Articles | Volume 12, issue 20
https://doi.org/10.5194/bg-12-6125-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-12-6125-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
A strong CO2 sink enhanced by eutrophication in a tropical coastal embayment (Guanabara Bay, Rio de Janeiro, Brazil)
Programa de Geoquímica, Universidade Federal Fluminense, Outeiro São João Batista s/n, 24020015, Niterói, RJ, Brazil
Laboratoire Environnements et Paléoenvironnements Océaniques et Continentaux (EPOC), CNRS, Université de Bordeaux, Allée Geoffroy Saint-Hilaire, 33615 Pessac Cedex, France
B. A. Knoppers
Programa de Geoquímica, Universidade Federal Fluminense, Outeiro São João Batista s/n, 24020015, Niterói, RJ, Brazil
N. Brandini
Programa de Geoquímica, Universidade Federal Fluminense, Outeiro São João Batista s/n, 24020015, Niterói, RJ, Brazil
S. J. Costa Santos
Programa de Geoquímica, Universidade Federal Fluminense, Outeiro São João Batista s/n, 24020015, Niterói, RJ, Brazil
G. Abril
Programa de Geoquímica, Universidade Federal Fluminense, Outeiro São João Batista s/n, 24020015, Niterói, RJ, Brazil
Laboratoire Environnements et Paléoenvironnements Océaniques et Continentaux (EPOC), CNRS, Université de Bordeaux, Allée Geoffroy Saint-Hilaire, 33615 Pessac Cedex, France
Related authors
Christian Lønborg, Cátia Carreira, Gwenaël Abril, Susana Agustí, Valentina Amaral, Agneta Andersson, Javier Arístegui, Punyasloke Bhadury, Mariana B. Bif, Alberto V. Borges, Steven Bouillon, Maria Ll. Calleja, Luiz C. Cotovicz Jr., Stefano Cozzi, Maryló Doval, Carlos M. Duarte, Bradley Eyre, Cédric G. Fichot, E. Elena García-Martín, Alexandra Garzon-Garcia, Michele Giani, Rafael Gonçalves-Araujo, Renee Gruber, Dennis A. Hansell, Fuminori Hashihama, Ding He, Johnna M. Holding, William R. Hunter, J. Severino P. Ibánhez, Valeria Ibello, Shan Jiang, Guebuem Kim, Katja Klun, Piotr Kowalczuk, Atsushi Kubo, Choon-Weng Lee, Cláudia B. Lopes, Federica Maggioni, Paolo Magni, Celia Marrase, Patrick Martin, S. Leigh McCallister, Roisin McCallum, Patricia M. Medeiros, Xosé Anxelu G. Morán, Frank E. Muller-Karger, Allison Myers-Pigg, Marit Norli, Joanne M. Oakes, Helena Osterholz, Hyekyung Park, Maria Lund Paulsen, Judith A. Rosentreter, Jeff D. Ross, Digna Rueda-Roa, Chiara Santinelli, Yuan Shen, Eva Teira, Tinkara Tinta, Guenther Uher, Masahide Wakita, Nicholas Ward, Kenta Watanabe, Yu Xin, Youhei Yamashita, Liyang Yang, Jacob Yeo, Huamao Yuan, Qiang Zheng, and Xosé Antón Álvarez-Salgado
Earth Syst. Sci. Data, 16, 1107–1119, https://doi.org/10.5194/essd-16-1107-2024, https://doi.org/10.5194/essd-16-1107-2024, 2024
Short summary
Short summary
In this paper, we present the first edition of a global database compiling previously published and unpublished measurements of dissolved organic matter (DOM) collected in coastal waters (CoastDOM v1). Overall, the CoastDOM v1 dataset will be useful to identify global spatial and temporal patterns and to facilitate reuse in studies aimed at better characterizing local biogeochemical processes and identifying a baseline for modelling future changes in coastal waters.
Christian Lønborg, Cátia Carreira, Gwenaël Abril, Susana Agustí, Valentina Amaral, Agneta Andersson, Javier Arístegui, Punyasloke Bhadury, Mariana B. Bif, Alberto V. Borges, Steven Bouillon, Maria Ll. Calleja, Luiz C. Cotovicz Jr., Stefano Cozzi, Maryló Doval, Carlos M. Duarte, Bradley Eyre, Cédric G. Fichot, E. Elena García-Martín, Alexandra Garzon-Garcia, Michele Giani, Rafael Gonçalves-Araujo, Renee Gruber, Dennis A. Hansell, Fuminori Hashihama, Ding He, Johnna M. Holding, William R. Hunter, J. Severino P. Ibánhez, Valeria Ibello, Shan Jiang, Guebuem Kim, Katja Klun, Piotr Kowalczuk, Atsushi Kubo, Choon-Weng Lee, Cláudia B. Lopes, Federica Maggioni, Paolo Magni, Celia Marrase, Patrick Martin, S. Leigh McCallister, Roisin McCallum, Patricia M. Medeiros, Xosé Anxelu G. Morán, Frank E. Muller-Karger, Allison Myers-Pigg, Marit Norli, Joanne M. Oakes, Helena Osterholz, Hyekyung Park, Maria Lund Paulsen, Judith A. Rosentreter, Jeff D. Ross, Digna Rueda-Roa, Chiara Santinelli, Yuan Shen, Eva Teira, Tinkara Tinta, Guenther Uher, Masahide Wakita, Nicholas Ward, Kenta Watanabe, Yu Xin, Youhei Yamashita, Liyang Yang, Jacob Yeo, Huamao Yuan, Qiang Zheng, and Xosé Antón Álvarez-Salgado
Earth Syst. Sci. Data, 16, 1107–1119, https://doi.org/10.5194/essd-16-1107-2024, https://doi.org/10.5194/essd-16-1107-2024, 2024
Short summary
Short summary
In this paper, we present the first edition of a global database compiling previously published and unpublished measurements of dissolved organic matter (DOM) collected in coastal waters (CoastDOM v1). Overall, the CoastDOM v1 dataset will be useful to identify global spatial and temporal patterns and to facilitate reuse in studies aimed at better characterizing local biogeochemical processes and identifying a baseline for modelling future changes in coastal waters.
Jérémy Guilhen, Ahmad Al Bitar, Sabine Sauvage, Marie Parrens, Jean-Michel Martinez, Gwenael Abril, Patricia Moreira-Turcq, and José-Miguel Sánchez-Pérez
Biogeosciences, 17, 4297–4311, https://doi.org/10.5194/bg-17-4297-2020, https://doi.org/10.5194/bg-17-4297-2020, 2020
Short summary
Short summary
The quantity of greenhouse gases (GHGs) released to the atmosphere by human industries and agriculture, such as carbon dioxide (CO2) and nitrous oxide (N2O), has been constantly increasing for the last few decades.
This work develops a methodology which makes consistent both satellite observations and modelling of the Amazon basin to identify and quantify the role of wetlands in GHG emissions. We showed that these areas produce non-negligible emissions and are linked to land use.
Gwenaël Abril and Alberto V. Borges
Biogeosciences, 16, 769–784, https://doi.org/10.5194/bg-16-769-2019, https://doi.org/10.5194/bg-16-769-2019, 2019
Short summary
Short summary
Based on classical concepts in ecology, and a literature survey, we highlight the importance of flooded land as a preferential source of atmospheric carbon to aquatic systems at the global scale. Studies in terrestrial and aquatic ecosystems could be reconciled by considering the occurrence of an efficient wetland CO2 pump to river systems. New methodological approaches coupling hydrology and ecology are also necessary to improve scientific knowledge on carbon fluxes at the land–water interface.
Alberto V. Borges, Gwenaël Abril, and Steven Bouillon
Biogeosciences, 15, 1093–1114, https://doi.org/10.5194/bg-15-1093-2018, https://doi.org/10.5194/bg-15-1093-2018, 2018
Short summary
Short summary
The Mekong River is among the largest on Earth and is vital for the economy of Vietnam and South East Asia and the livelihood of the local population (70 million across six countries). Numerous dams for hydropower are planned, which will affect the delivery of water and sediments to the Mekong delta, with numerous possible consequences. We report the dynamics of two greenhouse gases (CO2 and CH4) in the Mekong delta that can be used as a reference state to evaluate future changes.
R. L. Sobrinho, M. C. Bernardes, G. Abril, J.-H. Kim, C. I Zell, J.-M. Mortillaro, T. Meziane, P. Moreira-Turcq, and J. S. Sinninghe Damsté
Biogeosciences, 13, 467–482, https://doi.org/10.5194/bg-13-467-2016, https://doi.org/10.5194/bg-13-467-2016, 2016
Short summary
Short summary
The principal objective of the present work is to quantify the fractions of the principal sources of sedimentary organic matter (SOM) in floodplain lakes of the central Amazon basin. The results indicate that the main source of SOM is not the riverine particulate material, as postulated by the literature, but the macrophytes and the forests.
F. S. Pacheco, M. C. S. Soares, A. T. Assireu, M. P. Curtarelli, F. Roland, G. Abril, J. L. Stech, P. C. Alvalá, and J. P. Ometto
Biogeosciences, 12, 147–162, https://doi.org/10.5194/bg-12-147-2015, https://doi.org/10.5194/bg-12-147-2015, 2015
Short summary
Short summary
CO2 fluxes in Funil Reservoir (FR) is driven by primary production and river inflow dynamics. Our findings suggest that the lack of spatial data in reservoir C budget calculations can affect regional and global estimates. Our results support the idea that the FR is a dynamic system where the hydrodynamics represented by changes in the river inflow and retention time are potentially a more important force driving both the Chl and pCO2 spatial variability than the in-system ecological factors.
G. Abril, S. Bouillon, F. Darchambeau, C. R. Teodoru, T. R. Marwick, F. Tamooh, F. Ochieng Omengo, N. Geeraert, L. Deirmendjian, P. Polsenaere, and A. V. Borges
Biogeosciences, 12, 67–78, https://doi.org/10.5194/bg-12-67-2015, https://doi.org/10.5194/bg-12-67-2015, 2015
Short summary
Short summary
We compared pCO2 data calculated from pH and alkalinity from those measured directly in a large array of temperate and tropical freshwaters. This revealed a large overestimation (up to 300%) of calculated pCO2 in the case of acidic and organic-rich waters, due to a contribution of organic acids anions to alkalinity and a lower buffering capacity of the carbonate system at acidic pH. Given the widespread distribution of acidic freshwaters, direct measurements of water pCO2 are encouraged.
Related subject area
Biogeochemistry: Air - Sea Exchange
Dimethyl sulfide (DMS) climatologies, fluxes, and trends – Part 1: Differences between seawater DMS estimations
Dimethyl sulfide (DMS) climatologies, fluxes, and trends – Part 2: Sea–air fluxes
Aerosol trace element solubility and deposition fluxes over the polluted, dusty Mediterranean and Black Sea basins
High-frequency continuous measurements reveal strong diel and seasonal cycling of pCO2 and CO2 flux in a mesohaline reach of the Chesapeake Bay
Significant role of physical transport in the marine carbon monoxide (CO) cycle: observations in the East Sea (Sea of Japan), the western North Pacific, and the Bering Sea in summer
Central Arctic Ocean surface–atmosphere exchange of CO2 and CH4 constrained by direct measurements
Spatial and seasonal variability in volatile organic sulfur compounds in seawater and the overlying atmosphere of the Bohai and Yellow seas
Estimating marine carbon uptake in the northeast Pacific using a neural network approach
Sea–air methane flux estimates derived from marine surface observations and instantaneous atmospheric measurements in the northern Labrador Sea and Baffin Bay
Global analysis of the controls on seawater dimethylsulfide spatial variability
Air–sea gas exchange in a seagrass ecosystem – results from a 3He ∕ SF6 tracer release experiment
Concentrations of dissolved dimethyl sulfide (DMS), methanethiol and other trace gases in context of microbial communities from the temperate Atlantic to the Arctic Ocean
Marine nitrogen fixation as a possible source of atmospheric water-soluble organic nitrogen aerosols in the subtropical North Pacific
Ice nucleating properties of the sea ice diatom Fragilariopsis cylindrus and its exudates
On physical mechanisms enhancing air–sea CO2 exchange
Winter season Southern Ocean distributions of climate-relevant trace gases
How biogenic polymers control surfactant dynamics in the surface microlayer: insights from a coastal Baltic Sea study
Identifying the biological control of the annual and multi-year variations in South Atlantic air–sea CO2 flux
The sensitivity of pCO2 reconstructions to sampling scales across a Southern Ocean sub-domain: a semi-idealized ocean sampling simulation approach
Physical mechanisms for biological carbon uptake during the onset of the spring phytoplankton bloom in the northwestern Mediterranean Sea (BOUSSOLE site)
Wintertime process study of the North Brazil Current rings reveals the region as a larger sink for CO2 than expected
New constraints on biological production and mixing processes in the South China Sea from triple isotope composition of dissolved oxygen
Tidal mixing of estuarine and coastal waters in the western English Channel is a control on spatial and temporal variability in seawater CO2
A seamless ensemble-based reconstruction of surface ocean pCO2 and air–sea CO2 fluxes over the global coastal and open oceans
Sea ice concentration impacts dissolved organic gases in the Canadian Arctic
Evaluating the Arabian Sea as a regional source of atmospheric CO2: seasonal variability and drivers
An empirical MLR for estimating surface layer DIC and a comparative assessment to other gap-filling techniques for ocean carbon time series
Derivation of seawater pCO2 from net community production identifies the South Atlantic Ocean as a CO2 source
Eukaryotic community composition in the sea surface microlayer across an east–west transect in the Mediterranean Sea
Enhancement of the North Atlantic CO2 sink by Arctic Waters
Global ocean dimethyl sulfide climatology estimated from observations and an artificial neural network
Atmospheric deposition of organic matter at a remote site in the central Mediterranean Sea: implications for the marine ecosystem
Underway seawater and atmospheric measurements of volatile organic compounds in the Southern Ocean
Dimethylsulfide (DMS), marine biogenic aerosols and the ecophysiology of coral reefs
Spatial variations in CO2 fluxes in the Saguenay Fjord (Quebec, Canada) and results of a water mixing model
Gas exchange estimates in the Peruvian upwelling regime biased by multi-day near-surface stratification
Insights from year-long measurements of air–water CH4 and CO2 exchange in a coastal environment
On the role of climate modes in modulating the air–sea CO2 fluxes in eastern boundary upwelling systems
Reviews and syntheses: the GESAMP atmospheric iron deposition model intercomparison study
Increase of dissolved inorganic carbon and decrease in pH in near-surface waters in the Mediterranean Sea during the past two decades
Utilizing the Drake Passage Time-series to understand variability and change in subpolar Southern Ocean pCO2
Effect of wind speed on the size distribution of gel particles in the sea surface microlayer: insights from a wind–wave channel experiment
The seasonal cycle of pCO2 and CO2 fluxes in the Southern Ocean: diagnosing anomalies in CMIP5 Earth system models
Marine phytoplankton stoichiometry mediates nonlinear interactions between nutrient supply, temperature, and atmospheric CO2
Interannual drivers of the seasonal cycle of CO2 in the Southern Ocean
Constraints on global oceanic emissions of N2O from observations and models
Arctic Ocean CO2 uptake: an improved multiyear estimate of the air–sea CO2 flux incorporating chlorophyll a concentrations
Uncertainty in the global oceanic CO2 uptake induced by wind forcing: quantification and spatial analysis
Phytoplankton growth response to Asian dust addition in the northwest Pacific Ocean versus the Yellow Sea
Global high-resolution monthly pCO2 climatology for the coastal ocean derived from neural network interpolation
Sankirna D. Joge, Anoop S. Mahajan, Shrivardhan Hulswar, Christa A. Marandino, Martí Galí, Thomas G. Bell, and Rafel Simó
Biogeosciences, 21, 4439–4452, https://doi.org/10.5194/bg-21-4439-2024, https://doi.org/10.5194/bg-21-4439-2024, 2024
Short summary
Short summary
Dimethyl sulfide (DMS) is the largest natural source of sulfur in the atmosphere and leads to the formation of cloud condensation nuclei. DMS emission and quantification of its impacts have large uncertainties, but a detailed study on the emissions and drivers of their uncertainty is missing to date. The emissions are usually calculated from the seawater DMS concentrations and a flux parameterization. Here we quantify the differences in DMS seawater products, which can affect DMS fluxes.
Sankirna D. Joge, Anoop S. Mahajan, Shrivardhan Hulswar, Christa A. Marandino, Martí Galí, Thomas G. Bell, Mingxi Yang, and Rafel Simó
Biogeosciences, 21, 4453–4467, https://doi.org/10.5194/bg-21-4453-2024, https://doi.org/10.5194/bg-21-4453-2024, 2024
Short summary
Short summary
Dimethyl sulfide (DMS) is the largest natural source of sulfur in the atmosphere and leads to the formation of cloud condensation nuclei. DMS emissions and quantification of their impacts have large uncertainties, but a detailed study on the range of emissions and drivers of their uncertainty is missing to date. The emissions are calculated from the seawater DMS concentrations and a flux parameterization. Here we quantify the differences in the effect of flux parameterizations used in models.
Rachel Ursula Shelley, Alexander Roberts Baker, Max Thomas, and Sam Murphy
EGUsphere, https://doi.org/10.5194/egusphere-2024-2667, https://doi.org/10.5194/egusphere-2024-2667, 2024
Short summary
Short summary
The fractions of trace elements in atmospheric particles over the Mediterranean and Black seas that are soluble have been measured. These soluble fractions can affect the growth of microorganisms in the ocean and our results show that they are affected by mixing with pollutants from the surrounding land and shipping emissions. Atmospheric particles contribute to the soluble element loads found in the Mediterranean surface waters and influence the balance between nitrogen and phosphorus there.
A. Whitman Miller, Jim R. Muirhead, Amanda C. Reynolds, Mark S. Minton, and Karl J. Klug
Biogeosciences, 21, 3717–3734, https://doi.org/10.5194/bg-21-3717-2024, https://doi.org/10.5194/bg-21-3717-2024, 2024
Short summary
Short summary
High frequency pCO2 measurements reveal net neutral CO2 flux in a mesohaline reach of the Chesapeake Bay. Net off-gassing to the atmosphere begins in June when water temperatures rise above ~26ºC, continuing through November when temperatures fall below ~10ºC. Dissolved CO2 concentrations follow day–night cycles and are especially pronounced in warm waters. From December through May, the river is largely an uninterrupted sink for CO2 (i.e. CO2 is drawn out of the atmosphere into the river).
Young Shin Kwon, Tae Siek Rhee, Hyun-Cheol Kim, and Hyoun-Woo Kang
Biogeosciences, 21, 1847–1865, https://doi.org/10.5194/bg-21-1847-2024, https://doi.org/10.5194/bg-21-1847-2024, 2024
Short summary
Short summary
Delving into CO dynamics from the East Sea to the Bering Sea, our study unveils the influence of physical transport on CO budgets. By measuring CO concentrations and parameters, we elucidate the interplay between biological and physical processes, highlighting the role of lateral transport in shaping CO distributions. Our findings underscore the importance of considering both biogeochemical and physical drivers in understanding marine carbon fluxes.
John Prytherch, Sonja Murto, Ian Brown, Adam Ulfsbo, Brett F. Thornton, Volker Brüchert, Michael Tjernström, Anna Lunde Hermansson, Amanda T. Nylund, and Lina A. Holthusen
Biogeosciences, 21, 671–688, https://doi.org/10.5194/bg-21-671-2024, https://doi.org/10.5194/bg-21-671-2024, 2024
Short summary
Short summary
We directly measured methane and carbon dioxide exchange between ocean or sea ice and the atmosphere during an icebreaker-based expedition to the central Arctic Ocean (CAO) in summer 2021. These measurements can help constrain climate models and carbon budgets. The methane measurements, the first such made in the CAO, are lower than previous estimates and imply that the CAO is an insignificant contributor to Arctic methane emission. Gas exchange rates are slower than previous estimates.
Juan Yu, Lei Yu, Zhen He, Gui-Peng Yang, Jing-Guang Lai, and Qian Liu
Biogeosciences, 21, 161–176, https://doi.org/10.5194/bg-21-161-2024, https://doi.org/10.5194/bg-21-161-2024, 2024
Short summary
Short summary
The distributions of volatile organic sulfur compounds (VSCs) (DMS, COS, and CS2) in the seawater and atmosphere of the Bohai and Yellow Seas were evaluated. Seasonal variations in VSCs were found and showed summer > spring. The COS concentrations exhibited positive correlation with DOC concentrations in seawater during summer. VSCs concentrations in seawater decreased with the depth. Sea-to-air fluxes of COS, DMS, and CS2 indicated that these marginal seas are sources of atmospheric VSCs.
Patrick J. Duke, Roberta C. Hamme, Debby Ianson, Peter Landschützer, Mohamed M. M. Ahmed, Neil C. Swart, and Paul A. Covert
Biogeosciences, 20, 3919–3941, https://doi.org/10.5194/bg-20-3919-2023, https://doi.org/10.5194/bg-20-3919-2023, 2023
Short summary
Short summary
The ocean is both impacted by climate change and helps mitigate its effects through taking up carbon from the atmosphere. We used a machine learning approach to investigate what controls open-ocean carbon uptake in the northeast Pacific open ocean. Marine heatwaves that lasted 2–3 years increased uptake, while the upwelling strength of the Alaskan Gyre controlled uptake over 10-year time periods. The trend from 1998–2019 suggests carbon uptake in the northeast Pacific open ocean is increasing.
Judith Vogt, David Risk, Evelise Bourlon, Kumiko Azetsu-Scott, Evan N. Edinger, and Owen A. Sherwood
Biogeosciences, 20, 1773–1787, https://doi.org/10.5194/bg-20-1773-2023, https://doi.org/10.5194/bg-20-1773-2023, 2023
Short summary
Short summary
The release of the greenhouse gas methane from Arctic submarine sources could exacerbate climate change in a positive feedback. Continuous monitoring of atmospheric methane levels over a 5100 km voyage in the western margin of the Labrador Sea and Baffin Bay revealed above-global averages likely affected by both onshore and offshore methane sources. Instantaneous sea–air methane fluxes were near zero at all measured stations, including a persistent cold-seep location.
George Manville, Thomas G. Bell, Jane P. Mulcahy, Rafel Simó, Martí Galí, Anoop S. Mahajan, Shrivardhan Hulswar, and Paul R. Halloran
Biogeosciences, 20, 1813–1828, https://doi.org/10.5194/bg-20-1813-2023, https://doi.org/10.5194/bg-20-1813-2023, 2023
Short summary
Short summary
We present the first global investigation of controls on seawater dimethylsulfide (DMS) spatial variability over scales of up to 100 km. Sea surface height anomalies, density, and chlorophyll a help explain almost 80 % of DMS variability. The results suggest that physical and biogeochemical processes play an equally important role in controlling DMS variability. These data provide independent confirmation that existing parameterisations of seawater DMS concentration use appropriate variables.
Ryo Dobashi and David T. Ho
Biogeosciences, 20, 1075–1087, https://doi.org/10.5194/bg-20-1075-2023, https://doi.org/10.5194/bg-20-1075-2023, 2023
Short summary
Short summary
Seagrass meadows are productive ecosystems and bury much carbon. Understanding their role in the global carbon cycle requires knowledge of air–sea CO2 fluxes and hence the knowledge of gas transfer velocity (k). In this study, k was determined from the dual tracer technique in Florida Bay. The observed gas transfer velocity was lower than previous studies in the coastal and open oceans at the same wind speeds, most likely due to wave attenuation by seagrass and limited wind fetch in this area.
Valérie Gros, Bernard Bonsang, Roland Sarda-Estève, Anna Nikolopoulos, Katja Metfies, Matthias Wietz, and Ilka Peeken
Biogeosciences, 20, 851–867, https://doi.org/10.5194/bg-20-851-2023, https://doi.org/10.5194/bg-20-851-2023, 2023
Short summary
Short summary
The oceans are both sources and sinks for trace gases important for atmospheric chemistry and marine ecology. Here, we quantified selected trace gases (including the biological metabolites dissolved dimethyl sulfide, methanethiol and isoprene) along a 2500 km transect from the North Atlantic to the Arctic Ocean. In the context of phytoplankton and bacterial communities, our study suggests that methanethiol (rarely measured before) might substantially influence ocean–atmosphere cycling.
Tsukasa Dobashi, Yuzo Miyazaki, Eri Tachibana, Kazutaka Takahashi, Sachiko Horii, Fuminori Hashihama, Saori Yasui-Tamura, Yoko Iwamoto, Shu-Kuan Wong, and Koji Hamasaki
Biogeosciences, 20, 439–449, https://doi.org/10.5194/bg-20-439-2023, https://doi.org/10.5194/bg-20-439-2023, 2023
Short summary
Short summary
Water-soluble organic nitrogen (WSON) in marine aerosols is important for biogeochemical cycling of bioelements. Our shipboard measurements suggested that reactive nitrogen produced and exuded by nitrogen-fixing microorganisms in surface seawater likely contributed to the formation of WSON aerosols in the subtropical North Pacific. This study provides new implications for the role of marine microbial activity in the formation of WSON aerosols in the ocean surface.
Lukas Eickhoff, Maddalena Bayer-Giraldi, Naama Reicher, Yinon Rudich, and Thomas Koop
Biogeosciences, 20, 1–14, https://doi.org/10.5194/bg-20-1-2023, https://doi.org/10.5194/bg-20-1-2023, 2023
Short summary
Short summary
The formation of ice is an important process in Earth’s atmosphere, biosphere, and cryosphere, in particular in polar regions. Our research focuses on the influence of the sea ice diatom Fragilariopsis cylindrus and of molecules produced by it upon heterogenous ice nucleation. For that purpose, we studied the freezing of tiny droplets containing the diatoms in a microfluidic device. Together with previous studies, our results suggest a common freezing behaviour of various sea ice diatoms.
Lucía Gutiérrez-Loza, Erik Nilsson, Marcus B. Wallin, Erik Sahlée, and Anna Rutgersson
Biogeosciences, 19, 5645–5665, https://doi.org/10.5194/bg-19-5645-2022, https://doi.org/10.5194/bg-19-5645-2022, 2022
Short summary
Short summary
The exchange of CO2 between the ocean and the atmosphere is an essential aspect of the global carbon cycle and is highly relevant for the Earth's climate. In this study, we used 9 years of in situ measurements to evaluate the temporal variability in the air–sea CO2 fluxes in the Baltic Sea. Furthermore, using this long record, we assessed the effect of atmospheric and water-side mechanisms controlling the efficiency of the air–sea CO2 exchange under different wind-speed conditions.
Li Zhou, Dennis Booge, Miming Zhang, and Christa A. Marandino
Biogeosciences, 19, 5021–5040, https://doi.org/10.5194/bg-19-5021-2022, https://doi.org/10.5194/bg-19-5021-2022, 2022
Short summary
Short summary
Trace gas air–sea exchange exerts an important control on air quality and climate, especially in the Southern Ocean (SO). Almost all of the measurements there are skewed to summer, but it is essential to expand our measurement database over greater temporal and spatial scales. Therefore, we report measured concentrations of dimethylsulfide (DMS, as well as related sulfur compounds) and isoprene in the Atlantic sector of the SO. The observations of isoprene are the first in the winter in the SO.
Theresa Barthelmeß and Anja Engel
Biogeosciences, 19, 4965–4992, https://doi.org/10.5194/bg-19-4965-2022, https://doi.org/10.5194/bg-19-4965-2022, 2022
Short summary
Short summary
Greenhouse gases released by human activity cause a global rise in mean temperatures. While scientists can predict how much of these gases accumulate in the atmosphere based on not only human-derived sources but also oceanic sinks, it is rather difficult to predict the major influence of coastal ecosystems. We provide a detailed study on the occurrence, composition, and controls of substances that suppress gas exchange. We thus help to determine what controls coastal greenhouse gas fluxes.
Daniel J. Ford, Gavin H. Tilstone, Jamie D. Shutler, and Vassilis Kitidis
Biogeosciences, 19, 4287–4304, https://doi.org/10.5194/bg-19-4287-2022, https://doi.org/10.5194/bg-19-4287-2022, 2022
Short summary
Short summary
This study explores the seasonal, inter-annual, and multi-year drivers of the South Atlantic air–sea CO2 flux. Our analysis showed seasonal sea surface temperatures dominate in the subtropics, and the subpolar regions correlated with biological processes. Inter-annually, the El Niño–Southern Oscillation correlated with the CO2 flux by modifying sea surface temperatures and biological activity. Long-term trends indicated an important biological contribution to changes in the air–sea CO2 flux.
Laique M. Djeutchouang, Nicolette Chang, Luke Gregor, Marcello Vichi, and Pedro M. S. Monteiro
Biogeosciences, 19, 4171–4195, https://doi.org/10.5194/bg-19-4171-2022, https://doi.org/10.5194/bg-19-4171-2022, 2022
Short summary
Short summary
Based on observing system simulation experiments using a mesoscale-resolving model, we found that to significantly improve uncertainties and biases in carbon dioxide (CO2) mapping in the Southern Ocean, it is essential to resolve the seasonal cycle (SC) of the meridional gradient of CO2 through high frequency (at least daily) observations that also span the region's meridional axis. We also showed that the estimated SC anomaly and mean annual CO2 are highly sensitive to seasonal sampling biases.
Liliane Merlivat, Michael Hemming, Jacqueline Boutin, David Antoine, Vincenzo Vellucci, Melek Golbol, Gareth A. Lee, and Laurence Beaumont
Biogeosciences, 19, 3911–3920, https://doi.org/10.5194/bg-19-3911-2022, https://doi.org/10.5194/bg-19-3911-2022, 2022
Short summary
Short summary
We use in situ high-temporal-resolution measurements of dissolved inorganic carbon and atmospheric parameters at the air–sea interface to analyse phytoplankton bloom initiation identified as the net rate of biological carbon uptake in the Mediterranean Sea. The shift from wind-driven to buoyancy-driven mixing creates conditions for blooms to begin. Active mixing at the air–sea interface leads to the onset of the surface phytoplankton bloom due to the relaxation of wind speed following storms.
Léa Olivier, Jacqueline Boutin, Gilles Reverdin, Nathalie Lefèvre, Peter Landschützer, Sabrina Speich, Johannes Karstensen, Matthieu Labaste, Christophe Noisel, Markus Ritschel, Tobias Steinhoff, and Rik Wanninkhof
Biogeosciences, 19, 2969–2988, https://doi.org/10.5194/bg-19-2969-2022, https://doi.org/10.5194/bg-19-2969-2022, 2022
Short summary
Short summary
We investigate the impact of the interactions between eddies and the Amazon River plume on the CO2 air–sea fluxes to better characterize the ocean carbon sink in winter 2020. The region is a strong CO2 sink, previously underestimated by a factor of 10 due to a lack of data and understanding of the processes responsible for the variability in ocean carbon parameters. The CO2 absorption is mainly driven by freshwater from the Amazon entrained by eddies and by the winter seasonal cooling.
Hana Jurikova, Osamu Abe, Fuh-Kwo Shiah, and Mao-Chang Liang
Biogeosciences, 19, 2043–2058, https://doi.org/10.5194/bg-19-2043-2022, https://doi.org/10.5194/bg-19-2043-2022, 2022
Short summary
Short summary
We studied the isotopic composition of oxygen dissolved in seawater in the South China Sea. This tells us about the origin of oxygen in the water column, distinguishing between biological oxygen produced by phytoplankton communities and atmospheric oxygen entering seawater through gas exchange. We found that the East Asian Monsoon plays an important role in determining the amount of oxygen produced vs. consumed by the phytoplankton, as well as in inducing vertical water mass mixing.
Richard P. Sims, Michael Bedington, Ute Schuster, Andrew J. Watson, Vassilis Kitidis, Ricardo Torres, Helen S. Findlay, James R. Fishwick, Ian Brown, and Thomas G. Bell
Biogeosciences, 19, 1657–1674, https://doi.org/10.5194/bg-19-1657-2022, https://doi.org/10.5194/bg-19-1657-2022, 2022
Short summary
Short summary
The amount of carbon dioxide (CO2) being absorbed by the ocean is relevant to the earth's climate. CO2 values in the coastal ocean and estuaries are not well known because of the instrumentation used. We used a new approach to measure CO2 across the coastal and estuarine zone. We found that CO2 and salinity were linked to the state of the tide. We used our CO2 measurements and model salinity to predict CO2. Previous studies overestimate how much CO2 the coastal ocean draws down at our site.
Thi Tuyet Trang Chau, Marion Gehlen, and Frédéric Chevallier
Biogeosciences, 19, 1087–1109, https://doi.org/10.5194/bg-19-1087-2022, https://doi.org/10.5194/bg-19-1087-2022, 2022
Short summary
Short summary
Air–sea CO2 fluxes and associated uncertainty over the open ocean to coastal shelves are estimated with a new ensemble-based reconstruction of pCO2 trained on observation-based data. The regional distribution and seasonality of CO2 sources and sinks are consistent with those suggested in previous studies as well as mechanisms discussed therein. The ensemble-based uncertainty field allows identifying critical regions where improvements in pCO2 and air–sea CO2 flux estimates should be a priority.
Charel Wohl, Anna E. Jones, William T. Sturges, Philip D. Nightingale, Brent Else, Brian J. Butterworth, and Mingxi Yang
Biogeosciences, 19, 1021–1045, https://doi.org/10.5194/bg-19-1021-2022, https://doi.org/10.5194/bg-19-1021-2022, 2022
Short summary
Short summary
We measured concentrations of five different organic gases in seawater in the high Arctic during summer. We found higher concentrations near the surface of the water column (top 5–10 m) and in areas of partial ice cover. This suggests that sea ice influences the concentrations of these gases. These gases indirectly exert a slight cooling effect on the climate, and it is therefore important to measure the levels accurately for future climate predictions.
Alain de Verneil, Zouhair Lachkar, Shafer Smith, and Marina Lévy
Biogeosciences, 19, 907–929, https://doi.org/10.5194/bg-19-907-2022, https://doi.org/10.5194/bg-19-907-2022, 2022
Short summary
Short summary
The Arabian Sea is a natural CO2 source to the atmosphere, but previous work highlights discrepancies between data and models in estimating air–sea CO2 flux. In this study, we use a regional ocean model, achieve a flux closer to available data, and break down the seasonal cycles that impact it, with one result being the great importance of monsoon winds. As demonstrated in a meta-analysis, differences from data still remain, highlighting the great need for further regional data collection.
Jesse M. Vance, Kim Currie, John Zeldis, Peter W. Dillingham, and Cliff S. Law
Biogeosciences, 19, 241–269, https://doi.org/10.5194/bg-19-241-2022, https://doi.org/10.5194/bg-19-241-2022, 2022
Short summary
Short summary
Long-term monitoring is needed to detect changes in our environment. Time series of ocean carbon have aided our understanding of seasonal cycles and provided evidence for ocean acidification. Data gaps are inevitable, yet no standard method for filling gaps exists. We present a regression approach here and compare it to seven other common methods to understand the impact of different approaches when assessing seasonal to climatic variability in ocean carbon.
Daniel J. Ford, Gavin H. Tilstone, Jamie D. Shutler, and Vassilis Kitidis
Biogeosciences, 19, 93–115, https://doi.org/10.5194/bg-19-93-2022, https://doi.org/10.5194/bg-19-93-2022, 2022
Short summary
Short summary
This study identifies the most accurate biological proxy for the estimation of seawater pCO2 fields, which are key to assessing the ocean carbon sink. Our analysis shows that the net community production (NCP), the balance between photosynthesis and respiration, was more accurate than chlorophyll a within a neural network scheme. The improved pCO2 estimates, based on NCP, identified the South Atlantic Ocean as a net CO2 source, compared to a CO2 sink using chlorophyll a.
Birthe Zäncker, Michael Cunliffe, and Anja Engel
Biogeosciences, 18, 2107–2118, https://doi.org/10.5194/bg-18-2107-2021, https://doi.org/10.5194/bg-18-2107-2021, 2021
Short summary
Short summary
Fungi are found in numerous marine environments. Our study found an increased importance of fungi in the Ionian Sea, where bacterial and phytoplankton counts were reduced, but organic matter was still available, suggesting fungi might benefit from the reduced competition from bacteria in low-nutrient, low-chlorophyll (LNLC) regions.
Jon Olafsson, Solveig R. Olafsdottir, Taro Takahashi, Magnus Danielsen, and Thorarinn S. Arnarson
Biogeosciences, 18, 1689–1701, https://doi.org/10.5194/bg-18-1689-2021, https://doi.org/10.5194/bg-18-1689-2021, 2021
Short summary
Short summary
The Atlantic north of 50° N is an intense ocean sink area for atmospheric CO2. Observations in the vicinity of Iceland reveal a previously unrecognized Arctic contribution to the North Atlantic CO2 sink. Sustained CO2 influx to waters flowing from the Arctic Ocean is linked to their excess alkalinity derived from sources in the changing Arctic. The results relate to the following question: will the North Atlantic continue to absorb CO2 in the future as it has in the past?
Wei-Lei Wang, Guisheng Song, François Primeau, Eric S. Saltzman, Thomas G. Bell, and J. Keith Moore
Biogeosciences, 17, 5335–5354, https://doi.org/10.5194/bg-17-5335-2020, https://doi.org/10.5194/bg-17-5335-2020, 2020
Short summary
Short summary
Dimethyl sulfide, a volatile compound produced as a byproduct of marine phytoplankton activity, can be emitted to the atmosphere via gas exchange. In the atmosphere, DMS is oxidized to cloud condensation nuclei, thus contributing to cloud formation. Therefore, oceanic DMS plays an important role in regulating the planet's climate by influencing the radiation budget. In this study, we use an artificial neural network model to update the global DMS climatology and estimate the sea-to-air flux.
Yuri Galletti, Silvia Becagli, Alcide di Sarra, Margherita Gonnelli, Elvira Pulido-Villena, Damiano M. Sferlazzo, Rita Traversi, Stefano Vestri, and Chiara Santinelli
Biogeosciences, 17, 3669–3684, https://doi.org/10.5194/bg-17-3669-2020, https://doi.org/10.5194/bg-17-3669-2020, 2020
Short summary
Short summary
This paper reports the first data about atmospheric deposition of dissolved organic matter (DOM) on the island of Lampedusa. It also shows the implications for the surface marine layer by studying the impact of atmospheric organic carbon deposition in the marine ecosystem. It is a preliminary study, but it is pioneering and important for having new data that can be crucial in order to understand the impact of atmospheric deposition on the marine carbon cycle in a global climate change scenario.
Charel Wohl, Ian Brown, Vassilis Kitidis, Anna E. Jones, William T. Sturges, Philip D. Nightingale, and Mingxi Yang
Biogeosciences, 17, 2593–2619, https://doi.org/10.5194/bg-17-2593-2020, https://doi.org/10.5194/bg-17-2593-2020, 2020
Short summary
Short summary
The oceans represent a poorly understood source of organic carbon to the atmosphere. In this paper, we present ship-based measurements of specific compounds in ambient air and seawater of the Southern Ocean. We present fluxes of these gases between air and sea at very high resolution. The data also contain evidence for day and night variations in some of these compounds. These measurements can be used to better understand the role of the Southern Ocean in the cycling of these compounds.
Rebecca L. Jackson, Albert J. Gabric, Roger Cropp, and Matthew T. Woodhouse
Biogeosciences, 17, 2181–2204, https://doi.org/10.5194/bg-17-2181-2020, https://doi.org/10.5194/bg-17-2181-2020, 2020
Short summary
Short summary
Coral reefs are a strong source of atmospheric sulfur through stress-induced emissions of dimethylsulfide (DMS). This biogenic sulfur can influence aerosol and cloud properties and, consequently, the radiative balance over the ocean. DMS emissions may therefore help to mitigate coral physiological stress via increased low-level cloud cover and reduced sea surface temperature. The importance of DMS in coral physiology and climate is reviewed and the implications for coral bleaching are discussed.
Louise Delaigue, Helmuth Thomas, and Alfonso Mucci
Biogeosciences, 17, 547–566, https://doi.org/10.5194/bg-17-547-2020, https://doi.org/10.5194/bg-17-547-2020, 2020
Short summary
Short summary
This paper reports on the first compilation and analysis of the surface water pCO2 distribution in the Saguenay Fjord, the southernmost subarctic fjord in the Northern Hemisphere, and thus fills a significant knowledge gap in current regional estimates of estuarine CO2 emissions.
Tim Fischer, Annette Kock, Damian L. Arévalo-Martínez, Marcus Dengler, Peter Brandt, and Hermann W. Bange
Biogeosciences, 16, 2307–2328, https://doi.org/10.5194/bg-16-2307-2019, https://doi.org/10.5194/bg-16-2307-2019, 2019
Short summary
Short summary
We investigated air–sea gas exchange in oceanic upwelling regions for the case of nitrous oxide off Peru. In this region, routine concentration measurements from ships at 5 m or 10 m depth prove to overestimate surface (bulk) concentration. Thus, standard estimates of gas exchange will show systematic error. This is due to very shallow stratified layers that inhibit exchange between surface water and waters below and can exist for several days. Maximum bias occurs in moderate wind conditions.
Mingxi Yang, Thomas G. Bell, Ian J. Brown, James R. Fishwick, Vassilis Kitidis, Philip D. Nightingale, Andrew P. Rees, and Timothy J. Smyth
Biogeosciences, 16, 961–978, https://doi.org/10.5194/bg-16-961-2019, https://doi.org/10.5194/bg-16-961-2019, 2019
Short summary
Short summary
We quantify the emissions and uptake of the greenhouse gases carbon dioxide and methane from the coastal seas of the UK over 1 year using the state-of-the-art eddy covariance technique. Our measurements show how these air–sea fluxes vary twice a day (tidal), diurnally (circadian) and seasonally. We also estimate the air–sea gas transfer velocity, which is essential for modelling and predicting coastal air-sea exchange.
Riley X. Brady, Nicole S. Lovenduski, Michael A. Alexander, Michael Jacox, and Nicolas Gruber
Biogeosciences, 16, 329–346, https://doi.org/10.5194/bg-16-329-2019, https://doi.org/10.5194/bg-16-329-2019, 2019
Stelios Myriokefalitakis, Akinori Ito, Maria Kanakidou, Athanasios Nenes, Maarten C. Krol, Natalie M. Mahowald, Rachel A. Scanza, Douglas S. Hamilton, Matthew S. Johnson, Nicholas Meskhidze, Jasper F. Kok, Cecile Guieu, Alex R. Baker, Timothy D. Jickells, Manmohan M. Sarin, Srinivas Bikkina, Rachel Shelley, Andrew Bowie, Morgane M. G. Perron, and Robert A. Duce
Biogeosciences, 15, 6659–6684, https://doi.org/10.5194/bg-15-6659-2018, https://doi.org/10.5194/bg-15-6659-2018, 2018
Short summary
Short summary
The first atmospheric iron (Fe) deposition model intercomparison is presented in this study, as a result of the deliberations of the United Nations Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection (GESAMP; http://www.gesamp.org/) Working Group 38. We conclude that model diversity over remote oceans reflects uncertainty in the Fe content parameterizations of dust aerosols, combustion aerosol emissions and the size distribution of transported aerosol Fe.
Liliane Merlivat, Jacqueline Boutin, David Antoine, Laurence Beaumont, Melek Golbol, and Vincenzo Vellucci
Biogeosciences, 15, 5653–5662, https://doi.org/10.5194/bg-15-5653-2018, https://doi.org/10.5194/bg-15-5653-2018, 2018
Short summary
Short summary
The fugacity of carbon dioxide in seawater (fCO2) was measured hourly in the surface waters of the NW Mediterranean Sea during two 3-year sequences separated by 18 years. A decrease of pH of 0.0022 yr−1 was computed. About 85 % of the accumulation of dissolved inorganic carbon (DIC) comes from chemical equilibration with increasing atmospheric CO2; the remaining 15 % accumulation is consistent with estimates of transfer of Atlantic waters through the Gibraltar Strait.
Amanda R. Fay, Nicole S. Lovenduski, Galen A. McKinley, David R. Munro, Colm Sweeney, Alison R. Gray, Peter Landschützer, Britton B. Stephens, Taro Takahashi, and Nancy Williams
Biogeosciences, 15, 3841–3855, https://doi.org/10.5194/bg-15-3841-2018, https://doi.org/10.5194/bg-15-3841-2018, 2018
Short summary
Short summary
The Southern Ocean is highly under-sampled and since this region dominates the ocean sink for CO2, understanding change is critical. Here we utilize available observations to evaluate how the seasonal cycle, variability, and trends in surface ocean carbon in the well-sampled Drake Passage region compare to that of the broader subpolar Southern Ocean. Results indicate that the Drake Passage is representative of the broader region; however, additional winter observations would improve comparisons.
Cui-Ci Sun, Martin Sperling, and Anja Engel
Biogeosciences, 15, 3577–3589, https://doi.org/10.5194/bg-15-3577-2018, https://doi.org/10.5194/bg-15-3577-2018, 2018
Short summary
Short summary
Biogenic gel particles such as transparent exopolymer particles (TEP) and Coomassie stainable particles (CSP) are important components in the sea-surface microlayer (SML). Their potential role in air–sea gas exchange and in primary organic aerosol emission has generated considerable research interest. Our wind wave channel experiment revealed how wind speed controls the accumulation and size distribution of biogenic gel particles in the SML.
N. Precious Mongwe, Marcello Vichi, and Pedro M. S. Monteiro
Biogeosciences, 15, 2851–2872, https://doi.org/10.5194/bg-15-2851-2018, https://doi.org/10.5194/bg-15-2851-2018, 2018
Short summary
Short summary
Here we analyze seasonal cycle of CO2 biases in 10 CMIP5 models in the SO. We find two main model biases; exaggeration of primary production such that biologically driven DIC changes mainly regulates FCO2 variability, and an overestimation of the role of solubility, such that changes in temperature dominantly drive FCO2 seasonal changes to an extent of opposing biological CO2 uptake in spring. CMIP5 models show greater zonal homogeneity in the seasonal cycle of FCO2 than observational products.
Allison R. Moreno, George I. Hagstrom, Francois W. Primeau, Simon A. Levin, and Adam C. Martiny
Biogeosciences, 15, 2761–2779, https://doi.org/10.5194/bg-15-2761-2018, https://doi.org/10.5194/bg-15-2761-2018, 2018
Short summary
Short summary
To bridge the missing links between variable marine elemental stoichiometry, phytoplankton physiology and carbon cycling, we embed four environmentally controlled stoichiometric models into a five-box ocean model. As predicted each model varied in its influence on the biological pump. Surprisingly, we found that variation can lead to nonlinear controls on atmospheric CO2 and carbon export, suggesting the need for further studies of ocean C : P and the impact on ocean carbon cycling.
Luke Gregor, Schalk Kok, and Pedro M. S. Monteiro
Biogeosciences, 15, 2361–2378, https://doi.org/10.5194/bg-15-2361-2018, https://doi.org/10.5194/bg-15-2361-2018, 2018
Short summary
Short summary
The Southern Ocean accounts for a large portion of the variability in oceanic CO2 uptake. However, the drivers of these changes are not understood due to a lack of observations. In this study, we used an ensemble of gap-filling methods to estimate surface CO2. We found that winter was a more important driver of longer-term variability driven by changes in wind stress. Summer variability of CO2 was driven primarily by increases in primary production.
Erik T. Buitenhuis, Parvadha Suntharalingam, and Corinne Le Quéré
Biogeosciences, 15, 2161–2175, https://doi.org/10.5194/bg-15-2161-2018, https://doi.org/10.5194/bg-15-2161-2018, 2018
Short summary
Short summary
Thanks to decreases in CFC concentrations, N2O is now the third-most important greenhouse gas, and the dominant contributor to stratospheric ozone depletion. Here we estimate the ocean–atmosphere N2O flux. We find that an estimate based on observations alone has a large uncertainty. By combining observations and a range of model simulations we find that the uncertainty is much reduced to 2.45 ± 0.8 Tg N yr−1, and better constrained and at the lower end of the estimate in the latest IPCC report.
Sayaka Yasunaka, Eko Siswanto, Are Olsen, Mario Hoppema, Eiji Watanabe, Agneta Fransson, Melissa Chierici, Akihiko Murata, Siv K. Lauvset, Rik Wanninkhof, Taro Takahashi, Naohiro Kosugi, Abdirahman M. Omar, Steven van Heuven, and Jeremy T. Mathis
Biogeosciences, 15, 1643–1661, https://doi.org/10.5194/bg-15-1643-2018, https://doi.org/10.5194/bg-15-1643-2018, 2018
Short summary
Short summary
We estimated monthly air–sea CO2 fluxes in the Arctic Ocean and its adjacent seas north of 60° N from 1997 to 2014, after mapping pCO2 in the surface water using a self-organizing map technique. The addition of Chl a as a parameter enabled us to improve the estimate of pCO2 via better representation of its decline in spring. The uncertainty in the CO2 flux estimate was reduced, and a net annual Arctic Ocean CO2 uptake of 180 ± 130 Tg C y−1 was determined to be significant.
Alizée Roobaert, Goulven G. Laruelle, Peter Landschützer, and Pierre Regnier
Biogeosciences, 15, 1701–1720, https://doi.org/10.5194/bg-15-1701-2018, https://doi.org/10.5194/bg-15-1701-2018, 2018
Chao Zhang, Huiwang Gao, Xiaohong Yao, Zongbo Shi, Jinhui Shi, Yang Yu, Ling Meng, and Xinyu Guo
Biogeosciences, 15, 749–765, https://doi.org/10.5194/bg-15-749-2018, https://doi.org/10.5194/bg-15-749-2018, 2018
Short summary
Short summary
This study compares the response of phytoplankton growth in the northwest Pacific to those in the Yellow Sea. In general, larger positive responses of phytoplankton induced by combined nutrients (in the subtropical gyre of the northwest Pacific) than those induced by a single nutrient (in the Kuroshio Extension and the Yellow Sea) from the dust are observed. We also emphasize the importance of an increase in bioavailable P stock for phytoplankton growth following dust addition.
Goulven G. Laruelle, Peter Landschützer, Nicolas Gruber, Jean-Louis Tison, Bruno Delille, and Pierre Regnier
Biogeosciences, 14, 4545–4561, https://doi.org/10.5194/bg-14-4545-2017, https://doi.org/10.5194/bg-14-4545-2017, 2017
Cited articles
Abril, G., Nogueira, E., Hetcheber, H., Cabeçadas, G., Lemaire, E., and Brogueira, M.: Behaviour of organic carbon in nine contrasting European estuaries, Estuar. Coast. Shelf Sci., 54, 241–262, 2002.
Abril, G., Etcheber, H., Delille, B., Frankignoulle, M., and Borges, A.V.: Carbonate dissolution in the turbid and eutrophic Loire estuary, Mar. Ecol-Prog. Ser., 259, 129–138, 2003.
Abril G., Commarieu M., Maro D., Fontugne M., Guérin F., and Etcheber, H.: A massive dissolved inorganic carbon release at spring tide in a highly turbid estuary, Geophys. Res. Lett., 31, L09316, https://doi.org/10.1029/2004GL019714, 2004.
Abril, G., Richard, S., and Guérin, F.: In-situ measurements of dissolved gases (CH4 and CO2) in a wide range of concentrations in a tropical reservoir using an equilibrator, Sci. Total Environ, 354, 246–251, 2006.
Abril, G., Commarieu, M., Sottolichio, A., Bretel, P., and Guérin, F.: Turbidity limits gas exchange in a large macrotidal estuary, Estuar. Coast. Shelf Sci., 83, 342–348, 2009.
Allen, M. R., Frame, D. J., Huntingford, C., Jones, C., Lowe, J. A., Meinshausen, M., and Meinshausen, N.: Warming caused by cumulative carbon emissions towards the trillionth tonne, Nature, 458, 1163–1166, 2009.
Amarante, O. A., Silva, F. J., and Rios Filho, L. G.: Atlas Eólico, Estado do Rio de Janeiro, Secretaria de Estado da Energia, da Indústria Naval e do Petróleo, Rio de Janeiro, 64 pp., available at: http://www.cresesb.cepel.br/publicacoes/download/atlas_eolico/AtlasEolicoRJ.pdf, 2002.
Araujo, M., Noriega, C., and Lefèvre, N.: Nutrients and carbon fluxes in the estuaries of major rivers flowing into the tropical Atlantic, Front. Mar. Sci., 1, 1–16, 2014.
Bauer, J. E., Cai, W.J., Raymond, P., Bianchi, T. S., Hopkinson, C. S., and Regnier, P. G.: The changing carbon cycle of the coastal ocean, Nature, 504, 61–70, https://doi.org/10.1038/nature12857, 2013.
Benson, B. B. and Krause, D.: The concentration and isotopic fractionation of oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere, Limnol. Oceanogr., 29, 620–632, 1984.
Bérgamo, A. S.: Caracteristicas hidrograficaz, da circulacao, e dos transportes de volume e sal na Baia de Guanabara (RJ): variacoes sazonais e moduladas pela mare, Ph.D. thesis, Universidade de Sao Paulo, Sao Paulo, 200 pp., 2010.
Bernardes, M. C., Knoppers, B. A., Rezende, C. E., Souza, W. F., and Ovalle, A. R.: Land-sea interface features of four estuaries on the South America Atlantic coast, Braz. J. Biol., 72, 761–774, 2012.
Bidone, E. D. and Lacerda, L. D.: The use of DPSIR framework to evaluate sustainability in coastal areas. Case study: Guanabara Bay basin, Rio de Janeiro, Brazil, Reg. Environ. Change, 4, 5–16, 2004.
Borges, A. C., Sanders, C. J., Santos, H. L. R., Araripe, D. R., Machado, W., and Patchineelam, S. R.: Eutrophication history of Guanabara Bay (SE Brazil) recorded by phosphorus flux to sediments from a degraded mangrove area, Mar. Pollut. Bull., 58, 1750–1754, 2009.
Borges, A. V.: Do we have enough pieces of the jigsaw to integrate CO2 fluxes in the coastal ocean?, Estuaries, 28, 3–27, 2005.
Borges, A. V. and Abril, G.: Carbon Dioxide and Methane Dynamics in Estuaries, in: Treatise on Estuarine and Coastal Science, edited by: Eric, W. and Donald, M., Academic Press, Amsterdam, 119–161, 2011.
Borges, A. V. and Frankignoulle, M.: Daily and seasonal variations of the partial pressure of CO2 in surface seawater along Belgian and southern Dutch coastal areas, J. Mar. Syst., 19, 251–266, 1999.
Borges, A. V. and Frankignoulle, M.: Distribution and air-water exchange of carbon dioxide in the Scheldt plume off the Belgian coast, Biogeochemistry, 59, 41–67, 2002.
Borges, A. V. and Gypens, N.: Carbonate chemistry in the coastal zone responds more strongly to eutrophication than ocean acidification, Limnol. Oceanogr., 55, 346–353, 2010.
Bouillon, S., Borges, A. V., Castañeda-Moya, E., Diele, K., Dittmar, T., Duke, N. C, Kristensen, E., Lee, S. Y., Marchand, C., Middelburg, J. J., Rivera-Monroy, V., Smith T. J., and Twilley, R. R.: Mangrove production and carbon sinks: a revision of global budget estimates, Global Biogeochem. Cy., 22, GB2013, https://doi.org/10.1029/2007GB003052, 2008.
Bourton, J. D. and Liss, P. S.: Estuarine Chemistry, Academic Press, London, 1976.
Bozec, Y., Merlivat, L., Baudoux, A. C., Beaumont, L., Blain, S., Bucciarelli, E., Danguy, T., Grossteffan, E., Guillot, A., Guillou, J., Répécaud, M., and Tréguer, P.: Diurnal to inter-annual dynamics of pCO2 recorded by a CARIOCA sensor in a temperate coastal ecosystem (2003–2009), Mar. Chem., 126, 13–26, 2011.
Bozec, Y., Cariou, T., Macé, E., Morin, P., Thuillier, D., and Vernet, M.: Seasonal dynamics of air-sea CO2 fluxes in the inner and outer Loire estuary (NW Europe), Estuar. Coast. Shelf Sci., 100, 58–71, 2012.
Bricker, S., Ferreira, J., and Simas, T.: An integrated methodology for assessment of estuarine trophic status, Ecol. Modell., 169, 39–60, 2003.
Cai, W.-J., Pomeroy, L. R., Moran, M. A., and Wang, Y. C.: Oxygen and carbon dioxide mass balance for the estuarine-intertidal marsh complex of five rivers in the southeastern US, Limnol. Oceanogr., 44, 639–649, 1999.
Cai, W.-J.: Riverine inorganic carbon flux and rate of biological uptake in the Mississippi River plume, Geophys. Res. Lett., 30, 1032, https://doi.org/10.1029/2002GL016312, 2003.
Cai, W.-J.: Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration?, Annu. Rev. Mar. Sci., 3, 123–145, 2011.
Cai, W.-J., Hu, X., Huang, W.-J., Murrell, M. C., Lehrter, J. C., Lohrenz, S. E., Chou, W.-C., Zhai, W., Hollibaugh, J. T., and Wang, Y.: Acidification of subsurface coastal waters enhanced by eutrophication, Nat. Geosci., 4, 766–770, 2011.
Carmouze, J., Knoppers, B. A., and Vasconcelos, P. A.: Metabolism of Saquarema Lagoon, Brazil, Biogeochemistry, 2, 129–148, 1991.
Carreira, R. S., Wagener, A. L. R., Readman, J. W., Fileman, T. W., Macko, S. A., and Veiga, Á.: Changes in the sedimentary organic carbon pool of a fertilized tropical estuary, Guanabara Bay, Brazil: an elemental, isotopic and molecular marker approach, Mar. Chem., 79, 207–227, 2002.
Chen, C. C., Gong, G. C., and Shiah, F. K.: Hypoxia in the East China Sea: One of the largest coastal low oxygen areas in the world, Mar. Environ. Res., 64, 399–408, 2007.
Chen, C.-T. A., Huang, T.-H., Chen, Y.-C., Bai, Y., He, X., and Kang, Y.: Air–sea exchanges of CO2 in the world's coastal seas, Biogeosciences, 10, 6509–6544, https://doi.org/10.5194/bg-10-6509-2013, 2013.
Chou, W.-C., Gong, G.-C., Cai, W.-J., and Tseng, C.-M.: Seasonality of CO2 in coastal oceans altered by increasing anthropogenic nutrient delivery from large rivers: evidence from the Changjiang-East China Sea system, Biogeosciences, 10, 3889–3899, https://doi.org/10.5194/bg-10-3889-2013, 2013.
Cloern, J.: Our evolving conceptual model of the coastal eutrophication problem, Mar. Ecol. Prog. Ser., 210, 223–253, 2001.
Cloern, J. E., Foster, S. Q., and Kleckner, A. E.: Phytoplankton primary production in the world's estuarine-coastal ecosystems, Biogeosciences, 11, 2477–2501, https://doi.org/10.5194/bg-11-2477-2014, 2014.
Cohen, J. E., Small, C., Mellinger, A., Gallup, J., and Jeffrey S.: Estimates of coastal populations, Science, 278, 1209–1213, 1997.
Dai, M., Zhai, W., Cai, W.-J., Callahan, J., Huang, B., Shang, S., Huang, T., Li, X., Lu, Z., Chen, W., and Chen, Z.: Effects of an estuarine plume-associated bloom on the carbonate system in the lower reaches of the Pearl River estuary and the coastal zone of the northern South China Sea, Cont. Shelf Res, 28, 1416–1423, 2008.
Dai, M., Lu, Z., Zhai, W., Chen, B., Cao, Z., Zhou, K., Cai, W., and Chen, C. A.: Diurnal variations of surface seawater pCO2 in contrasting coastal environments, Limnol. Oceanogr., 54, 735–745, 2009.
Dickson, A. G. and Millero, F. J.: A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media, Deep-Sea Res., 34, 1733–1743, 1987.
Doney, S. C., Fabry, V. J., Feely, R. A., and Kleypas, J. A.: Ocean Acidification: The Other CO2 Problem, Ann. Rev. Mar. Sci., 1, 169–192, 2009.
FEEMA: Qualidade da agua da Ba\i a da Guanabara – 1990 a 1997, Secretaria de Estado de Meio Ambiente, Fundaçao Estadual de Engenharia do Meio Ambiente, Rio de Janeiro, 187 pp., 1998.
Frankignoulle, M., Abril, G., Borges, A., Bourge, I., Canon, C., Delille, B., Libert, E., and Theate, J. M.: Carbon Dioxide Emission from European Estuaries, Science, 282, 434–436, 1998.
Frankignoulle, M., Borges A., and Biondo R.: A new design of equilibrator to monitor carbon dioxide in highly dynamic and turbid environments, Water Res., 35, 344–347, 2001.
Frankignoulle, M., Biondo, R., Théate, J. M., and Borges, A. V.: Carbon dioxide daily variations and atmospheric fluxes over the Great Bahama Bank using a novel autonomous measuring system. Caribb. J. Sci., 39, 257–264, 2003.
Gattuso J. P., Frankignoulle, M., and Wollast, R.: Carbon and carbonate metabolism in coastal aquatic ecosystems, Annu. Rev. Ecol. Syst., 29, 405–434, 1998.
Godoy, J. M., Moreira, I., Bragan, M. J., Wanderley, C., and Mendes, L. B.: A study of Guanabara Bay sedimentation rates, J. Radioanal. Nucl. Ch., 227, 157–160, 1998.
Gran, G.: Determination of the equivalence point in potentiometric titrations-Part II, Analyst, 77, 661–671, 1952.
Grasshoff, K., Ehrhardt, M., and Kremling, K. (Eds.): Methods of Seawater Analysis, third ed., Wiley-VCH, Weinhein, 1999.
Guenther, M., Paranhos, R., Rezende, C., Gonzalez-Rodriguez, E., and Valentin, J.: Dynamics of bacterial carbon metabolism at the entrance of a tropical eutrophic bay influenced by tidal oscillation, Aquat. Microb. Ecol., 50, 123–133, 2008.
Guenther, M., Lima, I., Mugrabe, G., Tenenbaum, D. R., Gonzalez-Rodriguez, E., and Valentin, J. L.: Small time scale plankton structure variations at the entrance of a tropical eutrophic bay (Guanabara Bay, Brazil), Braz. J. Oceanogr., 60, 405–414, 2012.
Guo, X., Cai, W.-J., Huang, W-J., Wang, Y., Chen, F., Murrell, M.C., Lohrenz, S. Dai, M., Jiang, L.-Q. and Culp, R.: CO2 dynamics and community metabolism in the Mississippi River plume, Limnol. Oceanogr., 57, 1–17, 2012.
Gypens, N., Borges, A. V., and Lancelot, C.: Effect of eutrophication on air-sea CO2 fluxes in the coastal Southern North Sea: a model study of the past 50 years, Glob. Chang. Biol., 15, 1040–1056, 2009.
Huang, W.-J., Cai, W.-J., Wang, Y., Lohrenz, S. E., and Murrell, M. C.: The carbon dioxide (CO2) system on the Mississippi River–dominated continental shelf in the northern Gulf of Mexico – I: Distribution and air–sea CO2 flux, J. Geophy. Res., 120, 1429–1445, 2015.
Hunt, C. W., Salisbury, J. E., and Vandemark, D.: CO2 Input Dynamics and Air–Sea Exchange in a Large New England Estuary, Estuar. Coast., 37, 1078–1091, 2014.
Jähne, B., Munnich, K. O., Bosinger, R., Dutzi, A., Huber, W., and Libner, P.: On parameters influencing air-water exchange, J. Geophys. Res., 92, 1937–1949, 1987.
Jiang, L. Q., Cai, W. J., and Wang, Y. C.: A comparative study of carbon dioxide degassing in river- and marinedominated estuaries, Limnol. Oceanogr., 53, 2603–2615, 2008.
Kalas, F. A., Carreira, R. S., Macko, S. A., and Wagener, A. L. R.: Molecular and isotopic characterization of the particulate organic matter from an eutrophic coastal bay in SE Brazil, Cont. Shelf Res., 29, 2293–2302, 2009.
Kirk, J. T. O.: Light and Photosynthesis in Aquatic Ecosystems, 3rd edition, Cambridge University Press, New York, 2011.
Kjerfve, B., Ribeiro, C. A., Dias, G. T. M., Filippo, A., and Quaresma, V. S.: Oceanographic characteristics of an impacted coastal bay: Baia de Guanabara, Rio de Janeiro, Brazil, Cont. Shelf Res., 17, 1609–1643, 1997.
Knoppers, B.: Aquatic primary production in coastal lagoons, in: Coastal lagoon processes, edited by: Kjerfve, B., Elsevier Science Publishers, Amsterdam, 243–286, 1994.
Knoppers, B. A., Carmouze, J. P., and Moreira-Turcqo, P. F.: Nutrient dynamics, metabolism and eutrophication of lagoons along the east Fluminense coast, state of Rio de Janeiro, Brazil, in: Environmental geochemistry of coastal lagoon systems of Rio de Janeiro, Brazil, editd by: Knoppers, B. A., Bidone, E. D., and Abrão, J. J., FINEP, Rio de Janeiro, 123–154, 1999a.
Knoppers, B., Ekau, W., and Figueiredo, A. G.: The coast and shelf of east and northeast Brazil and material transport, Geo-Mar. Lett., 19, 171–178, 1999b.
Koné, Y. J. M., Abril, G., Kouadio, K. N., Delille, B., and Borges, A. V.: Seasonal variability of carbon dioxide in the rivers and lagoons of Ivory Coast (West Africa), Estuar. Coast., 32, 246–260, 2009.
Körtzinger, A.: A significant CO2 sink in the tropical Atlantic Ocean associated with the Amazon River plume, Geophys. Res. Lett., 30, 2287, https://doi.org/10.1029/2003GL018841, 2003.
Lee, K., Kim, T.W., Byrne, R. H., Millero, F. J., Feely, R. A., and Liu, Y.M.: The universal ratio of boron to chlorinity for the North Pacific and North Atlantic oceans, Geochim. Cosmochim. Ac., 74, 1801–1811, 2010.
Maher, D. T. and Eyre, B. D.: Carbon budgets for three autotrophic Australian estuaries: Implications for global estimates of the coastal air-water CO2 flux, Global Biogeochem. Cy., 26, GB1032, https://doi.org/10.1029/2011GB004075, 2012.
Maher, D. T., Cowley, K., Santos, I., Macklin, P., and Eyre, B.: Methane and carbon dioxide dynamics in a subtropical estuary over a diel cycle: Insights from automated in situ radioactive and stable isotope measurements, Mar. Chem., 168, 69–79, 2015.
Matthews, H. D., Gillett, N. P., Stott, P. A., and, Zickfeld, K.: The proportionality of global warming to cumulative carbon emissions, Nature, 459, 829–832, 2009.
Mehrbach, C., Cuberson, C. H., Hawley, J. E., and Pytkowicz, R. M.: Measurements of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol. Oceanog., 18, 897–907, 1973.
Monteiro, F., Cordeiro, R. C., Santelli, R. E., Machado, W., Evangelista, H., Villar, L. S., Viana, L. C. A., and Bidone, E. D.: Sedimentary geochemical record of historical anthropogenic activities affecting Guanabara Bay (Brazil) environmental quality, Environ. Earth Sci., 65, 1661–1669, https://doi.org/10.1007/s12665-011-1143-4, 2011.
Monteith, J. L.: Climate and the efficiency of crop production in Britain, Philos. Trans. R. Soc. Lond. Ser. B, 281, 277–294, 1977.
Nixon, S. W.: Coastal marine eutrophication: a definition, social causes, and future concerns, Ophelia, 41, 199–219, 1995.
Noriega, C. and Araujo, M.: Carbon dioxide emissions from estuaries of northern and northeastern Brazil, Scientific Reports, 4, 6164, https://doi.org/10.1038/srep06164, 2014.
Noriega, C., Araujo, M., Lefèvre, N., Montes, M. F., Gaspar, F., and Veleda, D.: Spatial and temporal variability of CO2 fluxes in tropical estuarine systems near areas of high population density in Brazil, Reg. Environ. Chang., 15, 619–630, https://doi.org/10.1007/s10113-014-0671-3, 2014.
Orr, J. C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S. C., Feely, R. a, Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F., Key, R. M., Lindsay, K., Maier-Reimer, E., Matear, R., Monfray, P., Mouchet, A., Najjar, R. G., Plattner, G.-K., Rodgers, K. B., Sabine, C. L., Sarmiento, J. L., Schlitzer, R., Slater, R. D., Totterdell, I. J., Weirig, M.-F., Yamanaka, Y. and Yool, A.: Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms., Nature, 437, 681–6, 2005.
Paranhos, R., Pereira, A. P., and Mayr, L. M.: Diel variability of water quality in a tropical polluted bay, Environ. Monit. Assess., 50, 131–141, 1998.
Pritchard, D. W.: Estuarine Hydrography, Adv. Geophys., 1, 243–280, 1952.
Rabalais, N. N., Turner, R. E., D\i az, R. J., and Justic, D.: Global change and eutrophication of coastal waters, ICES J. Mar. Sci., 66, 1528–1537, 2009.
Raymond, P. A. and Cole, J. J.: Gas exchange in rivers and estuaries: choosing a gas transfer velocity, Estuaries, 24, 312–317, 2001.
Rebello, A. L., Ponciano, C. R., and Melges, L. H.: Avaliacao da produtividade primaria e da disponibilidade de nutrientes na Baia de Guanabara, An. Acad. Bras. Cienc., 60, 419–430, 1988.
Reyes, E. and Merino, M.: Diel dissolved oxygen dynamics and eutrophication in a shallow well-mixed tropical lagoon (Cancun, Mexico), Estuaries, 14, 372–381, 1991.
Ribeiro, C. H. A. and Kjerfve, B.: Anthropogenic influence on the water quality in Guanabara Bay, Rio de Janeiro, Brazil, Reg. Env. Chan., 3, 13–19, 2001.
Robbins, L. L., Hansen, M. E., Kleypas, J. A., and Meylan. S. C.: CO2 Calc: a user-friendly seawater carbon calculator for Windows, Max OS X, and iOS (iPhone), U.S. Geological Survey Open-File Report, 2010–1280, 1–17, available at: http://pubs.usgs.gov/of/2010/1280/ (last access: 6 January 2013), 2010.
Ruiz-Halpern, S., Sejr, M. K., Duarte, C. M., Krause-Jensen, D., Dalsgaard, T., Dachs, J., and Rysgaard, S.: Air-water exchange and vertical profiles of organic carbon in a subarctic fjord, Limnol. Oceanogr., 55, 1733–1740, 2010.
Rysgaard, S., Mortensen, J., Juul-Pedersen, T., Sorensen, L. L., Lennert, K., Sogaard, D. H., Arendt, K. E., Blicher, M. E., Sejr, M. K., and Bendtsen, J.: High air-sea CO2 uptake rates in nearshore and shelf areas of Southern Greenland: Temporal and spatial variability, Mar. Chem., 128, 26–33, 2012.
Sabine, C. L., Feely, R. a, Gruber, N., Key, R. M., Lee, K., Bullister, J. L., Wanninkhof, R., Wong, C. S., Wallace, D. W. R., Tilbrook, B., Millero, F. J., Peng, T.-H., Kozyr, A., Ono, T., and Rios, A. F.: The oceanic sink for anthropogenic CO2, Science, 305, 367–71, 2004.
Santos, V. S., Villac, M. C., Tenenbaum, D. R., and Paranhos, R.: Auto-and heterotrophic nanoplankton and filamentous bactéria of Guanabara Bay (RJ, Brazil): estimates of cell/ filament numbers versus carbon content, Braz. J. Oceanogr., 55, 133–143, 2007.
Sarma, V., Viswanadham, R., Rao, G. D., Prasad, V. R., Kumar, B. S. K., Naidu, S. A., Kumar, N. A., Rao, D. B., Sridevi, T., Krishna, M. S., Reddy, N. P. C., Sadhuram, Y., and Murty, T. V. R.: Carbon dioxide emissions from Indian monsoonal estuaries, Geophys. Res. Lett., 39, L03602, https://doi.org/10.1029/2011gl050709, 2012.
Smith, S. V., Swaney, D. P., and Talaue-McManus, L.: Carbon–Nitrogen–Phosphorus fluxes in the coastal zone: The LOICZ approach to global assessment, in: Carbon and nutrient fluxes in continental margins, edited by: Liu, K., Atkinson, L., Quiñones, R., Talaue-McManus, L., Springer-Verlag Berlin Heidelberg, Berlin, 575–586, 2010.
Souza, M., Gomes, V., Freitas, S., Andrade, R., and Knoppers, B.: Net ecosystem metabolism and nonconservative fluxes of organic matter in a tropical mangrove estuary, Piauí River (NE of Brazil), Estuar. Coast., 32, 111–122, 2009.
Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M.: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, United Kingdom, 2013.
Strickland J. D. H. and Parsons T. R.: A practical handbook of seawater analysis, second ed., Fisheries Research Board of Canada Bulletin, Ottawa, Canada, 1972.
Sunda, W. G. and Cai, W. J.: Eutrophication Induced CO2-Acidification of Subsurface Coastal Waters: Interactive Effects of Temperature, Salinity, and Atmospheric pCO2. Environ. Sci. Technol., 46, 10651–10659, 2012.
Takahashi, T., Sutherland, S. C., Sweeney, C., Poisson, A., Metzl, N., Tilbrook, B., Bates, N., Wanninkhof, R., Feely, R.A., Sabine, C., Olafsson, J. and Nojiri, Y.: Global sea–air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects, Deep-Sea Res. Part II, 49, 1601–1622, 2002.
Valentin, J. L., Tenenbaum, D. R., Bonecker , A. C. T., Bonecker, S. L. C., Nogueira, C. R., and Villac, M. C.: O sistema planctônico da Baía de Gaunabara: Síntese do conheciemnto, in: Silva, S. H. G. and Lavrado, H. P., Ecologia dos Ambientes Costeiros do estado do Rio de Janeiro, Oecolog. Brasiliensis, 7, 35–59, 1999.
Villac, M. C. and Tenenbaum, D. R.: The phytoplankton of Guanabara Bay, Brazil, I. Historical account of its biodiversity, Biota Neotropic, 10, 271–293, 2010.
Wallace, R. B., Baumann, H., Grear, J. S., Aller, R. C., and Gobler, C. J.: Coastal ocean acidification: The other eutrophication problem, Estuar. Coast Shelf S., 148, 1–13, 2014.
Wanninkhof, R.: Relationship between gas exchange and wind speed over the ocean, J. Geophys. Res., 97, 7373–7382, 1992.
Weiss, R. F.: Carbon dioxide in water and seawater: the solubility of a non-ideal gas, Mar. Chem., 2, 203–215, 1974.
Wollast, R.: Evaluation and comparison of the global carbon cycle in the coastal zone and in the open ocean, in: The Sea, Vol. 10, edited by: Brink, K. H. and Robinson, A. R., John Wiley & Sons, New York, 213–252, 1998.
Yates, K. K., Dufore, C., Smiley, N., Jackson, C., and Halley, R. B.: Diurnal variation of oxygen and carbonate system parameters in Tampa Bay and Florida Bay, Mar. Chem., 104, 110–124, 2007.
Yuan, X.-C., Yin, K., Cai, W.-J., Ho, A.Y., Xu, J., and Harrison, P. J.: Influence of seasonal monsoons on net community production and CO2 in subtropical Hong Kong coastal waters, Biogeosciences, 8, 289–300, https://doi.org/10.5194/bg-8-289-2011, 2011.
Zhai, W. D. and Dai, M. H.: On the seasonal variation of air-sea CO2 fluxes in the outer Changjiang (Yangtze River) Estuary, East China Sea, Mar. Chem., 117, 2–10, 2009.
Zhai, W. D., Dai, M., and Guo, X.: Carbonate system and CO2 degassing fluxes in the inner estuary of Changjiang (Yangtze) River, China, Mar. Chem., 107, 342–356, 2007.
Zhang, C., Huang, H., Ye, C., Huang, L., Li, X., Lian, J. and Liu, S.: Diurnal and seasonal variations of carbonate system parameters on Luhuitou fringing reef, Sanya Bay, Hainan Island, South China Sea, Deep-Sea Res. Pt. II, 96, 65–74, 2013.
Zhang, L., Xue, M. and Liu, Q.: Distribution and seasonal variation in the partial pressure of CO2 during autumn and winter in Jiaozhou Bay, a region of high urbanization., Mar. Pollut. Bull., 64, 56–65, 2012.
Short summary
Air-water CO2 fluxes were monitored in Guanabara Bay (Brazil), a tropical eutrophic coastal embayment. In contrast to other estuaries worldwide, Guanabara Bay behaves as an annual CO2 sink (-9.6 to -18.3 molC m2 yr) due to the concomitant effects of strong radiation, thermal stratification, and high availability of nutrients, which promotes huge phytoplankton development and autotrophy. Our results show that CO2 budget assertions still lack information on tropical marine-dominated estuaries.
Air-water CO2 fluxes were monitored in Guanabara Bay (Brazil), a tropical eutrophic coastal...
Altmetrics
Final-revised paper
Preprint