Articles | Volume 19, issue 16
https://doi.org/10.5194/bg-19-3757-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-3757-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Potential contributions of nitrifiers and denitrifiers to nitrous oxide sources and sinks in China's estuarine and coastal areas
Xiaofeng Dai
State Key Laboratory of Marine Environmental Science, College of Ocean
and Earth Sciences, Xiamen University, Xiamen 361005, China
Mingming Chen
State Key Laboratory of Marine Environmental Science, College of Ocean
and Earth Sciences, Xiamen University, Xiamen 361005, China
Xianhui Wan
Department of Geosciences, Princeton University, Princeton, New Jersey 08544, USA
Ehui Tan
State Key Laboratory of Marine Resource Utilization in South China
Sea, Hainan University, Haikou, Hainan, 570228, China
Jialing Zeng
State Key Laboratory of Marine Environmental Science, College of Ocean
and Earth Sciences, Xiamen University, Xiamen 361005, China
Nengwang Chen
State Key Laboratory of Marine Environmental Science, College of Ocean
and Earth Sciences, Xiamen University, Xiamen 361005, China
Fujian Provincial Key Laboratory for Coastal Ecology and Environmental
Studies, College of the Environment and Ecology, Xiamen University, Xiamen
361005, China
Shuh-Ji Kao
State Key Laboratory of Marine Environmental Science, College of Ocean
and Earth Sciences, Xiamen University, Xiamen 361005, China
State Key Laboratory of Marine Resource Utilization in South China
Sea, Hainan University, Haikou, Hainan, 570228, China
Yao Zhang
CORRESPONDING AUTHOR
State Key Laboratory of Marine Environmental Science, College of Ocean
and Earth Sciences, Xiamen University, Xiamen 361005, China
Related authors
No articles found.
Yongkai Chang, Ehui Tan, Dengzhou Gao, Cheng Liu, Zongxiao Zhang, Zhixiong Huang, Jianan Liu, Yu Han, Zifu Xu, Bin Chen, and Shuh-Ji Kao
Earth Syst. Sci. Data, 17, 3521–3540, https://doi.org/10.5194/essd-17-3521-2025, https://doi.org/10.5194/essd-17-3521-2025, 2025
Short summary
Short summary
Denitrification and anaerobic ammonium oxidation (anammox) are two important nitrogen removal pathways that convert reactive nitrogen into dinitrogen gas. Here, we construct a global database on actual nitrogen loss rates, covering over 30 years of observations, measured in coastal and marine sediments. This work provides a global overview of the biogeography and potential controlling factors of denitrification and anammox and highlights the potential applications of this database.
Weiyi Tang, Bess B. Ward, Michael Beman, Laura Bristow, Darren Clark, Sarah Fawcett, Claudia Frey, François Fripiat, Gerhard J. Herndl, Mhlangabezi Mdutyana, Fabien Paulot, Xuefeng Peng, Alyson E. Santoro, Takuhei Shiozaki, Eva Sintes, Charles Stock, Xin Sun, Xianhui S. Wan, Min N. Xu, and Yao Zhang
Earth Syst. Sci. Data, 15, 5039–5077, https://doi.org/10.5194/essd-15-5039-2023, https://doi.org/10.5194/essd-15-5039-2023, 2023
Short summary
Short summary
Nitrification and nitrifiers play an important role in marine nitrogen and carbon cycles by converting ammonium to nitrite and nitrate. Nitrification could affect microbial community structure, marine productivity, and the production of nitrous oxide – a powerful greenhouse gas. We introduce the newly constructed database of nitrification and nitrifiers in the marine water column and guide future research efforts in field observations and model development of nitrification.
Zhibo Shao, Yangchun Xu, Hua Wang, Weicheng Luo, Lice Wang, Yuhong Huang, Nona Sheila R. Agawin, Ayaz Ahmed, Mar Benavides, Mikkel Bentzon-Tilia, Ilana Berman-Frank, Hugo Berthelot, Isabelle C. Biegala, Mariana B. Bif, Antonio Bode, Sophie Bonnet, Deborah A. Bronk, Mark V. Brown, Lisa Campbell, Douglas G. Capone, Edward J. Carpenter, Nicolas Cassar, Bonnie X. Chang, Dreux Chappell, Yuh-ling Lee Chen, Matthew J. Church, Francisco M. Cornejo-Castillo, Amália Maria Sacilotto Detoni, Scott C. Doney, Cecile Dupouy, Marta Estrada, Camila Fernandez, Bieito Fernández-Castro, Debany Fonseca-Batista, Rachel A. Foster, Ken Furuya, Nicole Garcia, Kanji Goto, Jesús Gago, Mary R. Gradoville, M. Robert Hamersley, Britt A. Henke, Cora Hörstmann, Amal Jayakumar, Zhibing Jiang, Shuh-Ji Kao, David M. Karl, Leila R. Kittu, Angela N. Knapp, Sanjeev Kumar, Julie LaRoche, Hongbin Liu, Jiaxing Liu, Caroline Lory, Carolin R. Löscher, Emilio Marañón, Lauren F. Messer, Matthew M. Mills, Wiebke Mohr, Pia H. Moisander, Claire Mahaffey, Robert Moore, Beatriz Mouriño-Carballido, Margaret R. Mulholland, Shin-ichiro Nakaoka, Joseph A. Needoba, Eric J. Raes, Eyal Rahav, Teodoro Ramírez-Cárdenas, Christian Furbo Reeder, Lasse Riemann, Virginie Riou, Julie C. Robidart, Vedula V. S. S. Sarma, Takuya Sato, Himanshu Saxena, Corday Selden, Justin R. Seymour, Dalin Shi, Takuhei Shiozaki, Arvind Singh, Rachel E. Sipler, Jun Sun, Koji Suzuki, Kazutaka Takahashi, Yehui Tan, Weiyi Tang, Jean-Éric Tremblay, Kendra Turk-Kubo, Zuozhu Wen, Angelicque E. White, Samuel T. Wilson, Takashi Yoshida, Jonathan P. Zehr, Run Zhang, Yao Zhang, and Ya-Wei Luo
Earth Syst. Sci. Data, 15, 3673–3709, https://doi.org/10.5194/essd-15-3673-2023, https://doi.org/10.5194/essd-15-3673-2023, 2023
Short summary
Short summary
N2 fixation by marine diazotrophs is an important bioavailable N source to the global ocean. This updated global oceanic diazotroph database increases the number of in situ measurements of N2 fixation rates, diazotrophic cell abundances, and nifH gene copy abundances by 184 %, 86 %, and 809 %, respectively. Using the updated database, the global marine N2 fixation rate is estimated at 223 ± 30 Tg N yr−1, which triplicates that using the original database.
Emily J. Zakem, Barbara Bayer, Wei Qin, Alyson E. Santoro, Yao Zhang, and Naomi M. Levine
Biogeosciences, 19, 5401–5418, https://doi.org/10.5194/bg-19-5401-2022, https://doi.org/10.5194/bg-19-5401-2022, 2022
Short summary
Short summary
We use a microbial ecosystem model to quantitatively explain the mechanisms controlling observed relative abundances and nitrification rates of ammonia- and nitrite-oxidizing microorganisms in the ocean. We also estimate how much global carbon fixation can be associated with chemoautotrophic nitrification. Our results improve our understanding of the controls on nitrification, laying the groundwork for more accurate predictions in global climate models.
Siqi Wu, Moge Du, Xianhui Sean Wan, Corday Selden, Mar Benavides, Sophie Bonnet, Robert Hamersley, Carolin R. Löscher, Margaret R. Mulholland, Xiuli Yan, and Shuh-Ji Kao
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-104, https://doi.org/10.5194/bg-2021-104, 2021
Preprint withdrawn
Short summary
Short summary
Nitrogen (N2) fixation is one of the most important nutrient sources to the ocean. Here, we report N2 fixation in the deep, dark ocean in the South China Sea via a highly sensitive new method and elaborate controls, showing the overlooked importance of N2 fixation in the deep ocean. By global data compilation, we also provide an easy measured basic parameter to estimate deep N2 fixation. Our study may help to expand the area limit of N2 fixation studies and better constrain global N2 fixation.
Cited articles
Abell, G. C. J., Revill, A. T., Smith, C., Bissett, A. P., Volkman, J. K.,
and Robert, S. S.: Archaeal ammonia oxidizers and nirS-type denitrifiers
dominate sediment nitrifying and denitrifying populations in a subtropical
macrotidal estuary, ISME J., 4, 286–300, https://doi.org/10.1038/ismej.2009.105,
2010.
Babbin, A. R., Bianchi, D., Jayakumar, A., and Ward, B. B.: Rapid nitrous
oxide cycling in the suboxic ocean, Science, 348, 1127–1129,
https://doi.org/10.1126/science.aaa8380, 2015.
Bange, H. W., Rapsomanik, S., and Andreae, M. O.: Nitrous oxide in coastal
waters, Global Biogeochem. Cy., 10, 197–207, https://doi.org/10.1029/95GB03834,
1996.
Barnes, J. and Upstill-Goddard, R. C.: N2O seasonal distributions and
air-sea exchange in UK estuaries: Implications for the tropospheric N2O
source from European coastal waters, J. Geophys. Res.-Biogeo.,
116, G01006, https://doi.org/10.1029/2009JG001156, 2011.
Beaulieu, J. J., Tank, J. L., Hamilton, S. K., Wollheim, W. M., Hall, R. O.,
Mulholland, P. J., Peterson, B. J., Ashkenas, L. R., Cooper, L. W., Dahm, C.
N., Dodds, W. K., Grimm, N. B., Johnson, S. L., McDowell, W. H., Poole, G.
C., Maurice Valett, H., Arango, C. P., Bernot, M. J., Burgin, A. J.,
Crenshaw, C. L., Helton, A. M., Johnson, L. T., O'Brien, J. M., Potter, J.
D., Sheibley, R. W., Sobota, D. J., and Thomas, S. M.: Nitrous oxide emission
from denitrification in stream and river networks, P. Natl. Acad. Sci. USA, 108, 214–219, https://doi.org/10.1073/pnas.1011464108, 2011.
Beman, J. M., Popp, B. N., and Francis, C.: Molecular and biogeochemical
evidence for ammonia oxidation by marine Crenarchaeota in the Gulf of
California, ISME J., 2, 429–441, https://doi.org/10.1038/ismej.2008.33, 2008.
Bernhard, A. E., Landry, Z. C., Blevins, A., De La Torre, J. R., Giblin, A.
E., and Stahl, D. A.: Abundance of ammonia-oxidizing archaea and bacteria
along an estuarine salinity gradient in relation to potential nitrification
rates, Appl. Environ. Microbiol., 76, 1285–1289,
https://doi.org/10.1128/AEM.02018-09, 2010.
Bertagnolli, A. D., Konstantinidis, K. T., and Stewart, F. J.:
Non-denitrifier nitrous oxide reductases dominate marine biomes, Environ.
Microbiol. Rep., 12, 681–692, https://doi.org/10.1111/1758-2229.12879, 2020.
Blackmer, A. M. and Bremner, J. M.: Inhibitory effect of nitrate on reduction of
N2O to N2 by soil microorganisms, Soil Biol Biochem.,
10, 187–191, https://doi.org/10.1016/0038-0717(78)90095-0, 1978.
Blum, J. M., Su, Q., Ma, Y., Valverde-Pérez, B., Domingo-Félez, C.,
Jensen, M. M., and Smets, B. F.: The pH dependency of N-converting enzymatic
processes, pathways and microbes: effect on net N2O production,
Environ. Microbiol., 20, 1623–1640, https://doi.org/10.1111/1462-2920.14063, 2018.
Braker, G., Zhou, J., Wu, L., Devol, A. H., and Tiedje, J. M.: Nitrite
reductase genes (nirK and nirS) as functional markers to investigate diversity of
denitrifying bacteria in Pacific northwest marine sediment communities,
Appl. Environ. Microbiol., 66, 2096–2104,
2000.
Brase, L., Bange, H. W., Lendt, R., Sanders, T., and Dähnke, K.: High
resolution measurements of nitrous oxide (N2O) in the Elbe estuary,
Front. Mar. Sci., 4, 162, https://doi.org/10.3389/fmars.2017.00162, 2017.
Cao, W., Hong, H., and Yue, S.: Modelling agricultural nitrogen contributions
to the Jiulong River estuary and coastal water, Glob. Planet. Change, 47, 111–121, https://doi.org/10.1016/j.gloplacha.2004.10.006, 2005.
Capella-Gutiérrez, S., Silla-Martínez, J. M., and Gabaldón, T.:
trimAl: A tool for automated alignment trimming in large-scale phylogenetic
analyses, Bioinformatics, 25, 1972–1973,
https://doi.org/10.1093/bioinformatics/btp348, 2009.
Carey, C. J., Dove, N. C., Beman, J. M., Hart, S. C., and Aronson, E. L.:
Meta-analysis reveals ammonia-oxidizing bacteria respond more strongly to
nitrogen addition than ammonia-oxidizing archaea, Soil Biol. Biochem., 99,
158–166, https://doi.org/10.1016/j.soilbio.2016.05.014, 2016.
Castellano-Hinojosa, A., Correa-Galeote, D., Carrillo, P., Bedmar, E. J., and
Medina-Sánchez, J. M.: Denitrification and biodiversity of denitrifiers
in a High-Mountain Mediterranean Lake, Front. Microbiol., 8, 1911,
https://doi.org/10.3389/fmicb.2017.01911, 2017.
Chee-Sanford, J. C., Connor, L., Krichels, A., Yang, W. H., and Sanford, R. A.: Hierarchical detection of diverse Clade II (atypical) nosZ genes using new primer sets for classical- and multiplex PCR array applications, J. Microbiol. Methods., 172, 105908, https://doi.org/10.1016/j.mimet.2020.105908, 2020.
Chen, C. A., Wang, S., Lu, X., Zhang, S., Lui, H., Tseng, H., Wang, B., and
Huang, H.: Hydrogeochemistry and greenhouse gases of the Pearl River, its
estuary and beyond, Quaternary Int., 186, 79–90,
https://doi.org/10.1016/j.quaint.2007.08.024, 2008.
Chen, C. T. A.: Chemical and physical fronts in the Bohai, Yellow and East
China seas, J. Mar. Syst., 78, 394–410,
https://doi.org/10.1016/j.jmarsys.2008.11.016, 2009.
Codispoti, L. A. and Christensen, J. P.: Nitrification, denitrification and
nitrous oxide cycling in the eastern tropical South Pacific ocean, Mar.
Chem., 16, 277–300, https://doi.org/10.1016/0304-4203(85)90051-9,
1985.
Cole, J. J. and Caraco, N. F.: Emissions of nitrous oxide (N2O) from a
tidal, freshwater river, the Hudson River, New York, Environ. Sci. Technol.,
35, 991–996, https://doi.org/10.1021/es0015848, 2001.
Cui, P., Chen, Z., Zhao, Q., Yu, Z., Yi, Z., Liao, H., and Zhou, S.:
Hyperthermophilic composting significantly decreases N2O emissions by
regulating N2O-related functional genes, Bioresour. Technol., 272,
433–441, https://doi.org/10.1016/j.biortech.2018.10.044, 2019.
Dai, M., Wang, L., Guo, X., Zhai, W., Li, Q., He, B., and Kao, S. J.:
Nitrification and inorganic nitrogen distribution in a large perturbed
river/estuarine system: The Pearl River Estuary, China, Biogeosciences,
5, 1227–1244, https://doi.org/10.5194/bg-5-1227-2008, 2008.
De Wilde, H. P. J. and De Bie, M. J. M.: Nitrous oxide in the Schelde
estuary: Production by nitrification and emission to the atmosphere, Mar.
Chem., 69, 203–216, https://doi.org/10.1016/S0304-4203(99)00106-1, 2000.
Domeignoz-Horta1, L. A., AyméSpor, D. B., Breuil, M.-C.,
Florian Bizouard1, J. L., and L. P.: The diversity of the N2O reducers
matters for the N2O : N2 denitrification end-product ratio across an
annual and a perennial cropping system, Front. Microbiol., 6, 971,
https://doi.org/10.3389/fmicb.2015.00971, 2015.
Edgar, R. C.: Search and clustering orders of magnitude faster than BLAST,
Bioinformatics, 26, 2460–2461, 2010.
Fayazbakhsh, K., Abedian, A., Manshadi, B. D., and Khabbaz, R. S.:
Introducing a novel method for materials selection in mechanical design
using Z-transformation in statistics for normalization of material
properties, Mater. Des., 30, 4396–4404,
https://doi.org/10.1016/j.matdes.2009.04.004, 2009.
Fish, J. A., Chai, B., Wang, Q., Sun, Y., Brown, C. T., Tiedje, J. M., and Cole, J. R.: FunGene: the functional gene pipeline and repository [data set], Front. Microbiol., 4, 291, https://doi.org/10.3389/fmicb.2013.00291, 2013.
Francis, C. A., Roberts, K. J., Beman, J. M., Santoro, A. E., and Oakley, B.
B.: Ubiquity and diversity of ammonia-oxidizing archaea in water columns and
sediments of the ocean, P. Natl. Acad. Sci. USA, 102,
14683–14688, https://doi.org/10.1073/pnas.0506625102, 2005.
Frey, C., Bange, H. W., Achterberg, E. P., Jayakumar, A., Löscher, C. R., Arévalo-Martínez, D. L., León-Palmero, E., Sun, M., Sun, X., Xie, R. C., Oleynik, S., and Ward, B. B.: Regulation of nitrous oxide production in low-oxygen waters off the coast of Peru, Biogeosciences, 17, 2263–2287, https://doi.org/10.5194/bg-17-2263-2020, 2020.
Garnier, J., Cébron, A., Tallec, G., Billen, G., Sebilo, M., and
Martinez, A.: Nitrogen behaviour and nitrous oxide emission in the tidal
Seine River estuary (France) as influenced by human activities in the
upstream watershed, Biogeochemistry, 77, 305–326,
https://doi.org/10.1007/s10533-005-0544-4, 2006.
Graf, D. R., Jones, C. M., and Hallin, S.: Intergenomic comparisons highlight
modularity of the denitrification pathway and underpin the importance of
community structure for N2O emissions, PLoS ONE,
9, e114118,
https://doi.org/10.1371/journal.pone.0114118, 2014.
Hallin, S., Philippot, L., Löf, F. E., Sanford, R. A., and Jones, C. M.:
Genomics and ecology of novel N2O-Reducing microorganisms, Trends
Microbiol., 26, 43–55, https://doi.org/10.1016/j.tim.2017.07.003, 2018.
He, B., Dai, M., Zhai, W., Guo, X., and Wang, L.: Hypoxia in the upper
reaches of the Pearl River Estuary and its maintenance mechanisms: A
synthesis based on multiple year observations during 2000–2008, Mar. Chem.,
167, 13–24, https://doi.org/10.1016/j.marchem.2014.07.003, 2014.
Henry, S., Bru, D., Stres, B., Hallet, S., and Philippot, L.: Quantitative
detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of
the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils, Appl. Environ.
Microbiol., 72, 5181–5189, https://doi.org/10.1128/AEM.00231-06, 2006.
Hink, L., Gubry-Rangin, C., Nicol, G. W., and Prosser, J. I.: The consequences of niche and physiological differentiation of archaeal and bacterial ammonia oxidisers for nitrous oxide emissions, ISME J., 12, 1084–1093, 2018.
Hornek, R., Pommerening-Roser, A., Koops, H. P., Farnleitner, A. H., Kreuzinger, N., Kirschner, A., and Mach, R.L.: Primers containing universal bases reduce multiple amoA gene specific DGGE band patterns when analysing the diversity of beta-ammonia oxidizers in the environment, J. Microbiol. Methods., 66, 147–155, 2006.
Hou, L., Xie, X., Wan, X., Kao, S. J., Jiao, N., and Zhang, Y.: Niche
differentiation of ammonia and nitrite oxidizers along a salinity gradient
from the Pearl River estuary to the South China Sea, Biogeosciences, 15,
5169–5187, https://doi.org/10.5194/bg-15-5169-2018, 2018.
Ji, Q., Buitenhuis, E., Suntharalingam, P., Sarmiento, J. L., and Ward, B.
B.: Global nitrous oxide production determined by oxygen sensitivity of
nitrification and denitrification, Global Biogeochem. Cy., 32,
1790–1802, https://doi.org/10.1029/2018GB005887, 2018a.
Ji, Q., Frey, C., Sun, X., Jackson, M., Lee, Y., Jayakumar, A., Jeffrey, C.,
and Ward, B. B.: Nitrogen and oxygen availabilities control water column
nitrous oxide production during seasonal anoxia in the Chesapeake Bay,
Biogeosciences, 15, 6127–6138, https://doi.org/10.5194/bg-15-6127-2018, 2018b.
Jones, C. M., Stres, B., Rosenquist, M., and Hallin, S.: Phylogenetic
analysis of nitrite, nitric oxide, and nitrous oxide respiratory enzymes
reveal a complex evolutionary history for denitrification, Mol. Biol. Evol.
25, 1955–1966, https://doi.org/10.1093/molbev/msn146, 2008.
Jones, C. M., Graf, D. R. H., Bru, D., Philippot, L., and Hallin, S.: The
unaccounted yet abundant nitrous oxide-reducing microbial community: a
potential nitrous oxide sink, ISME J. 7, 417–26,
https://doi.org/10.1038/ismej.2012.125, 2013.
Jones, C. M., Spor, A., Brennan, F. P., Breuil, M., Bru, D., Lemanceau, P., Griffiths, B., Hallin, S., and Philippot, L.: Recently identified microbial guild mediates soil N2O sink
capacity, Nat. Clim. Change, 4, 801–805, https://doi.org/10.1038/nclimate2301, 2014.
Kato, S., Shibuya, T., Takaki, Y., Hirai, M., Nunoura, T., and Suzuki, K.: Genome-enabled metabolic reconstruction of dominant chemosynthetic colonizers in deep-sea massive sulfide deposits, Environ. Microbiol., 20, 862–877, https://doi.org/10.1111/1462-2920.14032, 2018.
Katoh, K. and Standley, D. M.: MAFFT multiple sequence alignment software
version 7: Improvements in performance and usability, Mol. Biol. Evol.,
30, 772–780, https://doi.org/10.1093/molbev/mst010, 2013.
Kester, R. A., De Boer, W., and Laanbroek, H. J.: Production of NO and
N2O by pure cultures of nitrifying and denitrifying bacteria during
changes in aeration, Appl. Environ. Microbiol., 63, 3872–3877,
1997.
Lam, P., Jensen, M. M., Lavik, G., McGinnis, D. F., Müller, B.,
Schubert, C. J., Amann, R., Thamdrup, B., and Kuypers, M. M. M.: Linking
crenarchaeal and bacterial nitrification to anammox in the Black Sea, P.
Natl. Acad. Sci. USA, 104, 7104–7109, https://doi.org/10.1073/pnas.0611081104,
2007.
Laperriere, S. M., Nidzieko, N. J., Fox, R. J., Fisher, A. W., and Santoro,
A. E.: Observations of variable ammonia oxidation and nitrous oxide flux in
a eutrophic estuary, Estuar. Coast., 42, 33–44,
https://doi.org/10.1007/s12237-018-0441-4, 2019.
Lee, J. A. and Francis, C. A.: Spatiotemporal characterization of San
Francisco Bay denitrifying communities: a comparison of nirK and nirS diversity and
abundance, Microb. Ecol., 73, 271–284, https://doi.org/10.1007/s00248-016-0865-y,
2017.
Li, J., Nedwell, D. B., Beddow, J., Dumbrell, A. J., McKew, B. A., Thorpe,
E. L., and Whitby, C.: amoA gene abundances and nitrification potential rates
suggest that benthic ammonia-oxidizing bacteria and not archaea dominate N
cycling in the Colne estuary, United Kingdom, Appl. Environ. Microbiol.,
81, 159–165, https://doi.org/10.1128/AEM.02654-14, 2015.
Lin, H., Dai, M., Kao, S. J., Wang, L., Roberts, E., Yang, J., Huang, T., and He, B.: Spatiotemporal variability of nitrous oxide in a large eutrophic estuarine system: The Pearl River Estuary, China, Mar. Chem., 182, 14–24, 2016.
Lin, J., Chen, N., Wang, F., Huang, Z., Zhang, X., and Liu, L.: Urbanization
increased river nitrogen export to western Taiwan Strait despite increased
retention by nitrification and denitrification, Ecol. Indic., 109, 105756,
https://doi.org/10.1016/j.ecolind.2019.105756, 2020.
Löscher, C. R., Kock, A., Könneke, M., Laroche, J., Bange, H. W.,
and Schmitz, R. A.: Production of oceanic nitrous oxide by ammonia-oxidizing
archaea, Biogeosciences, 9, 2419–2429, https://doi.org/10.5194/bg-9-2419-2012, 2012.
Lycus, P., Soriano-Laguna, M. J., Kjos, M., Richardson, D. J., Gates, A. J., Milligan, D. A., Frostegårda, Å., Bergausta, L., and Bakken, L. R.: A bet-hedging strategy for denitrifying bacteria curtails their release
of N2O, P. Natl. Acad. Sci. USA, 115, 11820–11825,
https://doi.org/10.1073/pnas.1805000115, 2018.
Ma, L., Lin, H., Xie, X., Dai, M., and Zhang, Y.: Major role of
ammonia-oxidizing bacteria in N2O production in the Pearl River
estuary, Biogeosciences, 16, 4765–4781, https://doi.org/10.5194/bg-16-4765-2019, 2019.
Magalhães, C., Bano, N., Wiebe, W. J., Bordalo, A. A., and Hollibaugh, J. T.: Dynamics of nitrous oxide reductase genes (nosZ) in intertidal rocky biofilms and sediments of the Douro River Estuary (Portugal), and their relation to N-biogeochemistry, Microb. Ecol., 55, 259–269, 2008.
Marchant, H. K., Ahmerkamp, S., Lavik, G., Tegetmeyer, H. E., Graf, J.,
Klatt, J. M., Holtappels, M., Walpersdorf, E., and Kuypers, M. M. M.:
Denitrifying community in coastal sediments performs aerobic and anaerobic
respiration simultaneously, ISME J. 11, 1799–1812,
https://doi.org/10.1038/ismej.2017.51, 2017.
Martens-Habbena, W. and Stahl, D. A.: Nitrogen metabolism and kinetics of
ammonia-oxidizing archaea, Methods Enzymol., 496, 465–487,
https://doi.org/10.1016/B978-0-12-386489-5.00019-1, 2011.
Marzadri, A., Dee, M. M., Tonina, D., Bellin, A., and Tank, J. L.: Role of
surface and subsurface processes in scaling N2O emissions along
riverine networks, P. Natl. Acad. Sci. USA, 114, 4330–4335,
https://doi.org/10.1073/pnas.1617454114, 2017.
Massana, R., Murray, A. E., Preston, C. M., and DeLong, E. F.: Vertical
distribution and phylogenetic characterization of marine planktonic archaea
in the Santa Barbara Channel, Appl. Environ. Microbiol., 63, 50–56,
https://doi.org/10.1128/aem.63.1.50-56.1997, 1997.
McElroy, M. B., Elkins, J. W., Wofsy, S. C., Kolb, C. E., Durán, A. P., and Kaplan, W. A.: Production and release of N2O from the Potomac Estuary, Limnol. Oceanogr., 23, 1168–1182, https://doi.org/10.4319/lo.1978.23.6.1168, 1978.
Meinhardt, K. A., Stopnisek, N., Pannu, M. W., Strand, S. E., Fransen, S.
C., Casciotti, K. L., and Stahl, D. A.: Ammonia-oxidizing bacteria are the
primary N2O producers in an ammonia-oxidizing archaea dominated
alkaline agricultural soil, Environ. Microbiol., 20, 2195–2206,
https://doi.org/10.1111/1462-2920.14246, 2018.
Molina, V., Belmar, L., and Ulloa, O.: High diversity of ammonia-oxidizing
archaea in permanent and seasonal oxygen-deficient waters of the Eastern
South Pacific, Environ. Microbiol., 12, 2450–2465,
https://doi.org/10.1111/1462-2920.14246, 2010.
Mosier, A. C. and Francis, C. A.: Denitrifier abundance and activity across
the San Francisco Bay estuary, Environ. Microbiol Rep., 2, 667–676,
https://doi.org/10.1111/j.1758-2229.2010.00156.x, 2010.
Mullins, T. D., Britschgi, T. B., Krest, R. L., and Giovannoni, S. J.: Genetic comparisons reveal the same unknown bacterial lineages in Atlantic and Pacific bacterioplankton communities, Limnol. Oceanogr., 40, 148–158, 1995.
Nakai, R., Nishijima, M., Tazato, N., Handa, Y., Karray, F., Sayadi, S.,
Isoda, H., and Naganuma, T.: Oligoflexus tunisiensis gen. nov., sp. nov., a Gram-negative, aerobic,
filamentous bacterium of a novel proteobacterial lineage, and description of
Oligoflexaceae fam. nov., Oligoflexales ord. nov. and Oligoflexia classis nov, Int. J. Syst. Evol. Microbiol, 64,
3353–3359, https://doi.org/10.1099/ijs.0.060798-0, 2014.
Nevison, C., Butler, J. H., and Elkins, J. W.: Global distribution of
N2O and the ΔN2O-AOU yield in the subsurface ocean, Global
Biogeochem. Cy., 17, 1–18, https://doi.org/10.1029/2003GB002068, 2003.
Palacin-Lizarbe, C., Camarero, L., Hallin, S., Jones, C., Caliz, J.,
Casamayor, E. O., and Catalan, J.: The DNRA-denitrification dichotomy
differentiates nitrogen transformation pathways in mountain lake benthic
habitats, Front. Microbiol., 10, 1229, https://doi.org/10.3389/FMICB.2019.01229, 2019.
Park, B. J., Park, S. J., Yoon, D. N., Schouten, S., Damsté, J. S. S., and Rhee, S. K.: Cultivation of autotrophic ammonia-oxidizing archaea from marine sediments in coculture with sulfur-oxidizing bacteria, Appl. Environ. Microb., 76, 7575–87, 2010.
Philippot, L.: Loss in microbial diversity affects nitrogen cycling in soil,
ISME J., 11, 1609–1619, 2013.
Pike, N.: Using false discovery rates for multiple comparisons in ecology and evolution, Methods Ecol. Evol., 2, 278–282, 2011.
Price, M. N., Dehal, P. S., and Arkin, A. P.: FastTree 2 – Approximately
maximum-likelihood trees for large alignments, PLoS One 5, 9490,
https://doi.org/10.1371/journal.pone.0009490, 2010.
Xu, J., Wang, Y., Wang, Q., and Yin, J.: Nitrous oxide
concentration and nitrification and denitrification in Zhujiang River
Estuary, China. J. Environ. Sci., 18, 122–130, 2005.
Qu, Z., Bakken, L. R., Molstad, L., Frostegård, Å., and Bergaust, L.
L.: Transcriptional and metabolic regulation of denitrification in
Paracoccus denitrificans allows low but significant activity of nitrous
oxide reductase under oxic conditions, Environ. Microbiol., 18, 2951–2963,
https://doi.org/10.1111/1462-2920.13128, 2016.
R Core Team: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, https://www.R-project.org/ (last access: 5 July 2019), Vienna, Austria, 2017.
Ravishankara, A. R., Daniel, J. S., and Portmann, R. W.: Nitrous oxide
(N2O): The dominant ozone-depleting substance emitted in the 21st
century, Science, 326, 123–125, https://doi.org/10.1126/science.1176985, 2009.
Rissanen, A. J., Tiirola, M., and Ojala, A.: Spatial and temporal variation
in denitrification and in the denitrifier community in a boreal lake, Aquat.
Microbiol. Ecol., 64, 27–40, https://doi.org/10.3354/ame01506, 2011.
Riya, S., Takeuchi, Y., Zhou, S., Terada, A., and Hosomi, M.: Nitrous oxide
production and mRNA expression analysis of nitrifying and denitrifying
bacterial genes under floodwater disappearance and fertilizer application,
Environ. Sci. Pollut. Res., 24, 15852–15859,
https://doi.org/10.1007/s11356-017-9231-y, 2017.
Rotthauwe, J. H., Witzel, K. P., and Liesack, W.: The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations, Appl. Environ. Microb., 63, 4704-4712, 1997.
Rowley, G., Sullivan, M. J., Appia-Ayme, C., Gates, A. J., and Richardson, D.
J.: Copper control of bacterial nitrous oxide emission and its impact on
vitamin B12-dependent metabolism, P. Natl. Acad. Sci. USA, 110,
19926–19931, https://doi.org/10.1073/pnas.1314529110, 2013.
Sanford, R. A., Wagner, D. D., Wu, Q. Z., Chee-Sanford, J. C., Thomas, S.
H., Cruz-Garcia, C., Rodriguez, G., Massol-Deya, A., Krishnani, K. K.,
Ritalahti, K. M., Nissen, S., Konstantinidis, K. T., and Loffler, F. E.:
Unexpected nondenitrifier nitrous oxide reductase gene diversity and
abundance in soils, P. Natl. Acad. Sci. USA, 109, 19709–19714,
https://doi.org/10.1073/Pnas.1211238109, 2012.
Santoro, A. E., Buchwald, C., McIlvin, M. R., and Casciotti, K. L.: Isotopic
Signature of N2O Produced by Marine Ammonia-Oxidizing Archaea, Science,
333, 1282–1285, https://doi.org/10.1126/science.1208239, 2011.
Senbayram, M., Budai, A., Bol, R., Chadwick, D., Marton, L., Gündogan,
R., and Wu, D.: Soil NO level and O2 availability are key
factors in controlling N2O reduction to N2 following long-term
liming of an acidic sandy soil, Soil Biol. Biochem., 132, 165–173,
https://doi.org/10.1016/j.soilbio.2019.02.009, 2019.
Shaw, L. J., Nicol, G. W., Smith, Z., Fear, J., Prosser, J. I., and Baggs,
E. M.: Nitrosospira spp. can produce nitrous oxide via a nitrifier denitrification pathway,
Environ. Microbiol., 8, 214–222, https://doi.org/10.1111/j.1462-2920.2005.00882.x,
2006.
Silvennoinen, H., Liikanen, A., Torssonen, J., Florian Stange, C., and
Martikainen, P. J.: Denitrification and nitrous oxide effluxes in boreal,
eutrophic river sediments under increasing nitrate load: A laboratory
microcosm study, Biogeochemistry, 91, 105–116,
https://doi.org/10.1007/s10533-008-9262-z, 2008.
Smith, C. J., Nedwell, D. B., Dong, L. F., and Osborn, A. M.: Diversity and
abundance of nitrate reductase genes (narG and napA), nitrite reductase genes
(nirS and nrfA), and their transcripts in estuarine sediments, Appl. Environ.
Microbiol., 73, 3612–3622, https://doi.org/10.1128/AEM.02894-06, 2007.
Solomon, S. D., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M., and Miller, H. L.: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), Cambridge Univ. Press, Cambridge, 996 pp., UK, 2007.
Song, D., Zhang, G., Li, P., and Liu, S.: Distribution and fluxes of nitrous
oxide in the Bohai Sea in summer, Adv. Mar. Sci., 2, 13–21,
https://doi.org/10.12677/ams.2015.22003, 2015.
Song, K., Suenaga, T., Hamamoto, A., Satou, K., Riya, S., Hosomi, M., and
Terada, A.: Abundance, transcription levels and phylogeny of bacteria
capable of nitrous oxide reduction in a municipal wastewater treatment
plant, J. Biosci. Bioeng., 118, 289–297,
https://doi.org/10.1016/j.jbiosc.2014.02.028, 2014.
Stieglmeier, M., Mooshammer, M., Kitzler, B., Wanek, W.,
Zechmeister-Boltenstern, S., Richter, A., and Schleper, C.: Aerobic nitrous
oxide production through N-nitrosating hybrid formation in ammonia-oxidizing
archaea, ISME J., 8, 1135–1146, https://doi.org/10.1038/ismej.2013.220, 2014.
Sun, X., Jayakumar, A., and Ward, B. B.: Community composition of nitrous
oxide consuming bacteria in the oxygen minimum zone of the Eastern Tropical
South Pacific, Front. Microbiol., 8, 1183,
https://doi.org/10.3389/fmicb.2017.01183, 2017.
Sun, X., Jayakumar, A., Tracey, J. C., Wallace, E.,
Kelly, C. L., Casciotti, K. L., and Ward, B. B.: Microbial N2O consumption
in and above marine N2O production hotspots, ISME J., 15, 1434–1444,
https://doi.org/10.1038/s41396-020-00861-2, 2021.
Thompson, K. A.: Abundance, activity and community structure of nitrifier and denitrifier communities in Agro-Ecosystems, PhD thesis, Land Resource Science, University of Guelph, Guelph, Ontario, Canada, 184 pp., 2016.
Wang, L., Zheng, B., Nan, B., and Hu, P.: Diversity of bacterial community
and detection of nirS- and nirK-encoding denitrifying bacteria in sandy intertidal
sediments along Laizhou Bay of Bohai Sea, China, Mar. Pollut. Bull.,
88, 215–223, https://doi.org/10.1016/j.marpolbul.2014.09.002, 2014.
Wang, L., Zhang, G., Zhu, Z., Li, J., Liu, S., Ye, W., and Han, Y.:
Distribution and sea-to-air flux of nitrous oxide in the East China Sea
during the summer of 2013, Cont. Shelf Res., 123, 99–110,
https://doi.org/10.1016/j.csr.2016.05.001, 2016.
Wang, Y., Guo, J., Vogt, R.D., Mulder, J., Wang, J., and Zhang, X.: Soil pH as the chief modifier for regional nitrous oxide emissions: new evidence and implications for global estimates and mitigation, Glob. Change Biol., 24, e617–e626, 2017.
Wei, W., Isobe, K., Nishizawa, T., Zhu, L., Shiratori, Y., Ohte, N., Koba,
K., Otsuka, S., and Senoo, K.: Higher diversity and abundance of denitrifying
microorganisms in environments than considered previously, ISME J., 9,
1954–1965, https://doi.org/10.1038/ismej.2015.9, 2015.
Wittorf, L., Roger, F., Alsterberg, C., Gamfeldt, L., Hulth, S., Sundback,
K., Jones, C. M., and Hallin, S.: Habitat diversity and type govern potential
nitrogen loss by denitrification in coastal sediments and differences in
ecosystem-level diversities of disparate N2O reducing communities, FEMS
Microbiol. Ecol. 96, 1–9, https://doi.org/10.1093/femsec/fiaa091, 2020.
Wrage, N., Velthof, G. L., Van Beusichem, M. L., and Oenema, O.: Role of
nitrifier denitrification in the production of nitrous oxide, Soil Biol.
Biochem. 33, 1723–1732, https://doi.org/10.1016/S0038-0717(01)00096-7, 2001.
Wu, J., Chen, N., Hong, H., Lu, T., Wang, L., and Chen, Z.: Direct
measurement of dissolved N2 and denitrification along a subtropical
river-estuary gradient, China. Mar. Pollut. Bull., 66, 125–134,
https://doi.org/10.1016/j.marpolbul.2012.10.020, 2013.
Yamagishi, H., Westley, M. B., Popp, B. N., Toyoda, S., Yoshida, N.,
Watanabe, S., Koba, K., and Yamanaka, Y.: Role of nitrification and
denitrification on the nitrous oxide cycle in the eastern tropical North
Pacific and Gulf of California, J. Geophys. Res., 112, 1–15,
https://doi.org/10.1029/2006JG000227, 2007.
Yan, W., Yang, L., Wang, F., Wang, J., and Ma, P.: Riverine N2O
concentrations, exports to estuary and emissions to atmosphere from the
Changjiang River in response to increasing nitrogen loads, Global
Biogeochem. Cy., 26, GB4006, https://doi.org/10.1029/2010GB003984, 2012.
Yan, X., Wan, X. S., Liu, L., Xu, M. N., Tan, E., Zheng, Z., Zou, W., Tian,
L., Li, D. W., Trull, T. W., and Kao, S. J.: Biogeochemical dynamics in a
eutrophic tidal estuary revealed by isotopic compositions of multiple
nitrogen species, J. Geophys. Res.-Biogeo., 124,
1849–1864, https://doi.org/10.1029/2018JG004959, 2019.
Yan, X., Zhai, W., Hong, H., Li, Y., and Guo, W.:
Distribution, fluxes and decadal changes of nutrients in the Jiulong River
Estuary, Southwest Taiwan Strait, Chinese Sci. Bull. 57, 2307–2318,
https://doi.org/10.1007/s11434-012-5084-4, 2012.
Yao, Y., Tian, H., Shi, H., Pan, S., Xu, R., Pan, N., and Canadell, J. G.:
Increased global nitrous oxide emissions from streams and rivers in the
Anthropocene, Nat. Clim. Change, 10, 138–142,
https://doi.org/10.1038/s41558-019-0665-8, 2020.
Yoon, S., Nissen, S., Park, D., Sanford, R. A., and Löffler, F. E.: Nitrous oxide reduction kinetics distinguish bacteria harboring clade I versus clade II NosZ, Appl. Environ. Microb., 82, 3793–3800, 2016.
Zhan, L., Chen, L., Zhang, J., and Zheng, A.: Distribution of N2O in the Jiulongjiang River Estuary and estimation of its air-sea flux during winter, Journal of Oceanography in Taiwan Strait, 30, 189–195, https://doi.org/10.3969/J.ISSN.1000-8160.2011.02.006, 2011. (in Chinese).
Zhang, G., Zhang, J., Ren, J., Li, J., and Liu, S.: Distributions and
sea-to-air fluxes of methane and nitrous oxide in the North East China Sea
in summer, Mar. Chem., 110, 42–55, https://doi.org/10.1016/j.marchem.2008.02.005,
2008.
Zhang, G., Zhang, J., Liu, S., Ren, J., and Zhao, Y.: Nitrous
oxide in the Changjiang (Yangtze River) Estuary and its adjacent marine
area: Riverine input, sediment release and atmospheric fluxes,
Biogeosciences, 7, 3505–3516, https://doi.org/10.5194/bg-7-3505-2010, 2010.
Zhang, J.: Biogeochemistry of Chinese estuarine and coastal waters:
nutrients, trace metals and biomarkers, J. Mater. Cycl. Waste Manag.,
3, 65–76, https://doi.org/10.1007/s10113-001-0039-3, 2002.
Zhang, Y., Xie, X., Jiao, N., Hsiao, S. S. Y., and Kao, S. J.: Diversity and
distribution of amoA-type nitrifying and nirS-type denitrifying microbial
communities in the Yangtze River estuary, Biogeosciences, 11, 2131–2145,
https://doi.org/10.5194/bg-11-2131-2014, 2014.
Zhao, S., Wang, Q., Zhou, J., Yuan, D., and Zhu, G.: Linking abundance and
community of microbial N2O-producers and N2O-reducers with
enzymatic N2O production potential in a riparian zone, Sci. Total
Environ., 642, 1090–1099, https://doi.org/10.1016/J.SCITOTENV.2018.06.110, 2018.
Zheng, Z. Z., Wan, X., Xu, M. N., Hsiao, S. S. Y., Zhang, Y., Zheng, L. W.,
Wu, Y., Zou, W., and Kao, S. J.: Effects of temperature and particles on
nitrification in a eutrophic coastal bay in southern China, J. Geophys. Res.-Biogeo., 122, 2325–2337, https://doi.org/10.1002/2017JG003871, 2017.
Zhu, Z. Y., Zhang, J., Wu, Y., Zhang, Y. Y., Lin, J., and Liu, S. M.:
Hypoxia off the Changjiang (Yangtze River) Estuary: Oxygen depletion and
organic matter decomposition, Mar. Chem., 125, 108–116,
https://doi.org/10.1016/j.marchem.2011.03.005, 2011.
Short summary
This study revealed the distinct distribution patterns of six key microbial functional genes and transcripts related to N2O sources and sinks in four estuaries spanning the Chinese coastline, which were significantly constrained by nitrogen and oxygen concentrations, salinity, temperature, and pH. The community structure of the nosZ clade II was distinctly different from those in the soil and marine OMZs. Denitrification may principally control the N2O emissions patterns across the estuaries.
This study revealed the distinct distribution patterns of six key microbial functional genes and...
Altmetrics
Final-revised paper
Preprint