Articles | Volume 19, issue 17
https://doi.org/10.5194/bg-19-3959-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-3959-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The dominant role of sunlight in degrading winter dissolved organic matter from a thermokarst lake in a subarctic peatland
Flora Mazoyer
CORRESPONDING AUTHOR
Laboratoire de limnologie nordique, Centre Eau Terre Environnement, Institut national de la recherche scientifique, Québec, QC, Canada
Centre for Northern Studies, Université Laval, Québec, QC,
Canada
Isabelle Laurion
CORRESPONDING AUTHOR
Laboratoire de limnologie nordique, Centre Eau Terre Environnement, Institut national de la recherche scientifique, Québec, QC, Canada
Centre for Northern Studies, Université Laval, Québec, QC,
Canada
Milla Rautio
Centre for Northern Studies, Université Laval, Québec, QC,
Canada
Laboratoire des sciences aquatiques, Département des sciences fondamentales, Université du Québec à Chicoutimi, Québec, QC, Canada
Related authors
No articles found.
Amélie Pouliot, Isabelle Laurion, Antoine Thiboult, and Daniel F. Nadeau
Biogeosciences, 22, 5413–5433, https://doi.org/10.5194/bg-22-5413-2025, https://doi.org/10.5194/bg-22-5413-2025, 2025
Short summary
Short summary
Small thermokarst lakes release greenhouse gases (GHGs) as permafrost thaws, but most studies focus on diurnal measurements, potentially overlooking significant variations. We measured GHG fluxes from two lakes in Nunavik over two summers – one colder, one warmer – alongside 2 years of continuous water column monitoring. Fluxes were higher in the warmer summer, with strong day–night differences. Our findings show that accurate GHG estimates require full diel measurements and seasonal considerations.
Stéphanie Coulombe, Daniel Fortier, Frédéric Bouchard, Michel Paquette, Simon Charbonneau, Denis Lacelle, Isabelle Laurion, and Reinhard Pienitz
The Cryosphere, 16, 2837–2857, https://doi.org/10.5194/tc-16-2837-2022, https://doi.org/10.5194/tc-16-2837-2022, 2022
Short summary
Short summary
Buried glacier ice is widespread in Arctic regions that were once covered by glaciers and ice sheets. In this study, we investigated the influence of buried glacier ice on the formation of Arctic tundra lakes on Bylot Island, Nunavut. Our results suggest that initiation of deeper lakes was triggered by the melting of buried glacier ice. Given future climate projections, the melting of glacier ice permafrost could create new aquatic ecosystems and strongly modify existing ones.
Cited articles
Adams, H. E., Crump, B. C., and Kling, G. W.: Temperature controls on aquatic
bacterial production and community dynamics in arctic lakes and streams,
Environ. Microbiol., 12, 1319–1333,
https://doi.org/10.1111/j.1462-2920.2010.02176.x, 2010.
Arlen-Pouliot, Y. and Bhiry, N.: Palaeoecology of a palsa and a filled
thermokarst pond in a permafrost peatland, subarctic Québec, Canada, The
Holocene, 15, 408–419, https://doi.org/10.1191/0959683605hl818rp, 2005.
Bégin, P. N. and Vincent, W. F.: Permafrost thaw lakes and ponds as
habitats for abundant rotifer populations, Arct. Sci., 3, 354–377,
https://doi.org/10.1139/as-2016-0017, 2017.
Berggren, M., Laudon, H., and Jansson, M.: Landscape regulation of bacterial
growth efficiency in boreal freshwaters, Global Biogeochem. Cy., 21, GB4002,
https://doi.org/10.1029/2006GB002844, 2007.
Berggren, M., Gudasz, C., Guillemette, F., Hensgens, G., Ye, L., and
Karlsson, J.: Systematic microbial production of optically active dissolved
organic matter in subarctic lake water, Limnol. Oceanogr., 65, 951–961,
https://doi.org/10.1002/lno.11362, 2020.
Bertilsson, S., Burgin, A., Carey, C. C., Fey, S. B., Grossart, H. P.,
Grubisic, L. M., Jones, I. D., Kirillin, G., Lennon, J. T., Shade, A., and
Smyth, R. L.: The under-ice microbiome of seasonally frozen lakes, Limnol.
Oceanogr., 58, 1998–2012, https://doi.org/10.4319/lo.2013.58.6.1998, 2013.
Bhiry, N., Delwaide, A., Allard, M., Bégin, Y., Filion, L., Lavoie, M.,
Nozais, C., Payette, S., Pienitz, R., Saulnier-Talbot, É., and Vincent,
W. F.: Environmental change in the Great Whale River region, Hudson Bay:
Five decades of multidisciplinary research by Centre d'études nordiques
(CEN), Écoscience, 18, 182–203, https://doi.org/10.2980/18-3-3469, 2011.
Biskaborn, B. K., Smith, S. L., Noetzli, J., Matthes, H., Vieira, G.,
Streletskiy, D. A., Schoeneich, P., Romanovsky, V. E., Lewkowicz, A. G.,
Abramov, A., Allard, M., Boike, J., Cable, W. L., Christiansen, H. H.,
Delaloye, R., Diekmann, B., Drozdov, D., Etzelmüller, B., Grosse, G.,
Guglielmin, M., Ingeman-Nielsen, T., Isaksen, K., Ishikawa, M., Johansson,
M., Johannsson, H., Joo, A., Kaverin, D., Kholodov, A., Konstantinov, P.,
Kröger, T., Lambiel, C., Lanckman, J. P., Luo, D., Malkova, G.,
Meiklejohn, I., Moskalenko, N., Oliva, M., Phillips, M., Ramos, M., Sannel,
A. B. K., Sergeev, D., Seybold, C., Skryabin, P., Vasiliev, A., Wu, Q.,
Yoshikawa, K., Zheleznyak, M., and Lantuit, H.: Permafrost is warming at a
global scale, Nat. Commun., 10, 1–11, https://doi.org/10.1038/s41467-018-08240-4,
2019.
Bižić-Ionescu, M., Amann, R., and Grossart, H. P.: Massive regime
shifts and high activity of heterotrophic bacteria in an ice-covered lake,
PLoS One, 9, 1–17, https://doi.org/10.1371/journal.pone.0113611, 2014.
Block, B. D., Denfeld, B. A., Stockwell, J. D., Flaim, G., Grossart, H. P.
F., Knoll, L. B., Maier, D. B., North, R. L., Rautio, M., Rusak, J. A.,
Sadro, S., Weyhenmeyer, G. A., Bramburger, A. J., Branstrator, D. K.,
Salonen, K., and Hampton, S. E.: The unique methodological challenges of
winter limnology, Limnol. Oceanogr. Method., 17, 42–57,
https://doi.org/10.1002/lom3.10295, 2019.
CEN (Centre for northern studies): Climate station data from
Whapmagoostui-Kuujjuarapik Region in Nunavik, Quebec, Canada, v. 1.5
(1987–2019), Nordicana D4, https://doi.org/10.5885/45057SL-EADE4434146946A7, 2020.
Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J.,
Striegl, R. G., Duarte, C. M., Kortelainen, P., Downing, J. A., Middelburg,
J. J., and Melack, J.: Plumbing the Global Carbon Cycle: Integrating Inland
Waters into the Terrestrial Carbon Budget, Ecosystems, 10, 172–185,
https://doi.org/10.1007/s10021-006-9013-8, 2007.
Cory, R. M., Crump, B. C., Dobkowski, J. A., and Kling, G. W.: Surface
exposure to sunlight stimulates CO2 release from permafrost soil carbon in
the Arctic, P. Natl. Acad. Sci. USA, 110, 3429–3434,
https://doi.org/10.1073/pnas.1214104110, 2013.
Cory, R. M. and Kling, G. W.: Interactions between sunlight and microorganisms influence dissolved organic matter degradation along the aquatic continuum, Limnol. Oceanogr. Lett., 3, 102–116, https://doi.org/10.1002/lol2.10060, 2018.
Dean, J. F., van Hal, J. R., Dolman, A. J., Aerts, R., and Weedon, J. T.:
Filtration artefacts in bacterial community composition can affect the
outcome of dissolved organic matter biolability assays, Biogeosciences,
15, 7141–7154, https://doi.org/10.5194/bg-15-7141-2018, 2018.
del Giorgio, P. A. and Bouvier, T. C.: Linking the physiologic and
phylogenetic successions in free-living bacterial communities along an
estuarine salinity gradient, Limnol. Oceanogr., 47, 471–486,
https://doi.org/10.4319/lo.2002.47.2.0471, 2002.
Denfeld, B. A., Baulch, H. M., del Giorgio, P. A., Hampton, S. E., and
Karlsson, J.: A synthesis of carbon dioxide and methane dynamics during the
ice-covered period of northern lakes, Limnol. Oceanogr. Lett., 3,
117–131, https://doi.org/10.1002/lol2.10079, 2018.
Deshpande, B. N., Crevecoeur, S., Matveev, A., and Vincent, W. F.: Bacterial
production in subarctic peatland lakes enriched by thawing permafrost,
Biogeosciences, 13, 4411–4427, https://doi.org/10.5194/bg-13-4411-2016, 2016.
Elder, C. D., Xu, X., Walker, J., Schnell, J. L., Hinkel, K. M.,
Townsend-Small, A., Arp, C. D., Pohlman, J. W., Gaglioti, B. V., and
Czimczik, C. I.: Greenhouse gas emissions from diverse Arctic Alaskan lakes
are dominated by young carbon, Nat. Clim. Change, 8, 166–171,
https://doi.org/10.1038/s41558-017-0066-9, 2018.
Faust, D. R. and Liebig, M. A.: Effects of storage time and temperature on
greenhouse gas samples in Exetainer vials with chlorobutyl septa caps,
MethodsX, 5, 857–864, https://doi.org/10.1016/j.mex.2018.06.016, 2018.
Folhas, D., Duarte, A. C., Pilote, M., Vincent, W. F., Freitas, P., Vieira,
G., Silva, A. M. S., Duarte, R. M. B. O., and Canário, J.: Structural
characterization of dissolved organic matter in permafrost peatland lakes,
Water, 12,
3059, https://doi.org/10.3390/w12113059, 2020.
Gao, H. and Zepp, R. G.: Factors Influencing Photoreactions of Dissolved
Organic Matter in a Coastal River of the Southeastern United States,
Environ. Sci. Technol., 32, 2940–2946, https://doi.org/10.1021/es9803660, 1998.
Girard, C., Langlois, V., Vigneron, A., Vincent, W. F., and Culley, A. I.:
Seasonal Regime Shift in the Viral Communities of a Permafrost Thaw Lake,
Viruses, 12,
1204, https://doi.org/10.3390/v12111204, 2020.
Granéli, W., Lindell, M., and Tranvik, L.: Photo-oxidative production of
dissolved inorganic carbon in lakes of different humic content, Limnol.
Oceanogr., 41, 698–706, https://doi.org/10.4319/lo.1996.41.4.0698, 1996.
Groeneveld, M., Tranvik, L., Natchimuthu, S., and Koehler, B.: Photochemical
mineralisation in a boreal brown water lake: Considerable temporal
variability and minor contribution to carbon dioxide production,
Biogeosciences, 13, 3931–3943, https://doi.org/10.5194/bg-13-3931-2016, 2016.
Guillemette, F., von Wachenfeldt, E., Kothawala, D. N., Bastviken, D., and
Tranvik, L. J.: Preferential sequestration of terrestrial organic matter in
boreal lake sediments, J. Geophys. Res.-Biogeo., 122, 863–874,
https://doi.org/10.1002/2016JG003735, 2017.
Hampton, S. E., Galloway, A. W. E., Powers, S. M., Ozersky, T., Woo, K. H.,
Batt, R. D., Labou, S. G., O'Reilly, C. M., Sharma, S., Lottig, N. R.,
Stanley, E. H., North, R. L., Stockwell, J. D., Adrian, R., Weyhenmeyer, G.
A., Arvola, L., Baulch, H. M., Bertani, I., Bowman, L. L., Carey, C. C.,
Catalan, J., Colom-Montero, W., Domine, L. M., Felip, M., Granados, I.,
Gries, C., Grossart, H.-P., Haberman, J., Haldna, M., Hayden, B., Higgins,
S. N., Jolley, J. C., Kahilainen, K. K., Kaup, E., Kehoe, M. J., MacIntyre,
S., Mackay, A. W., Mariash, H. L., McKay, R. M., Nixdorf, B., Nõges, P.,
Nõges, T., Palmer, M., Pierson, D. C., Post, D. M., Pruett, M. J.,
Rautio, M., Read, J. S., Roberts, S. L., Rücker, J., Sadro, S., Silow,
E. A., Smith, D. E., Sterner, R. W., Swann, G. E. A., Timofeyev, M. A.,
Toro, M., Twiss, M. R., Vogt, R. J., Watson, S. B., Whiteford, E. J., and
Xenopoulos, M. A.: Ecology under lake ice, edited by: Grover, J., Ecol. Lett.,
20, 98–111, https://doi.org/10.1111/ele.12699, 2017.
Helms, J. R., Stubbins, A., Ritchie, J. D., Minor, E. C., Kieber, D. J., and
Mopper, K.: Absorption spectral slopes and slope ratios as indicators of
molecular weight, source, and photobleaching of chromophoric dissolved
organic matter, Limnol. Oceanogr., 53, 955–969,
https://doi.org/10.4319/lo.2008.53.3.0955, 2008.
Helms, J. R., Mao, J., Schmidt-Rohr, K., Abdulla, H., and Mopper, K.:
Photochemical flocculation of terrestrial dissolved organic matter and iron,
Geochim. Cosmochim. Ac., 121, 398–413, https://doi.org/10.1016/j.gca.2013.07.025,
2013.
Hughes-Allen, L., Bouchard, F., Laurion, I., Séjourné, A., Marlin,
C., Hatté, C., Costard, F., Fedorov, A., and Desyatkin, A.: Seasonal
patterns in greenhouse gas emissions from thermokarst lakes in Central
Yakutia (Eastern Siberia), Limnol. Oceanogr., 6, S98–S116,
https://doi.org/10.1002/lno.11665, 2021.
Jansen, J., Thornton, B. F., Jammet, M. M., Wik, M., Cortés, A.,
Friborg, T., MacIntyre, S., and Crill, P. M.: Climate-Sensitive Controls on
Large Spring Emissions of CH4 and CO2 From Northern Lakes, J. Geophys. Res.-Biogeo., 124, 2379–2399, https://doi.org/10.1029/2019JG005094, 2019.
Kirchman, D., K'nees, E., and Hodson, R.: Leucine incorporation and its
potential as a measure of protein synthesis by bacteria in natural aquatic
systems, Appl. Environ. Microbiol., 49, 599–607, 1985.
Koehler, B., Landelius, T., Weyhenmeyer, G. A., Machida, N., and Tranvik, L.
J.: Sunlight-induced carbon dioxide emissions from inland waters, Global
Biogeochem. Cy., 28, 696–711, https://doi.org/10.1002/2014GB004850, 2014.
Lapierre, J. F., Guillemette, F., Berggren, M., and del Giorgio, P. A.:
Increases in terrestrially derived carbon stimulate organic carbon
processing and CO2 emissions in boreal aquatic ecosystems, Nat. Commun., 4, 2972,
https://doi.org/10.1038/ncomms3972, 2013.
Laurion, I., Massicotte, P., Mazoyer, F., Negandhi, K., and Mladenov, N.:
Weak mineralization despite strong processing of dissolved organic matter in
Eastern Arctic tundra ponds, Limnol. Oceanogr., 66, S47–S63,
https://doi.org/10.1002/lno.11634, 2021.
Logozzo, L., Tzortziou, M., Neale, P., and Clark, J. B.: Photochemical and
Microbial Degradation of Chromophoric Dissolved Organic Matter Exported From
Tidal Marshes, J. Geophys. Res.-Biogeo., 126, 1–24,
https://doi.org/10.1029/2020JG005744, 2021.
Matveev, A., Laurion, I., Deshpande, B. N., Bhiry, N., and Vincent, W. F.:
High methane emissions from thermokarst lakes in subarctic peatlands,
Limnol. Oceanogr., 61, S150–S164, https://doi.org/10.1002/lno.10311, 2016.
Matveev, A., Laurion, I., and Vincent, W. F.: Winter Accumulation of Methane
and its Variable Timing of Release from Thermokarst Lakes in Subarctic
Peatlands, J. Geophys. Res.-Biogeo., 124, 3521–3535,
https://doi.org/10.1029/2019JG005078, 2019.
Mazoyer, F., Laurion, I., and Rautio, M.: Dissolved organic matter and
bacterial data, along with associated temperature-irradiance metadata for a
degradation experiment using winter water from a subarctic thermokarstic
peatland lake in Nunavik, Québec, Canada, v. 1.0 (2016–2016), Nordicana
D97 [data set], https://doi.org/10.5885/45759CE-9ED4BB6AE585446C, 2022.
Mopper, K., Kieber, D. J., and Stubbins, A.: Marine Photochemistry of Organic
Matter: Processes and Impacts, in: Biogeochemistry of Marine Dissolved
Organic Matter, edited by: Hansell, D. A. and Carlson, C. A., 389–450,
Elsevier, https://doi.org/10.1016/B978-0-12-405940-5.00008-X, 2015.
Moran, M. A. and Zepp, R. G.: Role of photoreactions in the formation of
biologically labile compounds from dissolved organic matter, Limnol.
Oceanogr., 42, 1307–1316, https://doi.org/10.4319/lo.1997.42.6.1307, 1997.
Moran, M. A., Sheldon, W. M., and Zepp, R. G.: Carbon loss and optical
property changes during long-term photochemical and biological degradation
of estuarine dissolved organic matter, Limnol. Oceanogr., 45, 1254–1264,
https://doi.org/10.4319/lo.2000.45.6.1254, 2000.
Mostovaya, A., Hawkes, J. A., Koehler, B., Dittmar, T., and Tranvik, L. J.:
Emergence of the Reactivity Continuum of Organic Matter from Kinetics of a
Multitude of Individual Molecular Constituents, Environ. Sci. Technol.,
51, 11571–11579, https://doi.org/10.1021/acs.est.7b02876, 2017.
Murphy, K. R., Butler, K. D., Spencer, R. G. M., Stedmon, C. A., Boehme, J.
R., and Aiken, G. R.: Measurement of Dissolved Organic Matter Fluorescence in
Aquatic Environments: An Interlaboratory Comparison, Environ. Sci. Technol.,
44, 9405–9412, https://doi.org/10.1021/es102362t, 2010.
Murphy, K. R., Stedmon, C. A., Graeber, D., and Bro, R.: Fluorescence
spectroscopy and multi-way techniques, PARAFAC, Anal. Methods, 5, 6557,
https://doi.org/10.1039/c3ay41160e, 2013.
Murphy, K. R., Stedmon, C. A., Wenig, P., and Bro, R.: OpenFluor – an online
spectral library of auto-fluorescence by organic compounds in the
environment, Anal. Methods, 6, 658–661, https://doi.org/10.1039/C3AY41935E, 2014.
Murphy, K. R., Timko, S. A., Gonsior, M., Powers, L. C., Wünsch, U. J.,
and Stedmon, C. A.: Photochemistry Illuminates Ubiquitous Organic Matter
Fluorescence Spectra, Environ. Sci. Technol., 52, 11243–11250,
https://doi.org/10.1021/acs.est.8b02648, 2018.
Obernosterer, I. and Benner, R.: Competition between biological and
photochemical processes in the mineralization of dissolved organic carbon,
Limnol. Oceanogr., 49, 117–124, https://doi.org/10.4319/lo.2004.49.1.0117, 2004.
Olefeldt, D., Goswami, S., Grosse, G., Hayes, D., Hugelius, G., Kuhry, P.,
McGuire, A. D., Romanovsky, V. E., Sannel, A. B. K., Schuur, E. A. G., and
Turetsky, M. R.: Circumpolar distribution and carbon storage of thermokarst
landscapes, Nat. Commun., 7, 13043, https://doi.org/10.1038/ncomms13043, 2016.
Oleinikova, O. V., Drozdova, O. Y., Lapitskiy, S. A., Demin, V. V., Bychkov,
A. Y., and Pokrovsky, O. S.: Dissolved organic matter degradation by sunlight
coagulates organo-mineral colloids and produces low-molecular weight
fraction of metals in boreal humic waters, Geochim. Cosmochim. Ac., 211,
97–114, https://doi.org/10.1016/j.gca.2017.05.023, 2017.
Osburn, C. L., Handsel, L. T., Mikan, M. P., Paerl, H. W., and Montgomery, M.
T.: Fluorescence Tracking of Dissolved and Particulate Organic Matter
Quality in a River-Dominated Estuary, Environ. Sci. Technol., 46,
8628–8636, https://doi.org/10.1021/es3007723, 2012.
Pickard, A. E., Heal, K. V., McLeod, A. R., and Dinsmore, K. J.: Temporal
changes in photoreactivity of dissolved organic carbon and implications for
aquatic carbon fluxes from peatlands, Biogeosciences, 14, 1793–1809,
https://doi.org/10.5194/bg-14-1793-2017, 2017.
Porcal, P., Dillon, P. J., and Molot, L. A.: Temperature Dependence of
Photodegradation of Dissolved Organic Matter to Dissolved Inorganic Carbon
and Particulate Organic Carbon, edited by: Almeida, A., PLoS One, 10, e0128884,
https://doi.org/10.1371/journal.pone.0128884, 2015.
Prėskienis, V., Laurion, I., Bouchard, F., Douglas, P. M. J., Billett,
M. F., Fortier, D., and Xu, X.: Seasonal patterns in greenhouse gas emissions
from lakes and ponds in a High Arctic polygonal landscape, Limnol.
Oceanogr., 66, S117–S141, https://doi.org/10.1002/lno.11660, 2021.
Przytulska, A., Comte, J., Crevecoeur, S., Lovejoy, C., Laurion, I., and
Vincent, W. F.: Phototrophic pigment diversity and picophytoplankton in
permafrost thaw lakes, Biogeosciences, 13, 13–26,
https://doi.org/10.5194/bg-13-13-2016, 2016.
Pullin, M. J., Bertilsson, S., Goldstone, J. V., and Voelker, B. M.: Effects
of sunlight and hydroxyl radical on dissolved organic matter: Bacterial
growth efficiency and production of carboxylic acids and other substrates,
Limnol. Oceanogr., 49, 2011–2022, https://doi.org/10.4319/lo.2004.49.6.2011, 2004.
Roiha, T., Laurion, I., and Rautio, M.: Carbon dynamics in highly heterotrophic subarctic thaw ponds, Biogeosciences, 12, 7223–7237, https://doi.org/10.5194/bg-12-7223-2015, 2015.
Rösel, S., Allgaier, M., and Grossart, H. P.: Long-Term Characterization
of Free-Living and Particle-Associated Bacterial Communities in Lake
Tiefwaren Reveals Distinct Seasonal Patterns, Microb. Ecol., 64,
571–583, https://doi.org/10.1007/s00248-012-0049-3, 2012.
Schuur, E. A. G., McGuire, A. D., Schädel, C., Grosse, G., Harden, J.
W., Hayes, D. J., Hugelius, G., Koven, C. D., Kuhry, P., Lawrence, D. M.,
Natali, S. M., Olefeldt, D., Romanovsky, V. E., Schaefer, K., Turetsky, M.
R., Treat, C. C., and Vonk, J. E.: Climate change and the permafrost carbon
feedback, Nature, 520, 171–179, https://doi.org/10.1038/nature14338, 2015.
Sepulveda-Jauregui, A., Walter Anthony, K. M., Martinez-Cruz, K., Greene, S.,
and Thalasso, F.: Methane and carbon dioxide emissions from 40 lakes along a
north-south latitudinal transect in Alaska, Biogeosciences, 12,
3197–3223, https://doi.org/10.5194/bg-12-3197-2015, 2015.
Shirokova, L. S., Chupakov, A. V., Zabelina, S. A., Neverova, N. V.,
Payandi-Rolland, D., Causserand, C., Karlsson, J., and Pokrovsky, O. S.:
Humic surface waters of frozen peat bogs (permafrost zone) are highly
resistant to bio- and photodegradation, Biogeosciences, 16, 2511–2526,
https://doi.org/10.5194/bg-16-2511-2019, 2019.
Shirokova, L. S., Chupakov, A. V., Ivanova, I. S., Moreva, O. Y., Zabelina,
S. A., Shutskiy, N. A., Loiko, S. V., and Pokrovsky, O. S.: Lichen, moss and
peat control of C, nutrient and trace metal regime in lakes of permafrost
peatlands, Sci. Total Environ., 782, 146737,
https://doi.org/10.1016/j.scitotenv.2021.146737, 2021.
Smith, D. and Azam, F.: A simple, economical method for measuring bacterial
protein synthesis rates in seawater using 3H-leucine, Mar. Microb. Food
Webs, 6, 107–114, 1992.
Sobek, S., Tranvik, L. J., and Cole, J. J.: Temperature independence of
carbon dioxide supersaturation in global lakes, Global Biogeochem. Cy.,
19, GB2003, https://doi.org/10.1029/2004GB002264, 2005.
Søndergaard, M., Stedmon, C. A., and Borch, N. H.: Fate of terrigenous
dissolved organic matter (DOM) in estuaries: Aggregation and
bioavailability, Ophelia, 57, 161–176,
https://doi.org/10.1080/00785236.2003.10409512, 2003.
Stedmon, C. A. and Bro, R.: Characterizing dissolved organic matter
fluorescence with parallel factor analysis: a tutorial, Limnol. Oceanogr.
Method., 6, 572–579, 2008.
Stedmon, C. A., Markager, S., and Bro, R.: Tracing dissolved organic matter
in aquatic environments using a new approach to fluorescence spectroscopy,
Mar. Chem., 82, 239–254, https://doi.org/10.1016/S0304-4203(03)00072-0, 2003.
Stubbins, A., Hubbard, V., Uher, G., Law, C. S., Upstill-Goddard, R. C.,
Aiken, G. R., and Mopper, K.: Relating Carbon Monoxide Photoproduction to
Dissolved Organic Matter Functionality, Environ. Sci. Technol., 42,
3271–3276, https://doi.org/10.1021/es703014q, 2008.
Tank, S. E., Vonk, J. E., Walvoord, M. A., McClelland, J. W., Laurion, I.,
and Abbott, B. W.: Landscape matters: Predicting the biogeochemical effects
of permafrost thaw on aquatic networks with a state factor approach,
Permafrost Periglac., 31, 358–370, https://doi.org/10.1002/ppp.2057, 2020.
Tranvik, L. J., Downing, J. A., Cotner, J. B., Loiselle, S. A., Striegl, R.
G., Ballatore, T. J., Dillon, P., Finlay, K., Fortino, K., Knoll, L. B.,
Kortelainen, P. L., Kutser, T., Larsen, S., Laurion, I., Leech, D. M., Leigh
McCallister, S., McKnight, D. M., Melack, J. M., Overholt, E., Porter, J.
A., Prairie, Y., Renwick, W. H., Roland, F., Sherman, B. S., Schindler, D.
W., Sobek, S., Tremblay, A., Vanni, M. J., Verschoor, A. M., Von
Wachenfeldt, E., and Weyhenmeyer, G. A.: Lakes and reservoirs as regulators
of carbon cycling and climate, Limnol. Oceanogr., 54, 2298–2314,
https://doi.org/10.4319/lo.2009.54.6_part_2.2298, 2009.
Turetsky, M. R.: The Role of Bryophytes in Carbon and Nitrogen Cycling,
Bryologist, 106, 395–409, 2003.
Vachon, D., Lapierre, J., and del Giorgio, P. A.: Seasonality of
photochemical dissolved organic carbon mineralization and its relative
contribution to pelagic CO2 production in northern lakes, J. Geophys. Res.-Biogeo., 121, 864–878, https://doi.org/10.1002/2015JG003244, 2016.
Vachon, D., Solomon, C. T., and del Giorgio, P. A.: Reconstructing the
seasonal dynamics and relative contribution of the major processes
sustaining CO2 emissions in northern lakes, Limnol. Oceanogr., 62,
706–722, https://doi.org/10.1002/lno.10454, 2017.
Vähätalo, A. V. and Wetzel, R. G.: Long-term photochemical and
microbial decomposition of wetland-derived dissolved organic matter with
alteration of 13C : 12C mass ratio, Limnol. Oceanogr., 53, 1387–1392,
https://doi.org/10.4319/lo.2008.53.4.1387, 2008.
Vähätalo, A. V., Salkinoja-Salonen, M., Taalas, P., and Salonen, K.:
Spectrum of the quantum yield for photochemical mineralization of dissolved
organic carbon in a humic lake, Limnol. Oceanogr., 45, 664–676,
https://doi.org/10.4319/lo.2000.45.3.0664, 2000.
Vähätalo, A. V., Salonen, K. M., and Wetzel, R. G.: Photochemical
transformation of allochthonous organic matter provides bioavailable
nutrients in a humic lake, Arch. Hydrobiol., 156, 287–314,
https://doi.org/10.1127/0003-9136/2003/0156-0287, 2003.
Vincent, W. F., Lemay, M., and Allard, M.: Arctic permafrost landscapes in
transition: towards an integrated Earth system approach, Arct. Sci., 3,
39–64, https://doi.org/10.1139/as-2016-0027, 2017.
Vonk, J. E., Tank, S. E., Mann, P. J., Spencer, R. G. M., Treat, C. C.,
Striegl, R. G., Abbott, B. W., and Wickland, K. P.: Biodegradability of
dissolved organic carbon in permafrost soils and aquatic systems: A
meta-analysis, Biogeosciences, 12, 6915–6930,
https://doi.org/10.5194/bg-12-6915-2015, 2015a.
Vonk, J. E., Tank, S. E., Bowden, W. B., Laurion, I., Vincent, W. F.,
Alekseychik, P., Amyot, M., Billet, M. F., Canário, J., Cory, R. M.,
Deshpande, B. N., Helbig, M., Jammet, M., Karlsson, J., Larouche, J.,
MacMillan, G., Rautio, M., Walter Anthony, K. M., and Wickland, K. P.:
Reviews and syntheses: Effects of permafrost thaw on Arctic aquatic
ecosystems, Biogeosciences, 12, 7129–7167, https://doi.org/10.5194/bg-12-7129-2015,
2015b.
von Wachenfeldt, E. and Tranvik, L. J.: Sedimentation in Boreal Lakes – The
Role of Flocculation of Allochthonous Dissolved Organic Matter in the Water
Column, Ecosystems, 11, 803–814, https://doi.org/10.1007/s10021-008-9162-z, 2008.
von Wachenfeldt, E., Sobek, S., Bastviken, D., and Tranvik, L. J.: Linking
allochthonous dissolved organic matter and boreal lake sediment carbon
sequestration: The role of light-mediated flocculation, Limnol. Oceanogr.,
53, 2416–2426, https://doi.org/10.4319/lo.2008.53.6.2416, 2008.
von Wachenfeldt, E., Bastviken, D., and Tranvika, L. J.: Microbially induced
flocculation of allochthonous dissolved organic carbon in lakes, Limnol.
Oceanogr., 54, 1811–1818, https://doi.org/10.4319/lo.2009.54.5.1811, 2009.
Ward, C. P., Sleighter, R. L., Hatcher, P. G., and Cory, R. M.: Insights into
the complete and partial photooxidation of black carbon in surface waters,
Environ. Sci. Process. Im., 16, 721–731, https://doi.org/10.1039/C3EM00597F,
2014.
Ward, C. P., Nalven, S. G., Crump, B. C., Kling, G. W., and Cory, R. M.:
Photochemical alteration of organic carbon draining permafrost soils shifts
microbial metabolic pathways and stimulates respiration, Nat. Commun.,
8, 772, https://doi.org/10.1038/s41467-017-00759-2, 2017.
Weishaar, J. L., Aiken, G. R., Bergamaschi, B. A., Fram, M. S., Fujii, R.,
and Mopper, K.: Evaluation of Specific Ultraviolet Absorbance as an
Indicator of the Chemical Composition and Reactivity of Dissolved Organic
Carbon, Environ. Sci. Technol., 37, 4702–4708, https://doi.org/10.1021/es030360x,
2003.
Wetzel, R. G., Hatcher, P. G., and Bianchi, T. S.: Natural photolysis by
ultraviolet irradiance of recalcitrant dissolved organic matter to simple
substrates for rapidbacterial metabolism, Limnol. Oceanogr., 40,
1369–1380, https://doi.org/10.4319/lo.1995.40.8.1369, 1995.
Wik, M., Varner, R. K., Anthony, K. W., MacIntyre, S., and Bastviken, D.:
Climate-sensitive northern lakes and ponds are critical components of
methane release, Nat. Geosci., 9, 99–105, https://doi.org/10.1038/ngeo2578, 2016.
Williams, C. J., Yamashita, Y., Wilson, H. F., Jaffe, R., and Xenopoulos, M.
A.: Unraveling the role of land use and microbial activity in shaping
dissolved organic matter characteristics in stream ecosystems, Limnol.
Oceanogr., 55, 1159–1171, https://doi.org/10.4319/lo.2010.55.3.1159, 2010.
Xie, H., Bélanger, S., Song, G., Benner, R., Taalba, A., Blais, M.,
Tremblay, J.-É., and Babin, M.: Photoproduction of ammonium in the
southeastern Beaufort Sea and its biogeochemical implications,
Biogeosciences, 9, 3047–3061, https://doi.org/10.5194/bg-9-3047-2012, 2012.
Short summary
Dissolved organic matter collected at the end of winter from a peatland thermokarst lake was highly transformed and degraded by sunlight, leading to bacterial stimulation and CO2 production, but a fraction was also potentially lost by photoflocculation. Over 18 days, 18 % of the incubated dissolved organic matter was lost under sunlight, while dark bacterial degradation was negligible. Sunlight could have a marked effect on carbon cycling in organic-rich thermokarst lakes after ice-off.
Dissolved organic matter collected at the end of winter from a peatland thermokarst lake was...
Altmetrics
Final-revised paper
Preprint