Articles | Volume 21, issue 7
https://doi.org/10.5194/bg-21-1827-2024
https://doi.org/10.5194/bg-21-1827-2024
Technical note
 | 
15 Apr 2024
Technical note |  | 15 Apr 2024

Technical note: Flagging inconsistencies in flux tower data

Martin Jung, Jacob Nelson, Mirco Migliavacca, Tarek El-Madany, Dario Papale, Markus Reichstein, Sophia Walther, and Thomas Wutzler

Related authors

On the added value of sequential deep learning for upscaling evapotranspiration
Basil Kraft, Jacob A. Nelson, Sophia Walther, Fabian Gans, Ulrich Weber, Gregory Duveiller, Markus Reichstein, Weijie Zhang, Marc Rußwurm, Devis Tuia, Marco Körner, Zayd Mahmoud Hamdi, and Martin Jung
EGUsphere, https://doi.org/10.5194/egusphere-2024-2896,https://doi.org/10.5194/egusphere-2024-2896, 2024
Short summary
H2MV (v1.0): Global Physically-Constrained Deep Learning Water Cycle Model with Vegetation
Zavud Baghirov, Martin Jung, Markus Reichstein, Marco Körner, and Basil Kraft
EGUsphere, https://doi.org/10.5194/egusphere-2024-2044,https://doi.org/10.5194/egusphere-2024-2044, 2024
Short summary
Seasonal and inter-annual variability of carbon fluxes in southern Africa seen by GOSAT
Eva-Marie Metz, Sanam Noreen Vardag, Sourish Basu, Martin Jung, and André Butz
EGUsphere, https://doi.org/10.5194/egusphere-2024-1955,https://doi.org/10.5194/egusphere-2024-1955, 2024
Short summary
Interpretability of negative latent heat fluxes from eddy covariance measurements in dry conditions
Sinikka J. Paulus, Rene Orth, Sung-Ching Lee, Anke Hildebrandt, Martin Jung, Jacob A. Nelson, Tarek Sebastian El-Madany, Arnaud Carrara, Gerardo Moreno, Matthias Mauder, Jannis Groh, Alexander Graf, Markus Reichstein, and Mirco Migliavacca
Biogeosciences, 21, 2051–2085, https://doi.org/10.5194/bg-21-2051-2024,https://doi.org/10.5194/bg-21-2051-2024, 2024
Short summary
Diagnosing modeling errors in global terrestrial water storage interannual variability
Hoontaek Lee, Martin Jung, Nuno Carvalhais, Tina Trautmann, Basil Kraft, Markus Reichstein, Matthias Forkel, and Sujan Koirala
Hydrol. Earth Syst. Sci., 27, 1531–1563, https://doi.org/10.5194/hess-27-1531-2023,https://doi.org/10.5194/hess-27-1531-2023, 2023
Short summary

Related subject area

Biogeochemistry: Land
Cropland expansion drives vegetation greenness decline in Southeast Asia
Ruiying Zhao, Xiangzhong Luo, Yuheng Yang, Luri Nurlaila Syahid, Chi Chen, and Janice Ser Huay Lee
Biogeosciences, 21, 5393–5406, https://doi.org/10.5194/bg-21-5393-2024,https://doi.org/10.5194/bg-21-5393-2024, 2024
Short summary
How to measure the efficiency of bioenergy crops compared to forestation
Sabine Egerer, Stefanie Falk, Dorothea Mayer, Tobias Nützel, Wolfgang A. Obermeier, and Julia Pongratz
Biogeosciences, 21, 5005–5025, https://doi.org/10.5194/bg-21-5005-2024,https://doi.org/10.5194/bg-21-5005-2024, 2024
Short summary
Implications of climate and litter quality for simulations of litterbag decomposition at high latitudes
Elin Ristorp Aas, Inge Althuizen, Hui Tang, Sonya Geange, Eva Lieungh, Vigdis Vandvik, and Terje Koren Berntsen
Biogeosciences, 21, 3789–3817, https://doi.org/10.5194/bg-21-3789-2024,https://doi.org/10.5194/bg-21-3789-2024, 2024
Short summary
Soil carbon-concentration and carbon-climate feedbacks in CMIP6 Earth system models
Rebecca M. Varney, Pierre Friedlingstein, Sarah E. Chadburn, Eleanor J. Burke, and Peter M. Cox
Biogeosciences, 21, 2759–2776, https://doi.org/10.5194/bg-21-2759-2024,https://doi.org/10.5194/bg-21-2759-2024, 2024
Short summary
Monitoring the impact of forest changes on carbon uptake with solar-induced fluorescence measurements from GOME-2A and TROPOMI for an Australian and Chinese case study
Juliëtte C. S. Anema, Klaas Folkert Boersma, Piet Stammes, Gerbrand Koren, William Woodgate, Philipp Köhler, Christian Frankenberg, and Jacqui Stol
Biogeosciences, 21, 2297–2311, https://doi.org/10.5194/bg-21-2297-2024,https://doi.org/10.5194/bg-21-2297-2024, 2024
Short summary

Cited articles

Baldocchi, D. D.: How eddy covariance flux measurements have contributed to our understanding of Global Change Biology, Glob. Change Biol., 26, 242–260, https://doi.org/10.1111/gcb.14807, 2020. 
Bodesheim, P., Jung, M., Gans, F., Mahecha, M. D., and Reichstein, M.: Upscaled diurnal cycles of land–atmosphere fluxes: a new global half-hourly data product, Earth Syst. Sci. Data, 10, 1327–1365, https://doi.org/10.5194/essd-10-1327-2018, 2018. 
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/a:1010933404324, 2001. 
Fischler, M. A. and Bolles, R. C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography, Commun. ACM, 24, 381–395, https://doi.org/10.1145/358669.358692, 1981. 
Download
Short summary
We present a methodology to detect inconsistencies in perhaps the most important data source for measurements of ecosystem–atmosphere carbon, water, and energy fluxes. We expect that the derived consistency flags will be relevant for data users and will help in improving our understanding of and our ability to model ecosystem–climate interactions.
Altmetrics
Final-revised paper
Preprint