Articles | Volume 10, issue 7
https://doi.org/10.5194/bg-10-5061-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-10-5061-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Timing of fire relative to seed development may enable non-serotinous species to recolonize from the aerial seed banks of fire-killed trees
S. T. Michaletz
Department of Ecology and Evolutionary Biology, University of Arizona, 1041 E Lowell St., BSW #310, Tucson, AZ 85721, USA
Department of Biological Sciences and Biogeoscience Institute, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
E. A. Johnson
Department of Biological Sciences and Biogeoscience Institute, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
W. E. Mell
Pacific Wildland Fire Sciences Lab, US Forest Service, 400 N. 34th St. Suite 201, Seattle, WA 98103, USA
D. F. Greene
Department of Geography, Planning & Environment, Concordia University, 1455 de Maisonneuve W., H 1255-26 Montreal, QC H3G 1M8, Canada
Cited articles
Albini, F. A.: Estimating Wildfire Behavior and Effects, USDA Forest Service General Technical Report INT-30, 1976.
Albini, F. A. and Baughman, R. G.: Estimating Windspeeds for Predicting Wildland Fire Behavior, USDA Forest Service Reserach Paper INT-221, 1979.
Alexander, M. E., Stocks, B. J., and Lawson, B. D.: Fire Behavior in Black Spruce-Lichen Woodland: The Porter Lake Project, Forestry Canada Information Report NOR-X-310, 1991.
Allen, J. C.: A modified sine wave method for calculating degree days, Environ. Entomol., 5, 388–396, 1976.
Almeida, M., Viegas, D. X., Miranda, A. I., and Reva, V.: Effect of particle orientation and of flow velocity on the combustibility of Pinus pinaster and Eucalyptus globulus firebrand material, Int. J. Wildland Fire, 20, 946–962, https://doi.org/10.1071/WF09080, 2011.
Beaufait, W. R.: Some effects of high temperatures on the cones and seeds of jack pine, Forest Sci., 6, 194–199, 1960.
Black, R. A. and Bliss, L. C.: Reproductive ecology of Picea mariana (Mill.) BSP., at tree line near Inuvik, Northwest Territories, Canada, Ecol. Monogr., 50, 331–354, 1980.
Boggs, K., Sturdy, M., Rinella, D. J., and Rinella, M. J.: White spruce regeneration following a major spruce beetle outbreak in forests on the Kenai Peninsula, Alaska, Forest Ecol. Manag., 255, 3571–3579, https://doi.org/10.1016/j.foreco.2008.02.039, 2008.
Bova, A. S., Bohrer, G., and Dickinson, M. B.: A model of gas mixing into single-entrance tree cavities during wildland fires, Can. J. Forest Res., 41, 1659–1670, https://doi.org/10.1139/x11-077, 2011.
Bradstock, R. A., Gill, A. M., Hastings, S. M., and Moore, P. H. R.: Survival of serotinous seedbanks during bushfires: Comparative studies of Hakea species from southeastern Australia, Aust. J. Ecol., 19, 276–282, https://doi.org/10.1111/j.1442-9993.1994.tb00490.x, 1994.
Brown, J. K.: Weight and Density of Crowns of Rocky Mountain Conifers, USDA Forest Service Research Paper INT-197, 1978.
Byram, G. M.: Combustion of Forest Fuels, in: Forest Fire: Control and Use, edited by: Davis, K. P., McGraw-Hill Book Company, Inc., New York, 1959.
Chapra, S. C. and Canale, R. P.: Numerical Methods for Engineers, Sixth Edn., McGraw-Hill, New York, 2009.
Charron, I. and Greene, D. F.: Post-wildfire seedbeds and tree establishment in the southern mixedwood boreal forest, Can. J. Forest Res., 32, 1607–1615, https://doi.org/10.1139/x02-085, 2002.
Chrosciewicz, Z.: Foliar moisture content variations in four coniferous tree species of central Alberta, Can. J. Forest Res., 16, 157–162, https://doi.org/10.1139/x86-029, 1986.
Cram, W. H. and Worden, H. A.: Maturity of white spruce cones and seed, Forest Sci., 3, 263–269, 1957.
Crossley, D. I.: Seed maturity in white spruce, Silviculture Research Notes No. 104, Canada Department of Resources and Development, Forestry Branch, 1953.
Dawson, C., Vincent, J. F. V., and Rocca, A.-M.: How pine cones open, Nature, 390, 668–668, 1997.
Despain, D., Clark, D., and Reardon, J.: Simulation of crown fire effects on canopy seed bank in lodgepole pine, Int. J. Wildland Fire, 6, 45–49, https://doi.org/10.1071/WF9960045, 1996.
Dickinson, M. B. and Johnson, E. A.: Temperature-dependent rate models of vascular cambium cell mortality, Can. J. Forest Res., 34, 546–559, https://doi.org/10.1139/x03-223, 2004.
Dickinson, M. B., Jolliff, J., and Bova, A. S.: Vascular cambium necrosis in forest fires: using hyperbolic temperature regimes to estimate parameters of a tissue-response model, Aust. J. Bot., 52, 757–763, https://doi.org/10.1071/BT03111, 2004.
Dupuy, J.-L., Linn, R. R., Konovalov, V., Pimont, F., Vega, J. A., and Jiménez, E.: Exploring three-dimensional coupled fire–atmosphere interactions downwind of wind-driven surface fires and their influence on backfires using the HIGRAD-FIRETEC model, Int. J. Wildland Fire, 20, 734–750, https://doi.org/10.1071/WF10035, 2011.
Edwards, D. G. W.: Maturity and quality of tree seeds – a state-of-the-art review, Seed Sci. Technol., 8, 625–657, 1980.
Enright, N. J., Marsula, R., Byron, B. L., and Wissel, C.: The ecological significance of canopy seed storage in fire-prone environments: A model for non-sprouting shrubs, J. Ecol., 86, 946–959, 1998.
Fonda, R. W. and Varner, J. M.: Burning characteristics of cones from eight pine species, Northwest Sci., 78, 322–333, 2004.
Fraver, S.: The insulating value of serotinous cones in protecting pitch pine (Pinus rigida) seeds from high temperatures, J. Pennsylvania Acad. Sci., 65, 112–116, 1992.
Galipeau, C., Kneeshaw, D. D., and Bergeron, Y.: White spruce and balsam fir colonization of a site in the southeastern boreal forest as observed 68 years after fire, Can. J. Forest Res., 27, 139–147, https://doi.org/10.1139/x96-148, 1997.
Gauthier, S., Bergeron, Y., and Simon, J.-P.: Effects of fire regime on the serotiny level of jack pine, J. Ecol., 84, 539–548, 1996.
Giedt, W. H.: Investigation of variation of point unit heat-transfer coefficient around a cylinder normal to an air stream, T. Am. Soc. Mech. Eng., 71, 375-381, 1949.
Gill, A. M.: Adaptive responses of Australian vascular plant species to fires, in: Fire and the Australian biota, edited by: Gill, A. M., Groves, R. H., and Noble, I. R., Australian Academy of Science, Canberra, 1981.
Granström, A. and Schimmel, J.: Heat effects on seeds and rhizomes of a selection of boreal forest plants and potential reaction to fire, Oecologia, 94, 307–313, https://doi.org/10.1007/bf00317103, 1993.
Greene, D. F. and Johnson, E. A.: Modelling recruitment of Populus tremuloides, Pinus banksiana, and Picea mariana following fire in the mixedwood boreal forest, Can. J. Forest Res., 29, 462–473, https://doi.org/10.1139/x98-211, 1999.
Greene, D. F. and Johnson, E. A.: Tree recruitment from burn edges, Can. J. Forest Res., 30, 1264–1274, https://doi.org/10.1139/x00-040, 2000.
Greene, D. F. and Johnson, E. A.: Modelling the temporal variation in the seed production of North American trees, Can. J. Forest Res., 34, 65–75, https://doi.org/10.1139/x03-188, 2004.
Greene, D. F., Zasada, J. C., Sirois, L., Kneeshaw, D., Morin, H., Charron, I., and Simard, M. J.: A review of the regeneration dynamics of North American boreal forest tree species, Can. J. Forest Res., 29, 824–839, https://doi.org/10.1139/x98-112, 1999.
Greene, D. F., Messier, C., Asselin, H., and Fortin, M.-J.: The effect of light availability and basal area on cone production in Abies balsamea and Picea glauca, Can. J. Bot., 80, 370–377, https://doi.org/10.1139/b02-020, 2002.
Grønli, M. G., Várhegyi, G., and Di Blasi, C.: Thermogravimetric analysis and devolatilization kinetics of wood, Ind. Eng. Chem. Res., 41, 4201–4208, https://doi.org/10.1021/ie0201157, 2002.
Gupta, M., Yang, J., and Roy, C.: Specific heat and thermal conductivity of softwood bark and softwood char particles, Fuel, 82, 919–927, https://doi.org/10.1016/s0016-2361(02)00398-8, 2003.
Gutsell, S. L. and Johnson, E. A.: Accurately ageing trees and examining their height-growth rates: Implications for interpreting forest dynamics, J. Ecol., 90, 153–166, 2002.
Hoffmann, C. M., Morgan, P., Mell, W. E., Parsons, R. A., Strand, E. K., and Cook, S.: Numerical simulation of crown fire hazard immediately following bark beetle-caused tree mortality in lodgepole pine forests, Forest Sci., 58, 178–188, 2012.
Holman, J. P.: Heat Transfer, 8th Edn., McGraw-Hill Inc., New York., 1997.
Incropera, F. P., De Witt, D. P., Bergman, T. L., and Lavine, A. S.: Fundamentals of heat and mass transfer, 6th Edn., John Wiley and Sons Inc., New York, NY, 1024 pp., 2006.
ISTA: International Rules for Seed Testing, Edition 2003, The International Seed Testing Association, Basserdorf, 2003.
Johnson, A. F., Woodard, P. M., and Titus, S. J.: Lodgepole pine and white spruce crown fuel weights predicted from diameter at breast height, Forest. Chron., 66, 596–599, 1990.
Johnson, E. A.: Fire and Vegetation Dynamics: Studies from the North American Boreal Forest, Cambridge University Press, Cambridge, 1992.
Johnson, E. A. and Fryer, G. I.: Why Engelmann spruce does not have a persistent seed bank, Can. J. Forest Res., 26, 872–878, https://doi.org/10.1139/x26-095, 1996.
Johnson, E. A., Miyanishi, K., and Kleb, H.: The hazards of interpretation of static age structures as shown by stand reconstructions in a Pinus contorta – Picea engelmannii forest, J. Ecol., 82, 923–931, 1994.
Johnson, E. A., Morin, H., Miyanishi, K., Gagnon, R., and Greene, D. F.: A process approach to understanding disturbance and forest dynamics for sustainable forestry, in: Towards Sustainable Management in the Boreal Forest, edited by: Burton, P. J., Messier, C., Smith, D. W., and Adamowicz, W. L., NRC Research Press, Ottawa, 2003.
Johnson, F. H., Eyring, H., and Stover, B. J.: The theory of rate processes in biology and medicine, John Wiley & Sons, New York, 1974.
Judd, T. and Ashton, D.: Fruit clustering in the Myrtaceae: Seed survival in capsules subjected to experimental heating, Aust. J. Bot., 39, 241–245, https://doi.org/10.1071/BT9910241, 1991.
Judd, T. S.: Seed survival in small myrtaceous capsules subjected to experimental heating, Oecologia, 93, 576–581, https://doi.org/10.1007/bf00328968, 1993.
Keane, R. E. and Dickinson, L. J.: Development and Evaluation of the Photoload Sampling Technique, USDA Forest Service Research Paper RMRS-RP-61CD, 2007.
Keeley, J. E., Pausas, J. G., Rundel, P. W., Bond, W. J., and Bradstock, R. A.: Fire as an evolutionary pressure shaping plant traits, Trends Plant Sci., 16, 406–411, https://doi.org/10.1016/j.tplants.2011.04.002, 2011.
Kiil, A. D.: Fire spread in a black spruce stand, Canadian Forest Service Bi-Monthly Research Notes, 31, 2–3, 1975.
Koike, T.: Leaf structure and photosynthetic performance as related to the forest succession of deciduous broad-leaved trees, Plant Spec. Biol., 3, 77–87, https://doi.org/10.1111/j.1442-1984.1988.tb00173.x, 1988.
Lamont, B., Le Maitre, D., Cowling, R., and Enright, N.: Canopy seed storage in woody plants, Bot. Rev., 57, 277–317, https://doi.org/10.1007/bf02858770, 1991.
Lamont, B. B. and Enright, N. J.: Adaptive advantages of aerial seed banks, Plant Spec. Biol., 15, 157–166, https://doi.org/10.1046/j.1442-1984.2000.00036.x, 2000.
Lawson, B. D. and Armitage, O. B.: Weather Guide for the Canadian Forest Fire Danger Rating System, Natural Resources Canada, 2008.
Le Maitre, D. C.: Current interpretations of the term serotiny, S. Afr. J. Sci., 81, 289–290, 1985.
Linn, R., Reisner, J., Colman, J. J., and Winterkamp, J.: Studying wildfire behavior using FIRETEC, Int. J. Wildland Fire, 11, 233–246, https://doi.org/10.1071/WF02007, 2002.
Linn, R. R., Winterkamp, J. L., Weise, D. R., and Edminster, C.: A numerical study of slope and fuel structure effects on coupled wildfire behaviour, Int. J. Wildland Fire, 19, 179–201, https://doi.org/10.1071/WF07120, 2010.
Little, E. L.: Atlas of United States trees. Volume 1. Conifers and important hardwoods, US Department of Agriculture Miscellaneous Publication 1146, 1971.
Lutz, H. J.: Ecological Effects of Forest Fires in the Interior of Alaska, US Department of Agriculture Technical Bulletin 1133, 1956.
Macias Fauria, M. and Johnson, E. A.: Large-scale climatic patterns control large lightning fire occurrence in Canada and Alaska forest regions, J. Geophys. Res., 111, G04008, https://doi.org/10.1029/2006jg000181, 2006.
Macias Fauria, M., Michaletz, S. T., and Johnson, E. A.: Predicting climate change effects on wildfires requires linking processes across scales, Wiley Interdisciplinary Reviews: Climate Change, 2, 99–112, https://doi.org/10.1002/wcc.92, 2011.
McDermott, R., McGrattan, K., Hostikka, S., and Floyd, J.: Fire Dynamics Simulator (Version 5) Technical Reference Guide Volume 2: Verification, NIST Special Publications 1018-5, 2010.
McGrattan, K.: Cable Response to Live Fire (CAROLFIRE) Volume 3: Cable Fire Response Data for Fire Model Improvement, NUREG/CR-6931V2, NISTIR 7472, US Nuclear Regulatory Commission, 2008.
McGrattan, K., Hostikka, S., Floyd, J., Baum, H. R., Rehm, R. G., Mell, W. E., and McDermott, R.: Fire Dynamics Simulator (Version 5) Technical Reference Guide Volume 1: Mathematical Model, NIST Special Publications 1018-5, 2010a.
McGrattan, K., Hostikka, S., Floyd, J., and McDermott, R.: Fire Dynamics Simulator (Version 5) Technical Reference Guide Volume 3: Validation, NIST Special Publication 1018-5, 2010b.
Mell, W., Maranghides, A., McDermott, R., and Manzello, S. L.: Numerical simulation and experiments of burning douglas fir trees, Combust. Flame, 156, 2023–2041, https://doi.org/10.1016/j.combustflame.2009.06.015, 2009.
Mell, W. M., Jenkins, M. A., Gould, J., and Cheney, P.: A physics-based approach to modelling grassland fires, Int. J. Wildland Fire, 16, 1–22, https://doi.org/10.1071/WF06002, 2007.
Mercer, G., Gill, A., and Weber, R.: A time-dependent model of fire impact on seed survival in woody fruits, Aust. J. Bot., 42, 71–81, https://doi.org/10.1071/BT9940071, 1994.
Mercer, G. N. and Weber, R. O.: Fire Plumes, in: Forest Fires: Behavior and Ecological Effects, edited by: Johnson, E. A. and Miyanishi, K., Academic Press, New York, 2001.
Michaletz, S. T. and Johnson, E. A.: A heat transfer model of crown scorch in forest fires, Can. J. Forest Res., 36, 2839–2851, https://doi.org/10.1139/x06-158, 2006.
Miyanishi, K.: Duff consumption, in: Forest Fires: Behavior and Ecological Effects, edited by: Johnson, E. A. and Miyanishi, K., Academic Press, New York, 2001.
Monteith, J. L. and Unsworth, M. H.: Principles of Environmental Physics. Third Edition., Academic Press, New York, 2008.
Morvan, D. and Dupuy, J. L.: Modeling of fire spread through a forest fuel bed using a multiphase formulation, Combust. Flame, 127, 1981–1994, https://doi.org/10.1016/s0010-2180(01)00302-9, 2001.
Morvan, D. and Dupuy, J. L.: Modeling the propagation of a wildfire through a Mediterranean shrub using a multiphase formulation, Combust. Flame, 138, 199–210, https://doi.org/10.1016/j.combustflame.2004.05.001, 2004.
Morvan, D., Hoffman, C., Rego, F., and Mell, W.: Numerical simulation of the interaction between two fire fronts in grassland and shrubland, Fire Safety J., 46, 469–479, https://doi.org/10.1016/j.firesaf.2011.07.008, 2011.
Nienstadt, H. and Zasada, J. C.: Picea glauca (Moench) Voss. White spruce, in: Silvics of North America, Volume 1. Conifers, edited by: Burns, R. M. and Honkala, B. H., US Dept of Agriculture Handbook No. 654, 204–226, 1990.
Norum, R. A.: Predicting Wildfire Behavios in Black Spruce Forests in Alaska, USDA Forest Service Research Note PNW-401, 1982.
Norum, R. A.: Wind Adjustment Factors for Predicting Fire Behavior in Three Fuel Types in Alaska, USDA Forest Service Research Paper PNW-309, 1983.
O'Donnell, J. A., Romanovsky, V. E., Harden, J. W., and McGuire, A. D.: The effect of moisture content on the thermal conductivity of moss and organic soil horizons from black spruce ecosystems in interior Alaska, Soil Sci., 174, 646–651, 2009.
Ottmar, R. D. and Vihnanek, R. E.: Stereo photo series for quantifying natural fuels, Volume II: Black spruce and white spruce types in Alaska, PMS. 831, National Wildfire Coordinating Group, National Interagency Fire Center, Boise, ID, 1998.
Ottmar, R. D., Sandberg, D. V., Riccardi, C. L., and Prichard, S. J.: An overview of the Fuel Characteristic Classification System – Quantifying, classifying, and creating fuelbeds for resource planning, Can. J. Forest Res., 37, 2383–2393, https://doi.org/10.1139/x07-077, 2007.
Parker, W. H. and McLachlan, D. G.: Morphological variation in white and black spruce: investigation of natural hybridization between Picea glauca and P. mariana, Can. J. Bot., 56, 2512–2520, https://doi.org/10.1139/b78-303, 1978.
Parsons, R. A., Mell, W. E., and McCauley, P.: Linking 3D spatial models of fuels and fire: Effects of spatial heterogeneity on fire behavior, Ecol. Model., 222, 679–691, https://doi.org/10.1016/j.ecolmodel.2010.10.023, 2011.
Payette, S.: Fire as a controlling process in the North American boreal forest, in: A Systems Analysis of the Global Boreal Forest, edited by: Shugart, H. H., Leemans, R., and Bonan, G. B., Cambridge University Press, Cambridge, 1992.
Peters, V. S., Macdonald, S. E., and Dale, M. R. T.: The interaction between masting and fire is key to white spruce regeneration, Ecology, 86, 1744–1750, https://doi.org/10.1890/03-0656, 2005.
Ragland, K. W., Aerts, D. J., and Baker, A. J.: Properties of wood for combustion analysis, Bioresource Technol., 37, 161–168, https://doi.org/10.1016/0960-8524(91)90205-x, 1991.
Rehm, R. G. and Baum, H. R.: The equations of motion for thermally driven, buoyant flows, J. Res. Nat. Bur. Stand., 83, 297–308, 1978.
Rolf, T. and Adrian, B.: spatstat: An R package for analyzing spatial point patterns, J. Stat. Softw., 12, 1–42, 2005.
Rothermel, R. C.: A mathematical model for predicting fire spread in wildland fuels, USDA Forest Service Reserach Paper INT-115, Ogden, UT, 1972.
Rothermel, R. C.: Predicting Behavior and Size of Crown Fires in the Northern Rocky Mountains, USDA Forest Service Reserach Paper INT-438, Ogden, 1991.
Schmid, H. P.: Footprint modeling for vegetation atmosphere exchange studies: a review and perspective, Agr. Forest Meteorol., 113, 159–183, https://doi.org/10.1016/s0168-1923(02)00107-7, 2002.
Schwilk, D. W. and Ackerly, D. D.: Flammability and serotiny as strategies: correlated evolution in pines, Oikos, 94, 326–336, https://doi.org/10.1034/j.1600-0706.2001.940213.x, 2001.
Simpson, W. and TenWolde, A.: Wood Handbook: Wood as an Engineering Material, USDA Forest Service General Technical Report FPL-GTR-113, Madison, 1999.
Singh, T.: Wood density variations in thirteen Canadian tree species, Wood Fiber Sci., 19, 362–369, 1987.
Stocks, B. J., Mason, J. A., Todd, J. B., Bosch, E. M., Wotton, B. M., Amiro, B. D., Flannigan, M. D., Hirsch, K. G., Logan, K. A., Martell, D. L., and Skinner, W. R.: Large forest fires in Canada, 1959–1997, J. Geophys. Res., 107, 8149, https://doi.org/10.1029/2001jd000484, 2002.
Susott, R. A.: Differential scanning calorimetry of forest fuels, Forest Sci., 28, 839–851, 1982a.
Susott, R. A.: Characterization of the thermal properties of forest fuels by combustible gas analysis, Forest Sci., 28, 404–420, 1982b.
Sylvester, T. W. and Wein, R. W.: Fuel characteristics of arctic plant species and simulated plant community flammability by Rothermel's model, Can. J. Bot., 59, 898–907, https://doi.org/10.1139/b81-125, 1981.
Thomas, P. H.: Some aspects of the growth and spread of fire in the open, Forestry, 40, 139–164, https://doi.org/10.1093/forestry/40.2.139, 1967.
Thompson, K. and Grime, J. P.: Seasonal variation in the seed banks of herbaceous species in ten contrasting habitats, J. Ecol., 67, 893–921, 1979.
Titus, S., Woodard, P., and Johnson, A.: Sampling intensity for estimating fuel moisture content in lodgepole pine and white spruce trees, Int. J. Wildland Fire, 2, 1–6, https://doi.org/10.1071/WF9920001, 1992.
Tripp, H. A. and Hedlin, A. F.: An ecological study and damage appraisal of white spruce cone insects, Forest. Chron., 32, 400–410, 1956.
Van Wagner, C. E.: Describing forest fires – Old ways and new, Forest. Chron., 41, 301–305, 1965.
Van Wagner, C. E.: Conditions for the start and spread of crown fire, Can. J. Forest Res., 7, 23–34, https://doi.org/10.1139/x77-004, 1977.
Vesala, T., Kljun, N., Rannik, Ü., Rinne, J., Sogachev, A., Markkanen, T., Sabelfeld, K., Foken, T., and Leclerc, M. Y.: Flux and concentration footprint modelling: State of the art, Environ. Pollut., 152, 653–666, https://doi.org/10.1016/j.envpol.2007.06.070, 2008.
Viereck, L. A., Dyrness, C. T., Batten, A. R., and Wenzlick, K. J.: The Alaska Vegetation Classification, US Forest Service General Technical Report PNW-GTR-286, Portland, OR, 1992.
Vowinckel, T., Oechel, W. C., and Boll, W. G.: The effect of climate on the photosynthesis of Picea mariana at the subarctic tree line. 1. Field measurements, Can. J. Bot., 53, 604–620, https://doi.org/10.1139/b75-076, 1975.
Wilson, R.: Reformulation of Forest Fire Spread Equations in SI Units, USDA Forest Service Research Note INT-292, 1980.
Winston, D. A. and Haddon, B. D.: Effects of early cone collection and artificial ripening on white spruce and red pine germination, Can. J. Forest Res., 11, 817–826, https://doi.org/10.1139/x81-117, 1981.
Wirth, C., Lichstein, J. W., Dushoff, J., Chen, A., and Chapin, F. S.: White spruce meets black spruce: Dispersal, postfire establishment, and growth in a warming climate, Ecol. Monogr., 78, 489–505, https://doi.org/10.1890/07-0074.1, 2008.
Woodard, P. M. and Delisle, G. P.: Biomass Regression Equations for Common Tree Seedlings and Shrubs in Jasper National Park, Alberta, University of Alberta Forestry Note 1, 1987.
Youngblood, A.: Development patterns in young conifer-hardwood forests of interior Alaska, J. Veg. Sci., 6, 229–236, https://doi.org/10.2307/3236218, 1995.
Zasada, J. C.: Effect of cone storage method and collection date on Alaskan white spruce (Picea glauca) seed quality, Proceedings of the International Symposium on Seed Processing, IUFRO, Bergen, Norway, 1973.
Zasada, J. C.: Case history of an excellent white spruce cone and seed crop in interior Alaska: Cone and seed production, germination, and seedling survival, US Forest Service General Technical Report PNW-65, Portland, OR, 1978.
Zasada, J. C.: Production, dispersal, and germination of white spruce and paper birch and first-year seedling establishment after the Rosie Creek fire., in: Early Results of the Rosie Creek Fire Reserach Project, edited by: Juday, G. and Dyrness, C. T., University of Alaska-Fairbanks Agriculture and Forestry Experiment Station Miscellaneous Publicatoin 85-2, 34–37, 1985.
Altmetrics
Final-revised paper
Preprint