18 Mar 2011
18 Mar 2011
Age structure and disturbance legacy of North American forests
Y. Pan et al.
Related subject area
Biogeochemistry: Land
Implementation of nitrogen cycle in the CLASSIC land model
Combined effects of ozone and drought stress on the emission of biogenic volatile organic compounds from Quercus robur L.
A bottom-up quantification of foliar mercury uptake fluxes across Europe
Lagged effects regulate the inter-annual variability of the tropical carbon balance
Spatial variations in terrestrial net ecosystem productivity and its local indicators
Reviews and Syntheses: Impacts of plant silica – herbivore interactions on terrestrial biogeochemical cycling
Nitrogen cycling in CMIP6 land surface models: progress and limitations
Decomposing reflectance spectra to track gross primary production in a subalpine evergreen forest
The rising productivity of alpine grassland under warming, drought and N-deposition treatments
Examining the sensitivity of the terrestrial carbon cycle to the expression of El Niño
Sensitivity of 21st century simulated ecosystem indicators to model parameters, prescribed climate drivers, RCP scenarios and forest management actions for two Finnish boreal forest sites
Summarizing the state of the terrestrial biosphere in few dimensions
Patterns and trends of the dominant environmental controls of net biome productivity
Localized basal area affects soil respiration temperature sensitivity in a coastal deciduous forest
Dissolved organic carbon mobilized from organic horizons of mature and harvested black spruce plots in a mesic boreal region
Ideas and perspectives: Proposed best practices for collaboration at cross-disciplinary observatories
Effects of leaf length and development stage on the triple oxygen isotope signature of grass leaf water and phytoliths: insights for a proxy of continental atmospheric humidity
Response of simulated burned area to historical changes in environmental and anthropogenic factors: a comparison of seven fire models
Estimation of coarse dead wood stocks in intact and degraded forests in the Brazilian Amazon using airborne lidar
Theoretical uncertainties for global satellite-derived burned area estimates
Estimating global gross primary productivity using chlorophyll fluorescence and a data assimilation system with the BETHY-SCOPE model
How representative are FLUXNET measurements of surface fluxes during temperature extremes?
Stable carbon and nitrogen isotopic composition of leaves, litter, and soils of various ecosystems along an elevational and land-use gradient at Mount Kilimanjaro, Tanzania
Comparison of CO2 and O2 fluxes demonstrate retention of respired CO2 in tree stems from a range of tree species
Tropical climate–vegetation–fire relationships: multivariate evaluation of the land surface model JSBACH
A global spatially contiguous solar-induced fluorescence (CSIF) dataset using neural networks
Technical note: A simple theoretical model framework to describe plant stomatal “sluggishness” in response to elevated ozone concentrations
Water-stress-induced breakdown of carbon–water relations: indicators from diurnal FLUXNET patterns
Shrub type dominates the vertical distribution of leaf C : N : P stoichiometry across an extensive altitudinal gradient
Estimation of gross land-use change and its uncertainty using a Bayesian data assimilation approach
Smaller global and regional carbon emissions from gross land use change when considering sub-grid secondary land cohorts in a global dynamic vegetation model
Nitrogen isotopic composition of plants and soil in an arid mountainous terrain: south slope versus north slope
Land-use and land-cover change carbon emissions between 1901 and 2012 constrained by biomass observations
Impacts of temperature extremes on European vegetation during the growing season
An assessment of geographical distribution of different plant functional types over North America simulated using the CLASS–CTEM modelling framework
Variability in above- and belowground carbon stocks in a Siberian larch watershed
Precipitation–fire linkages in Indonesia (1997–2015)
Fire-regime variability impacts forest carbon dynamics for centuries to millennia
Changing patterns of fire occurrence in proximity to forest edges, roads and rivers between NW Amazonian countries
Reviews and syntheses: Flying the satellite into your model: on the role of observation operators in constraining models of the Earth system and the carbon cycle
Mapping the reduction in gross primary productivity in subarctic birch forests due to insect outbreaks
Technical note: Dynamic INtegrated Gap-filling and partitioning for OzFlux (DINGO)
Nitrogen mineralization, not N2 fixation, alleviates progressive nitrogen limitation – Comment on “Processes regulating progressive nitrogen limitation under elevated carbon dioxide: a meta-analysis” by Liang et al. (2016)
Transient dynamics of terrestrial carbon storage: mathematical foundation and its applications
Development and evaluation of an ozone deposition scheme for coupling to a terrestrial biosphere model
Variations of leaf N and P concentrations in shrubland biomes across northern China: phylogeny, climate, and soil
Spatial and seasonal variations of leaf area index (LAI) in subtropical secondary forests related to floristic composition and stand characters
Biomass burning fuel consumption dynamics in the tropics and subtropics assessed from satellite
The status and challenge of global fire modelling
Parametrization consequences of constraining soil organic matter models by total carbon and radiocarbon using long-term field data
Ali Asaadi and Vivek K. Arora
Biogeosciences, 18, 669–706, https://doi.org/10.5194/bg-18-669-2021, https://doi.org/10.5194/bg-18-669-2021, 2021
Short summary
Short summary
More than a quarter of the current anthropogenic CO2 emissions are taken up by land, reducing the atmospheric CO2 growth rate. This is because of the CO2 fertilization effect which benefits 80 % of global vegetation. However, if nitrogen and phosphorus nutrients cannot keep up with increasing atmospheric CO2, the magnitude of this terrestrial ecosystem service may reduce in future. This paper implements nitrogen constraints on photosynthesis in a model to understand the mechanisms involved.
Arianna Peron, Lisa Kaser, Anne Charlott Fitzky, Martin Graus, Heidi Halbwirth, Jürgen Greiner, Georg Wohlfahrt, Boris Rewald, Hans Sandén, and Thomas Karl
Biogeosciences, 18, 535–556, https://doi.org/10.5194/bg-18-535-2021, https://doi.org/10.5194/bg-18-535-2021, 2021
Short summary
Short summary
Drought events are expected to become more frequent with climate change. Along with these events atmospheric ozone is also expected to increase. Both can stress plants. Here we investigate to what extent these factors modulate the emission of volatile organic compounds (VOCs) from oak plants. We find an antagonistic effect between drought stress and ozone, impacting the emission of different BVOCs, which is indirectly controlled by stomatal opening, allowing plants to control their water budget.
Lena Wohlgemuth, Stefan Osterwalder, Carl Joseph, Ansgar Kahmen, Günter Hoch, Christine Alewell, and Martin Jiskra
Biogeosciences, 17, 6441–6456, https://doi.org/10.5194/bg-17-6441-2020, https://doi.org/10.5194/bg-17-6441-2020, 2020
Short summary
Short summary
Mercury uptake by trees from the air represents an important but poorly quantified pathway in the global mercury cycle. We determined mercury uptake fluxes by leaves and needles at 10 European forests which were 4 times larger than mercury deposition via rainfall. The amount of mercury taken up by leaves and needles depends on their age and growing height on the tree. Scaling up our measurements to the forest area of Europe, we estimate that each year 20 t of mercury is taken up by trees.
A. Anthony Bloom, Kevin W. Bowman, Junjie Liu, Alexandra G. Konings, John R. Worden, Nicholas C. Parazoo, Victoria Meyer, John T. Reager, Helen M. Worden, Zhe Jiang, Gregory R. Quetin, T. Luke Smallman, Jean-François Exbrayat, Yi Yin, Sassan S. Saatchi, Mathew Williams, and David S. Schimel
Biogeosciences, 17, 6393–6422, https://doi.org/10.5194/bg-17-6393-2020, https://doi.org/10.5194/bg-17-6393-2020, 2020
Short summary
Short summary
We use a model of the 2001–2015 tropical land carbon cycle, with satellite measurements of land and atmospheric carbon, to disentangle lagged and concurrent effects (due to past and concurrent meteorological events, respectively) on annual land–atmosphere carbon exchanges. The variability of lagged effects explains most 2001–2015 inter-annual carbon flux variations. We conclude that concurrent and lagged effects need to be accurately resolved to better predict the world's land carbon sink.
Erqian Cui, Chenyu Bian, Yiqi Luo, Shuli Niu, Yingping Wang, and Jianyang Xia
Biogeosciences, 17, 6237–6246, https://doi.org/10.5194/bg-17-6237-2020, https://doi.org/10.5194/bg-17-6237-2020, 2020
Short summary
Short summary
Mean annual net ecosystem productivity (NEP) is related to the magnitude of the carbon sink of a specific ecosystem, while its inter-annual variation (IAVNEP) characterizes the stability of such a carbon sink. Thus, a better understanding of the co-varying NEP and IAVNEP is critical for locating the major and stable carbon sinks on land. Based on daily NEP observations from eddy-covariance sites, we found local indicators for the spatially varying NEP and IAVNEP, respectively.
Bernice C. Hwang and Daniel B. Metcalfe
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-397, https://doi.org/10.5194/bg-2020-397, 2020
Revised manuscript accepted for BG
Short summary
Short summary
Despite growing recognition of herbivores as important ecosystem engineers, many major gaps remain in our understanding of how silicon and herbivory interact to shape biogeochemical processes. We highlight the need for more research particularly in natural settings as well as on the potential effects of herbivory on terrestrial silicon cycling to understand potentially critical animal-plant-soil feedbacks.
Taraka Davies-Barnard, Johannes Meyerholt, Sönke Zaehle, Pierre Friedlingstein, Victor Brovkin, Yuanchao Fan, Rosie A. Fisher, Chris D. Jones, Hanna Lee, Daniele Peano, Benjamin Smith, David Wårlind, and Andy J. Wiltshire
Biogeosciences, 17, 5129–5148, https://doi.org/10.5194/bg-17-5129-2020, https://doi.org/10.5194/bg-17-5129-2020, 2020
Rui Cheng, Troy S. Magney, Debsunder Dutta, David R. Bowling, Barry A. Logan, Sean P. Burns, Peter D. Blanken, Katja Grossmann, Sophia Lopez, Andrew D. Richardson, Jochen Stutz, and Christian Frankenberg
Biogeosciences, 17, 4523–4544, https://doi.org/10.5194/bg-17-4523-2020, https://doi.org/10.5194/bg-17-4523-2020, 2020
Short summary
Short summary
We measured reflected sunlight from an evergreen canopy for a year to detect changes in pigments that play an important role in regulating the seasonality of photosynthesis. Results show a strong mechanistic link between spectral reflectance features and pigment content, which is validated using a biophysical model. Our results show spectrally where, why, and when spectral features change over the course of the season and show promise for estimating photosynthesis remotely.
Matthias Volk, Matthias Suter, Anne-Lena Wahl, and Seraina Bassin
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-322, https://doi.org/10.5194/bg-2020-322, 2020
Revised manuscript accepted for BG
Short summary
Short summary
In a multi-year field study alpine grassland growth increased with 1.3 °C warming. Even at the maximum warming of 2.4 °C the yield was larger than at the reference site. At the same time −1.7 °C cooling did not reduce growth. Thus, alpine grassland growth has likely not increased during the past century, but, despite growing soil moisture deficits, will do so with continued warming in the near future. Ecosystem services (eg. fodder production, erosion control) will benefit from moderate warming.
Lina Teckentrup, Martin G. De Kauwe, Andrew J. Pitman, and Benjamin Smith
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-299, https://doi.org/10.5194/bg-2020-299, 2020
Revised manuscript accepted for BG
Short summary
Short summary
The El Niño‐Southern Oscillation (ENSO) describes changes in the sea surface temperature patterns of the Pacific Ocean. This influences the global weather, impacting vegetation on land. There are two types of El Niño: Central–Pacific (CP) and Eastern–Pacific (EP). In this study, we explored the long-term impacts on the carbon balance on land linked to the two El Niño types. Using a dynamic vegetation model, we simulated what would happen if only either CP or EP El Niño events had occurred.
Jarmo Mäkelä, Francesco Minunno, Tuula Aalto, Annikki Mäkelä, Tiina Markkanen, and Mikko Peltoniemi
Biogeosciences, 17, 2681–2700, https://doi.org/10.5194/bg-17-2681-2020, https://doi.org/10.5194/bg-17-2681-2020, 2020
Short summary
Short summary
We assess the relative magnitude of uncertainty sources on ecosystem indicators of the 21st century climate change on two boreal forest sites. In addition to RCP and climate model uncertainties, we included the overlooked model parameter uncertainty and management actions in our analysis. Management was the dominant uncertainty factor for the more verdant southern site, followed by RCP, climate and parameter uncertainties. The uncertainties were estimated with canonical correlation analysis.
Guido Kraemer, Gustau Camps-Valls, Markus Reichstein, and Miguel D. Mahecha
Biogeosciences, 17, 2397–2424, https://doi.org/10.5194/bg-17-2397-2020, https://doi.org/10.5194/bg-17-2397-2020, 2020
Short summary
Short summary
To closely monitor the state of our planet, we require systems that can monitor
the observation of many different properties at the same time. We create
indicators that resemble the behavior of many different simultaneous
observations. We apply the method to create indicators representing the
Earth's biosphere. The indicators show a productivity gradient and a water
gradient. The resulting indicators can detect a large number of changes and
extremes in the Earth system.
Barbara Marcolla, Mirco Migliavacca, Christian Rödenbeck, and Alessandro Cescatti
Biogeosciences, 17, 2365–2379, https://doi.org/10.5194/bg-17-2365-2020, https://doi.org/10.5194/bg-17-2365-2020, 2020
Short summary
Short summary
This work investigates the sensitivity of terrestrial CO2 fluxes to climate drivers. We observed that CO2 flux is mostly controlled by temperature during the growing season and by radiation off season. We also observe that radiation importance is increasing over time while sensitivity to temperature is decreasing in Eurasia. Ultimately this analysis shows that ecosystem response to climate is changing, with potential repercussions for future terrestrial sink and land role in climate mitigation.
Stephanie C. Pennington, Nate G. McDowell, J. Patrick Megonigal, James C. Stegen, and Ben Bond-Lamberty
Biogeosciences, 17, 771–780, https://doi.org/10.5194/bg-17-771-2020, https://doi.org/10.5194/bg-17-771-2020, 2020
Short summary
Short summary
Soil respiration (Rs) is the flow of CO2 from the soil surface to the atmosphere and is one of the largest carbon fluxes on land. This study examined the effect of local basal area (tree area) on Rs in a coastal forest in eastern Maryland, USA. Rs measurements were taken as well as distance from soil collar, diameter, and species of each tree within a 15 m radius. We found that trees within 5 m of our sampling points had a positive effect on how sensitive soil respiration was to temperature.
Keri L. Bowering, Kate A. Edwards, Karen Prestegaard, Xinbiao Zhu, and Susan E. Ziegler
Biogeosciences, 17, 581–595, https://doi.org/10.5194/bg-17-581-2020, https://doi.org/10.5194/bg-17-581-2020, 2020
Short summary
Short summary
We examined the effects of season and tree harvesting on the flow of water and the organic carbon (OC) it carries from boreal forest soils. We found that more OC was lost from the harvested forest because more precipitation reached the soil surface but that during periods of flushing in autumn and snowmelt a limit on the amount of water-extractable OC is reached. These results contribute to an increased understanding of carbon loss from boreal forest soils.
Jason Philip Kaye, Susan L. Brantley, Jennifer Zan Williams, and the SSHCZO team
Biogeosciences, 16, 4661–4669, https://doi.org/10.5194/bg-16-4661-2019, https://doi.org/10.5194/bg-16-4661-2019, 2019
Short summary
Short summary
Interdisciplinary teams can only capitalize on innovative ideas if members work well together through collegial and efficient use of field sites, instrumentation, samples, data, and model code. Thus, biogeoscience teams may benefit from developing a set of best practices for collaboration. We present one such example from a the Susquehanna Shale Hills critical zone observatory. Many of the themes from our example are universal, and they offer insights useful to other biogeoscience teams.
Anne Alexandre, Elizabeth Webb, Amaelle Landais, Clément Piel, Sébastien Devidal, Corinne Sonzogni, Martine Couapel, Jean-Charles Mazur, Monique Pierre, Frédéric Prié, Christine Vallet-Coulomb, Clément Outrequin, and Jacques Roy
Biogeosciences, 16, 4613–4625, https://doi.org/10.5194/bg-16-4613-2019, https://doi.org/10.5194/bg-16-4613-2019, 2019
Short summary
Short summary
This calibration study shows that despite isotope heterogeneity along grass leaves, the triple oxygen isotope composition of bulk leaf phytoliths can be estimated from the Craig and Gordon model, a mixing equation and a mean leaf water–phytolith fractionation exponent (lambda) of 0.521. The results strengthen the reliability of the 17O–excess of phytoliths to be used as a proxy of atmospheric relative humidity and open tracks for its use as an imprint of leaf water 17O–excess.
Lina Teckentrup, Sandy P. Harrison, Stijn Hantson, Angelika Heil, Joe R. Melton, Matthew Forrest, Fang Li, Chao Yue, Almut Arneth, Thomas Hickler, Stephen Sitch, and Gitta Lasslop
Biogeosciences, 16, 3883–3910, https://doi.org/10.5194/bg-16-3883-2019, https://doi.org/10.5194/bg-16-3883-2019, 2019
Short summary
Short summary
This study compares simulated burned area of seven global vegetation models provided by the Fire Model Intercomparison Project (FireMIP) since 1900. We investigate the influence of five forcing factors: atmospheric CO2, population density, land–use change, lightning and climate.
We find that the anthropogenic factors lead to the largest spread between models. Trends due to climate are mostly not significant but climate strongly influences the inter-annual variability of burned area.
Marcos A. S. Scaranello, Michael Keller, Marcos Longo, Maiza N. dos-Santos, Veronika Leitold, Douglas C. Morton, Ekena R. Pinagé, and Fernando Del Bon Espírito-Santo
Biogeosciences, 16, 3457–3474, https://doi.org/10.5194/bg-16-3457-2019, https://doi.org/10.5194/bg-16-3457-2019, 2019
Short summary
Short summary
The coarse dead wood component of the tropical forest carbon pool is rarely measured. For the first time, we developed models for predicting coarse dead wood in Amazonian forests by using airborne laser scanning data. Our models produced site-based estimates similar to independent field estimates found in the literature. Our study provides an approach for estimating coarse dead wood pools from remotely sensed data and mapping those pools over large scales in intact and degraded forests.
James Brennan, Jose L. Gómez-Dans, Mathias Disney, and Philip Lewis
Biogeosciences, 16, 3147–3164, https://doi.org/10.5194/bg-16-3147-2019, https://doi.org/10.5194/bg-16-3147-2019, 2019
Short summary
Short summary
We estimate the uncertainties associated with three global satellite-derived burned area estimates. The method provides unique uncertainties for the three estimates at the global scale for 2001–2013. We find uncertainties of 4 %–5.5 % in global burned area and uncertainties of 8 %–10 % in the frequently burning regions of Africa and Australia.
Alexander J. Norton, Peter J. Rayner, Ernest N. Koffi, Marko Scholze, Jeremy D. Silver, and Ying-Ping Wang
Biogeosciences, 16, 3069–3093, https://doi.org/10.5194/bg-16-3069-2019, https://doi.org/10.5194/bg-16-3069-2019, 2019
Short summary
Short summary
This study presents an estimate of global terrestrial photosynthesis. We make use of satellite chlorophyll fluorescence measurements, a visible indicator of photosynthesis, to optimize model parameters and estimate photosynthetic carbon uptake. This new framework incorporates nonlinear, process-based understanding of the link between fluorescence and photosynthesis, an advance on past approaches. This will aid in the utility of fluorescence to quantify terrestrial carbon cycle feedbacks.
Sophie V. J. van der Horst, Andrew J. Pitman, Martin G. De Kauwe, Anna Ukkola, Gab Abramowitz, and Peter Isaac
Biogeosciences, 16, 1829–1844, https://doi.org/10.5194/bg-16-1829-2019, https://doi.org/10.5194/bg-16-1829-2019, 2019
Short summary
Short summary
Measurements of surface fluxes are taken around the world and are extremely valuable for understanding how the land and atmopshere interact, and how the land can amplify temerature extremes. However, do these measurements sample extreme temperatures, or are they biased to the average? We examine this question and highlight data that do measure surface fluxes under extreme conditions. This provides a way forward to help model developers improve their models.
Friederike Gerschlauer, Gustavo Saiz, David Schellenberger Costa, Michael Kleyer, Michael Dannenmann, and Ralf Kiese
Biogeosciences, 16, 409–424, https://doi.org/10.5194/bg-16-409-2019, https://doi.org/10.5194/bg-16-409-2019, 2019
Short summary
Short summary
Mount Kilimanjaro is an iconic environmental asset under serious threat due to increasing human pressures and climate change constraints. We studied variations in the stable isotopic composition of carbon and nitrogen in plant, litter, and soil material sampled along a strong land-use and altitudinal gradient. Our results show that, besides management, increasing temperatures in a changing climate may promote carbon and nitrogen losses, thus altering the stability of Kilimanjaro ecosystems.
Boaz Hilman, Jan Muhr, Susan E. Trumbore, Norbert Kunert, Mariah S. Carbone, Päivi Yuval, S. Joseph Wright, Gerardo Moreno, Oscar Pérez-Priego, Mirco Migliavacca, Arnaud Carrara, José M. Grünzweig, Yagil Osem, Tal Weiner, and Alon Angert
Biogeosciences, 16, 177–191, https://doi.org/10.5194/bg-16-177-2019, https://doi.org/10.5194/bg-16-177-2019, 2019
Short summary
Short summary
Combined measurement of CO2 / O2 fluxes in tree stems suggested that on average 41 % of the respired CO2 was not emitted locally to the atmosphere. This finding strengthens the recognition that CO2 efflux from tree stems is not an accurate measure of respiration. The CO2 / O2 fluxes did not vary as expected if CO2 dissolution in the xylem sap was the main driver for the CO2 retention. We suggest the examination of refixation of respired CO2 as a possible mechanism for CO2 retention.
Gitta Lasslop, Thomas Moeller, Donatella D'Onofrio, Stijn Hantson, and Silvia Kloster
Biogeosciences, 15, 5969–5989, https://doi.org/10.5194/bg-15-5969-2018, https://doi.org/10.5194/bg-15-5969-2018, 2018
Short summary
Short summary
We apply a multivariate model evaluation to the relationship between climate, vegetation and fire in the tropics using the JSBACH land surface model and two remote-sensing data sets, with the aim to identify the potential for model improvement. The overestimation of tree cover for low precipitation and a very strong relationship between tree cover and burned area indicates opportunities in the improvement of drought effects and the impact of fire on tree cover or the adaptation of trees to fire.
Yao Zhang, Joanna Joiner, Seyed Hamed Alemohammad, Sha Zhou, and Pierre Gentine
Biogeosciences, 15, 5779–5800, https://doi.org/10.5194/bg-15-5779-2018, https://doi.org/10.5194/bg-15-5779-2018, 2018
Short summary
Short summary
Using satellite reflectance measurements and a machine learning algorithm, we generated a new solar-induced chlorophyll fluorescence (SIF) dataset that is closely linked to plant photosynthesis. This new dataset has higher spatial and temporal resolutions, and lower uncertainty compared to the existing satellite retrievals. We also demonstrated its application in monitoring drought and improving the understanding of the SIF–photosynthesis relationship.
Chris Huntingford, Rebecca J. Oliver, Lina M. Mercado, and Stephen Sitch
Biogeosciences, 15, 5415–5422, https://doi.org/10.5194/bg-15-5415-2018, https://doi.org/10.5194/bg-15-5415-2018, 2018
Short summary
Short summary
Raised ozone levels impact plant stomatal opening and thus photosynthesis. Most models describe this as a suppression of stomata opening. Field evidence suggests more complexity, as ozone damage may make stomatal response
sluggish. In some circumstances, this causes stomata to be more open – a concern during drought conditions – by increasing transpiration. To guide interpretation and modelling of field measurements, we present an equation for sluggish effects, via a single tau parameter.
Jacob A. Nelson, Nuno Carvalhais, Mirco Migliavacca, Markus Reichstein, and Martin Jung
Biogeosciences, 15, 2433–2447, https://doi.org/10.5194/bg-15-2433-2018, https://doi.org/10.5194/bg-15-2433-2018, 2018
Short summary
Short summary
Plants have typical daily carbon uptake and water loss cycles. However, these cycles may change under periods of duress, such as water limitation. Here we identify two types of patterns in response to water limitations: a tendency to lose more water in the morning than afternoon and a decoupling of the carbon and water cycles. The findings show differences in responses by trees and grasses and suggest that morning shifts may be more efficient at gaining carbon per unit water used.
Wenqiang Zhao, Peter B. Reich, Qiannan Yu, Ning Zhao, Chunying Yin, Chunzhang Zhao, Dandan Li, Jun Hu, Ting Li, Huajun Yin, and Qing Liu
Biogeosciences, 15, 2033–2053, https://doi.org/10.5194/bg-15-2033-2018, https://doi.org/10.5194/bg-15-2033-2018, 2018
Short summary
Short summary
We found larger shrub leaf C, C : N and lower leaf N, N : P levels compared to other terrestrial ecosystems. Alpine shrubs exhibited the greatest leaf C at low temperatures, whereas the largest leaf N and P occurred in valley deciduous shrubs. The large heterogeneity in nutrient uptake and physiological adaptation of shrub types to environments explained the largest fraction of leaf C : N : P variations, while climate indirectly affected leaf C : N : P via its interactive effects on shrub type or soil.
Peter Levy, Marcel van Oijen, Gwen Buys, and Sam Tomlinson
Biogeosciences, 15, 1497–1513, https://doi.org/10.5194/bg-15-1497-2018, https://doi.org/10.5194/bg-15-1497-2018, 2018
Short summary
Short summary
We present a new method for estimating land-use change using a Bayesian data assimilation approach. This allows us to constrain estimates of gross land-use change with reliable national-scale census data whilst retaining the information available from several other sources. This includes detailed spatial data; further data sources, such as new satellites, could easily be added in future. Uncertainty is propagated appropriately into the output.
Chao Yue, Philippe Ciais, and Wei Li
Biogeosciences, 15, 1185–1201, https://doi.org/10.5194/bg-15-1185-2018, https://doi.org/10.5194/bg-15-1185-2018, 2018
Short summary
Short summary
Gross land use change such as shifting cultivation causes carbon emissions because carbon release in cleared forests is larger than absorption in regrowing ones. However, to appropriately account for this process, vegetation models have to represent sub-grid secondary forest dynamics. We found that gross land use emissions can be overestimated if sub-grid secondary forests are neglected in the model. Conversely, rotation lengths of shifting cultivation have a critical role.
Chongjuan Chen, Yufu Jia, Yuzhen Chen, Imran Mehmood, Yunting Fang, and Guoan Wang
Biogeosciences, 15, 369–377, https://doi.org/10.5194/bg-15-369-2018, https://doi.org/10.5194/bg-15-369-2018, 2018
Short summary
Short summary
The south slope of Tian Shan differs from the north slope in environment. The study showed that leaf δ15N, soil δ15N and △δ15Nleaf-soil on the south slope were greater than those on the north slope. The significant influential factors of leaf and soil δ15N on the south slope were different from those on the north slope. The results suggested that the south slope has higher soil N transformation rates than the north slope and relationships between leaf and soil δ15N and environment are localized.
Wei Li, Philippe Ciais, Shushi Peng, Chao Yue, Yilong Wang, Martin Thurner, Sassan S. Saatchi, Almut Arneth, Valerio Avitabile, Nuno Carvalhais, Anna B. Harper, Etsushi Kato, Charles Koven, Yi Y. Liu, Julia E.M.S. Nabel, Yude Pan, Julia Pongratz, Benjamin Poulter, Thomas A. M. Pugh, Maurizio Santoro, Stephen Sitch, Benjamin D. Stocker, Nicolas Viovy, Andy Wiltshire, Rasoul Yousefpour, and Sönke Zaehle
Biogeosciences, 14, 5053–5067, https://doi.org/10.5194/bg-14-5053-2017, https://doi.org/10.5194/bg-14-5053-2017, 2017
Short summary
Short summary
We used several observation-based biomass datasets to constrain the historical land-use change carbon emissions simulated by models. Compared to the range of the original modeled emissions (from 94 to 273 Pg C), the observationally constrained global cumulative emission estimate is 155 ± 50 Pg C (1σ Gaussian error) from 1901 to 2012. Our approach can also be applied to evaluate the LULCC impact of land-based climate mitigation policies.
Lukas Baumbach, Jonatan F. Siegmund, Magdalena Mittermeier, and Reik V. Donner
Biogeosciences, 14, 4891–4903, https://doi.org/10.5194/bg-14-4891-2017, https://doi.org/10.5194/bg-14-4891-2017, 2017
Short summary
Short summary
Temperature extremes play a crucial role for vegetation growth and vitality in vast parts of the European continent. Here, we study the likelihood of simultaneous occurrences of extremes in daytime land surface temperatures and the normalized difference vegetation index (NDVI) for three main periods during the growing season. Our results reveal a particularly high vulnerability of croplands to temperature extremes, while other vegetation types are considerably less affected.
Rudra K. Shrestha, Vivek K. Arora, Joe R. Melton, and Laxmi Sushama
Biogeosciences, 14, 4733–4753, https://doi.org/10.5194/bg-14-4733-2017, https://doi.org/10.5194/bg-14-4733-2017, 2017
Short summary
Short summary
Computer models of vegetation provide a tool to assess how future changes in climate may the affect geographical distribution of vegetation. However, such models must first be assessed for their ability to reproduce the present-day geographical distribution of vegetation. Here, we assess the ability of one such dynamic vegetation model. We find that while the model is broadly successful in reproducing the geographical distribution of trees and grasses in North America some limitations remain.
Elizabeth E. Webb, Kathryn Heard, Susan M. Natali, Andrew G. Bunn, Heather D. Alexander, Logan T. Berner, Alexander Kholodov, Michael M. Loranty, John D. Schade, Valentin Spektor, and Nikita Zimov
Biogeosciences, 14, 4279–4294, https://doi.org/10.5194/bg-14-4279-2017, https://doi.org/10.5194/bg-14-4279-2017, 2017
Short summary
Short summary
Permafrost soils store massive amounts of C, yet estimates of soil C storage in this region are highly uncertain, primarily due to undersampling at all spatial scales; circumpolar soil C estimates lack sufficient continental spatial diversity, regional intensity, and replication at the field-site level. We aim to reduce the uncertainty of regional C estimates by providing a comprehensive assessment of vegetation, active-layer, and permafrost C stocks in a watershed in northeast Siberia, Russia.
Thierry Fanin and Guido R. van der Werf
Biogeosciences, 14, 3995–4008, https://doi.org/10.5194/bg-14-3995-2017, https://doi.org/10.5194/bg-14-3995-2017, 2017
Short summary
Short summary
Using night fire detection and rainfall datasets during 1997–2015, we found that the number of night fires detected in 1997 was 2.2 times higher than in 2015, but with a higher fraction of peatland burned in 2015. We also confirmed the non-linearity of rainfall accumulation prior to a fire to indicate a high fire year. The influence of rainfall on the number of yearly fires varies across Indonesia. Southern Sumatra and Kalimantan need 120 days of observations, while northern Sumatra only 30.
Tara W. Hudiburg, Philip E. Higuera, and Jeffrey A. Hicke
Biogeosciences, 14, 3873–3882, https://doi.org/10.5194/bg-14-3873-2017, https://doi.org/10.5194/bg-14-3873-2017, 2017
Short summary
Short summary
Wildfire is a dominant disturbance agent in forest ecosystems, shaping important processes including net carbon (C) balance. Our results imply that fire-regime variability is a major driver of C trajectories in stand-replacing fire regimes. Predicting carbon balance in these systems, therefore, will depend strongly on the ability of ecosystem models to represent a realistic range of fire-regime variability over the past several centuries to millennia.
Dolors Armenteras, Joan Sebastian Barreto, Karyn Tabor, Roberto Molowny-Horas, and Javier Retana
Biogeosciences, 14, 2755–2765, https://doi.org/10.5194/bg-14-2755-2017, https://doi.org/10.5194/bg-14-2755-2017, 2017
Short summary
Short summary
Tropical forests are highly threatened by the expansion of the agricultural frontier, use of fire and subsequent deforestation. NW Amazonia is the wettest part of the basin and the role of fire is still largely unknown in this subregion. In this study, we compared fire regimes in five countries sharing this tropical biome (Venezuela, Colombia, Ecuador, Peru and Brazil). We studied fire activity in relation to proximity to roads and rivers and how fire occurs in relation to forest fragmentation.
Thomas Kaminski and Pierre-Philippe Mathieu
Biogeosciences, 14, 2343–2357, https://doi.org/10.5194/bg-14-2343-2017, https://doi.org/10.5194/bg-14-2343-2017, 2017
Short summary
Short summary
This paper provides the formalism and examples of how observation operators can be used, in combination with data assimilation or retrieval techniques, to better ingest satellite products in a manner consistent with the dynamics of the Earth system expressed by models.
Per-Ola Olsson, Michal Heliasz, Hongxiao Jin, and Lars Eklundh
Biogeosciences, 14, 1703–1719, https://doi.org/10.5194/bg-14-1703-2017, https://doi.org/10.5194/bg-14-1703-2017, 2017
Jason Beringer, Ian McHugh, Lindsay B. Hutley, Peter Isaac, and Natascha Kljun
Biogeosciences, 14, 1457–1460, https://doi.org/10.5194/bg-14-1457-2017, https://doi.org/10.5194/bg-14-1457-2017, 2017
Short summary
Short summary
Standardised, quality-controlled and robust data from flux networks underpin the understanding of ecosystem processes and tools to manage our natural resources. The Dynamic INtegrated Gap-filling and partitioning for OzFlux (DINGO) system enables gap-filling and partitioning of fluxes and subsequently provides diagnostics and results. Quality data from robust systems like DINGO ensure the utility and uptake of flux data and facilitates synergies between flux, remote sensing and modelling.
Tobias Rütting
Biogeosciences, 14, 751–754, https://doi.org/10.5194/bg-14-751-2017, https://doi.org/10.5194/bg-14-751-2017, 2017
Short summary
Short summary
The response of ecosystems to elevated atmospheric CO2 is affected by nitrogen (N) availability. It has been hypothesized that N limitation becomes progressively stronger (progressive N limitation, PNL). Most long-term free air CO2 enrichment studies did not see a PNL. This paper shows that enhanced biological N2 fixation only prevents PNL in plant communities with symbiotic N2 fixation. In most ecosystems a stimulation of gross N mineralization prevents the development of a PNL.
Yiqi Luo, Zheng Shi, Xingjie Lu, Jianyang Xia, Junyi Liang, Jiang Jiang, Ying Wang, Matthew J. Smith, Lifen Jiang, Anders Ahlström, Benito Chen, Oleksandra Hararuk, Alan Hastings, Forrest Hoffman, Belinda Medlyn, Shuli Niu, Martin Rasmussen, Katherine Todd-Brown, and Ying-Ping Wang
Biogeosciences, 14, 145–161, https://doi.org/10.5194/bg-14-145-2017, https://doi.org/10.5194/bg-14-145-2017, 2017
Short summary
Short summary
Climate change is strongly regulated by land carbon cycle. However, we lack the ability to predict future land carbon sequestration. Here, we develop a novel framework for understanding what determines the direction and rate of future change in land carbon storage. The framework offers a suite of new approaches to revolutionize land carbon model evaluation and improvement.
Martina Franz, David Simpson, Almut Arneth, and Sönke Zaehle
Biogeosciences, 14, 45–71, https://doi.org/10.5194/bg-14-45-2017, https://doi.org/10.5194/bg-14-45-2017, 2017
Short summary
Short summary
Ozone is a toxic air pollutant that can damage plant leaves and impact their carbon uptake from the atmosphere. We extend a terrestrial biosphere model to account for ozone damage of plants and investigate the impact on the terrestrial carbon cycle. Our approach accounts for ozone transport from the free troposphere to leaf level. We find that this substantially affects simulated ozone uptake into the plants. Simulations indicate that ozone damages plants less than expected from previous studies
Xian Yang, Xiulian Chi, Chengjun Ji, Hongyan Liu, Wenhong Ma, Anwar Mohhammat, Zhaoyong Shi, Xiangping Wang, Shunli Yu, Ming Yue, and Zhiyao Tang
Biogeosciences, 13, 4429–4438, https://doi.org/10.5194/bg-13-4429-2016, https://doi.org/10.5194/bg-13-4429-2016, 2016
Short summary
Short summary
Leaf chemical concentrations are key traits in ecosystem functioning. Previous studies were biased for trees and grasses. Here, we explored the patterns of leaf N and P concentrations in relation to climate, soil, and evolutionary history in northern China. We found that climate influenced the community chemical traits through the shift in species composition, whereas soil directly influenced the community chemical traits.
Wenjuan Zhu, Wenhua Xiang, Qiong Pan, Yelin Zeng, Shuai Ouyang, Pifeng Lei, Xiangwen Deng, Xi Fang, and Changhui Peng
Biogeosciences, 13, 3819–3831, https://doi.org/10.5194/bg-13-3819-2016, https://doi.org/10.5194/bg-13-3819-2016, 2016
Short summary
Short summary
We used hemispherical photography to measure LAI values in three subtropical forests from April 2014 to January 2015. Spatial heterogeneity of LAI and its controlling factors were analysed using geostatistical methods and the generalised additive models (GAMs), respectively. Our results showed that LAI values differed greatly in three forests and their seasonal variations were consistent with plant phenology. Stand characters significantly affected the spatial variations in LAI values.
Niels Andela, Guido R. van der Werf, Johannes W. Kaiser, Thijs T. van Leeuwen, Martin J. Wooster, and Caroline E. R. Lehmann
Biogeosciences, 13, 3717–3734, https://doi.org/10.5194/bg-13-3717-2016, https://doi.org/10.5194/bg-13-3717-2016, 2016
Short summary
Short summary
Landscape fires occur on a large scale in savannas and grasslands, affecting ecosystems and air quality. We combined two satellite-derived datasets to derive fuel consumption per unit of area burned for savannas and grasslands in the (sub)tropics. Fire return periods, vegetation productivity, vegetation type and human land management were all important drivers of its spatial distribution. The results can be used to improve fire emission modelling and management or to detect ecosystem degradation.
Stijn Hantson, Almut Arneth, Sandy P. Harrison, Douglas I. Kelley, I. Colin Prentice, Sam S. Rabin, Sally Archibald, Florent Mouillot, Steve R. Arnold, Paulo Artaxo, Dominique Bachelet, Philippe Ciais, Matthew Forrest, Pierre Friedlingstein, Thomas Hickler, Jed O. Kaplan, Silvia Kloster, Wolfgang Knorr, Gitta Lasslop, Fang Li, Stephane Mangeon, Joe R. Melton, Andrea Meyn, Stephen Sitch, Allan Spessa, Guido R. van der Werf, Apostolos Voulgarakis, and Chao Yue
Biogeosciences, 13, 3359–3375, https://doi.org/10.5194/bg-13-3359-2016, https://doi.org/10.5194/bg-13-3359-2016, 2016
Short summary
Short summary
Our ability to predict the magnitude and geographic pattern of past and future fire impacts rests on our ability to model fire regimes. A large variety of models exist, and it is unclear which type of model or degree of complexity is required to model fire adequately at regional to global scales. In this paper we summarize the current state of the art in fire-regime modelling and model evaluation, and outline what lessons may be learned from the Fire Model Intercomparison Project – FireMIP.
Lorenzo Menichetti, Thomas Kätterer, and Jens Leifeld
Biogeosciences, 13, 3003–3019, https://doi.org/10.5194/bg-13-3003-2016, https://doi.org/10.5194/bg-13-3003-2016, 2016
Short summary
Short summary
Soil organic carbon dynamics are crucial for the global greenhouse gas balance, but their complexity is difficult to model and understand. We therefore often rely on radiocarbon measurements for calibrating models, but their effect on our understanding of the processes is still unclear. We calibrated five model structures on data from a long-term Swiss field experiment in a Bayesian framework to assess the effect of radiocarbon on the parameter and structural uncertainty of a soil carbon model.
Cited articles
Amiro, B. D. and Chen, J. M.: Forest-fire-scar dating using SPOT-VEGETATION for Canadian ecoregions, Can. J. Forest Res., 33, 1116–1125, 2003.
Amiro, B. D., Todd, J. B., Wotton, B. M., Logan, K. A., Flannigan, M. D., Stocks, B. J., Mason, J. A., Martell, D. L., and Hirsch, K. G.: Direct carbon emissions from Canadian forest fires, 1959–1999. Can. J. For. Res. 31, 512–525, 2001.
Barford, C. C., Wofsy, S. C., Goulden, M. L., Munger, J. W., Pyle, E. H., Urbanski, S. P., Hutyra, L., Saleska, S. R., Fitzjarrald, D., and Moore, K.: Factors controlling long- and short-term sequestration of atmospheric CO2 in a mid-latitude forest, Science, 294, 1688–1691, 2001.
BC Ministry of Forests: Annual Report of the Ministry of Forests 2002/03, http://www.for.gov.bc.ca/mof/annualreports.htm, 2003.
Bechtold, W. A. and Patterson, P. L. (Eds.): The enhanced Forest Inventory and Analysis program-national sampling design and estimation procedures, Gen. Tech. Rep., SRS-80, Asheville, NC, US Department of Agriculture, Forest Service, Southern Research Station, p. 85, 2005.
Birdsey, R. A., Jenkins, J. C., Johnston, M., Huber-Sannwald, E., Amero, B., de Jong, B., Barra, J. D. E., French, N., Garcia-Oliva, F., Harmon, M., Heath, L. S., Jaramillo, V. J., Johnsen, K., Law, B. E., Marín-Spiotta, E., Masera, O., Neilson, R., Pan, Y., and Pregitzer, K. S.: North American Forests, in: The First State of the Carbon Cycle Report (SOCCR): The North American Carbon Budget and Implications for the Global Carbon Cycle. A Report by the US Climate Change Science Program and the Subcommittee on Global Change Research, edited by: King, A. W., Dilling, L., Zimmerman, G. P., Fairman, D. M., Houghton, R. A., Marland, G., Rose, A. Z., and Wilbanks, T. J.: National Oceanic and Atmospheric Administration, National Climatic Data Center, Asheville, NC, USA, 117–126, 2007.
Birdsey, R. A. and Heath, L. S.: Carbon changes in US forests, in: Productivity of America's Forests and Climate Change, edited by: Joyce, L. A., Gen. Tech. Rep. RM-271, Fort Collins, CO, US Department of Agriculture, Forest Service, Rocky Mtn. Forest and Range Exp. Station, 56–70, 1995.
Birdsey, R. A. and Lewis, G. M.: Current and historical trends in use, management, and disturbance of US forestlands, in: The potential of US forest soils to sequester carbon and mitigate the greenhouse effect, edited by: Kimble, J. M., Linda, H. S., and Birdsey, R. A., New York, CRC Press LLC, 15–33, 2003.
Birdsey, R. A. and Schreuder, H. T.: An overview of forest inventory and analysis estimation procedures in the Eastern United States – with an emphasis on the components of change, Gen. Tech Rep. RM-214, Fort Collins, CO, US Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station, p. 11, 1992.
Birdsey, R., Pregitzer, K., and Lucier, A.: Forest carbon management in the United States 1600–2100, J. Environ. Qual., 35, 1461–1469, 2006.
Bolsinger, C. L. and Waddell, K. L.: Area of old-growth forests in California, Oregon, and Washington, Resour. Bull. PNW-RB-197, Portland, OR, US Department of Agriculture, Forest Service, Pacific Northwest Research Station, p. 26, 1993.
Bradford, J. B., Birdsey, R. A., Joyce L. A., and Ryan, M. G.: Tree age, disturbance history, and carbon stocks and fluxes in subalpine Rocky Mountain forests, Glob. Change Biol., 14(12), 2882–2897, 2008.
Canadell, J. G., Pataki, D., Gifford, R., Houghton, R. A., Lou, Y., Raupach, M. R., Smith, P., and Steffen, W.: Saturation of the terrestrial carbon sink, in: Ecosystems in a Changing World, edited by: Canadell, J. G., Pataki, D., and Pitelka, L., The IGBP Series, Springer-Verlag, Berlin Heidelberg, 59–78, 2007a.
Canadell, J. G., Le Quéré, C., Raupach, M. R., Field, C. B., Buitehuis, E. T., Ciais, P., Conway, T. J., Houghton, R. A., and Marland, G.: Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks, PNAS, Proc. Nat. Aca. Sci., 104, 18866–18870, 2007b.
Chen, J. M. and Cihlar, J.: A hotspot function in a simple bidirectional reflectance model for satellite applications, J. Geophys. Res., 102, 25907–25913, 1997.
Chen, J. M., Ju, W., Cihlar, J., Price, D., Liu, J., Chen, W., Pan, J., Black, T. A., and Barr, A.: Spatial distribution of carbon sources and sinks in Canada's forests based on remote sensing, Tellus B, 55(2), 622–642, 2003.
Deng, F., Chen, J. M., Yuen, C.-W., Ishizawa, M., Mo, G., Higuchi, K., Chan, D., Chen, B., and Maksyutov, S.: Global monthly CO2 flux inversion with focus over North America, Tellus, 59B, 179–190, 2007.
Deng, F., Chen, J. M., Pan, Y., Peter W., Birdsey, R., McCullough, K., and Xiao, J.: Using forest stand-age to constrain an inverse North American carbon flux estimate, Global Biogeochem. Cy., submitted, 2011.
Donnegan, J. A., Veblen, T. T., and Sibold, J. S.: Climatic and human influences on fire history in Pike National Forest, Central Colorado, Can. J. For. Res., 31, 1526–1539, 2001.
Fedkiw, J.: The evolving use and management of the nation's forests, grasslands, croplands, and related resources, USDA Forest Service, Gen. Tech. Rep. RM-175, Ft. Collins, CO, p. 66, 1989.
Food and Agriculture Organization (FAO): Global forest Resources Assessment, Rome, Italy, p. 320, 2005.
Gallant, A. L., Hansen, A. J., Councilman, J. S., Monte, D. K., and Betz, D. W.: Vegetation dynamics under fire exclusion and logging in a Rocky Mountain watershed, 1856–1996, Ecol. Appl., 13(2), 385–403, 2003.
Greeley, W. B.: Timber depletion, lumber prices, lumber exports, and concentration of timber ownership, US Department of Agriculture, Forest Service, Report on Senate Resolution, 311, p. 39, 1920.
He, L., Chen, J. M., Zhang, S, Gomez, G., Pan, Y., McCullough, K., and Birdsey, R.: Normalized Algorithm for Mapping and Dating Forest Disturbances and Regrowth for the United States, Journal of Applied Earth Obsevation and Geoinformation, in press, 2011.
Hollinger, D. Y., Aber, J., Dail, B., Davidson, S. M., Goltz, H., and Hughes, H.: Spatial and temporal variability in forest-atmosphere CO2 exchange, Glob. Change Biol., 10, 1689–1706, 2004.
Keeling, E. G., Sala, A., and DeLuca, T. H.: Effects of fire exclusion on forest structure and composition in unlogged ponderosa pine/Douglas-fir forests, Forest Ecol. Manag., 237, 418–428, 2006.
Kurz, W. A. and Apps, M. J.: An analysis of future carbon budgets of Canadian boreal forests, Water Air Soil Poll., 82, 321–331, 1995.
Kurz, W. A. and Apps, M. J.: A 70-year retrospective analysis of carbon fluxes in the Canadian forest sector, Ecol. Appl., 9, 526–547, 1999.
Kurz, W. A., Stinson, G., Rampley, G. J., Dymond, C. C., Neilson, E. T.: Risk of natural disturbances makes future contribution of canada's forests to the global carbon cycle highly uncertain, Proc. Nat. Aca. Sci., 105(5), 1551–1555, 2008a.
Kurz, W. A., Dymond, C. C., Stinson, G., Rampley, G. J., Neilson, E. T., Carroll, A. L., Ebata, T., and Safranyik, L.: Mountain pine beetle and forest carbon feedback to climate change, Nature, 452(24), 987–990, 2008b.
Larson, R. W.: South Carolina's timber, Forest Survey Release 55, USDA Forest Service, Southeastern Forest Experiment Station, Asheville, NC, 1960.
Law, B. E., Sun, O. J., Campbell, J., Vantuyl, S., and Thornton, P. E.: Changes in carbon storage and fluxes in a chronosequence of ponderosa pine, Glob. Change Biol., 9, 510–524, 2003.
Le Quéré, C., Raupach, M. R., Canadell, J. G., Marland, G., Bopp, L., Ciais, P., Conway, T. J., Doney, S. C., Feely, R. A., Foster, P., Friedlingstein, P., Gurney, K., Houghton, R. A., House, J. I., Huntingford, C., Levy, P. E., Lomas, M. R., Majkut, J., Metzl, N., Ometto, J. P., Peters, G. P., Prentice, I. C., Randerson, J. T., Running, S. W., Sarmiento, J. L., Schuster, U., Sitch, S., Takahashi, T., Viovy, N., van der Werf, G. R., and Woodward, F. I.: Trends in the sources and sinks of carbon dioxide, Nat. Geosci., 2, 831–836, 2009.
Lowe, J. J., Power, K., and Gray, S. L.: Canada's forest inventory 1991: the 1994 version-technical supplement, Canada Forest Service, Information Report BC-X-362E, 1996.
Luyssaert, S., Schulze, E.-D., Börner, A., Knohl,A., Hessenmöller, D., Law, B. E., Ciais, P., and Grace, J.: Old-growth forests as global carbon sinks, Nature, 455, 213–215, 2008.
MacCleery, D. W.: American forests – a history of resiliency and recovery, FS-540, USDA Forest Service, Washington, DC, p. 58, 1992.
Masek, J. G., Huang, C., Wolfe, R., Cohen, W., Hall, F., Kutler, J., and Nelson, P.: North American forest disturbance mapped from a decadal Landsat record, Remote Sens. Environ., 112, 2914–2926, 2008.
Nabuurs, G. J., Masera, O., Andrasko, K., Benitez-Ponce, P., Boer, R., Dutschke, M., Elsiddig, E., Ford-Robertson, J., Frumhoff, P., Karjalainen, T., Krankina, O., Kurz, W. A., Matsumoto, M., Oyhantcabal, W., Ravindranath, N. H., Sanz Sanchez, M. J., and Zhang, X.: Forestry, in: Climate Change 2007: Mitigation, Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Metz, B., Davidson, O. R., Bosch, P. R., Dave, R., and Meyer, L. A., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2007.
Ollinger, S. V., Aber, J. D., Reich, P. B., and Freuder, R. J.: Interactive effects of nitrogen deposition, tropospheric ozone, elevated CO2 land use history on the carbon dynamics of northern hardwood forests, Glob. Change Biol., 8, 545–562, 2002.
Pan, Y., McGuire, A. D., Melillo, J. M., Kicklighter, D. W., Sitch, S., and Prentice, I. C.: A biogeochemistry-based successional model and its application along a moisture gradient in the continental United States, J. Veg. Sci., 13, 369–380, 2002.
Pan, Y., Birdsey, R., Hom, J., McCullough, K., and Clark, K.: Improved estimates of net primary productivity from MODIS satellite data at regional and local scales, Ecol. Appl., 16(1), 125–132, 2006.
Pan, Y., Birdsey, R., Hom, J., and McCullough, K.: Separating Effects of Changes in Atmospheric Composition, Climate and Land-use on Carbon Sequestration of US Mid-Atlantic Temperate Forests, Forest Ecol. Manag., 259, 151–164, 2009.
Pan, Y., Birdsey, R., McCullough, K., Chen, J. M., and Wayson, C.: The benchmark for carbon models: Net ecosystem productivity of US forests estimated from forest inventory data, AIMES Open Science Conference, Earth System Science 2010: Global Change, Climate and People, Edinburgh, Abstract Book, p. 50, 2010.
Penner, M., Power, K., Muhairwe, C., Tellier, R., and Wang, Y.: Canada's forest biomass resources: deriving estimates from Canada's forest inventory, Information Report BC-X-370, Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, 1997.
Peters, W., Jacobson, A. R., Sweeney, C., Andrews, A. E., Conway, T. J., Masarie, K., Miller, J. B., Bruhwiler, L. M. P., Pétron, G., Hirsch, A. I., Worthy, D. E. J., van der Werf, G. R., Randerson, J. T., Wennberg, P.O., Krol, M. C., and Tans, P. P.: An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker, Proc. Nat. Aca. Sci., 104(48), 18925–18930, 2007.
Post, W. M. and Kwon, K. C.: Soil carbon sequestration and land-use change: processes and potential, Glob. Change Biol., 6, 317–327, 2000.
Potter, C. S., Ranserson, J. T., Field, C. B., Matson, P. A., Vitousek, P. M., Mooney, H. A., and Jlooster, S. A.: Terrestrial ecosystem production: a process model based on global satellite and surface data, Global Biogeochem. Cy., 7, 811–841, 1993.
Pregitzer, K. and Euskirchen, E.: Carbon cycling and storage in world forests: biome patterns related to forest age, Glob. Change Biol., 10, 2052–2077, 2004.
Ruefenacht, B., Finco, M. V., Nelson, M. D., Czaplewski, R., Helmer, E. H., Blackard, J. A., Holden, G. R., Lister, A. J., Salajanu, D., Weyermann, D., and Winterberger, K.: Conterminous US and Alaska Forest Type Mapping Using Forest Inventory and Analysis Data, Photogramm. Eng. Rem. S., 74(11), 1379–1388, 2008.
Smith, J. E., Heath, L. S., Skog, K. E., and Birdsey, R. A.: Methods for Calculation Forest Ecosystem and Harvested Carbon with Standard Estimates for Forest Types of the United States, Gen. Tech. Rep. NE-343, Newtown Square, PA, USDA, Forest Service, Northeastern Research Station, 216, 2006.
Sisk, T. D. (Ed.): Perspectives on the land use history of North America: a context for understanding our changing environment, US Geological Survey, Biological Resources Division, Biological Science Report USGS/BRD/BSR-1998-0003, p. 104, 1998.
Sitch, S., Huntingford, C., Gedney, N., Levy, P. E., Lomass, M., Piao, S. L., Betts, R., Ciais, P., Cox, P., Friedlingstein, P., Jones, C. D., Preentice, I. C., and Woodward, F. I.: Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs), Glob. Change Biol., 14, 2015–2039, 2008.
Smoyer-Tomic, K. E., Justine, Klaver, J. D. A., Soskolne, C. L., and Spady, D. W.: Health Consequences of Drought on the Canadian Prairies, EcoHealth, 1 (Suppl. 2), 144–154, 2004.
Stephens, B. B., Gurney, K. R., Tans, P. P., Sweeney, C., Peters, W., Bruhwiler, L., Ciais, P., Ramonet, M., Bousquet, P., Nakazawa, T., Aoki, S., Machida, T., Inoue, G., Vinnichenko, N., Lloyd, J., Jordan, A., Heimann, M., Shibistova, O., Langenfelds, R. L., Steele, L. P., Francey, R. J., and Denning, A. S.: Weak Northern and Strong Tropical Land Carbon Uptake from Vertical Profiles of Atmospheric CO2, Science, 316, 1732–1735, 2007.
Stocks, B. J., Mason, J. A., Todd, J. B., Bosch, E. M., Wotton, B. M., Amiro, B. D., Flannigan, M. D., Hirsch, K. G., Logan, K. A., Martell, D. L., and Skinner, W. R.: Large forest fires in Canada, 1959–1997, J. Geophys. Res., 108(D1), 8149, https://doi.org/10.1029/2001JD000484, 2003.
US Forest Service: Land areas of the National Forest System, FS-383, Washington, DC, p. 154, 2005.
US Department of Agriculture: US Agriculture and Forestry Greenhouse Gas Inventory: 1990–2005, Global Change Program Office, Office of the Chief Economist, US Department of Agriculture, Technical Bulletin No. 1921, 161 pp. (available at: http://www.usda.gov/oce/global_change/AFGGInventory1990_2005.htm), 2008.
Weber, M. G. and Flannigan, M. D.: Canadian boreal forest ecosystem structure and function in changing climate: Impact on fire regimes, Environ. Rev., 5, 145–166, 1997.
Williams, D. W. and Birdsey, R. A.: Historical patterns of spruce budworm defoliation and bark beetle outbreaks in North American conifer forests: an atlas and description of digital maps, Gen. Tech. Rep. NE-308, Newtown Square, PA, US Department of Agriculture, Forest Service, Northeastern Research Station, 1–33, 2003.
Zhou, G., Liu, S., Li, Z., Zhang, D., Tang, X., Zhou, C., Yan, J, and Mo, J.: Old-growth forests can accumulate carbon in soils, Science, 314, 1417, https://doi.org/10.1126/science.1130168, 2006.
Altmetrics
Final-revised paper
Preprint