a charophyte-dominated lake (Lake
Lednica, Poland), Hydrobiologia, 768, 1–17,
https://doi.org/10.1007/s10750-015-2524-6, 2016. a, b, c
Beck, W. C., Grossman, E. L., and Morse, J. W.: Experimental studies of oxygen
isotope fractionation in the carbonic acid system at 15∘, 25∘, and 40 ∘C,
Geochim. Cosmochim. Ac., 69, 3493–3503,
https://doi.org/10.1016/j.gca.2005.02.003, 2005. a
Bova, S., Rosenthal, Y., Liu, Z., Godad, S. P., and Yan, M.: Seasonal origin of
the thermal maxima at the Holocene and the last interglacial, Nature, 589,
548–553, https://doi.org/10.1038/s41586-020-03155-x, 2021. a
Bright, J., Kaufman, D. S., Forester, R. M., and Dean, W. E.: A continuous
250,000 yr record of oxygen and carbon isotopes in ostracode and bulk-sediment
carbonate from Bear Lake, Utah-Idaho, Quaternary Sci. Rev., 25,
2258–2270, https://doi.org/10.1016/j.quascirev.2005.12.011, 2006. a
Bäckström, A.: A Study of Impact Fracturing and Electric
Resistivity Related to the Lockne Impact Structure, Sweden, in:
Impact Tectonics, edited by: Koeberl, C. and Henkel, H., Impact Studies,
389–404, Springer, Berlin, Heidelberg, https://doi.org/10.1007/3-540-27548-7_15,
2005. a
Börner, N., De Baere, B., Akita, L. G., Francois, R., Jochum, K. P., Frenzel,
P., Zhu, L., and Schwalb, A.: Stable isotopes and trace elements in modern
ostracod shells: implications for reconstructing past environments on the
Tibetan Plateau, China, J. Paleolimnol., 58, 191–211,
https://doi.org/10.1007/s10933-017-9971-1, 2017. a, b
Caisova, L. and Gabka, M.: Charophytes (Characeae, Charophyta) in the
Czech Republic: taxonomy, autecology and distribution, Fottea, 9, 1–43,
https://doi.org/10.5507/fot.2009.001, 2009. a
Cerling, T. E., Solomon, D. K., Quade, J., and Bowman, J. R.: On the isotopic
composition of carbon in soil carbon dioxide, Geochim. Cosmochim.
Ac., 55, 3403–3405, https://doi.org/10.1016/0016-7037(91)90498-T, 1991. a
Chivas, A., De Deckker, P., Wang, S., and Cali, J.: Oxygen-isotope systematics
of the nektic ostracod australocypris robusta, Geoph. Monog. Series,
131, 301–313, https://doi.org/10.1029/131GM16, 2002. a
Clark, I. D. and Fritz, P.: Environmental Isotopes in Hydrogeology, Lewis
Publishers, Boca Raton, London, New York, https://doi.org/10.1007/s00254-002-0679-8,
1997. a, b
Coletta, P., Pentecost, A., and Spiro, B.: Stable isotopes in charophyte
incrustations: relationships with climate and water chemistry,
Palaeogeogr. Palaeocl., 173, 9–19,
https://doi.org/10.1016/S0031-0182(01)00305-4, 2001. a, b, c
Coplen, T. B., Kendall, C., and Hopple, J.: Comparison of stable isotope
reference samples, Nature, 302, 236–238, https://doi.org/10.1038/302236a0, 1983. a
Craig, H.: Isotopic Variations in Meteoric Waters, Science, 133,
1702–1703, https://doi.org/10.1126/science.133.3465.1702, 1961. a
Daëron, M., Drysdale, R. N., Peral, M., Huyghe, D., Blamart, D., Coplen, T. B., Lartaud, F., and Zanchetta, G.: Most Earth-surface calcites precipitate out of isotopic equilibrium, Nat. Commun., 10, 429, https://doi.org/10.1038/s41467-019-08336-5, 2019. a
Decrouy, L., Vennemann, T. W., and Ariztegui, D.: Controls on ostracod valve
geochemistry, Part 1: Variations of environmental parameters in ostracod
(micro-)habitats, Geochim. Cosmochim. Ac., 75, 7364–7379,
https://doi.org/10.1016/j.gca.2011.09.009, 2011a. a, b
Decrouy, L., Vennemann, T. W., and Ariztegui, D.: Controls on ostracod valve
geochemistry: Part 2. Carbon and oxygen isotope compositions, Geochim. Cosmochim. Ac., 75, 7380–7399, https://doi.org/10.1016/j.gca.2011.09.008,
2011b. a, b, c
Devriendt, L. S., McGregor, H. V., and Chivas, A. R.: Ostracod calcite records
the ratio of the bicarbonate and carbonate ions in water,
Geochim. Cosmochim. Ac., 214, 30–50,
https://doi.org/10.1016/j.gca.2017.06.044, 2017. a
Gat, J. R.: Oxygen and hydrogen isotopes in the hydrologic cycle, Annu. Rev. Earth Pl. Sc., 24, 225–262,
https://doi.org/10.1146/annurev.earth.24.1.225, 1996. a
Grossman, E. L. and Ku, T.-L.: Oxygen and carbon isotope fractionation in
biogenic aragonite: Temperature effects, Chemical Geology: Isotope
Geoscience section, 59, 59–74, https://doi.org/10.1016/0168-9622(86)90057-6, 1986. a, b
Hammarlund, D. and Buchardt, B.: Composite stable isotope records from a Late
Weichselian lacustrine sequence at Grrenge, Lolland, Denmark:
evidence of Allerød and Younger Dryas environments, Boreas, 25, 8–22,
https://doi.org/10.1111/j.1502-3885.1996.tb00831.x, 1996. a, b
Hammarlund, D. and Keen, D. H.: A late Weichselian stable isotope and
Molluscan Stratigraphy from Southern Sweden, GFF, 116, 235–248,
https://doi.org/10.1080/11035899409546189, 1994. a, b
Hammarlund, D., Aravena, R., Barnekow, L., Buchardt, B., and Possnert, G.:
Multi-component carbon isotope evidence of early Holocene environmental
change and carbon-flow pathways from a hard-water lake in northern Sweden,
J. Paleolimnol., 18, 219–233, 1997. a
Hammarlund, D., Barnekow, L., Birks, H. J. B., Buchardt, B., and Edwards, T.
W. D.: Holocene changes in atmospheric circulation recorded in the
oxygen-isotope stratigraphy of lacustrine carbonates from northern Sweden,
Holocene, 12, 339–351, https://doi.org/10.1191/0959683602hl548rp, 2002. a, b
Hammarlund, D., Björck, S., Buchardt, B., Israelson, C., and Thomsen, C. T.:
Rapid hydrological changes during the Holocene revealed by stable isotope
records of lacustrine carbonates from Lake Igelsjön, southern Sweden,
Quaternary Sci. Rev., 22, 353–370,
https://doi.org/10.1016/S0277-3791(02)00091-4, 2003. a
Hammer, O., Harper, D. A. T., and Ryan, P. D.: PAST: Paleontological
Statistics Software Package for Education and Data Analysis,
Palaeontologia Electronica, 4, 1–9, 2001. a
Herbst, A., Tümpling, W. V., and Schubert, H.: The seasonal effects on the
encrustation of charophytes in two hard‐water lakes, J. Phycol.,
54, 630–637, https://doi.org/10.1111/jpy.12772, 2018. a
Hertzberg, J.: A seasonal solution to a palaeoclimate puzzle, Nature, 589,
521–522, https://doi.org/10.1038/d41586-021-00115-x, 2021. a
Holmes, J. A., Leuenberger, M., Molloy, K., and O'Connell, M.: Younger Dryas
and Holocene environmental change at the Atlantic fringe of Europe
derived from lake-sediment stable-isotope records from western Ireland,
Boreas, 49, 233–247, https://doi.org/10.1111/bor.12425, 2020. a
Holopainen, I. and Jónasson, P.: Bathymetric Distribution and Abundance of
Pisidium (Bivalvia: Sphaeriidae) in Lake Esrom, Denmark, from
1954 to 1988, OIKOS, 55, 324–334, 1989. a
Ito, E.: Application of Stable Isotope Techniques to Inorganic and
Biogenic Carbonates, in: Tracking environmental change using lake
sediments. Volume 2: Physical and Geochemical Methods, 351–371,
Kluwer Academic Publishers, Dordrecht, the Netherlands, 2001. a
Jonsson, C. E., Andersson, S., Rosqvist, G. C., and Leng, M. J.: Reconstructing past atmospheric circulation changes using oxygen isotopes in lake sediments from Sweden, Clim. Past, 6, 49–62, https://doi.org/10.5194/cp-6-49-2010, 2010. a
Keatings, K. W., Heaton, T. H. E., and Holmes, J. A.: Carbon and oxygen isotope
fractionation in non-marine ostracods: results from a “natural culture”
environment, Geochim. Cosmochim. Ac., 66, 1701–1711,
https://doi.org/10.1016/S0016-7037(01)00894-8, 2002. a
Kim, S.-T. and O'Neil, J. R.: Equilibrium and nonequilibrium oxygen isotope
effects in synthetic carbonates, Geochim. Cosmochim. Ac., 61,
3461–3475, https://doi.org/10.1016/S0016-7037(97)00169-5, 1997. a, b, c, d
Kim, S.-T., O'Neil, J. R., Hillaire-Marcel, C., and Mucci, A.: Oxygen isotope
fractionation between synthetic aragonite and water: Influence of
temperature and Mg2+ concentration, Geochim. Cosmochim. Ac., 71,
4704–4715, https://doi.org/10.1016/j.gca.2007.04.019, 2007. a, b
Labuhn, I., Hammarlund, D., Chapron, E., Czymzik, M., Dumoulin, J., Nilsson,
A., Régnier, E., Robygd, J., and von Grafenstein, U.: Holocene
Hydroclimate Variability in Central Scandinavia Inferred from
Flood Layers in Contourite Drift Deposits in Lake Storsjön,
Quaternary, 1, 2, https://doi.org/10.3390/quat1010002, 2018. a
Labuhn, I., Tell, F., von Grafenstein, U., Hammarlund, D., Kuhnert, H., and Minster, B.: Groundwater inflow causes sediment movement on the lake floor of Locknesjön, Sweden, TIB [video], https://doi.org/10.5446/56815, 2021. a, b
Labuhn, I., Tell, F., von Grafenstein, U., Hammarlund, D., Kuhnert, H., and Minster, B.: Stable isotopes in water from Lake Locknesjön, Sweden collected between 2013 and 2018, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.942628, 2022a. a
Labuhn, I., Tell, F., von Grafenstein, U., Hammarlund, D., Kuhnert, H., and Minster, B.: Stable isotopes in recent biogenic carbonates from Lake Locknesjön, Sweden collected in 2018, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.942627, 2022b. a
Li, X. and Liu, W.: Oxygen isotope fractionation in the ostracod Eucypris
mareotica: results from a culture experiment and implications for
paleoclimate reconstruction, J. Paleolimnol., 43, 111,
https://doi.org/10.1007/s10933-009-9317-8, 2010. a
Mann, H. B. and Whitney, D. R.: On a Test of Whether one of Two Random
Variables is Stochastically Larger than the Other, Ann.
Math. Stat., 18, 50–60, 1947. a
Martin, G., Torn, K., Blindow, I., Schubert, H., Munsterhjelm, R., and
Henricson, C.: Introduction to charophytes, in: Charophytes of the Baltic
Sea, edited by: Schubert, H. and Blindow, I., Gantner, Ruggell, Königstein, Germany, The Baltic Marine Biologists Publication, No. 19, ISBN 978-3-906166-06-3, 2003. a
Mayr, C., Lücke, A., Stichler, W., Trimborn, P., Ercolano, B., Oliva, G.,
Ohlendorf, C., Soto, J., Fey, M., Haberzettl, T., Janssen, S., Schäbitz, F.,
Schleser, G. H., Wille, M., and Zolitschka, B.: Precipitation origin and
evaporation of lakes in semi-arid Patagonia (Argentina) inferred from
stable isotopes (δ18O, δ2H), J. Hydrol., 334, 53–63,
https://doi.org/10.1016/j.jhydrol.2006.09.025, 2007. a
Mayr, C., Laprida, C., Lücke, A., Martín, R. S., Massaferro, J.,
Ramón-Mercau, J., and Wissel, H.: Oxygen isotope ratios of chironomids,
aquatic macrophytes and ostracods for lake-water isotopic reconstructions –
Results of a calibration study in Patagonia, J. Hydrol., 529,
600–607, https://doi.org/10.1016/j.jhydrol.2014.11.001, 2015. a
McConnaughey, T.: 13C and 18O isotopic disequilibrium in biological
carbonates: II. In vitro simulation of kinetic isotope effects,
Geochim. Cosmochim. Ac., 53, 163–171,
https://doi.org/10.1016/0016-7037(89)90283-4, 1989. a, b
McConnaughey, T. A. and Falk, R. H.: Calcium-Proton Exchange During
Algal Calcification, Biol. Bull., 180, 185–195,
https://doi.org/10.2307/1542440, 1991. a
McCormack, J. and Kwiecien, O.: Coeval primary and diagenetic carbonates in
lacustrine sediments challenge palaeoclimate interpretations, Scientific
Reports, 11, 7935, https://doi.org/10.1038/s41598-021-86872-1,
2021. a
McCormack, J., Nehrke, G., Jöns, N., Immenhauser, A., and Kwiecien, O.:
Refining the interpretation of lacustrine carbonate isotope records:
Implications of a mineralogy-specific Lake Van case study, Chem.
Geol., 513, 167–183, https://doi.org/10.1016/j.chemgeo.2019.03.014, 2019. a
Meisch, C.: Freshwater Ostracoda of Western and Central Europe,
Süßwasserfauna von Mitteleuropa, Spektrum Akademischer Verlag,
Heidelberg, Berlin, ISBN 978-3-82741-001-6, 2000. a
Meyer, J., Wrozyna, C., Gross, M., Leis, A., and Piller, W. E.: Morphological
and geochemical variations of Cyprideis (Ostracoda) from modern waters of
the northern Neotropics, Limnology, 18, 251–273,
https://doi.org/10.1007/s10201-016-0504-9, 2017. a
Mischke, S., Zhang, C., and Börner, A.: Bias of ostracod stable isotope data
caused by drying of sieve residues from water, J. Paleolimnol., 40,
567–575, https://doi.org/10.1007/s10933-007-9160-8, 2007. a
Ormö, J., Hill, A. C., and Self‐Trail, J. M.: A chemostratigraphic method to
determine the end of impact-related sedimentation at marine-target impact
craters (Chesapeake Bay, Lockne, Tvären), Meteorit. Planet.
Sci., 45, 1206–1224, https://doi.org/10.1111/j.1945-5100.2010.01084.x, 2010. a, b
Pearson, K.: Note on Regression and Inheritance in the Case of Two
Parents, P. R. Soc. Lond. Ser.-I, 58, 240–242, https://doi.org/10.1098/rspl.1895.0041,
1895. a
Pentecost, A., Andrews, J. E., Dennis, P. F., Marca-Bell, A., and Dennis, S.:
Charophyte growth in small temperate water bodies: Extreme isotopic
disequilibrium and implications for the palaeoecology of shallow marl lakes,
Palaeogeogr. Palaeocl., 240, 389–404,
https://doi.org/10.1016/j.palaeo.2006.02.008, 2006. a
Pełechaty, M., Pukacz, A., Apolinarska, K., Pełechata, A., and Siepak, M.:
The significance of Chara vegetation in the precipitation of lacustrine
calcium carbonate, Sedimentology, 60, 1017–1035, https://doi.org/10.1111/sed.12020, 2013. a
Pronin, E., Pełechaty, M., Apolinarska, K., and Pukacz, A.: Oxygen stable
isotope composition of carbonate encrustations of two modern, widely
distributed, morphologically different charophyte species, Hydrobiologia,
809, 41–52, https://doi.org/10.1007/s10750-017-3444-4, 2018. a
R Core Team: R: A Language and Environment for Statistical
Computing, https://www.r-project.org (last access: 2 October 2018), 2018. a
Rozanski, K., Araguás-Araguás, L., and Gonfiantini, R.: Relation between
long-term trends of oxygen-18 isotope composition of precipitation and
climate, Science, 258, 981–985, https://doi.org/10.1126/science.258.5084.981, 1992. a, b
Schwalb, A.: Lacustrine ostracodes as stable isotope recorders of late-glacial
and Holocene environmental dynamics and climate, J. Paleolimnol.,
29, 267–351, 2003. a
Shapiro, S. S. and Wilk, M. B.: An Analysis of Variance Test for
Normality (Complete Samples), Biometrika, 52, 591–611,
https://doi.org/10.2307/2333709, 1965. a
Spearman, C.: The Proof and Measurement of Association between Two
Things, Am. J. Psychol., 15, 72–101,
https://doi.org/10.2307/1412159, 1904. a
Spero, H. J., Bijma, J., Lea, D. W., and Bemis, B. E.: Effect of seawater
carbonate concentration on foraminiferal carbon and oxygen isotopes, Nature,
390, 497–500, https://doi.org/10.1038/37333, 1997. a
Stroeven, A. P., Hättestrand, C., Kleman, J., Heyman, J., Fabel, D., Fredin,
O., Goodfellow, B. W., Harbor, J. M., Jansen, J. D., Olsen, L., Caffee,
M. W., Fink, D., Lundqvist, J., Rosqvist, G. C., Strömberg, B., and Jansson,
K. N.: Deglaciation of Fennoscandia, Quaternary Sci. Rev., 147, 91–121,
https://doi.org/10.1016/j.quascirev.2015.09.016, 2015. a
Sturkell, E., Ormö, J., and Lepinette, A.: Early modification stage
(preresurge) sediment mobilization in the Lockne concentric,
marine‐target crater, Sweden, Meteorit. Planet. Sci., 48,
321–338, https://doi.org/10.1111/maps.12058, 2013. a
Teranes, J. L., McKenzie, J. A., Bernasconi, S. M., Lotter, A. F., and Sturm,
M.: A study of oxygen isotopic fractionation during bio-induced calcite
precipitation in eutrophic Baldeggersee, Switzerland, Geochim.
Cosmochim. Ac., 63, 1981–1989, https://doi.org/10.1016/S0016-7037(99)00049-6, 1999. a, b
von Grafenstein, U. and Labuhn, I.: Air-Interface: δ18O Records of
Past Meteoric Water Using Benthic Ostracods from Deep Lakes,
in: Paleoclimatology, edited by: Ramstein, G., Landais, A., Bouttes, N.,
Sepulchre, P., and Govin, A., 179–195, Springer International
Publishing, https://doi.org/10.1007/978-3-030-24982-3_15, 2021. a, b, c
von Grafenstein, U., Erlenkeuser, H., Müller, J., and Kleinmann-Eisenmann, A.:
Oxygen isotope records of benthic ostracods in Bavarian lake sediments,
Naturwissenschaften, 79, 145–152, 1992. a
von Grafenstein, U., Erlenkeuser, H., Brauer, A., Jouzel, J., and Johnsen, S.:
A Mid-European Decadal Isotope-Climate Record from 15,500 to 5000
Years B.P., Science, 284, 1654–1657,
https://doi.org/10.1126/science.284.5420.1654, 1999a. a, b
von Grafenstein, U., Erlernkeuser, H., and Trimborn, P.: Oxygen and carbon
isotopes in modern fresh-water ostracod valves: assessing vital offsets and
autecological effects of interest for palaeoclimate studies, Palaeogeogr.
Palaeocl., 148, 133–152,
https://doi.org/10.1016/S0031-0182(98)00180-1, 1999b. a, b, c, d, e, f, g, h, i, j
von Grafenstein, U., Eicher, U., Erlenkeuser, H., Ruch, P., Schwander, J., and
Ammann, B.: Isotope signature of the Younger Dryas and two minor
oscillations at Gerzensee (Switzerland): palaeoclimatic and
palaeolimnologic interpretation based on bulk and biogenic carbonates,
Palaeogeogr. Palaeocl., 159, 215–229,
https://doi.org/10.1016/S0031-0182(00)00086-9, 2000.
a
Xia, J., Engstrom, D. R., and Ito, E.: Geochemistry of ostracode calcite:
Part 2. The effects of water chemistry and seasonal temperature variation
on Candona rawsoni, Geochim. Cosmochim. Ac., 61, 383–391,
https://doi.org/10.1016/S0016-7037(96)00354-7, 1997a. a
Xia, J., Ito, E., and Engstrom, D. R.: Geochemistry of ostracode calcite:
Part 1. An experimental determination of oxygen isotope fractionation,
Geochim. Cosmochim. Ac., 61, 377–382,
https://doi.org/10.1016/S0016-7037(96)00351-1, 1997b. a
Short summary
This study presents the isotopic composition of recent biogenic carbonates from several lacustrine species which calcify during different times of the year. The authors demonstrate that when biological offsets are corrected, the dominant cause of differences between species is the seasonal variation in temperature-dependent fractionation of oxygen isotopes. Consequently, such carbonates from lake sediments can provide proxy records of seasonal water temperature changes in the past.
This study presents the isotopic composition of recent biogenic carbonates from several...
Altmetrics
Final-revised paper
Preprint