Articles | Volume 19, issue 2
Biogeosciences, 19, 455–475, 2022
https://doi.org/10.5194/bg-19-455-2022
Biogeosciences, 19, 455–475, 2022
https://doi.org/10.5194/bg-19-455-2022
Research article
28 Jan 2022
Research article | 28 Jan 2022

Mixed layer depth dominates over upwelling in regulating the seasonality of ecosystem functioning in the Peruvian upwelling system

Tianfei Xue et al.

Related authors

FOCI-MOPS v1 – integration of marine biogeochemistry within the Flexible Ocean and Climate Infrastructure version 1 (FOCI 1) Earth system model
Chia-Te Chien, Jonathan V. Durgadoo, Dana Ehlert, Ivy Frenger, David P. Keller, Wolfgang Koeve, Iris Kriest, Angela Landolfi, Lavinia Patara, Sebastian Wahl, and Andreas Oschlies
Geosci. Model Dev., 15, 5987–6024, https://doi.org/10.5194/gmd-15-5987-2022,https://doi.org/10.5194/gmd-15-5987-2022, 2022
Short summary
Carbon Dioxide Removal via Macroalgae Open-ocean Mariculture and Sinking: An Earth System Modeling Study
Jiajun Wu, David P. Keller, and Andreas Oschlies
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2021-104,https://doi.org/10.5194/esd-2021-104, 2022
Preprint under review for ESD
Short summary
Explicit silicate cycling in the Kiel Marine Biogeochemistry Model version 3 (KMBM3) embedded in the UVic ESCM version 2.9
Karin Kvale, David P. Keller, Wolfgang Koeve, Katrin J. Meissner, Christopher J. Somes, Wanxuan Yao, and Andreas Oschlies
Geosci. Model Dev., 14, 7255–7285, https://doi.org/10.5194/gmd-14-7255-2021,https://doi.org/10.5194/gmd-14-7255-2021, 2021
Short summary
The riddle of eastern tropical Pacific Ocean oxygen levels: the role of the supply by intermediate-depth waters
Olaf Duteil, Ivy Frenger, and Julia Getzlaff
Ocean Sci., 17, 1489–1507, https://doi.org/10.5194/os-17-1489-2021,https://doi.org/10.5194/os-17-1489-2021, 2021
Short summary
Description of a global marine particulate organic carbon-13 isotope data set
Maria-Theresia Verwega, Christopher J. Somes, Markus Schartau, Robyn Elizabeth Tuerena, Anne Lorrain, Andreas Oschlies, and Thomas Slawig
Earth Syst. Sci. Data, 13, 4861–4880, https://doi.org/10.5194/essd-13-4861-2021,https://doi.org/10.5194/essd-13-4861-2021, 2021
Short summary

Related subject area

Biogeochemistry: Coastal Ocean
Unprecedented summer hypoxia in southern Cape Cod Bay: an ecological response to regional climate change?
Malcolm E. Scully, W. Rockwell Geyer, David Borkman, Tracy L. Pugh, Amy Costa, and Owen C. Nichols
Biogeosciences, 19, 3523–3536, https://doi.org/10.5194/bg-19-3523-2022,https://doi.org/10.5194/bg-19-3523-2022, 2022
Short summary
Interannual variabilities, long-term trends, and regulating factors of low-oxygen conditions in the coastal waters off Hong Kong
Zheng Chen, Bin Wang, Chuang Xu, Zhongren Zhang, Shiyu Li, and Jiatang Hu
Biogeosciences, 19, 3469–3490, https://doi.org/10.5194/bg-19-3469-2022,https://doi.org/10.5194/bg-19-3469-2022, 2022
Short summary
Causes of the extensive hypoxia in the Gulf of Riga in 2018
Stella-Theresa Stoicescu, Jaan Laanemets, Taavi Liblik, Māris Skudra, Oliver Samlas, Inga Lips, and Urmas Lips
Biogeosciences, 19, 2903–2920, https://doi.org/10.5194/bg-19-2903-2022,https://doi.org/10.5194/bg-19-2903-2022, 2022
Short summary
Trawling effects on biogeochemical processes are mediated by fauna in high-energy biogenic-reef-inhabited coastal sediments
Justin C. Tiano, Jochen Depestele, Gert Van Hoey, João Fernandes, Pieter van Rijswijk, and Karline Soetaert
Biogeosciences, 19, 2583–2598, https://doi.org/10.5194/bg-19-2583-2022,https://doi.org/10.5194/bg-19-2583-2022, 2022
Short summary
Drought recorded by Ba∕Ca in coastal benthic foraminifera
Inda Brinkmann, Christine Barras, Tom Jilbert, Tomas Næraa, K. Mareike Paul, Magali Schweizer, and Helena L. Filipsson
Biogeosciences, 19, 2523–2535, https://doi.org/10.5194/bg-19-2523-2022,https://doi.org/10.5194/bg-19-2523-2022, 2022
Short summary

Cited articles

Albert, A., Echevin, V., Lévy, M., and Aumont, O.: Impact of nearshore wind stress curl on coastal circulation and primary productivity in the Peru upwelling system, J. Geophys. Res.-Oceans, 115, C12, https://doi.org/10.1029/2010JC006569, 2010. a
Andersen, V., Nival, P., and Harris, R. P.: Modelling of a planktonic ecosystem in an enclosed water column, J. Mar. Biol. Assoc. UK, 67, 407–430, 1987. a
Anderson, T. R., Gentleman, W. C., and Sinha, B.: Influence of grazing formulations on the emergent properties of a complex ecosystem model in a global ocean general circulation model, Prog. Oceanogr., 87, 201–213, 2010. a
Aumont, O., Ethé, C., Tagliabue, A., Bopp, L., and Gehlen, M.: PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies, Geosci. Model Dev., 8, 2465–2513, https://doi.org/10.5194/gmd-8-2465-2015, 2015. a
Bakun, A.: Coastal upwelling indices, west coast of North America, 1946–71, NOAA Technical Report NMFS SSRF-671, 1973. a
Download
Short summary
The Peruvian system supports 10 % of the world's fishing yield. In the Peruvian system, wind and earth’s rotation bring cold, nutrient-rich water to the surface and allow phytoplankton to grow. But observations show that it grows worse at high upwelling. Using a model, we find that high upwelling happens when air mixes the water the most. Then phytoplankton is diluted and grows slowly due to low light and cool upwelled water. This study helps to estimate how it might change in a warming climate.
Altmetrics
Final-revised paper
Preprint