Articles | Volume 21, issue 1
https://doi.org/10.5194/bg-21-93-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-21-93-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Temporary stratification promotes large greenhouse gas emissions in a shallow eutrophic lake
Thomas A. Davidson
CORRESPONDING AUTHOR
Lake Ecology, Department of Ecoscience, Aarhus University, Aarhus, Denmark
WATEC – Aarhus University Centre for Water Technology, Aarhus University, Aarhus, Denmark
Martin Søndergaard
Lake Ecology, Department of Ecoscience, Aarhus University, Aarhus, Denmark
WATEC – Aarhus University Centre for Water Technology, Aarhus University, Aarhus, Denmark
Sino-Danish Center for Education and Research (SDC), Beijing, China
Joachim Audet
Lake Ecology, Department of Ecoscience, Aarhus University, Aarhus, Denmark
WATEC – Aarhus University Centre for Water Technology, Aarhus University, Aarhus, Denmark
Lake Ecology, Department of Ecoscience, Aarhus University, Aarhus, Denmark
Chiara Esposito
Lake Ecology, Department of Ecoscience, Aarhus University, Aarhus, Denmark
WATEC – Aarhus University Centre for Water Technology, Aarhus University, Aarhus, Denmark
Tuba Bucak
Lake Ecology, Department of Ecoscience, Aarhus University, Aarhus, Denmark
Anders Nielsen
Lake Ecology, Department of Ecoscience, Aarhus University, Aarhus, Denmark
WaterITech Aps, Døjsøvej 1, 8660 Skanderborg, Denmark
Related authors
Victoria Frutos Aragón, Sandra Brucet, Rafael Marcé, Tuba Bucak, Thomas Alexander Davidson, Louisa-Marie von Plüskow, Pieter Lemmens, and Carolina Trochine
EGUsphere, https://doi.org/10.5194/egusphere-2025-3725, https://doi.org/10.5194/egusphere-2025-3725, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Pond sediments emit substantial CO2 during dry phases, often overlooked despite climate change increasing dry periods. We measured emissions in 30 ponds across Mediterranean and Temperate regions, finding higher emissions in summer and in ponds with longer hydroperiods, especially in Mediterranean climates. Emissions peaked at moderate sediment water content and warm temperatures, highlighting the need to include dry-phase emissions in carbon flux assessments.
Victoria Frutos Aragón, Sandra Brucet, Rafael Marcé, Tuba Bucak, Thomas Alexander Davidson, Louisa-Marie von Plüskow, Pieter Lemmens, and Carolina Trochine
EGUsphere, https://doi.org/10.5194/egusphere-2025-3725, https://doi.org/10.5194/egusphere-2025-3725, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Pond sediments emit substantial CO2 during dry phases, often overlooked despite climate change increasing dry periods. We measured emissions in 30 ponds across Mediterranean and Temperate regions, finding higher emissions in summer and in ponds with longer hydroperiods, especially in Mediterranean climates. Emissions peaked at moderate sediment water content and warm temperatures, highlighting the need to include dry-phase emissions in carbon flux assessments.
Wantong Zhang, Zhengyi Hu, Joachim Audet, Thomas A. Davidson, Enze Kang, Xiaoming Kang, Yong Li, Xiaodong Zhang, and Jinzhi Wang
Biogeosciences, 19, 5187–5197, https://doi.org/10.5194/bg-19-5187-2022, https://doi.org/10.5194/bg-19-5187-2022, 2022
Short summary
Short summary
This work focused on the CH4 and N2O emissions from alpine peatlands in response to the interactive effects of altered water table levels and increased nitrogen deposition. Across the 2-year mesocosm experiment, nitrogen deposition showed nonlinear effects on CH4 emissions and linear effects on N2O emissions, and these N effects were associated with the water table levels. Our results imply the future scenario of strengthened CH4 and N2O emissions from an alpine peatland.
Cited articles
Aben, R. C. H., Barros, N., van Donk, E., Frenken, T., Hilt, S., Kazanjian, G., Lamers, L. P. M., Peeters, E. T. H. M., Roelofs, J. G. M., de Senerpont Domis, L. N., Stephan, S., Velthuis, M., Van de Waal, D. B., Wik, M., Thornton, B. F., Wilkinson, J., DelSontro, T., and Kosten, S.: Cross continental increase in methane ebullition under climate change, Nat. Comms., 8, 1682, https://doi.org/10.1038/s41467-017-01535-y, 2017.
Audet, J., Carstensen, M. V., Hoffmann, C. C., Lavaux, L., Thiemer, K., and Davidson, T. A.: Greenhouse gas emissions from urban ponds in Denmark, Inland Waters, 10, 373–385, https://doi.org/10.1080/20442041.2020.1730680, 2020.
Bartosiewicz, M., Laurion, I., and MacIntyre, S.: Greenhouse gas emission and storage in a small shallow lake, Hydrobiologia, 757, 101–115, https://doi.org/10.1007/s10750-015-2240-2, 2015.
Bartosiewicz, M., Laurion, I., Clayer, F., and Maranger, R.: Heat-Wave Effects on Oxygen, Nutrients, and Phytoplankton Can Alter Global Warming Potential of Gases Emitted from a Small Shallow Lake, Environ. Sci. Technol., 50, 6267–6275, https://pubs.acs.org/doi/10.1021/acs.est.5b06312, 2016.
Bartosiewicz, M., Przytulska, A., Lapierre, J.-F., Laurion, I., Lehmann, M. F., and Maranger, R.: Hot tops, cold bottoms: Synergistic climate warming and shielding effects increase carbon burial in lakes, Limnol. Oceanogr. Lett., 4, 132–144, https://doi.org/10.1002/lol2.10117, 2019.
Bastviken, D., Cole, J. J., Pace, M. L., and Van de Bogert, M. C.: Fates of methane from different lake habitats: Connecting whole-lake budgets and CH4 emissions, J. Geophys. Res., 113, G02024, https://doi.org/10.1029/2007JG000608, 2008.
Bastviken, D., Sundgren, I., Natchimuthu, S., Reyier, H., and Gålfalk, M.: Technical Note: Cost-efficient approaches to measure carbon dioxide fluxes and concentrations in terrestrial and aquatic environments using mini loggers, Biogeosciences, 12, 3849–3859, https://doi.org/10.5194/bg-12-3849-2015, 2015.
Bastviken, D., Nygren, J., Schenk, J., Parellada Massana, R., and Duc, N. T.: Technical note: Facilitating the use of low-cost methane (CH4) sensors in flux chambers – calibration, data processing, and an open-source make-it-yourself logger, Biogeosciences, 17, 3659–3667, https://doi.org/10.5194/bg-17-3659-2020, 2020.
Bastviken, D., Treat, C. C., Pangala, S. R., Gauci, V., Enrich-Prast, A., Karlson, M., Gålfalk, M., Romano, M. B., and Sawakuchi, H. O.: The importance of plants for methane emission at the ecosystem scale, Aquat. Bot., 184, 103596, https://doi.org/10.1016/j.aquabot.2022.103596, 2023.
Beaulieu, J. J., DelSontro, T., and Downing, J. A.: Eutrophication will increase methane emissions from lakes and impoundments during the 21st century, Nat. Commun., 10, 1–5, https://doi.org/10.1038/s41467-019-09100-5, 2019.
Bergen, T. J. H. M., Barros, N., Mendonça, R., Aben, R. C. H., Althuizen, I. H. J., Huszar, V., Lamers, L. P. M., Lürling, M., Roland, F., and Kosten, S.: Seasonal and diel variation in greenhouse gas emissions from an urban pond and its major drivers, Limnol. Oceanogr., 64, 2129–2139, https://doi.org/10.1002/lno.11173, 2019.
Blees, J., Niemann, H., Wenk, C. B., Zopfi, J., Schubert, C. J., Kirf, M. K., Veronesi, M. L., Hitz, C., and Lehmann, M. F.: Micro-aerobic bacterial methane oxidation in the chemocline and anoxic water column of deep south-Alpine Lake Lugano (Switzerland), Limnol. Oceanogr., 59, 311–324, https://doi.org/10.4319/lo.2014.59.2.0311, 2014.
Burke, S. A., Wik, M., Lang, A., Contosta, A. R., Palace, M., Crill, P. M., and Varner, R. K.: Long-Term Measurements of Methane Ebullition From Thaw Ponds, J. Geophys. Res.-Biogeo., 124, 2208–2221, https://doi.org/10.1029/2018JG004786, 2019.
Cole, J.: Freshwater in flux, Nat. Geosci., 6, 13–14, https://doi.org/10.1038/ngeo1696, 2013.
Cole, J. J. and Caraco, N. F.: Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6, Limnol. Oceanogr., 43, 647–656, https://doi.org/10.4319/lo.1998.43.4.0647, 1998.
Davidson, T. A., Audet, J., Jeppesen, E., Landkildehus, F., Lauridsen, T. L., Søndergaard, M., and Syvaranta, J.: Synergy between nutrients and warming enhances methane ebullition from experimental lakes, Nat. Clim. Change, 8, 156–160, https://doi.org/10.1038/s41558-017-0063-z, 2018.
Davidson, T. A., Audet, J., Svenning, J.-C. C., Lauridsen, T. L., Søndergaard, M., Landkildehus, F., Larsen, S. E., and Jeppesen, E.: Eutrophication effects on greenhouse gas fluxes from shallow-lake mesocosms override those of climate warming, Glob. Change Biol., 21, 4449–4463, https://doi.org/10.1111/gcb.13062, 2015.
Deacon, E. L.: Sea-air gas transfer: The wind speed dependence, Bound.-Lay. Meteorol., 21, 31–37, https://doi.org/10.1007/bf00119365, 1981.
Deemer, B. R. and Holgerson, M. A.: Drivers of Methane Flux Differ Between Lakes and Reservoirs, Complicating Global Upscaling Efforts, J. Geophys. Res.-Biogeo., 126, e2019JG005600, https://doi.org/10.1029/2019JG005600, 2021.
DelSontro, T., Boutet, L., St-Pierre, A., del Giorgio, P. A., and Prairie, Y. T.: Methane ebullition and diffusion from northern ponds and lakes regulated by the interaction between temperature and system productivity, Limnol. Oceanogr., 61, S62–S77, https://doi.org/10.1002/lno.10335, 2016.
Erkkilä, K. M., Ojala, A., Bastviken, D., Biermann, T., Heiskanen, J. J., Lindroth, A., Peltola, O., Rantakari, M., Vesala, T., and Mammarella, I.: Methane and carbon dioxide fluxes over a lake: comparison between eddy covariance, floating chambers and boundary layer method, Biogeosciences, 15, 429–445, 10.5194/bg-15-429-2018, 2018.
Esposito, C., Nijman, T. P. A., Veraart, A. J., Audet, J., Levi, E. E., Lauridsen, T. L., and Davidson, T. A.: Activity and abundance of methane-oxidizing bacteria on plants in experimental lakes subjected to different nutrient and warming treatments, Aquat. Bot., 185, 103610, https://doi.org/10.1016/j.aquabot.2022.103610, 2023.
Holgerson, M. A. and Raymond, P. A.: Large contribution to inland water CO2 and CH4 emissions from very small ponds, Nat. Geosci., 9, 222–226, 2016.
Holgerson, M. A., Richardson, D. C., Roith, J., Bortolotti, L. E., Finlay, K., Hornbach, D. J., Gurung, K., Ness, A., Andersen, M. R., Bansal, S., Finlay, J. C., Cianci-Gaskill, J. A., Hahn, S., Janke, B. D., McDonald, C., Mesman, J. P., North, R. L., Roberts, C. O., Sweetman, J. N., and Webb, J. R.: Classifying Mixing Regimes in Ponds and Shallow Lakes, Water Resour. Res., 58, e2022WR032522, https://doi.org/10.1029/2022WR032522, 2022.
Jespersen, A. and Christoffersen, K.: Measurements of Chlorophyll a from phytoplankton using ethanol as extraction solvent, Archiv Hydrobiol., 109, 445–454, 1987.
Kirillin, G. and Shatwell, T.: Generalized scaling of seasonal thermal stratification in lakes, Earth Sci. Rev., 161, 179–190, https://doi.org/10.1016/j.earscirev.2016.08.008, 2016.
Koschorreck, M., Prairie, Y. T., Kim, J., and Marcé, R.: Technical note: CO2 is not like CH4 – limits of and corrections to the headspace method to analyse pCO2 in fresh water, Biogeosciences, 18, 1619–1627, https://doi.org/10.5194/bg-18-1619-2021, 2021.
McAuliffe, C.: Gas chromatographic determination of solutes by multiple phase equilibrium, Chem. Technol., 1, 46–51, 1971.
Meerhoff, M., Audet, J., Davidson, T. A., De Meester, L., Hilt, S., Kosten, S., Liu, Z., Mazzeo, N., Paerl, H., Scheffer, M., and Jeppesen, E.: Feedbacks between climate change and eutrophication: revisiting the allied attack concept and how to strike back, Inland Waters, 12, 187–204, https://doi.org/10.1080/20442041.2022.2029317, 2022.
Peacock, M., Audet, J., Jordan, S., Smeds, J., and Wallin, M. B.: Greenhouse gas emissions from urban ponds are driven by nutrient status and hydrology, Ecosphere, 10, e02643, https://doi.org/10.1002/ecs2.2643, 2019.
Peacock, M., Audet, J., Bastviken, D., Cook, S., Evans, C. D., Grinham, A., Holgerson, M. A., Högbom, L., Pickard, A. E., Zieliński, P., and Futter, M. N.: Small artificial waterbodies are widespread and persistent emitters of methane and carbon dioxide, Glob. Change Biol., 27, 5109–5123, https://doi.org/10.1111/gcb.15762, 2021.
Petersen, S. O., Hoffmann, C. C., Schäfer, C. M., Blicher-Mathiesen, G., Elsgaard, L., Kristensen, K., Larsen, S. E., Torp, S. B., and Greve, M. H.: Annual emissions of CH4 and N2O, and ecosystem respiration, from eight organic soils in Western Denmark managed by agriculture, Biogeosciences, 9, 403–422, https://doi.org/10.5194/bg-9-403-2012, 2012.
Pinheiro, J. and Bates, D.: R Core Team: nlme: Linear and Nonlinear Mixed Effects Models, R package version 3.1-163, 2023.
R Development Core Team: R: a language and environment for statistical computing, R Foundation for Statistical Computing (4.2.1), https://www.R-project.org/ (last access: October 2023), 2022.
Ray, N. E. and Holgerson, M. A.: High Intra-Seasonal Variability in Greenhouse Gas Emissions From Temperate Constructed Ponds, Geophys. Res. Lett., 50, e2023GL104235, https://doi.org/10.1029/2023GL104235, 2023.
Rosentreter, J. A., Borges, A. V., Deemer, B. R., Holgerson, M. A., Liu, S., Song, C., Melack, J., Raymond, P. A., Duarte, C. M., Allen, G. H., Olefeldt, D., Poulter, B., Battin, T. I., and Eyre, B. D.: Half of global methane emissions come from highly variable aquatic ecosystem sources, Nat. Geosci., 14, 225–230, https://doi.org/10.1038/s41561-021-00715-2, 2021.
Saarela, T., Rissanen, A. J., Ojala, A., Pumpanen, J., Aalto, S. L., Tiirola, M., Vesala, T., and Jäntti, H.: CH4 oxidation in a boreal lake during the development of hypolimnetic hypoxia, Aquat. Sci., 13, 153–166, https://doi.org/10.1007/s00027-019-0690-8, 2019.
Schubert, C. J., Diem, T., and Eugster, W.: Methane Emissions from a Small Wind Shielded Lake Determined by Eddy Covariance, Flux Chambers, Anchored Funnels, and Boundary Model Calculations: A Comparison, Environ. Sci. Technol., 46, 4515–4522, https://doi.org/10.1021/es203465x, 2012.
Sø, J. S., Sand-Jensen, K., Martinsen, K. T., Polauke, E., Kjær, J. E., Reitzel, K., and Kragh, T.: Methane and carbon dioxide fluxes at high spatiotemporal resolution from a small temperate lake, Sci. Total Environ., 878, 162895, https://doi.org/10.1016/j.scitotenv.2023.162895, 2023.
Søndergaard, M., Jeppesen, E., Peder Jensen, J., and Lildal Amsinck, S.: Water Framework Directive: ecological classification of Danish lakes, J. Appl. Ecol., 42, 616–629, https://doi.org/10.1111/j.1365-2664.2005.01040.x, 2005.
Søndergaard, M., Nielsen, A., Johansson, L. S., and Davidson, T. A.: Temporarily summer-stratified lakes are common: profile data from 436 lakes in lowland Denmark, Inland Waters, 1–14, https://doi.org/10.1080/20442041.2023.2203060, 2023a.
Søndergaard, M., Nielsen, A., Skov, C., Baktoft, H., Reitzel, K., Kragh, T., and Davidson, T. A.: Temporarily and frequently occurring summer stratification and its effects on nutrient dynamics, greenhouse gas emission and fish habitat use: case study from Lake Ormstrup (Denmark), Hydrobiologia, 850, 65–79, https://doi.org/10.1007/s10750-022-05039-9, 2023b.
Thottathil, S. D., Reis, P. C. J., and Prairie, Y. T.: Methane oxidation kinetics in northern freshwater lakes, Biogeochemistry, 143, 105–116, https://doi.org/10.1007/s10533-019-00552-x, 2019.
Wanninkhof, R.: Relationship between wind-speed and gas-exchange over the ocean, J. Geophys. Res.-Ocean., 97, 7373–7382, https://doi.org/10.1029/92jc00188, 1992.
Weiss, R. F.: Carbon dioxide in water and seawater: the solubility of a non-ideal gas, Mar. Chem., 2, 203–215, https://doi.org/10.1016/0304-4203(74)90015-2, 1974.
Weiss, R. F. and Price, B. A.: Nitrous oxide solubility in water and seawater, Mar. Chem., 8, 347–359, https://doi.org/10.1016/0304-4203(80)90024-9, 1980.
West, W. E., Coloso, J. J., and Jones, S. E.: Effects of algal and terrestrial carbon on methane production rates and methanogen community structure in a temperate lake sediment, Freshw. Biol., 57, 949–955, https://doi.org/10.1111/j.1365-2427.2012.02755.x, 2012.
Wiesenburg, D. A. and Guinasso, N. L.: Equilibrium solubilities of methane, carbon monoxide, and hydrogen in water and sea water, J. Chem. Eng. Data, 24, 356–360, https://doi.org/10.1021/je60083a006, 1979.
Wik, M., Crill, P. M., Varner, R. K., and Bastviken, D.: Multiyear measurements of ebullitive methane flux from three subarctic lakes, J. Geophys. Res.-Biogeo., 118, 1307–1321, https://doi.org/10.1002/jgrg.20103, 2013.
Winslow, L., Read, J., Woolway, I., Brentrup, J., Leach, T., Zwart, J., Albers, S., and Collinge, D.: rLakeAnalyzer: Lake Physics Tools: R package (1.11.4.1), https://CRAN.R-project.org/package=rLakeAnalyzer (last access: October 2023), 2019.
Woolway, R. I. and Merchant, C. J.: Worldwide alteration of lake mixing regimes in response to climate change, Nat. Geosci., 12, 271–276, https://doi.org/10.1038/s41561-019-0322-x, 2019.
Yvon-Durocher, G., Allen, A. P., Montoya, J. M., Trimmer, M., and Woodward, G.: The temperature dependence of the carbon cycle in aquatic ecosystems, Adv. Ecol. Res., 43, 267–313, https://doi.org/10.1016/B978-0-12-385005-8.00007-1, 2010.
Yvon-Durocher, G., Allen, A. P., Bastviken, D., Conrad, R., Gudasz, C., St-Pierre, A., Thanh-Duc, N., and del Giorgio, P. A.: Methane fluxes show consistent temperature dependence across microbial to ecosystem scales, Nature, 507, 488–491, https://doi.org/10.1038/nature13164, 2014.
Zhou, Y., Zhou, L., Zhang, Y., de Souza, J. G., Podgorski, D. C., Spencer, R. G. M., Jeppesen, E., and Davidson, T. A.: Autochthonous dissolved organic matter potentially fuels methane ebullition from experimental lakes, Water Res., 166, 115048, https://doi.org/10.1016/j.watres.2019.115048, 2019.
Short summary
Shallow lakes and ponds undergo frequent stratification in summer months. Here we studied how this affects greenhouse gas (GHG) emissions. We found that stratification caused anoxia in the bottom waters, driving increased GHG emissions, in particular methane released as bubbles. In addition, methane and carbon dioxide accumulated in the bottom waters during stratification, leading to large emissions when the lake mixed again.
Shallow lakes and ponds undergo frequent stratification in summer months. Here we studied how...
Altmetrics
Final-revised paper
Preprint