Articles | Volume 21, issue 21
https://doi.org/10.5194/bg-21-4889-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-21-4889-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Results from a multi-laboratory ocean metaproteomic intercomparison: effects of LC-MS acquisition and data analysis procedures
Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
Jaclyn K. Saunders
Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
present address: Department of Marine Sciences, University of Georgia, Athens, Georgia, USA
Matthew R. McIlvin
Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
Erin M. Bertrand
Department of Biology, Dalhousie University, Halifax, NS, Canada
John A. Breier
School of Earth, Environmental, and Marine Sciences, The University of Texas Rio Grande Valley, Edinburg, TX, USA
Margaret Mars Brisbin
Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
Sophie M. Colston
Center for Bio/Molecular Science & Engineering, Naval Research Laboratory, Washington, DC, USA
Jaimee R. Compton
Center for Bio/Molecular Science & Engineering, Naval Research Laboratory, Washington, DC, USA
Tim J. Griffin
Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota at Minneapolis, Minneapolis, Minnesota, USA
W. Judson Hervey
Center for Bio/Molecular Science & Engineering, Naval Research Laboratory, Washington, DC, USA
Robert L. Hettich
Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
Pratik D. Jagtap
Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota at Minneapolis, Minneapolis, Minnesota, USA
Michael Janech
Hollings Marine Lab, College of Charleston, Charleston, South Carolina, USA
Rod Johnson
Bermuda Institute of Ocean Sciences, Arizona State University, Bermuda, USA
Rick Keil
School of Oceanography, College of the Environment, University of Washington, Seattle, Washington, USA
Hugo Kleikamp
Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
Dagmar Leary
Center for Bio/Molecular Science & Engineering, Naval Research Laboratory, Washington, DC, USA
Lennart Martens
Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9052 Ghent, Belgium
VIB – UGent Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium
J. Scott P. McCain
Department of Biology, Dalhousie University, Halifax, NS, Canada
Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
Eli Moore
Energy & Minerals (GEM) Science Center, United States Geological Survey, Reston, Virginia, USA
Subina Mehta
Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota at Minneapolis, Minneapolis, Minnesota, USA
Dawn M. Moran
Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
Jaqui Neibauer
Hollings Marine Lab, College of Charleston, Charleston, South Carolina, USA
Benjamin A. Neely
Biochemical and Exposure Science Group, National Institute of Standards and Technology, Charleston, South Carolina, USA
Michael V. Jakuba
Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
Jim Johnson
Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota at Minneapolis, Minneapolis, Minnesota, USA
deceased
Megan Duffy
Hollings Marine Lab, College of Charleston, Charleston, South Carolina, USA
Gerhard J. Herndl
University of Vienna, Dept. of Functional and Evolutionary Ecology, Vienna, Austria
Richard Giannone
Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
Ryan Mueller
Department of Microbiology, College of Science, Oregon State University, Corvallis, Oregon, USA
Brook L. Nunn
School of Oceanography, College of the Environment, University of Washington, Seattle, Washington, USA
Martin Pabst
School of Oceanography, College of the Environment, University of Washington, Seattle, Washington, USA
Samantha Peters
Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
Andrew Rajczewski
Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota at Minneapolis, Minneapolis, Minnesota, USA
Elden Rowland
Department of Biology, Dalhousie University, Halifax, NS, Canada
Brian Searle
Department of Chemistry and Biochemistry, College of Arts and Sciences, Ohio State University, Columbus, Ohio, USA
Tim Van Den Bossche
Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9052 Ghent, Belgium
VIB – UGent Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium
Gary J. Vora
Center for Bio/Molecular Science & Engineering, Naval Research Laboratory, Washington, DC, USA
Jacob R. Waldbauer
Department of Geophysical Sciences, University of Chicago, Chicago, Illinois, USA
Haiyan Zheng
Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey, USA
Zihao Zhao
University of Vienna, Dept. of Functional and Evolutionary Ecology, Vienna, Austria
Related authors
Riss M. Kell, Rebecca J. Chmiel, Deepa Rao, Dawn M. Moran, Matthew R. McIlvin, Tristan J. Horner, Nicole L. Schanke, Ichiko Sugiyama, Robert B. Dunbar, Giacomo R. DiTullio, and Mak A. Saito
Biogeosciences, 21, 5685–5706, https://doi.org/10.5194/bg-21-5685-2024, https://doi.org/10.5194/bg-21-5685-2024, 2024
Short summary
Short summary
Despite interest in modeling the biogeochemical uptake and cycling of the trace metal zinc (Zn), measurements of Zn uptake in natural marine phytoplankton communities have not been conducted previously. To fill this gap, we employed a stable isotope uptake rate measurement method to quantify Zn uptake into natural phytoplankton assemblages within the Southern Ocean. Zn demand was high and rapid enough to depress the inventory of Zn available to phytoplankton on seasonal timescales.
Rebecca J. Chmiel, Riss M. Kell, Deepa Rao, Dawn M. Moran, Giacomo R. DiTullio, and Mak A. Saito
Biogeosciences, 20, 3997–4027, https://doi.org/10.5194/bg-20-3997-2023, https://doi.org/10.5194/bg-20-3997-2023, 2023
Short summary
Short summary
Cobalt is an important micronutrient for plankton, yet it is often scarce throughout the oceans. A 2017/2018 expedition to coastal Antarctica, including regions of the Amundsen Sea and the Ross Sea, discovered lower concentrations of cobalt compared to two past expeditions in 2005 and 2006, particularly for the type of cobalt preferred as a nutrient by phytoplankton. This loss may be due to changing inputs of other nutrients, causing higher uptake of cobalt by plankton over the last decade.
Rebecca Chmiel, Nathan Lanning, Allison Laubach, Jong-Mi Lee, Jessica Fitzsimmons, Mariko Hatta, William Jenkins, Phoebe Lam, Matthew McIlvin, Alessandro Tagliabue, and Mak Saito
Biogeosciences, 19, 2365–2395, https://doi.org/10.5194/bg-19-2365-2022, https://doi.org/10.5194/bg-19-2365-2022, 2022
Short summary
Short summary
Dissolved cobalt is present in trace amounts in seawater and is a necessary nutrient for marine microbes. On a transect from the Alaskan coast to Tahiti, we measured seawater concentrations of dissolved cobalt. Here, we describe several interesting features of the Pacific cobalt cycle including cobalt sources along the Alaskan coast and Hawaiian vents, deep-ocean particle formation, cobalt activity in low-oxygen regions, and how our samples compare to a global biogeochemical model’s predictions.
Natalie R. Cohen, Abigail E. Noble, Dawn M. Moran, Matthew R. McIlvin, Tyler J. Goepfert, Nicholas J. Hawco, Christopher R. German, Tristan J. Horner, Carl H. Lamborg, John P. McCrow, Andrew E. Allen, and Mak A. Saito
Biogeosciences, 18, 5397–5422, https://doi.org/10.5194/bg-18-5397-2021, https://doi.org/10.5194/bg-18-5397-2021, 2021
Short summary
Short summary
A previous study documented an intense hydrothermal plume in the South Pacific Ocean; however, the iron release associated with this plume and the impact on microbiology were unclear. We describe metal concentrations associated with multiple hydrothermal plumes in this region and protein signatures of plume-influenced microbes. Our findings demonstrate that resources released from these systems can be transported away from their source and may alter the physiology of surrounding microbes.
Thomas S. Bianchi, Madhur Anand, Chris T. Bauch, Donald E. Canfield, Luc De Meester, Katja Fennel, Peter M. Groffman, Michael L. Pace, Mak Saito, and Myrna J. Simpson
Biogeosciences, 18, 3005–3013, https://doi.org/10.5194/bg-18-3005-2021, https://doi.org/10.5194/bg-18-3005-2021, 2021
Short summary
Short summary
Better development of interdisciplinary ties between biology, geology, and chemistry advances biogeochemistry through (1) better integration of contemporary (or rapid) evolutionary adaptation to predict changing biogeochemical cycles and (2) universal integration of data from long-term monitoring sites in terrestrial, aquatic, and human systems that span broad geographical regions for use in modeling.
Randelle M. Bundy, Alessandro Tagliabue, Nicholas J. Hawco, Peter L. Morton, Benjamin S. Twining, Mariko Hatta, Abigail E. Noble, Mattias R. Cape, Seth G. John, Jay T. Cullen, and Mak A. Saito
Biogeosciences, 17, 4745–4767, https://doi.org/10.5194/bg-17-4745-2020, https://doi.org/10.5194/bg-17-4745-2020, 2020
Short summary
Short summary
Cobalt (Co) is an essential nutrient for ocean microbes and is scarce in most areas of the ocean. This study measured Co concentrations in the Arctic Ocean for the first time and found that Co levels are extremely high in the surface waters of the Canadian Arctic. Although the Co primarily originates from the shelf, the high concentrations persist throughout the central Arctic. Co in the Arctic appears to be increasing over time and might be a source of Co to the North Atlantic.
Noelle A. Held, Eric A. Webb, Matthew M. McIlvin, David A. Hutchins, Natalie R. Cohen, Dawn M. Moran, Korinna Kunde, Maeve C. Lohan, Claire Mahaffey, E. Malcolm S. Woodward, and Mak A. Saito
Biogeosciences, 17, 2537–2551, https://doi.org/10.5194/bg-17-2537-2020, https://doi.org/10.5194/bg-17-2537-2020, 2020
Short summary
Short summary
Trichodesmium is a globally important marine nitrogen fixer that stimulates primary production in the surface ocean. We surveyed metaproteomes of Trichodesmium populations across the North Atlantic and other oceans, and we found that they experience simultaneous phosphate and iron stress because of the biophysical limits of nutrient uptake. Importantly, nitrogenase was most abundant during co-stress, indicating the potential importance of this phenotype to global nitrogen and carbon cycling.
Kathleen M. Munson, Carl H. Lamborg, Rene M. Boiteau, and Mak A. Saito
Biogeosciences, 15, 6451–6460, https://doi.org/10.5194/bg-15-6451-2018, https://doi.org/10.5194/bg-15-6451-2018, 2018
Short summary
Short summary
Methylmercury accumulates in marine organisms and is produced by bacterial processes in sediment systems. To date, the contribution of these processes to the marine water column is poorly understood. We measured noncellular production and breakdown of methylmercury in equatorial Pacific waters. We observed enhanced production in filtered waters that suggests noncellular processes result in rapid mercury transformations and, in turn, control methylmercury concentrations in the open ocean.
Sara J. Bender, Dawn M. Moran, Matthew R. McIlvin, Hong Zheng, John P. McCrow, Jonathan Badger, Giacomo R. DiTullio, Andrew E. Allen, and Mak A. Saito
Biogeosciences, 15, 4923–4942, https://doi.org/10.5194/bg-15-4923-2018, https://doi.org/10.5194/bg-15-4923-2018, 2018
Short summary
Short summary
Phaeocystis antarctica is an important phytoplankter of the Antarctic coastal environment where it dominates the early season bloom after sea ice retreat. Iron nutrition was found to be an important factor that results in Phaeocystis colony formation and a large restructuring of the proteome, including changes associated with the flagellate to colonial transition and adaptive responses to iron scarcity. Analysis of Phaeocystis proteins from the Ross Sea revealed the presence of both cell types.
Mak A. Saito, Abigail E. Noble, Nicholas Hawco, Benjamin S. Twining, Daniel C. Ohnemus, Seth G. John, Phoebe Lam, Tim M. Conway, Rod Johnson, Dawn Moran, and Matthew McIlvin
Biogeosciences, 14, 4637–4662, https://doi.org/10.5194/bg-14-4637-2017, https://doi.org/10.5194/bg-14-4637-2017, 2017
Short summary
Short summary
Cobalt has the smallest oceanic inventory of all known inorganic micronutrients, and hence is particularly vulnerable to influence by internal oceanic processes. The stoichiometry of cobalt was studied in the North Atlantic, and interpreted with regard to the context of Redfield theory with a focus on biological uptake, scavenging, and the coupling between dissolved and particulate phases. The stoichiometry of cobalt accelerated towards the surface due to increased biological activity and use.
Abigail E. Noble, Daniel C. Ohnemus, Nicholas J. Hawco, Phoebe J. Lam, and Mak A. Saito
Biogeosciences, 14, 2715–2739, https://doi.org/10.5194/bg-14-2715-2017, https://doi.org/10.5194/bg-14-2715-2017, 2017
Short summary
Short summary
This study examines sources and sinks of dissolved and labile cobalt in the North Atlantic Ocean. The North and South Atlantic are influenced differently by dust, coastal margin sources, biota, and suspended particles. Dissolved cobalt in both basins is driven by a coastal margin source, leading to large plumes emanating from the north and south African coasts. These plumes are comparable in size despite the high dust flux observed in the North Atlantic that is absent in the South Atlantic.
Nicholas J. Hawco, Daniel C. Ohnemus, Joseph A. Resing, Benjamin S. Twining, and Mak A. Saito
Biogeosciences, 13, 5697–5717, https://doi.org/10.5194/bg-13-5697-2016, https://doi.org/10.5194/bg-13-5697-2016, 2016
Short summary
Short summary
Cobalt is a scarce nutrient required by phytoplankton. We report more than 800 measurements of dissolved cobalt in the South Pacific Ocean, which show high cobalt concentrations in anoxic subsurface waters offshore of Peru. Coastal cobalt sources may be stronger under low oxygen and could fluctuate as climate change is expected to alter the extent of these low-oxygen regions.
Riss M. Kell, Rebecca J. Chmiel, Deepa Rao, Dawn M. Moran, Matthew R. McIlvin, Tristan J. Horner, Nicole L. Schanke, Ichiko Sugiyama, Robert B. Dunbar, Giacomo R. DiTullio, and Mak A. Saito
Biogeosciences, 21, 5685–5706, https://doi.org/10.5194/bg-21-5685-2024, https://doi.org/10.5194/bg-21-5685-2024, 2024
Short summary
Short summary
Despite interest in modeling the biogeochemical uptake and cycling of the trace metal zinc (Zn), measurements of Zn uptake in natural marine phytoplankton communities have not been conducted previously. To fill this gap, we employed a stable isotope uptake rate measurement method to quantify Zn uptake into natural phytoplankton assemblages within the Southern Ocean. Zn demand was high and rapid enough to depress the inventory of Zn available to phytoplankton on seasonal timescales.
Charlotte Eich, Mathijs van Manen, J. Scott P. McCain, Loay J. Jabre, Willem H. van de Poll, Jinyoung Jung, Sven B. E. H. Pont, Hung-An Tian, Indah Ardiningsih, Gert-Jan Reichart, Erin M. Bertrand, Corina P. D. Brussaard, and Rob Middag
Biogeosciences, 21, 4637–4663, https://doi.org/10.5194/bg-21-4637-2024, https://doi.org/10.5194/bg-21-4637-2024, 2024
Short summary
Short summary
Phytoplankton growth in the Southern Ocean (SO) is often limited by low iron (Fe) concentrations. Sea surface warming impacts Fe availability and can affect phytoplankton growth. We used shipboard Fe clean incubations to test how changes in Fe and temperature affect SO phytoplankton. Their abundances usually increased with Fe addition and temperature increase, with Fe being the major factor. These findings imply potential shifts in ecosystem structure, impacting food webs and elemental cycling.
Weiyi Tang, Bess B. Ward, Michael Beman, Laura Bristow, Darren Clark, Sarah Fawcett, Claudia Frey, François Fripiat, Gerhard J. Herndl, Mhlangabezi Mdutyana, Fabien Paulot, Xuefeng Peng, Alyson E. Santoro, Takuhei Shiozaki, Eva Sintes, Charles Stock, Xin Sun, Xianhui S. Wan, Min N. Xu, and Yao Zhang
Earth Syst. Sci. Data, 15, 5039–5077, https://doi.org/10.5194/essd-15-5039-2023, https://doi.org/10.5194/essd-15-5039-2023, 2023
Short summary
Short summary
Nitrification and nitrifiers play an important role in marine nitrogen and carbon cycles by converting ammonium to nitrite and nitrate. Nitrification could affect microbial community structure, marine productivity, and the production of nitrous oxide – a powerful greenhouse gas. We introduce the newly constructed database of nitrification and nitrifiers in the marine water column and guide future research efforts in field observations and model development of nitrification.
Rebecca J. Chmiel, Riss M. Kell, Deepa Rao, Dawn M. Moran, Giacomo R. DiTullio, and Mak A. Saito
Biogeosciences, 20, 3997–4027, https://doi.org/10.5194/bg-20-3997-2023, https://doi.org/10.5194/bg-20-3997-2023, 2023
Short summary
Short summary
Cobalt is an important micronutrient for plankton, yet it is often scarce throughout the oceans. A 2017/2018 expedition to coastal Antarctica, including regions of the Amundsen Sea and the Ross Sea, discovered lower concentrations of cobalt compared to two past expeditions in 2005 and 2006, particularly for the type of cobalt preferred as a nutrient by phytoplankton. This loss may be due to changing inputs of other nutrients, causing higher uptake of cobalt by plankton over the last decade.
Rebecca Chmiel, Nathan Lanning, Allison Laubach, Jong-Mi Lee, Jessica Fitzsimmons, Mariko Hatta, William Jenkins, Phoebe Lam, Matthew McIlvin, Alessandro Tagliabue, and Mak Saito
Biogeosciences, 19, 2365–2395, https://doi.org/10.5194/bg-19-2365-2022, https://doi.org/10.5194/bg-19-2365-2022, 2022
Short summary
Short summary
Dissolved cobalt is present in trace amounts in seawater and is a necessary nutrient for marine microbes. On a transect from the Alaskan coast to Tahiti, we measured seawater concentrations of dissolved cobalt. Here, we describe several interesting features of the Pacific cobalt cycle including cobalt sources along the Alaskan coast and Hawaiian vents, deep-ocean particle formation, cobalt activity in low-oxygen regions, and how our samples compare to a global biogeochemical model’s predictions.
Natalie R. Cohen, Abigail E. Noble, Dawn M. Moran, Matthew R. McIlvin, Tyler J. Goepfert, Nicholas J. Hawco, Christopher R. German, Tristan J. Horner, Carl H. Lamborg, John P. McCrow, Andrew E. Allen, and Mak A. Saito
Biogeosciences, 18, 5397–5422, https://doi.org/10.5194/bg-18-5397-2021, https://doi.org/10.5194/bg-18-5397-2021, 2021
Short summary
Short summary
A previous study documented an intense hydrothermal plume in the South Pacific Ocean; however, the iron release associated with this plume and the impact on microbiology were unclear. We describe metal concentrations associated with multiple hydrothermal plumes in this region and protein signatures of plume-influenced microbes. Our findings demonstrate that resources released from these systems can be transported away from their source and may alter the physiology of surrounding microbes.
Alexander Braun, Marina Spona-Friedl, Maria Avramov, Martin Elsner, Federico Baltar, Thomas Reinthaler, Gerhard J. Herndl, and Christian Griebler
Biogeosciences, 18, 3689–3700, https://doi.org/10.5194/bg-18-3689-2021, https://doi.org/10.5194/bg-18-3689-2021, 2021
Short summary
Short summary
It is known that CO2 fixation by photoautotrophic organisms is the major sink from the atmosphere. While biologists are aware that CO2 fixation also occurs in heterotrophic organisms, this route of inorganic carbon, and its quantitative role, is hardly recognized in biogeochemistry. We demonstrate that a considerable amount of CO2 is fixed annually through anaplerotic reactions in heterotrophic organisms, and a significant quantity of inorganic carbon is temporally sequestered in biomass.
Thomas S. Bianchi, Madhur Anand, Chris T. Bauch, Donald E. Canfield, Luc De Meester, Katja Fennel, Peter M. Groffman, Michael L. Pace, Mak Saito, and Myrna J. Simpson
Biogeosciences, 18, 3005–3013, https://doi.org/10.5194/bg-18-3005-2021, https://doi.org/10.5194/bg-18-3005-2021, 2021
Short summary
Short summary
Better development of interdisciplinary ties between biology, geology, and chemistry advances biogeochemistry through (1) better integration of contemporary (or rapid) evolutionary adaptation to predict changing biogeochemical cycles and (2) universal integration of data from long-term monitoring sites in terrestrial, aquatic, and human systems that span broad geographical regions for use in modeling.
Randelle M. Bundy, Alessandro Tagliabue, Nicholas J. Hawco, Peter L. Morton, Benjamin S. Twining, Mariko Hatta, Abigail E. Noble, Mattias R. Cape, Seth G. John, Jay T. Cullen, and Mak A. Saito
Biogeosciences, 17, 4745–4767, https://doi.org/10.5194/bg-17-4745-2020, https://doi.org/10.5194/bg-17-4745-2020, 2020
Short summary
Short summary
Cobalt (Co) is an essential nutrient for ocean microbes and is scarce in most areas of the ocean. This study measured Co concentrations in the Arctic Ocean for the first time and found that Co levels are extremely high in the surface waters of the Canadian Arctic. Although the Co primarily originates from the shelf, the high concentrations persist throughout the central Arctic. Co in the Arctic appears to be increasing over time and might be a source of Co to the North Atlantic.
Mirjana Najdek, Marino Korlević, Paolo Paliaga, Marsej Markovski, Ingrid Ivančić, Ljiljana Iveša, Igor Felja, and Gerhard J. Herndl
Biogeosciences, 17, 3299–3315, https://doi.org/10.5194/bg-17-3299-2020, https://doi.org/10.5194/bg-17-3299-2020, 2020
Short summary
Short summary
The response of Cymodocea nodosa to environmental changes was reported during a 15-month period. The meadow decline was triggered in spring by the simultaneous reduction of available light in the water column and the creation of anoxic conditions in the rooted area. This disturbance was critical for the plant since it took place during its recruitment phase when metabolic needs are maximal and stored reserves minimal. The loss of such habitat-forming seagrass is a major environmental concern.
Noelle A. Held, Eric A. Webb, Matthew M. McIlvin, David A. Hutchins, Natalie R. Cohen, Dawn M. Moran, Korinna Kunde, Maeve C. Lohan, Claire Mahaffey, E. Malcolm S. Woodward, and Mak A. Saito
Biogeosciences, 17, 2537–2551, https://doi.org/10.5194/bg-17-2537-2020, https://doi.org/10.5194/bg-17-2537-2020, 2020
Short summary
Short summary
Trichodesmium is a globally important marine nitrogen fixer that stimulates primary production in the surface ocean. We surveyed metaproteomes of Trichodesmium populations across the North Atlantic and other oceans, and we found that they experience simultaneous phosphate and iron stress because of the biophysical limits of nutrient uptake. Importantly, nitrogenase was most abundant during co-stress, indicating the potential importance of this phenotype to global nitrogen and carbon cycling.
Federico Baltar and Gerhard J. Herndl
Biogeosciences, 16, 3793–3799, https://doi.org/10.5194/bg-16-3793-2019, https://doi.org/10.5194/bg-16-3793-2019, 2019
Short summary
Short summary
Around half of the global primary production (PP) is produced in the ocean. Here we quantified how much oceanic PP estimates would increase if we included the dark DIC fixation rates (which are usually excluded in the carbon-14 method) into the PP estimation. We found that the inclusion of dark DIC fixation would increase PP estimates by 5–22 %. This represents ca. 1.2 to 11 Pg C yr−1 of newly synthesized organic carbon available for the marine food web.
Kathleen M. Munson, Carl H. Lamborg, Rene M. Boiteau, and Mak A. Saito
Biogeosciences, 15, 6451–6460, https://doi.org/10.5194/bg-15-6451-2018, https://doi.org/10.5194/bg-15-6451-2018, 2018
Short summary
Short summary
Methylmercury accumulates in marine organisms and is produced by bacterial processes in sediment systems. To date, the contribution of these processes to the marine water column is poorly understood. We measured noncellular production and breakdown of methylmercury in equatorial Pacific waters. We observed enhanced production in filtered waters that suggests noncellular processes result in rapid mercury transformations and, in turn, control methylmercury concentrations in the open ocean.
Sara J. Bender, Dawn M. Moran, Matthew R. McIlvin, Hong Zheng, John P. McCrow, Jonathan Badger, Giacomo R. DiTullio, Andrew E. Allen, and Mak A. Saito
Biogeosciences, 15, 4923–4942, https://doi.org/10.5194/bg-15-4923-2018, https://doi.org/10.5194/bg-15-4923-2018, 2018
Short summary
Short summary
Phaeocystis antarctica is an important phytoplankter of the Antarctic coastal environment where it dominates the early season bloom after sea ice retreat. Iron nutrition was found to be an important factor that results in Phaeocystis colony formation and a large restructuring of the proteome, including changes associated with the flagellate to colonial transition and adaptive responses to iron scarcity. Analysis of Phaeocystis proteins from the Ross Sea revealed the presence of both cell types.
Ji-Hyung Park, Omme K. Nayna, Most S. Begum, Eliyan Chea, Jens Hartmann, Richard G. Keil, Sanjeev Kumar, Xixi Lu, Lishan Ran, Jeffrey E. Richey, Vedula V. S. S. Sarma, Shafi M. Tareq, Do Thi Xuan, and Ruihong Yu
Biogeosciences, 15, 3049–3069, https://doi.org/10.5194/bg-15-3049-2018, https://doi.org/10.5194/bg-15-3049-2018, 2018
Short summary
Short summary
Human activities are drastically altering water and material flows in river systems across Asia. This review provides a conceptual framework for assessing the human impacts on Asian river C fluxes and an update on anthropogenic alterations of riverine C fluxes, focusing on the impacts of water pollution and river impoundments on CO2 outgassing from the rivers draining South, Southeast, and East Asian regions that account for the largest fraction of river discharge and C exports from Asia.
Mak A. Saito, Abigail E. Noble, Nicholas Hawco, Benjamin S. Twining, Daniel C. Ohnemus, Seth G. John, Phoebe Lam, Tim M. Conway, Rod Johnson, Dawn Moran, and Matthew McIlvin
Biogeosciences, 14, 4637–4662, https://doi.org/10.5194/bg-14-4637-2017, https://doi.org/10.5194/bg-14-4637-2017, 2017
Short summary
Short summary
Cobalt has the smallest oceanic inventory of all known inorganic micronutrients, and hence is particularly vulnerable to influence by internal oceanic processes. The stoichiometry of cobalt was studied in the North Atlantic, and interpreted with regard to the context of Redfield theory with a focus on biological uptake, scavenging, and the coupling between dissolved and particulate phases. The stoichiometry of cobalt accelerated towards the surface due to increased biological activity and use.
Abigail E. Noble, Daniel C. Ohnemus, Nicholas J. Hawco, Phoebe J. Lam, and Mak A. Saito
Biogeosciences, 14, 2715–2739, https://doi.org/10.5194/bg-14-2715-2017, https://doi.org/10.5194/bg-14-2715-2017, 2017
Short summary
Short summary
This study examines sources and sinks of dissolved and labile cobalt in the North Atlantic Ocean. The North and South Atlantic are influenced differently by dust, coastal margin sources, biota, and suspended particles. Dissolved cobalt in both basins is driven by a coastal margin source, leading to large plumes emanating from the north and south African coasts. These plumes are comparable in size despite the high dust flux observed in the North Atlantic that is absent in the South Atlantic.
Nicholas J. Hawco, Daniel C. Ohnemus, Joseph A. Resing, Benjamin S. Twining, and Mak A. Saito
Biogeosciences, 13, 5697–5717, https://doi.org/10.5194/bg-13-5697-2016, https://doi.org/10.5194/bg-13-5697-2016, 2016
Short summary
Short summary
Cobalt is a scarce nutrient required by phytoplankton. We report more than 800 measurements of dissolved cobalt in the South Pacific Ocean, which show high cobalt concentrations in anoxic subsurface waters offshore of Peru. Coastal cobalt sources may be stronger under low oxygen and could fluctuate as climate change is expected to alter the extent of these low-oxygen regions.
Richard G. Keil, Jacquelyn A. Neibauer, Christina Biladeau, Kelsey van der Elst, and Allan H. Devol
Biogeosciences, 13, 2077–2092, https://doi.org/10.5194/bg-13-2077-2016, https://doi.org/10.5194/bg-13-2077-2016, 2016
Short summary
Short summary
Drifting sediment traps were deployed in the oxygen-deficient waters of the Arabian Sea, where the sinking flux is less attenuated than in more oxic waters. Six mechanisms that might explain this "enhanced flux" were evaluated using literature and data. In the upper 500 m, evidence was found supporting an oxygen effect and/or changes in the efficiency of the microbial loop, including the addition of chemoautotrophic carbon to the sinking flux.
M. Sollai, E. C. Hopmans, S. Schouten, R. G. Keil, and J. S. Sinninghe Damsté
Biogeosciences, 12, 4725–4737, https://doi.org/10.5194/bg-12-4725-2015, https://doi.org/10.5194/bg-12-4725-2015, 2015
Short summary
Short summary
The distribution of Thaumarchaeota and anammox bacteria in the water column of the eastern tropical North Pacific (ETNP) oxygen-deficient zone (ODZ) was investigated by collecting suspended particulate matter (SPM) and analyzing it for the content of specific intact polar lipids (IPLs) produced by the two microbial groups. We found a clear niche segregation in the distribution of the two groups in the coastal waters of the ETNP but a partial overlap of their niches in the open-water setting.
Related subject area
Biogeochemistry: Organic Biogeochemistry
Methods to characterize type, relevance, and interactions of organic matter and microorganisms in fluids along the flow path of a geothermal facility
Microbial strong organic-ligand production is tightly coupled to iron in hydrothermal plumes
Ocean liming effects on dissolved organic matter dynamics
Controls on the composition of hydroxylated isoprenoidal glycerol dialkyl glycerol tetraethers (isoGDGTs) in cultivated ammonia-oxidizing Thaumarchaeota
Reviews and syntheses: Opportunities for robust use of peak intensities from high-resolution mass spectrometry in organic matter studies
Elemental stoichiometry of particulate organic matter across the Atlantic Ocean
Lipid remodeling in phytoplankton exposed to multi-environmental drivers in a mesocosm experiment
Molecular-level carbon traits of fine roots: unveiling adaptation and decomposition under flooded conditions
Contrasting seasonal patterns in particle aggregation and DOM transformation in a sub-Arctic fjord
Environmental controls on the distribution of brGDGTs and brGMGTs across the Seine River basin (NW France): implications for bacterial tetraethers as a proxy for riverine runoff
Latitudinal distribution of biomarkers across the western Arctic Ocean and the Bering Sea: an approach to assess sympagic and pelagic algal production
Sinking fate and carbon export of zooplankton fecal pellets: insights from time-series sediment trap observations in the northern South China Sea
Low cobalt inventories in the Amundsen and Ross seas driven by high demand for labile cobalt uptake among native phytoplankton communities
Potential bioavailability of representative pyrogenic organic matter compounds in comparison to natural dissolved organic matter pools
Distributions of bacteriohopanepolyols in lakes and coastal lagoons of the Azores Archipelago
Recently fixed carbon fuels microbial activity several meters below the soil surface
Environmental and hydrologic controls on sediment and organic carbon export from a subalpine catchment: insights from a time series
Climate and geology overwrite land use effects on soil organic nitrogen cycling on a continental scale
Compositions of dissolved organic matter in the ice-covered waters above the Aurora hydrothermal vent system, Gakkel Ridge, Arctic Ocean
Organic matter characteristics of a rapidly eroding permafrost cliff in NE Siberia (Lena Delta, Laptev Sea region)
Microbial labilization and diversification of pyrogenic dissolved organic matter
Bacterial and eukaryotic intact polar lipids point to in situ production as a key source of labile organic matter in hadal surface sediment of the Atacama Trench
What can we learn from amino acids about oceanic organic matter cycling and degradation?
Bacteriohopanetetrol-x: constraining its application as a lipid biomarker for marine anammox using the water column oxygen gradient of the Benguela upwelling system
Active and passive fluxes of carbon, nitrogen, and phosphorus in the northern South China Sea
Cyanobacteria net community production in the Baltic Sea as inferred from profiling pCO2 measurements
Reviews and syntheses: Heterotrophic fixation of inorganic carbon – significant but invisible flux in environmental carbon cycling
Revised fractional abundances and warm-season temperatures substantially improve brGDGT calibrations in lake sediments
Archaeal intact polar lipids in polar waters: a comparison between the Amundsen and Scotia seas
Reproducible determination of dissolved organic matter photosensitivity
Technical note: Uncovering the influence of methodological variations on the extractability of iron-bound organic carbon
Anthropocene climate warming enhances autochthonous carbon cycling in an upland Arctic lake, Disko Island, West Greenland
Novel hydrocarbon-utilizing soil mycobacteria synthesize unique mycocerosic acids at a Sicilian everlasting fire
Alkenone isotopes show evidence of active carbon concentrating mechanisms in coccolithophores as aqueous carbon dioxide concentrations fall below 7 µmol L−1
Seasonal variability and sources of in situ brGDGT production in a permanently stratified African crater lake
Sediment release of dissolved organic matter to the oxygen minimum zone off Peru
Better molecular preservation of organic matter in an oxic than in a sulfidic depositional environment: evidence from Thalassiphora pelagica (Dinoflagellata, Eocene) cysts
Assessing branched tetraether lipids as tracers of soil organic carbon transport through the Carminowe Creek catchment (southwest England)
The nonconservative distribution pattern of organic matter in the Rajang, a tropical river with peatland in its estuary
Predominance of hexamethylated 6-methyl branched glycerol dialkyl glycerol tetraethers in the Mariana Trench: source and environmental implication
High-pH and anoxic conditions during soil organic matter extraction increases its electron-exchange capacity and ability to stimulate microbial Fe(III) reduction by electron shuttling
Sterol preservation in hypersaline microbial mats
Structural elucidation and environmental distributions of butanetriol and pentanetriol dialkyl glycerol tetraethers (BDGTs and PDGTs)
Distribution and degradation of terrestrial organic matter in the sediments of peat-draining rivers, Sarawak, Malaysian Borneo
Validation of carbon isotope fractionation in algal lipids as a pCO2 proxy using a natural CO2 seep (Shikine Island, Japan)
Composition and cycling of dissolved organic matter from tropical peatlands of coastal Sarawak, Borneo, revealed by fluorescence spectroscopy and parallel factor analysis
Latitudinal variations in δ30Si and δ15N signatures along the Peruvian shelf: quantifying the effects of nutrient utilization versus denitrification over the past 600 years
Diapycnal dissolved organic matter supply into the upper Peruvian oxycline
Composition and vertical flux of particulate organic matter to the oxygen minimum zone of the central Baltic Sea: impact of a sporadic North Sea inflow
Main drivers of transparent exopolymer particle distribution across the surface Atlantic Ocean
Alessio Leins, Danaé Bregnard, Andrea Vieth-Hillebrand, Stefanie Poetz, Florian Eichinger, Guillaume Cailleau, Pilar Junier, and Simona Regenspurg
Biogeosciences, 21, 5457–5479, https://doi.org/10.5194/bg-21-5457-2024, https://doi.org/10.5194/bg-21-5457-2024, 2024
Short summary
Short summary
Organic matter and microbial fluid analysis are rarely considered in the geothermal industry and research. However, they can have a significant impact on the efficiency of geothermal energy production. We found a high diversity of organic compound compositions in our samples and were able to differentiate them with respect to different sources (e.g. artificial and biogenic). Furthermore, the microbial diversity undergoes significant changes within the flow path of a geothermal power plant.
Colleen L. Hoffman, Patrick J. Monreal, Justine B. Albers, Alastair J. M. Lough, Alyson E. Santoro, Travis Mellett, Kristen N. Buck, Alessandro Tagliabue, Maeve C. Lohan, Joseph A. Resing, and Randelle M. Bundy
Biogeosciences, 21, 5233–5246, https://doi.org/10.5194/bg-21-5233-2024, https://doi.org/10.5194/bg-21-5233-2024, 2024
Short summary
Short summary
Hydrothermally derived iron can be transported kilometers away from deep-sea vents, representing a significant flux of vital micronutrients to the ocean. However, the mechanisms that support the stabilization of dissolved iron remain elusive. Using electrochemical, spectrometry, and genomic methods, we demonstrated that strong ligands exert an important control on iron in plumes, and high-affinity iron-binding siderophores were identified in several hydrothermal plume samples for the first time.
Chiara Santinelli, Silvia Valsecchi, Simona Retelletti Brogi, Giancarlo Bachi, Giovanni Checcucci, Mirco Guerrazzi, Elisa Camatti, Stefano Caserini, Arianna Azzellino, and Daniela Basso
Biogeosciences, 21, 5131–5141, https://doi.org/10.5194/bg-21-5131-2024, https://doi.org/10.5194/bg-21-5131-2024, 2024
Short summary
Short summary
Ocean liming is a technique proposed to mitigate ocean acidification. Every action we take has an impact on the environment and the effects on the invisible world are often overlooked. With this study, we show that lime addition impacts the dynamics of dissolved organic matter, one of the largest reservoirs of carbon on Earth, representing the main source of energy for marine microbes. Further studies to assess the impacts on marine ecosystems are therefore crucial before taking any action.
Devika Varma, Laura Villanueva, Nicole J. Bale, Pierre Offre, Gert-Jan Reichart, and Stefan Schouten
Biogeosciences, 21, 4875–4888, https://doi.org/10.5194/bg-21-4875-2024, https://doi.org/10.5194/bg-21-4875-2024, 2024
Short summary
Short summary
Archaeal hydroxylated tetraether lipids are increasingly used as temperature indicators in marine settings, but the factors influencing their distribution are still unclear. Analyzing membrane lipids of two thaumarchaeotal strains showed that the growth phase of the cultures does not affect the lipid distribution, but growth temperature profoundly affects the degree of cyclization of these lipids. Also, the abundance of these lipids is species-specific and is not influenced by temperature.
William Kew, Allison Myers-Pigg, Christine H. Chang, Sean M. Colby, Josie Eder, Malak M. Tfaily, Jeffrey Hawkes, Rosalie K. Chu, and James C. Stegen
Biogeosciences, 21, 4665–4679, https://doi.org/10.5194/bg-21-4665-2024, https://doi.org/10.5194/bg-21-4665-2024, 2024
Short summary
Short summary
Natural organic matter (NOM) is often studied via Fourier transform mass spectrometry (FTMS), which identifies organic molecules as mass spectra peaks. The intensity of peaks is data that is often discarded due to technical concerns. We review the theory behind these concerns and show they are supported empirically. However, simulations show that ecological analyses of NOM data that include FTMS peak intensities are often valid. This opens a path for robust use of FTMS peak intensities for NOM.
Adam J. Fagan, Tatsuro Tanioka, Alyse A. Larkin, Jenna A. Lee, Nathan S. Garcia, and Adam C. Martiny
Biogeosciences, 21, 4239–4250, https://doi.org/10.5194/bg-21-4239-2024, https://doi.org/10.5194/bg-21-4239-2024, 2024
Short summary
Short summary
Climate change is anticipated to influence the biological pump by altering phytoplankton nutrient distribution. In our research, we collected measurements of particulate matter concentrations during two oceanographic field studies. We observed systematic variations in organic matter concentrations and ratios across the Atlantic Ocean. From statistical modeling, we determined that these variations are associated with differences in the availability of essential nutrients for phytoplankton growth.
Sebastian I. Cantarero, Edgart Flores, Harry Allbrook, Paulina Aguayo, Cristian A. Vargas, John E. Tamanaha, J. Bentley C. Scholz, Lennart T. Bach, Carolin R. Löscher, Ulf Riebesell, Balaji Rajagopalan, Nadia Dildar, and Julio Sepúlveda
Biogeosciences, 21, 3927–3958, https://doi.org/10.5194/bg-21-3927-2024, https://doi.org/10.5194/bg-21-3927-2024, 2024
Short summary
Short summary
Our study explores lipid remodeling in response to environmental stress, specifically how cell membrane chemistry changes. We focus on intact polar lipids in a phytoplankton community exposed to diverse stressors in a mesocosm experiment. The observed remodeling indicates acyl chain recycling for energy storage in intact polar lipids during stress, reallocating resources based on varying growth conditions. This understanding is essential to grasp the system's impact on cellular pools.
Mengke Wang, Peng Zhang, Huishan Li, Guisen Deng, Deliang Kong, Sifang Kong, and Junjian Wang
Biogeosciences, 21, 2691–2704, https://doi.org/10.5194/bg-21-2691-2024, https://doi.org/10.5194/bg-21-2691-2024, 2024
Short summary
Short summary
We developed and applied complementary analyses to characterize molecular-level carbon traits for water-grown and soil-grown fine roots. The adaptive strategy of developing more labile carbon in water-grown roots accelerated root decomposition and counteracted the decelerated effects of anoxia on decomposition, highlighting an indirect effect of environmental change on belowground carbon cycling.
Maria G. Digernes, Yasemin V. Bodur, Martí Amargant-Arumí, Oliver Müller, Jeffrey A. Hawkes, Stephen G. Kohler, Ulrike Dietrich, Marit Reigstad, and Maria Lund Paulsen
EGUsphere, https://doi.org/10.5194/egusphere-2024-1314, https://doi.org/10.5194/egusphere-2024-1314, 2024
Short summary
Short summary
Dissolved (DOM) and particulate organic matter (POM) are in constant exchange, but usually studied as distinct entities. We investigated the dynamics between POM and DOM in a sub-Arctic fjord across different seasons by conducting bi-monthly aggregation-dissolution experiments. During the productive period, POM concentrations increased in the experiment while DOM molecules became more recalcitrant. During the winter period, POM concentrations decreased whereas DOM molecules became more labile.
Zhe-Xuan Zhang, Edith Parlanti, Christelle Anquetil, Jérôme Morelle, Anniet M. Laverman, Alexandre Thibault, Elisa Bou, and Arnaud Huguet
Biogeosciences, 21, 2227–2252, https://doi.org/10.5194/bg-21-2227-2024, https://doi.org/10.5194/bg-21-2227-2024, 2024
Short summary
Short summary
Bacterial tetraethers have important implications for palaeoclimate reconstruction. However, fundamental understanding of how these lipids are transformed from land to sea and which environmental factors influence their distributions is lacking. Here, we investigate the sources of brGDGTs and brGMGTs and the factors controlling their distributions in a large dataset (n=237). We propose a novel proxy (RIX) to trace riverine runoff, which is applicable in modern systems and in paleorecord.
Youcheng Bai, Marie-Alexandrine Sicre, Jian Ren, Vincent Klein, Haiyan Jin, and Jianfang Chen
Biogeosciences, 21, 689–709, https://doi.org/10.5194/bg-21-689-2024, https://doi.org/10.5194/bg-21-689-2024, 2024
Short summary
Short summary
Algal biomarkers were used to assess sea ice and pelagic algal production across the western Arctic Ocean with changing sea-ice conditions. They show three distinct areas along with a marked latitudinal gradient of sea ice over pelagic algal production in surface sediments that are reflected by the H-Print index. Our data also show that efficient grazing consumption accounted for the dramatic decrease of diatom-derived biomarkers in sediments compared to that of particulate matter.
Hanxiao Wang, Zhifei Liu, Jiaying Li, Baozhi Lin, Yulong Zhao, Xiaodong Zhang, Junyuan Cao, Jingwen Zhang, Hongzhe Song, and Wenzhuo Wang
Biogeosciences, 20, 5109–5123, https://doi.org/10.5194/bg-20-5109-2023, https://doi.org/10.5194/bg-20-5109-2023, 2023
Short summary
Short summary
The sinking of zooplankton fecal pellets is a key process in the marine biological carbon pump. This study presents carbon export of four shapes of fecal pellets from two time-series sediment traps in the South China Sea. The results show that the sinking fate of fecal pellets is regulated by marine primary productivity, deep-dwelling zooplankton community, and deep-sea currents in the tropical marginal sea, thus providing a new perspective for exploring the carbon cycle in the world ocean.
Rebecca J. Chmiel, Riss M. Kell, Deepa Rao, Dawn M. Moran, Giacomo R. DiTullio, and Mak A. Saito
Biogeosciences, 20, 3997–4027, https://doi.org/10.5194/bg-20-3997-2023, https://doi.org/10.5194/bg-20-3997-2023, 2023
Short summary
Short summary
Cobalt is an important micronutrient for plankton, yet it is often scarce throughout the oceans. A 2017/2018 expedition to coastal Antarctica, including regions of the Amundsen Sea and the Ross Sea, discovered lower concentrations of cobalt compared to two past expeditions in 2005 and 2006, particularly for the type of cobalt preferred as a nutrient by phytoplankton. This loss may be due to changing inputs of other nutrients, causing higher uptake of cobalt by plankton over the last decade.
Emily B. Graham, Hyun-Seob Song, Samantha Grieger, Vanessa A. Garayburu-Caruso, James C. Stegen, Kevin D. Bladon, and Allison N. Myers-Pigg
Biogeosciences, 20, 3449–3457, https://doi.org/10.5194/bg-20-3449-2023, https://doi.org/10.5194/bg-20-3449-2023, 2023
Short summary
Short summary
Intensifying wildfires are increasing pyrogenic organic matter (PyOM) production and its impact on water quality. Recent work indicates that PyOM may have a greater impact on aquatic biogeochemistry than previously assumed, driven by higher bioavailability. We provide a full assessment of the potential bioavailability of PyOM across its chemical spectrum. We indicate that PyOM can be actively transformed within the river corridor and, therefore, may be a growing source of riverine C emissions.
Nora Richter, Ellen C. Hopmans, Danica Mitrović, Pedro M. Raposeiro, Vítor Gonçalves, Ana C. Costa, Linda A. Amaral-Zettler, Laura Villanueva, and Darci Rush
Biogeosciences, 20, 2065–2098, https://doi.org/10.5194/bg-20-2065-2023, https://doi.org/10.5194/bg-20-2065-2023, 2023
Short summary
Short summary
Bacteriohopanepolyols (BHPs) are a diverse class of lipids produced by bacteria across a wide range of environments. This study characterizes the diversity of BHPs in lakes and coastal lagoons in the Azores Archipelago, as well as a co-culture enriched for methanotrophs. We highlight the potential of BHPs as taxonomic markers for bacteria associated with certain ecological niches, which can be preserved in sedimentary records.
Andrea Scheibe, Carlos A. Sierra, and Marie Spohn
Biogeosciences, 20, 827–838, https://doi.org/10.5194/bg-20-827-2023, https://doi.org/10.5194/bg-20-827-2023, 2023
Short summary
Short summary
We explored carbon cycling in soils in three climate zones in Chile down to a depth of 6 m, using carbon isotopes. Our results show that microbial activity several meters below the soil surface is mostly fueled by recently fixed carbon and that strong decomposition of soil organic matter only occurs in the upper decimeters of the soils. The study shows that different layers of the critical zone are tightly connected and that processes in the deep soil depend on recently fixed carbon.
Melissa Sophia Schwab, Hannah Gies, Chantal Valérie Freymond, Maarten Lupker, Negar Haghipour, and Timothy Ian Eglinton
Biogeosciences, 19, 5591–5616, https://doi.org/10.5194/bg-19-5591-2022, https://doi.org/10.5194/bg-19-5591-2022, 2022
Short summary
Short summary
The majority of river studies focus on headwater or floodplain systems, while often neglecting intermediate river segments. Our study on the subalpine Sihl River bridges the gap between streams and lowlands and demonstrates that moderately steep river segments are areas of significant instream alterations, modulating the export of organic carbon over short distances.
Lisa Noll, Shasha Zhang, Qing Zheng, Yuntao Hu, Florian Hofhansl, and Wolfgang Wanek
Biogeosciences, 19, 5419–5433, https://doi.org/10.5194/bg-19-5419-2022, https://doi.org/10.5194/bg-19-5419-2022, 2022
Short summary
Short summary
Cleavage of proteins to smaller nitrogen compounds allows microorganisms and plants to exploit the largest nitrogen reservoir in soils and is considered the bottleneck in soil organic nitrogen cycling. Results from soils covering a European transect show that protein turnover is constrained by soil geochemistry, shifts in climate and associated alterations in soil weathering and should be considered as a driver of soil nitrogen availability with repercussions on carbon cycle processes.
Muhammed Fatih Sert, Helge Niemann, Eoghan P. Reeves, Mats A. Granskog, Kevin P. Hand, Timo Kekäläinen, Janne Jänis, Pamela E. Rossel, Bénédicte Ferré, Anna Silyakova, and Friederike Gründger
Biogeosciences, 19, 2101–2120, https://doi.org/10.5194/bg-19-2101-2022, https://doi.org/10.5194/bg-19-2101-2022, 2022
Short summary
Short summary
We investigate organic matter composition in the Arctic Ocean water column. We collected seawater samples from sea ice to deep waters at six vertical profiles near an active hydrothermal vent and its plume. In comparison to seawater, we found that the organic matter in waters directly affected by the hydrothermal plume had different chemical composition. We suggest that hydrothermal processes may influence the organic matter distribution in the deep ocean.
Charlotte Haugk, Loeka L. Jongejans, Kai Mangelsdorf, Matthias Fuchs, Olga Ogneva, Juri Palmtag, Gesine Mollenhauer, Paul J. Mann, P. Paul Overduin, Guido Grosse, Tina Sanders, Robyn E. Tuerena, Lutz Schirrmeister, Sebastian Wetterich, Alexander Kizyakov, Cornelia Karger, and Jens Strauss
Biogeosciences, 19, 2079–2094, https://doi.org/10.5194/bg-19-2079-2022, https://doi.org/10.5194/bg-19-2079-2022, 2022
Short summary
Short summary
Buried animal and plant remains (carbon) from the last ice age were freeze-locked in permafrost. At an extremely fast eroding permafrost cliff in the Lena Delta (Siberia), we found this formerly frozen carbon well preserved. Our results show that ongoing degradation releases substantial amounts of this carbon, making it available for future carbon emissions. This mobilisation at the studied cliff and also similarly eroding sites bear the potential to affect rivers and oceans negatively.
Aleksandar I. Goranov, Andrew S. Wozniak, Kyle W. Bostick, Andrew R. Zimmerman, Siddhartha Mitra, and Patrick G. Hatcher
Biogeosciences, 19, 1491–1514, https://doi.org/10.5194/bg-19-1491-2022, https://doi.org/10.5194/bg-19-1491-2022, 2022
Short summary
Short summary
Wildfire-derived molecules are ubiquitous in the aquatic environment, but their biological fate remains understudied. We have evaluated the compositional changes that occur to wildfire-derived molecules after incubation with soil microbes. We observe a significant degradation but also a production of numerous new labile molecules. Our results indicate that wildfire-derived molecules can be broken down and the carbon and nitrogen therein can be incorporated into microbial food webs.
Edgart Flores, Sebastian I. Cantarero, Paula Ruiz-Fernández, Nadia Dildar, Matthias Zabel, Osvaldo Ulloa, and Julio Sepúlveda
Biogeosciences, 19, 1395–1420, https://doi.org/10.5194/bg-19-1395-2022, https://doi.org/10.5194/bg-19-1395-2022, 2022
Short summary
Short summary
In this study, we investigate the chemical diversity and abundance of microbial lipids as markers of organic matter sources in the deepest points of the Atacama Trench sediments and compare them to similar lipid stocks in shallower surface sediments and in the overlying water column. We evaluate possible organic matter provenance and some potential chemical adaptations of the in situ microbial community to the extreme conditions of high hydrostatic pressure in hadal realm.
Birgit Gaye, Niko Lahajnar, Natalie Harms, Sophie Anna Luise Paul, Tim Rixen, and Kay-Christian Emeis
Biogeosciences, 19, 807–830, https://doi.org/10.5194/bg-19-807-2022, https://doi.org/10.5194/bg-19-807-2022, 2022
Short summary
Short summary
Amino acids were analyzed in a large number of samples of particulate and dissolved organic matter from coastal regions and the open ocean. A statistical analysis produced two new biogeochemical indicators. An indicator of sinking particle and sediment degradation (SDI) traces the degradation of organic matter from the surface waters into the sediments. A second indicator shows the residence time of suspended matter in the ocean (RTI).
Zoë R. van Kemenade, Laura Villanueva, Ellen C. Hopmans, Peter Kraal, Harry J. Witte, Jaap S. Sinninghe Damsté, and Darci Rush
Biogeosciences, 19, 201–221, https://doi.org/10.5194/bg-19-201-2022, https://doi.org/10.5194/bg-19-201-2022, 2022
Short summary
Short summary
Anaerobic ammonium oxidation (anammox) is an important nitrogen-removal process in the ocean. We assess the distribution of bacteriohopanetetrol-x (BHT-x), used to trace past anammox, along a redox gradient in the water column of the Benguela upwelling system. BHT-x / BHT ratios of >0.18 correspond to the presence of living anammox bacteria and oxygen levels <50 μmol L−1. This allows for a more robust application of BHT-x to trace past marine anammox and deoxygenation in dynamic marine systems.
Jia-Jang Hung, Ching-Han Tung, Zong-Ying Lin, Yuh-ling Lee Chen, Shao-Hung Peng, Yen-Huei Lin, and Li-Shan Tsai
Biogeosciences, 18, 5141–5162, https://doi.org/10.5194/bg-18-5141-2021, https://doi.org/10.5194/bg-18-5141-2021, 2021
Short summary
Short summary
We report measured active and passive fluxes and their controlling mechanisms in the northern South China Sea (NSCS). The total fluxes were higher than most reports in open oceans, indicating the significance of NSCS in atmospheric CO2 uptake and in storing that CO2 in the ocean’s interior. Winter cooling and extreme events enhanced nutrient availability and elevated fluxes. Global warming may have profound impacts on reducing ocean’s uptake and storage of CO2 in subtropical–tropical oceans.
Jens Daniel Müller, Bernd Schneider, Ulf Gräwe, Peer Fietzek, Marcus Bo Wallin, Anna Rutgersson, Norbert Wasmund, Siegfried Krüger, and Gregor Rehder
Biogeosciences, 18, 4889–4917, https://doi.org/10.5194/bg-18-4889-2021, https://doi.org/10.5194/bg-18-4889-2021, 2021
Short summary
Short summary
Based on profiling pCO2 measurements from a field campaign, we quantify the biomass production of a cyanobacteria bloom in the Baltic Sea, the export of which would foster deep water deoxygenation. We further demonstrate how this biomass production can be accurately reconstructed from long-term surface measurements made on cargo vessels in combination with modelled temperature profiles. This approach enables a better understanding of a severe concern for the Baltic’s good environmental status.
Alexander Braun, Marina Spona-Friedl, Maria Avramov, Martin Elsner, Federico Baltar, Thomas Reinthaler, Gerhard J. Herndl, and Christian Griebler
Biogeosciences, 18, 3689–3700, https://doi.org/10.5194/bg-18-3689-2021, https://doi.org/10.5194/bg-18-3689-2021, 2021
Short summary
Short summary
It is known that CO2 fixation by photoautotrophic organisms is the major sink from the atmosphere. While biologists are aware that CO2 fixation also occurs in heterotrophic organisms, this route of inorganic carbon, and its quantitative role, is hardly recognized in biogeochemistry. We demonstrate that a considerable amount of CO2 is fixed annually through anaplerotic reactions in heterotrophic organisms, and a significant quantity of inorganic carbon is temporally sequestered in biomass.
Jonathan H. Raberg, David J. Harning, Sarah E. Crump, Greg de Wet, Aria Blumm, Sebastian Kopf, Áslaug Geirsdóttir, Gifford H. Miller, and Julio Sepúlveda
Biogeosciences, 18, 3579–3603, https://doi.org/10.5194/bg-18-3579-2021, https://doi.org/10.5194/bg-18-3579-2021, 2021
Short summary
Short summary
BrGDGT lipids are a proxy for temperature in lake sediments, but other parameters like pH can influence them, and seasonality can affect the temperatures they record. We find a warm-season bias at 43 new high-latitude sites. We also present a new method that deconvolves the effects of temperature, pH, and conductivity and generate global calibrations for these variables. Our study provides new paleoclimate tools, insight into brGDGTs at the biochemical level, and a new method for future study.
Charlotte L. Spencer-Jones, Erin L. McClymont, Nicole J. Bale, Ellen C. Hopmans, Stefan Schouten, Juliane Müller, E. Povl Abrahamsen, Claire Allen, Torsten Bickert, Claus-Dieter Hillenbrand, Elaine Mawbey, Victoria Peck, Aleksandra Svalova, and James A. Smith
Biogeosciences, 18, 3485–3504, https://doi.org/10.5194/bg-18-3485-2021, https://doi.org/10.5194/bg-18-3485-2021, 2021
Short summary
Short summary
Long-term ocean temperature records are needed to fully understand the impact of West Antarctic Ice Sheet collapse. Glycerol dialkyl glycerol tetraethers (GDGTs) are powerful tools for reconstructing ocean temperature but can be difficult to apply to the Southern Ocean. Our results show active GDGT synthesis in relatively warm depths of the ocean. This research improves the application of GDGT palaeoceanographic proxies in the Southern Ocean.
Alec W. Armstrong, Leanne Powers, and Michael Gonsior
Biogeosciences, 18, 3367–3390, https://doi.org/10.5194/bg-18-3367-2021, https://doi.org/10.5194/bg-18-3367-2021, 2021
Short summary
Short summary
Living things decay into organic matter, which can dissolve into water (like tea brewing). Tea receives its color by absorbing light. Similarly, this material absorbs light, which can then cause chemical reactions that change it. By measuring changes in these optical properties, we found that materials from some places are more sensitive to light than others. Comparing sensitivity to light helps us understand where these materials come from and what happens as they move through water.
Ben J. Fisher, Johan C. Faust, Oliver W. Moore, Caroline L. Peacock, and Christian März
Biogeosciences, 18, 3409–3419, https://doi.org/10.5194/bg-18-3409-2021, https://doi.org/10.5194/bg-18-3409-2021, 2021
Short summary
Short summary
Organic carbon can be protected from microbial degradation in marine sediments through association with iron minerals on 1000-year timescales. Despite the importance of this carbon sink, our spatial and temporal understanding of iron-bound organic carbon interactions globally is poor. Here we show that caution must be applied when comparing quantification of iron-bound organic carbon extracted by different methods as the extraction strength and method specificity can be highly variable.
Mark A. Stevenson, Suzanne McGowan, Emma J. Pearson, George E. A. Swann, Melanie J. Leng, Vivienne J. Jones, Joseph J. Bailey, Xianyu Huang, and Erika Whiteford
Biogeosciences, 18, 2465–2485, https://doi.org/10.5194/bg-18-2465-2021, https://doi.org/10.5194/bg-18-2465-2021, 2021
Short summary
Short summary
We link detailed stable isotope and biomarker analyses from the catchments of three Arctic upland lakes on Disko Island (West Greenland) to a recent dated sediment core to understand how carbon cycling has changed over the past ~500 years. We find that the carbon deposited in sediments in these upland lakes is predominately sourced from in-lake production due to the catchment's limited terrestrial vegetation and elevation and that recent increases in algal production link with climate change.
Nadine T. Smit, Laura Villanueva, Darci Rush, Fausto Grassa, Caitlyn R. Witkowski, Mira Holzheimer, Adriaan J. Minnaard, Jaap S. Sinninghe Damsté, and Stefan Schouten
Biogeosciences, 18, 1463–1479, https://doi.org/10.5194/bg-18-1463-2021, https://doi.org/10.5194/bg-18-1463-2021, 2021
Short summary
Short summary
Soils from an everlasting fire (gas seep) in Sicily, Italy, reveal high relative abundances of novel uncultivated mycobacteria and unique 13C-depleted mycocerosic acids (multi-methyl branched fatty acids) close to the main gas seep. Our results imply that mycocerosic acids in combination with their depleted δ13C values offer a new biomarker tool to study the role of soil mycobacteria as hydrocarbon consumers in the modern and past global carbon cycle.
Marcus P. S. Badger
Biogeosciences, 18, 1149–1160, https://doi.org/10.5194/bg-18-1149-2021, https://doi.org/10.5194/bg-18-1149-2021, 2021
Short summary
Short summary
Reconstructing ancient atmospheric CO2 is an important aim of palaeoclimate science in order to understand the Earth's climate system. One method, the alkenone proxy based on molecular fossils of coccolithophores, has been recently shown to be ineffective at low-to-moderate CO2 levels. In this paper I show that this is likely due to changes in the biogeochemistry of the coccolithophores when there is low carbon availability, but for much of the Cenozoic the alkenone proxy should have utility.
Loes G. J. van Bree, Francien Peterse, Allix J. Baxter, Wannes De Crop, Sigrid van Grinsven, Laura Villanueva, Dirk Verschuren, and Jaap S. Sinninghe Damsté
Biogeosciences, 17, 5443–5463, https://doi.org/10.5194/bg-17-5443-2020, https://doi.org/10.5194/bg-17-5443-2020, 2020
Short summary
Short summary
Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are used as a paleothermometer based on their temperature dependence in global soils, but aquatic production complicates their use in lakes. BrGDGTs in the water column of Lake Chala, East Africa, respond to oxygen conditions and mixing. Changes in their signal can be linked to bacterial community composition rather than membrane adaptation to changing conditions. Their integrated signal in the sediment reflects mean air temperature.
Alexandra N. Loginova, Andrew W. Dale, Frédéric A. C. Le Moigne, Sören Thomsen, Stefan Sommer, David Clemens, Klaus Wallmann, and Anja Engel
Biogeosciences, 17, 4663–4679, https://doi.org/10.5194/bg-17-4663-2020, https://doi.org/10.5194/bg-17-4663-2020, 2020
Short summary
Short summary
We measured dissolved organic carbon (DOC), nitrogen (DON) and matter (DOM) optical properties in pore waters and near-bottom waters of the eastern tropical South Pacific off Peru. The difference between diffusion-driven and net fluxes of DOC and DON and qualitative changes in DOM optical properties suggested active microbial utilisation of the released DOM at the sediment–water interface. Our results suggest that the sediment release of DOM contributes to microbial processes in the area.
Gerard J. M. Versteegh, Alexander J. P. Houben, and Karin A. F. Zonneveld
Biogeosciences, 17, 3545–3561, https://doi.org/10.5194/bg-17-3545-2020, https://doi.org/10.5194/bg-17-3545-2020, 2020
Short summary
Short summary
Anoxic sediments mostly contain much more organic matter than oxic ones, and therefore organic matter in anoxic settings is often considered to be preserved better than in oxic settings. However, through the analysis of the same fossil dinoflagellate cyst species from both oxic and anoxic settings, we show that at a molecular level the preservation in the oxic sediments may be better since in the anoxic setting the cyst macromolecule has been altered by postdepositional modification.
Jingjing Guo, Miriam Glendell, Jeroen Meersmans, Frédérique Kirkels, Jack J. Middelburg, and Francien Peterse
Biogeosciences, 17, 3183–3201, https://doi.org/10.5194/bg-17-3183-2020, https://doi.org/10.5194/bg-17-3183-2020, 2020
Short summary
Short summary
The fluxes of soil organic carbon (OC) transport from land to sea are poorly constrained, mostly due to the lack of a specific tracer for soil OC. Here we evaluate the use of specific molecules derived from soil bacteria as a tracer for soil OC in a small river catchment. We find that the initial soil signal is lost upon entering the aquatic environment. However, the local environmental history of the catchment is reflected by these molecules in the lake sediments that act as their sink.
Zhuo-Yi Zhu, Joanne Oakes, Bradley Eyre, Youyou Hao, Edwin Sien Aun Sia, Shan Jiang, Moritz Müller, and Jing Zhang
Biogeosciences, 17, 2473–2485, https://doi.org/10.5194/bg-17-2473-2020, https://doi.org/10.5194/bg-17-2473-2020, 2020
Short summary
Short summary
Samples were collected in August 2016 in the Rajang River and its estuary, with tropical forest in the river basin and peatland in the estuary. Organic matter composition was influenced by transportation in the river basin, whereas peatland added clear biodegraded parts to the fluvial organic matter, which implies modification of the initial lability and/or starting points in the subsequent degradation and alternation processes after the organic matter enters the sea.
Wenjie Xiao, Yasong Wang, Yongsheng Liu, Xi Zhang, Linlin Shi, and Yunping Xu
Biogeosciences, 17, 2135–2148, https://doi.org/10.5194/bg-17-2135-2020, https://doi.org/10.5194/bg-17-2135-2020, 2020
Short summary
Short summary
The hadal zone (6–11 km depth) is the least explored habitat on Earth. We studied microbial branched glycerol dialkyl glycerol tetraethers (brGDGTs) in the Challenger Deep, Mariana Trench. One unique feature is the strong predominance of 6-methyl brGDGT, which likely reflects an adaption of brGDGT-producing bacteria to alkaline seawater and low temperature. BrGDGTs, with elemental and isotopic data, suggest an autochthonous product for brGDGT. A new approach is proposed for brGDGT sourcing.
Yuge Bai, Edisson Subdiaga, Stefan B. Haderlein, Heike Knicker, and Andreas Kappler
Biogeosciences, 17, 683–698, https://doi.org/10.5194/bg-17-683-2020, https://doi.org/10.5194/bg-17-683-2020, 2020
Short summary
Short summary
Biogeochemical processes of SOM are key for greenhouse gas emission and water quality. We extracted SOM by water or by NaOH–HCl under oxic–anoxic conditions. Chemical and anoxic extractions lead to higher SOM electron exchange capacities, resulting in stimulation of microbial Fe(III) reduction. Therefore, aqueous pH-neutral SOM extracts should be used to reflect environmental SOM redox processes, and artifacts of chemical extractions need to be considered when evaluating SOM redox processes.
Yan Shen, Volker Thiel, Pablo Suarez-Gonzalez, Sebastiaan W. Rampen, and Joachim Reitner
Biogeosciences, 17, 649–666, https://doi.org/10.5194/bg-17-649-2020, https://doi.org/10.5194/bg-17-649-2020, 2020
Short summary
Short summary
Today, sterols are widespread in plants, animals, and fungi but are almost absent in the oldest rocks. Microbial mats, representing the earliest complex ecosystems on Earth, were omnipresent in Precambrian marine environments and may have degraded the sterols at that time. Here we analyze the distribution of sterols through a microbial mat. This provides insight into how variations in biological and nonbiological factors affect the preservation of sterols in modern and ancient microbial mats.
Sarah Coffinet, Travis B. Meador, Lukas Mühlena, Kevin W. Becker, Jan Schröder, Qing-Zeng Zhu, Julius S. Lipp, Verena B. Heuer, Matthew P. Crump, and Kai-Uwe Hinrichs
Biogeosciences, 17, 317–330, https://doi.org/10.5194/bg-17-317-2020, https://doi.org/10.5194/bg-17-317-2020, 2020
Short summary
Short summary
This study deals with two membrane lipids called BDGTs and PDGTs. Membrane lipids are molecules forming the cell envelope of all organisms. Different organisms produce different lipids thus they can be used to detect the presence of specific organisms in the environment. We analyzed the structure of these new lipids and looked for potential producers. We found that they are likely made by microbes emitting methane below the sediment surface and could be used to track these specific microbes.
Ying Wu, Kun Zhu, Jing Zhang, Moritz Müller, Shan Jiang, Aazani Mujahid, Mohd Fakharuddin Muhamad, and Edwin Sien Aun Sia
Biogeosciences, 16, 4517–4533, https://doi.org/10.5194/bg-16-4517-2019, https://doi.org/10.5194/bg-16-4517-2019, 2019
Short summary
Short summary
Our understanding of terrestrial organic matter (TOM) in tropical peat-draining rivers remains limited, especially in Southeast Asia. We explored the characteristics of TOM via bulk parameters and lignin phenols of sediment in Malaysia. This showed that the most important plant source of the organic matter in these rivers is woody angiosperm C3 plants with limited diagenetic alteration. This slower degradation of TOM may be a link to higher total nitrogen content, especially for the small river.
Caitlyn R. Witkowski, Sylvain Agostini, Ben P. Harvey, Marcel T. J. van der Meer, Jaap S. Sinninghe Damsté, and Stefan Schouten
Biogeosciences, 16, 4451–4461, https://doi.org/10.5194/bg-16-4451-2019, https://doi.org/10.5194/bg-16-4451-2019, 2019
Short summary
Short summary
Carbon dioxide concentrations (pCO2) in the atmosphere play an integral role in Earth system dynamics, especially climate. Past climates help us understand future ones, but reconstructing pCO2 over the geologic record remains a challenge. This research demonstrates new approaches for exploring past pCO2 via the carbon isotope fractionation in general algal lipids, which we test over a high CO2 gradient from a naturally occurring CO2 seep.
Yongli Zhou, Patrick Martin, and Moritz Müller
Biogeosciences, 16, 2733–2749, https://doi.org/10.5194/bg-16-2733-2019, https://doi.org/10.5194/bg-16-2733-2019, 2019
Short summary
Short summary
We found that peatlands in coastal Sarawak, Borneo, export extremely humified organic matter, which dominates the riverine organic matter pool and conservatively mixes with seawater, while the freshly produced fraction is low and stable in concentration at all salinities. We estimated that terrigenous fractions, which showed high photolability, still account for 20 % of the coastal dissolved organic carbon pool, implying the importance of peat-derived organic matter in the coastal carbon cycle.
Kristin Doering, Claudia Ehlert, Philippe Martinez, Martin Frank, and Ralph Schneider
Biogeosciences, 16, 2163–2180, https://doi.org/10.5194/bg-16-2163-2019, https://doi.org/10.5194/bg-16-2163-2019, 2019
Alexandra N. Loginova, Sören Thomsen, Marcus Dengler, Jan Lüdke, and Anja Engel
Biogeosciences, 16, 2033–2047, https://doi.org/10.5194/bg-16-2033-2019, https://doi.org/10.5194/bg-16-2033-2019, 2019
Short summary
Short summary
High primary production in the Peruvian upwelling system is followed by rapid heterotrophic utilization of organic matter and supports the formation of one of the most intense oxygen minimum zones (OMZs) in the world. Here, we estimated vertical fluxes of oxygen and dissolved organic matter (DOM) from the surface to the OMZ. Our results suggest that DOM remineralization substantially reduces oxygen concentration in the upper water column and controls the shape of the upper oxycline.
Carolina Cisternas-Novoa, Frédéric A. C. Le Moigne, and Anja Engel
Biogeosciences, 16, 927–947, https://doi.org/10.5194/bg-16-927-2019, https://doi.org/10.5194/bg-16-927-2019, 2019
Short summary
Short summary
We investigate the composition and vertical fluxes of POM in two deep basins of the Baltic Sea (GB: Gotland Basin and LD: Landsort Deep). The two basins showed different O2 regimes resulting from the intrusion of oxygen-rich water from the North Sea that ventilated the deep waters in GB, but not in LD.
In GB, O2 intrusions lead to a high abundance of manganese oxides that aggregate with POM, altering its composition and vertical flux and contributing to a higher POC transfer efficiency in GB.
Marina Zamanillo, Eva Ortega-Retuerta, Sdena Nunes, Pablo Rodríguez-Ros, Manuel Dall'Osto, Marta Estrada, Maria Montserrat Sala, and Rafel Simó
Biogeosciences, 16, 733–749, https://doi.org/10.5194/bg-16-733-2019, https://doi.org/10.5194/bg-16-733-2019, 2019
Short summary
Short summary
Many marine microorganisms produce polysaccharide-rich transparent exopolymer particles (TEPs) for rather unknown reasons but with important consequences for the ocean carbon cycle, sea–air gas exchange and formation of organic aerosols. Here we compare surface–ocean distributions of TEPs and physical, chemical and biological variables along a N–S transect in the Atlantic Ocean. Our data suggest that phytoplankton and not bacteria are the main TEP producers, and solar radiation acts as a sink.
Cited articles
Bender, S. J., Moran, D. M., McIlvin, M. R., Zheng, H., McCrow, J. P., Badger, J., DiTullio, G. R., Allen, A. E., and Saito, M. A.: Colony formation in Phaeocystis antarctica: connecting molecular mechanisms with iron biogeochemistry, Biogeosciences, 15, 4923–4942, https://doi.org/10.5194/bg-15-4923-2018, 2018.
Bergauer, K., Fernandez-Guerra, A., Garcia, J. A., Sprenger, R. R., Stepanauskas, R., Pachiadaki, M. G., Jensen, O. N., and Herndl, G. J.: Organic matter processing by microbial communities throughout the Atlantic water column as revealed by metaproteomics, P. Natl. Acad. Sci. USA, 115, E400–E408, https://doi.org/10.1073/pnas.1708779115, 2018.
Bertrand, E. M., Moran, D. M., McIlvin, M. R., Hoffman, J. M., Allen, A. E., and Saito, M. A.: Methionine synthase interreplacement in diatom cultures and communities: Implications for the persistence of B12 use by eukaryotic phytoplankton, Limnol. Oceanogr., 58, 1431–1450, 2013.
Breier, J. A., Jakuba, M. V., Saito, M. A., Dick, G. J., Grim, S. L., Chan, E. W., McIlvin, M. R., Moran, D. M., Alanis, B. A., and Allen, A. E.: Revealing ocean-scale biochemical structure with a deep-diving vertical profiling autonomous vehicle, Science Robotics, 5, eabc7104, https://doi.org/10.1126/scirobotics.abc7104, 2020.
Buchfink, B., Xie, C., and Huson, D. H.: Fast and sensitive protein alignment using DIAMOND, Nat. Methods, 12, 59–60, 2015.
Carlson, C. A., Morris, R., Parsons, R., Treusch, A. H., Giovannoni, S. J., and Vergin, K.: Seasonal dynamics of SAR11 populations in the euphotic and mesopelagic zones of the northwestern Sargasso Sea, ISME J., 3, 283–295, 2009.
Casey, J. R., Lomas, M. W., Mandecki, J., and Walker, D. E.: Prochlorococcus contributes to new production in the Sargasso Sea deep chlorophyll maximum, Geophys. Res. Lett., 34, 2007.
Cohen, N. R., McIlvin, M. R., Moran, D. M., Held, N. A., Saunders, J. K., Hawco, N. J., Brosnahan, M., DiTullio, G. R., Lamborg, C., and McCrow, J. P.: Dinoflagellates alter their carbon and nutrient metabolic strategies across environmental gradients in the central Pacific Ocean, Nat. Microbiol., 6, 173–186, 2021.
Cohen, N. R., Krinos, A. I., Kell, R. M., Chmiel, R. J., Moran, D. M., McIlvin, M. R., Lopez, P. Z., Barth, A., Stone, J., Alanis, B. A., Chan, E. W., Breier, J. A., Jakuba, M. V., Johnson, R., Alexander, H., and Saito, M. A.: Microeukaryote metabolism across the western North Atlantic Ocean revealed through autonomous underwater profiling, Nat. Commun., 15, 7325, https://doi.org/10.1038/s41467-024-51583-4, 2023.
Coleman, M. L. and Chisholm, S. W.: Ecosystem-specific selection pressures revealed through comparative population genomics, P. Natl. Acad. Sci. USA, 107, 18634–18639, 2010.
Conway, J. R., Lex, A., and Gehlenborg, N.: UpSetR: an R package for the visualization of intersecting sets and their properties, Bioinformatics, 33, 2938–2940, https://doi.org/10.1093/bioinformatics/btx364, 2017.
Dai, C., Füllgrabe, A., Pfeuffer, J., Solovyeva, E. M., Deng, J., Moreno, P., Kamatchinathan, S., Kundu, D. J., George, N., and Fexova, S.: A proteomics sample metadata representation for multiomics integration and big data analysis, Nat. Commun., 12, 5854, https://doi.org/10.1038/s41467-021-26111-3, 2021.
Deutsch, E. W., Bandeira, N., Sharma, V., Perez-Riverol, Y., Carver, J. J., Kundu, D. J., García-Seisdedos, D., Jarnuczak, A. F., Hewapathirana, S., Pullman, B. S., Wertz, J., Sun, Z., Kawano, S., Okuda, S., Watanabe, Y., Hermjakob, H., MacLean, B., MacCoss, M. J., Zhu, Y., Ishihama, Y., and Vizcaíno, J. A.: The ProteomeXchange consortium in 2020: enabling “big data” approaches in proteomics, Nucleic Acids Res., 48, D1145–D1152, https://doi.org/10.1093/nar/gkz984, 2019.
Falkowski, P. G., Fenchel, T., and Delong, E. F.: The microbial engines that drive Earth's biogeochemical cycles, Science, 320, 1034–1039, 2008.
Fuchsman, C. A., Palevsky, H. I., Widner, B., Duffy, M., Carlson, M. C., Neibauer, J. A., Mulholland, M. R., Keil, R. G., Devol, A. H., and Rocap, G.: Cyanobacteria and cyanophage contributions to carbon and nitrogen cycling in an oligotrophic oxygen-deficient zone, ISME J., 13, 2714–2726, 2019.
Georges, A. A., El-Swais, H., Craig, S. E., Li, W. K., and Walsh, D. A.: Metaproteomic analysis of a winter to spring succession in coastal northwest Atlantic Ocean microbial plankton, ISME J., 8, 1301–1313, 2014.
Hawley, A. K., Brewer, H. M., Norbeck, A. D., Paša-Tolić, L., and Hallam, S. J.: Metaproteomics reveals differential modes of metabolic coupling among ubiquitous oxygen minimum zone microbes, P. Natl. Acad. Sci. USA, 111, 11395–11400, 2014.
Held, N. A., Sutherland, K. M., Webb, E. A., McIlvin, M. R., Cohen, N. R., Devaux, A. J., Hutchins, D. A., Waterbury, J. B., Hansel, C. M., and Saito, M. A.: Mechanisms and heterogeneity of in situ mineral processing by the marine nitrogen fixer Trichodesmium revealed by single-colony metaproteomics, ISME Communications, 1, 1–9, 2021.
Hulstaert, N., Shofstahl, J., Sachsenberg, T., Walzer, M., Barsnes, H., Martens, L., and Perez-Riverol, Y.: ThermoRawFileParser: modular, scalable, and cross-platform RAW file conversion, J. Proteome Res., 19, 537–542, 2019.
Hyatt, D., Chen, G.-L., LoCascio, P. F., Land, M. L., Larimer, F. W., and Hauser, L. J.: Prodigal: prokaryotic gene recognition and translation initiation site identification, BMC Bioinformatics, 11, 1–11, 2010.
Jagtap, P. D., Hoopmann, M. R., Neely, B. A., Harvey, A., Käll, L., Perez-Riverol, Y., Abajorga, M. K., Thomas, J. A., Weintraub, S. T., and Palmblad, M.: The Association of Biomolecular Resource FacilitiesProteome Informatics Research Group Study on Metaproteomics(iPRG-2020), J. Biomol. Tech., 34, 3fc1f5fe.a058bad4, https://doi.org/10.7171/3fc1f5fe.a058bad4, 2023.
Johnson, R. J., Bates, N., Lethaby, P. J., Smith, D., and Lomas, M. W.: Discrete bottle samples collected at the Bermuda Atlantic Time-series Study (BATS) site in the Sargasso Sea from October 1988 through December 2023, Biological and Chemical Oceanography Data Management Office (BCO-DMO) [data set], https://doi.org/10.26008/1912/bco-dmo.3782.6, 2024.
Joy-Warren, H. L., Alderkamp, A.-C., van Dijken, G. L., J Jabre, L., Bertrand, E. M., Baldonado, E. N., Glickman, M. W., Lewis, K. M., Middag, R., and Seyitmuhammedov, K.: Springtime phytoplankton responses to light and iron availability along the western Antarctic Peninsula, Limnol. Oceanogr., 67, 800–815, 2022.
Kanehisa, M., Sato, Y., and Morishima, K.: BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences, J. Mol. Biol., 428, 726–731, 2016.
Keller, A., Nesvizhskii, A. I., Kolker, E., and Aebersold, R.: An explanation of the Peptide Prophet algorithm developed, Anal. Chem, 74, 5383–5392, 2002.
Kim, S. and Pevzner, P. A.: MS-GF+ makes progress towards a universal database search tool for proteomics, Nat. Commun., 5, 5277, https://doi.org/10.1038/ncomms6277, 2014.
Kiweler, M., Looso, M., and Graumann, J.: MARMoSET–extracting publication-ready mass spectrometry metadata from RAW files, Molecular & Cellular Proteomics, 18, 1700–1702, 2019.
Kleiner, M.: Metaproteomics: much more than measuring gene expression in microbial communities, Msystems, 4, e00115-19, https://doi.org/10.1128/mSystems.00115-19, 2019.
Kleiner, M., Thorson, E., Sharp, C. E., Dong, X., Liu, D., Li, C., and Strous, M.: Assessing species biomass contributions in microbial communities via metaproteomics, Nat. Commun., 8, 1558, https://doi.org/10.1038/s41467-017-01544-x, 2017.
Leary, D. H., Li, R. W., Hamdan, L. J., Hervey IV, W. J., Lebedev, N., Wang, Z., Deschamps, J. R., Kusterbeck, A. W., and Vora, G. J.: Integrated metagenomic and metaproteomic analyses of marine biofilm communities, Biofouling, 30, 1211–1223, 2014.
Malmstrom, R. R., Coe, A., Kettler, G. C., Martiny, A. C., Frias-Lopez, J., Zinser, E. R., and Chisholm, S. W.: Temporal dynamics of Prochlorococcus ecotypes in the Atlantic and Pacific oceans, ISME J., 4, 1252–1264, 2010.
McCain, J. S. P. and Bertrand, E. M.: Prediction and consequences of cofragmentation in metaproteomics, J. Proteome Res., 18, 3555–3566, 2019.
McCain, J. S. P., Allen, A. E., and Bertrand, E. M.: Proteomic traits vary across taxa in a coastal Antarctic phytoplankton bloom, ISME J., 16, 569–579, 2022.
McIlvin, M. R. and Saito, M. A.: Online Nanoflow Two-Dimension Comprehensive Active Modulation Reversed Phase–Reversed Phase Liquid Chromatography High-Resolution Mass Spectrometry for Metaproteomics of Environmental and Microbiome Samples, J. Proteome Res., 20, 4589–4597, 2021.
McIlvin, M. and Saito, M. A.: Informatics Component: Results from a Multi-Laboratory Ocean Metaproteomic Intercomparison: Effects of LC-MS Acquisition and Data Analysis Procedures, Pride PXD044234 [data set], https://doi.org/10.6019/PXD044234, 2024.
Mikan, M. P., Harvey, H. R., Timmins-Schiffman, E., Riffle, M., May, D. H., Salter, I., Noble, W. S., and Nunn, B. L.: Metaproteomics reveal that rapid perturbations in organic matter prioritize functional restructuring over taxonomy in western Arctic Ocean microbiomes, ISME J., 14, 39–52, 2020.
Moore, E. K., Nunn, B. L., Goodlett, D. R., and Harvey, H. R.: Identifying and tracking proteins through the marine water column: Insights into the inputs and preservation mechanisms of protein in sediments, Geochim. Cosmochim. Ac., 83, 324–359, 2012.
Moran, M. A., Kujawinski, E. B., Schroer, W. F., Amin, S. A., Bates, N. R., Bertrand, E. M., Braakman, R., Brown, C. T., Covert, M. W., Doney, S. C., and Dyhrman, S. T.: Microbial metabolites in the marine carbon cycle, Nat. Microbiol., 7, 508–523, 2022.
Morris, R. M., Nunn, B. L., Frazar, C., Goodlett, D. R., Ting, Y. S., and Rocap, G.: Comparative metaproteomics reveals ocean-scale shifts in microbial nutrient utilization and energy transduction, ISME J., 4, 673–685, 2010.
Mueller, R. S. and Pan, C.: Sample handling and mass spectrometry for microbial metaproteomic analyses, in: Methods in Enzymology, vol. 531, Elsevier, 289–303, https://doi.org/10.1016/B978-0-12-407863-5.00015-0, 2013.
Nesvizhskii, A. I., Keller, A., Kolker, E., and Aebersold, R.: A statistical model for identifying proteins by tandem mass spectrometry, Anal. Chem., 75, 4646–4658, 2003.
Participants of the Ocean Metaproteome Intercomparison Consortium: Results from a Multi-Laboratory Ocean Metaproteomic Intercomparison: Effects of LC-MS Acquisition and Data Analysis Procedures, Pride PXD043218 [data set], https://doi.org/10.6019/PXD043218, 2024.
Piehowski, P. D., Petyuk, V. A., Orton, D. J., Xie, F., Moore, R. J., Ramirez-Restrepo, M., Engel, A., Lieberman, A. P., Albin, R. L., and Camp, D. G.: Sources of technical variability in quantitative LC–MS proteomics: human brain tissue sample analysis, J. Proteome Res., 12, 2128–2137, 2013.
Pietilä, S., Suomi, T., and Elo, L. L.: Introducing untargeted data-independent acquisition for metaproteomics of complex microbial samples, ISME Commun., 12, 7305, https://doi.org/10.1038/s43705-022-00137-0, 2022.
Ram, R. J., VerBerkmoes, N. C., Thelen, M. P., Tyson, G. W., Baker, B. J., Blake, R. C., Shah, M., Hettich, R. L., and Banfield, J. F.: Community proteomics of a natural microbial biofilm, Science, 308, 1915–1920, 2005.
Saito, M. A. and Cohen, N.: Scaffold-derived metaproteomic exclusive and total spectral counts associated with proteins from samples taken during R/V Atlantic Explorer cruise AE1913 from the Sargasso Sea to Northeast US shelf waters in June of 2019, MBLWHOI Library [data set], https://doi.org/10.26008/1912/bco-dmo.934706.1, 2024.
Saito, M. A., McIlvin, M. R., Moran, D. M., Goepfert, T. J., DiTullio, G. R., Post, A. F., and Lamborg, C. H.: Multiple nutrient stresses at intersecting Pacific Ocean biomes detected by protein biomarkers, Science, 345, 1173–1177, 2014.
Saito, M. A., Dorsk, A., Post, A. F., McIlvin, M. R., Rappé, M. S., DiTullio, G. R., and Moran, D. M.: Needles in the blue sea: Sub-species specificity in targeted protein biomarker analyses within the vast oceanic microbial metaproteome, Proteomics, 15, 3521–3531, 2015.
Saito, M. A., Bertrand, E. M., Duffy, M. E., Gaylord, D. A., Held, N. A., Hervey IV, W. J., Hettich, R. L., Jagtap, P. D., Janech, M. G., and Kinkade, D. B.: Progress and challenges in ocean metaproteomics and proposed best practices for data sharing, J. Proteome Res., 18, 1461–1476, 2019.
Saito, M. A., McIlvin, M. R., Moran, D. M., Santoro, A. E., Dupont, C. L., Rafter, P. A., Saunders, J. K., Kaul, D., Lamborg, C. H., and Westley, M.: Abundant nitrite-oxidizing metalloenzymes in the mesopelagic zone of the tropical Pacific Ocean, Nat. Geosci., 13, 355–362, 2020.
Saunders, J. K., Gaylord, D. A., Held, N. A., Symmonds, N., Dupont, C. L., Shepherd, A., Kinkade, D. B., and Saito, M. A.: METATRYP v 2.0: Metaproteomic least common ancestor analysis for taxonomic inference using specialized sequence assemblies–standalone software and web servers for marine microorganisms and coronaviruses, J. Proteome Res., 19, 4718–4729, 2020.
Scanlan, D. J., Silman, N. J., Donald, K. M., Wilson, W. H., Carr, N. G., Joint, I., and Mann, N. H.: An immunological approach to detect phosphate stress in populations and single cells of photosynthetic picoplankton, Appl. Environ. Microbiol., 63, 2411–2420, 1997.
Schiebenhoefer, H., Van Den Bossche, T., Fuchs, S., Renard, B. Y., Muth, T., and Martens, L.: Challenges and promise at the interface of metaproteomics and genomics: an overview of recent progress in metaproteogenomic data analysis, Expert Rev. Proteomic., 16, 375–390, 2019.
Sørensen, T.: A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish common, Kongelige Danske Videnskabernes Selskab, 5, 1–34, 1948.
Sowell, S. M., Wilhelm, L. J., Norbeck, A. D., Lipton, M. S., Nicora, C. D., Barofsky, D. F., Carlson, C. A., Smith, R. D., and Giovanonni, S. J.: Transport functions dominate the SAR11 metaproteome at low-nutrient extremes in the Sargasso Sea, ISME J., 3, 93–105, 2009.
Stewart, H. I., Grinfeld, D., Giannakopulos, A., Petzoldt, J., Shanley, T., Garland, M., Denisov, E., Peterson, A. C., Damoc, E., Zeller, M., Arrey, T. N., Pashkova, A., Renuse, S., Hakimi, A., Kühn, A., Biel, M., Kreutzmann, A., Hagedorn, B., Colonius, I., Schütz, A., Stefes, A., Dwivedi, A., Mourad, D., Hoek, M., Reitemeier, B., Cochems, P., Kholomeev, A., Ostermann, R., Quiring, G., Ochmann, M., Möhring, S., Wagner, A., Petker, A., Kanngiesser, S., Wiedemeyer, M., Balschun, W., Hermanson, D., Zabrouskov, V., Makarov, A. A., and Hock, C.: Parallelized Acquisition of Orbitrap and Astral Analyzers Enables High-Throughput Quantitative Analysis, Anal. Chem., 95, 15656–15664, https://doi.org/10.1021/acs.analchem.3c02856, 2023.
Tagliabue, A.: “Oceans are hugely complex';: modelling marine microbes is key to climate forecasts, Nature, 623, 250–252, https://doi.org/10.1038/d41586-023-03425-4, 2023.
Timmins-Schiffman, E., May, D. H., Mikan, M., Riffle, M., Frazar, C., Harvey, H. R., Noble, W. S., and Nunn, B. L.: Critical decisions in metaproteomics: achieving high confidence protein annotations in a sea of unknowns, ISME J., 11, 309–314, 2017.
Ustick, L. J., Larkin, A. A., Garcia, C. A., Garcia, N. S., Brock, M. L., Lee, J. A., Wiseman, N. A., Moore, J. K., and Martiny, A. C.: Metagenomic analysis reveals global-scale patterns of ocean nutrient limitation, Science, 372, 287–291, 2021.
Van Den Bossche, T., Kunath, B. J., Schallert, K., Schäpe, S. S., Abraham, P. E., Armengaud, J., Arntzen, M. Ø., Bassignani, A., Benndorf, D., and Fuchs, S.: Critical Assessment of MetaProteome Investigation (CAMPI): a multi-laboratory comparison of established workflows, Nat. Commun., 12, 1–15, https://doi.org/10.1038/s41467-021-27542-8, 2021.
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., and Bright, J.: SciPy 1.0: fundamental algorithms for scientific computing in Python, Nat. Methods, 17, 261–272, 2020.
Waskom, M. L.: Seaborn: statistical data visualization, J. Open Source Softw., 6, 3021, https://doi.org/10.21105/joss, 2021.
Williams, T. J., Long, E., Evans, F., DeMaere, M. Z., Lauro, F. M., Raftery, M. J., Ducklow, H., Grzymski, J. J., Murray, A. E., and Cavicchioli, R.: A metaproteomic assessment of winter and summer bacterioplankton from Antarctic Peninsula coastal surface waters, ISME J., 6, 1883–1900, 2012.
Wilmes, P. and Bond, P. L.: Metaproteomics: studying functional gene expression in microbial ecosystems, Trends Microbiol., 14, 92–97, 2006.
Wilmes, P., Andersson, A. F., Lefsrud, M. G., Wexler, M., Shah, M., Zhang, B., Hettich, R. L., Bond, P. L., VerBerkmoes, N. C., and Banfield, J. F.: Community proteogenomics highlights microbial strain-variant protein expression within activated sludge performing enhanced biological phosphorus removal, ISME J., 2, 853–864, 2008.
Worden, A. Z., Follows, M. J., Giovannoni, S. J., Wilken, S., Zimmerman, A. E., and Keeling, P. J.: Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes, Science, 347, 1257594, https://doi.org/10.1126/science.1257594, 2015.
Wu, M., McCain, J. S. P., Rowland, E., Middag, R., Sandgren, M., Allen, A. E., and Bertrand, E. M.: Manganese and iron deficiency in Southern Ocean Phaeocystis antarctica populations revealed through taxon-specific protein indicators, Nat. Commun., 10, 3582, https://doi.org/10.1038/s41467-019-11426-z, 2019.
Short summary
The ability to assess the functional capabilities of microbes in the environment is of increasing interest. Metaproteomics, the ability to measure proteins across microbial populations, has been increasing in capability and popularity in recent years. Here, an international team of scientists conducted an intercomparison study using samples collected from the North Atlantic Ocean and observed consistency in the peptides and proteins identified, their functions, and their taxonomic origins.
The ability to assess the functional capabilities of microbes in the environment is of...
Altmetrics
Final-revised paper
Preprint