Articles | Volume 13, issue 5
https://doi.org/10.5194/bg-13-1367-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-13-1367-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Benthic phosphorus cycling in the Peruvian oxygen minimum zone
Ulrike Lomnitz
CORRESPONDING AUTHOR
GEOMAR Helmholtz Centre for Ocean Research Kiel,
Wischhofstr. 1–3, 24148 Kiel, Germany
Stefan Sommer
GEOMAR Helmholtz Centre for Ocean Research Kiel,
Wischhofstr. 1–3, 24148 Kiel, Germany
Andrew W. Dale
GEOMAR Helmholtz Centre for Ocean Research Kiel,
Wischhofstr. 1–3, 24148 Kiel, Germany
Carolin R. Löscher
GEOMAR Helmholtz Centre for Ocean Research Kiel,
Wischhofstr. 1–3, 24148 Kiel, Germany
Anna Noffke
Institut für Seenforschung (ISF) der LUBW, Argenweg
50/1, 88085 Langenargen, Germany
Klaus Wallmann
GEOMAR Helmholtz Centre for Ocean Research Kiel,
Wischhofstr. 1–3, 24148 Kiel, Germany
Christian Hensen
GEOMAR Helmholtz Centre for Ocean Research Kiel,
Wischhofstr. 1–3, 24148 Kiel, Germany
Related authors
No articles found.
Isabell Schlangen, Elizabeth Leon-Palmero, Annabell Moser, Peihang Xu, Erik Laursen, and Carolin R. Löscher
Biogeosciences, 23, 1–19, https://doi.org/10.5194/bg-23-1-2026, https://doi.org/10.5194/bg-23-1-2026, 2026
Short summary
Short summary
We explored nitrogen fixation in the Arctic Ocean, revealing its key role in supporting coastal productivity, especially near melting glaciers. By combining molecular data, rate measurements, and environmental analysis, we identified dominant microbes like symbiotic unicellular cyanobacteria and linked high nitrogen fixation to glacial melt. Our findings suggest that climate-driven changes may expand niches for these microbes, reshaping nitrogen cycles and Arctic productivity in the future.
Astrid Hylén, Nils Ekeroth, Hannah Berk, Andy W. Dale, Mikhail Kononets, Wytze K. Lenstra, Aada Palo, Anders Tengberg, Sebastiaan J. van de Velde, Stefan Sommer, Caroline P. Slomp, and Per O. J. Hall
Earth Syst. Sci. Data, 17, 6423–6443, https://doi.org/10.5194/essd-17-6423-2025, https://doi.org/10.5194/essd-17-6423-2025, 2025
Short summary
Short summary
Phosphorus is an essential element for life and its cycling strongly impact primary production. Here, we present a dataset of sediment-water fluxes of dissolved inorganic phosphorus from the Baltic Sea, an area with a long history of eutrophication. The fluxes were measured in situ with three types of benthic chamber landers at 59 stations over 20 years. The data show clear spatial patterns and will be important for marine management and studies on mechanisms in benthic phosphorus cycling.
Pankan Linsy, Stefan Sommer, Jens Kallmeyer, Simone Bernsee, Florian Scholz, Habeeb Thanveer Kalapurakkal, and Andrew W. Dale
Biogeosciences, 22, 6727–6748, https://doi.org/10.5194/bg-22-6727-2025, https://doi.org/10.5194/bg-22-6727-2025, 2025
Short summary
Short summary
Bottom trawling is a fishing method that disturbs the seafloor and affects marine ecosystems. This study conducted experimental trawling and monitored biogeochemical changes over three weeks. Results showed reduced nutrient and alkalinity fluxes, decreased benthic carbon respiration, and disrupted biogeochemical processes. While the decline in alkalinity had only a minor effect on atmospheric CO2, the study highlights the lasting ecological impacts of bottom trawling.
Anna Pedersen, Carolin R. Löscher, and Steffen M. Olsen
Biogeosciences, 22, 5009–5029, https://doi.org/10.5194/bg-22-5009-2025, https://doi.org/10.5194/bg-22-5009-2025, 2025
Short summary
Short summary
The North Atlantic plays a crucial role in absorbing atmospheric CO2, but its air–sea CO2 flux varies across time and space. Using historical climate model simulations, we investigate how physical and oceanic processes drive the variability. Our results show that sea ice, temperature, salinity, wind stress, and ocean circulation shape CO2 exchange, with short-term fluctuations playing a dominant role. Understanding these complex interactions is key to predicting future ocean carbon uptake.
Naveenkumar Parameswaran, Everardo González, Ewa Burwicz-Galerne, Malte Braack, and Klaus Wallmann
Geosci. Model Dev., 18, 2521–2544, https://doi.org/10.5194/gmd-18-2521-2025, https://doi.org/10.5194/gmd-18-2521-2025, 2025
Short summary
Short summary
Our research uses deep learning to predict organic carbon stocks in ocean sediments, which is crucial for understanding their role in the global carbon cycle. By analysing over 22 000 samples and various seafloor characteristics, our model gives more accurate results than traditional methods. We estimate that the top 10 cm of ocean sediments hold about 156 Pg of carbon. This work enhances carbon stock estimates and helps plan future sampling strategies to better understand oceanic carbon burial.
Sebastian I. Cantarero, Edgart Flores, Harry Allbrook, Paulina Aguayo, Cristian A. Vargas, John E. Tamanaha, J. Bentley C. Scholz, Lennart T. Bach, Carolin R. Löscher, Ulf Riebesell, Balaji Rajagopalan, Nadia Dildar, and Julio Sepúlveda
Biogeosciences, 21, 3927–3958, https://doi.org/10.5194/bg-21-3927-2024, https://doi.org/10.5194/bg-21-3927-2024, 2024
Short summary
Short summary
Our study explores lipid remodeling in response to environmental stress, specifically how cell membrane chemistry changes. We focus on intact polar lipids in a phytoplankton community exposed to diverse stressors in a mesocosm experiment. The observed remodeling indicates acyl chain recycling for energy storage in intact polar lipids during stress, reallocating resources based on varying growth conditions. This understanding is essential to grasp the system's impact on cellular pools.
Jakob Rønning, Zarah J. Kofoed, Mats Jacobsen, and Carolin R. Löscher
EGUsphere, https://doi.org/10.5194/egusphere-2023-2884, https://doi.org/10.5194/egusphere-2023-2884, 2024
Preprint archived
Short summary
Short summary
In our study, we assessed the impact of olivine on marine primary producers of ocean-based solutions. The experiments revealed no negative effects on carbon fixation rates. Additions of the alkaline minerals did not establish growth inhibition; instead, they showed slight growth increases with species-specific responses. Ni exposure from olivine did not inhibit growth. However, limitations include the absence of responses in natural settings.
Matthew D. Eisaman, Sonja Geilert, Phil Renforth, Laura Bastianini, James Campbell, Andrew W. Dale, Spyros Foteinis, Patricia Grasse, Olivia Hawrot, Carolin R. Löscher, Greg H. Rau, and Jakob Rønning
State Planet, 2-oae2023, 3, https://doi.org/10.5194/sp-2-oae2023-3-2023, https://doi.org/10.5194/sp-2-oae2023-3-2023, 2023
Short summary
Short summary
Ocean-alkalinity-enhancement technologies refer to various methods and approaches aimed at increasing the alkalinity of seawater. This chapter explores technologies for increasing ocean alkalinity, including electrochemical-based approaches, ocean liming, accelerated weathering of limestone, hydrated carbonate addition, and coastal enhanced weathering, and suggests best practices in research and development.
Ulf Riebesell, Daniela Basso, Sonja Geilert, Andrew W. Dale, and Matthias Kreuzburg
State Planet, 2-oae2023, 6, https://doi.org/10.5194/sp-2-oae2023-6-2023, https://doi.org/10.5194/sp-2-oae2023-6-2023, 2023
Short summary
Short summary
Mesocosm experiments represent a highly valuable tool in determining the safe operating space of ocean alkalinity enhancement (OAE) applications. By combining realism and biological complexity with controllability and replication, they provide an ideal OAE test bed and a critical stepping stone towards field applications. Mesocosm approaches can also be helpful in testing the efficacy, efficiency and permanence of OAE applications.
Zhibo Shao, Yangchun Xu, Hua Wang, Weicheng Luo, Lice Wang, Yuhong Huang, Nona Sheila R. Agawin, Ayaz Ahmed, Mar Benavides, Mikkel Bentzon-Tilia, Ilana Berman-Frank, Hugo Berthelot, Isabelle C. Biegala, Mariana B. Bif, Antonio Bode, Sophie Bonnet, Deborah A. Bronk, Mark V. Brown, Lisa Campbell, Douglas G. Capone, Edward J. Carpenter, Nicolas Cassar, Bonnie X. Chang, Dreux Chappell, Yuh-ling Lee Chen, Matthew J. Church, Francisco M. Cornejo-Castillo, Amália Maria Sacilotto Detoni, Scott C. Doney, Cecile Dupouy, Marta Estrada, Camila Fernandez, Bieito Fernández-Castro, Debany Fonseca-Batista, Rachel A. Foster, Ken Furuya, Nicole Garcia, Kanji Goto, Jesús Gago, Mary R. Gradoville, M. Robert Hamersley, Britt A. Henke, Cora Hörstmann, Amal Jayakumar, Zhibing Jiang, Shuh-Ji Kao, David M. Karl, Leila R. Kittu, Angela N. Knapp, Sanjeev Kumar, Julie LaRoche, Hongbin Liu, Jiaxing Liu, Caroline Lory, Carolin R. Löscher, Emilio Marañón, Lauren F. Messer, Matthew M. Mills, Wiebke Mohr, Pia H. Moisander, Claire Mahaffey, Robert Moore, Beatriz Mouriño-Carballido, Margaret R. Mulholland, Shin-ichiro Nakaoka, Joseph A. Needoba, Eric J. Raes, Eyal Rahav, Teodoro Ramírez-Cárdenas, Christian Furbo Reeder, Lasse Riemann, Virginie Riou, Julie C. Robidart, Vedula V. S. S. Sarma, Takuya Sato, Himanshu Saxena, Corday Selden, Justin R. Seymour, Dalin Shi, Takuhei Shiozaki, Arvind Singh, Rachel E. Sipler, Jun Sun, Koji Suzuki, Kazutaka Takahashi, Yehui Tan, Weiyi Tang, Jean-Éric Tremblay, Kendra Turk-Kubo, Zuozhu Wen, Angelicque E. White, Samuel T. Wilson, Takashi Yoshida, Jonathan P. Zehr, Run Zhang, Yao Zhang, and Ya-Wei Luo
Earth Syst. Sci. Data, 15, 3673–3709, https://doi.org/10.5194/essd-15-3673-2023, https://doi.org/10.5194/essd-15-3673-2023, 2023
Short summary
Short summary
N2 fixation by marine diazotrophs is an important bioavailable N source to the global ocean. This updated global oceanic diazotroph database increases the number of in situ measurements of N2 fixation rates, diazotrophic cell abundances, and nifH gene copy abundances by 184 %, 86 %, and 809 %, respectively. Using the updated database, the global marine N2 fixation rate is estimated at 223 ± 30 Tg N yr−1, which triplicates that using the original database.
Christian Furbo Reeder, Ina Stoltenberg, Jamileh Javidpour, and Carolin Regina Löscher
Ocean Sci., 18, 401–417, https://doi.org/10.5194/os-18-401-2022, https://doi.org/10.5194/os-18-401-2022, 2022
Short summary
Short summary
The Baltic Sea is predicted to freshen in the future. To explore the effect of decreasing salinity on N2 fixers, we followed the natural salinity gradient in the Baltic Sea from the Kiel Fjord to the Gotland Basin and identified an N2 fixer community dominated by Nodularia and UCYN-A. A salinity threshold was identified at a salinity of 10, with Nodularia dominating at low and UCYN-A dominating at higher salinity, suggesting a future expansion of Nodularia N2 fixers and a retraction of UCYN-A.
Carolin R. Löscher
Biogeosciences, 18, 4953–4963, https://doi.org/10.5194/bg-18-4953-2021, https://doi.org/10.5194/bg-18-4953-2021, 2021
Short summary
Short summary
The Bay of Bengal (BoB) is classically seen as an ocean region with low primary production, which has been predicted to decrease even further. Here, the importance of such a trend is used to explore what could happen to the BoB's low-oxygen core waters if primary production decreases. Lower biological production leads to less oxygen loss in deeper waters by respiration; thus it could be that oxygen will not further decrease and the BoB will not become anoxic, different to other low-oxygen areas.
Kai G. Schulz, Eric P. Achterberg, Javier Arístegui, Lennart T. Bach, Isabel Baños, Tim Boxhammer, Dirk Erler, Maricarmen Igarza, Verena Kalter, Andrea Ludwig, Carolin Löscher, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Elisabeth von der Esch, Bess B. Ward, and Ulf Riebesell
Biogeosciences, 18, 4305–4320, https://doi.org/10.5194/bg-18-4305-2021, https://doi.org/10.5194/bg-18-4305-2021, 2021
Short summary
Short summary
Upwelling of nutrient-rich deep waters to the surface make eastern boundary upwelling systems hot spots of marine productivity. This leads to subsurface oxygen depletion and the transformation of bioavailable nitrogen into inert N2. Here we quantify nitrogen loss processes following a simulated deep water upwelling. Denitrification was the dominant process, and budget calculations suggest that a significant portion of nitrogen that could be exported to depth is already lost in the surface ocean.
Siqi Wu, Moge Du, Xianhui Sean Wan, Corday Selden, Mar Benavides, Sophie Bonnet, Robert Hamersley, Carolin R. Löscher, Margaret R. Mulholland, Xiuli Yan, and Shuh-Ji Kao
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-104, https://doi.org/10.5194/bg-2021-104, 2021
Preprint withdrawn
Short summary
Short summary
Nitrogen (N2) fixation is one of the most important nutrient sources to the ocean. Here, we report N2 fixation in the deep, dark ocean in the South China Sea via a highly sensitive new method and elaborate controls, showing the overlooked importance of N2 fixation in the deep ocean. By global data compilation, we also provide an easy measured basic parameter to estimate deep N2 fixation. Our study may help to expand the area limit of N2 fixation studies and better constrain global N2 fixation.
Gerd Krahmann, Damian L. Arévalo-Martínez, Andrew W. Dale, Marcus Dengler, Anja Engel, Nicolaas Glock, Patricia Grasse, Johannes Hahn, Helena Hauss, Mark Hopwood, Rainer Kiko, Alexandra Loginova, Carolin R. Löscher, Marie Maßmig, Alexandra-Sophie Roy, Renato Salvatteci, Stefan Sommer, Toste Tanhua, and Hela Mehrtens
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-308, https://doi.org/10.5194/essd-2020-308, 2021
Preprint withdrawn
Short summary
Short summary
The project "Climate-Biogeochemistry Interactions in the Tropical Ocean" (SFB 754) was a multidisciplinary research project active from 2008 to 2019 aimed at a better understanding of the coupling between the tropical climate and ocean circulation and the ocean's oxygen and nutrient balance. On 34 research cruises, mainly in the Southeast Tropical Pacific and the Northeast Tropical Atlantic, 1071 physical, chemical and biological data sets were collected.
Cited articles
Anderson, L. D., Delaney, M. L., and Faul, K. L.: Carbon to phosphorus
ratios in sediments: Implications for nutrient cycling, Global Biogeochem. Cy., 15, 65–79, 2001.
Arning, E. T., Birgel, D., Schulz-Vogt, H. N., Holmkvist, L., Jørgensen,
B. B., Larson, A., and Peckmann, J.: Lipid Biomarker Patterns of
Phosphogenic Sediments from Upwelling Regions, Geomicrobiol. J.,
25, 69–82, 2008.
Arning, E. T., Birgel, D., Brunner, B., and Peckmann, J.: Bacterial
formation of phosphatic laminites off Peru, Geobiology, 7, 295–307,
2009a.
Arning, E. T., Lückge, A., Breuer, C., Gussone, N., Birgel, D., and
Peckmann, J.: Genesis of phosphorite crusts off Peru, Mar. Geol.,
262, 68–81, 2009b.
Asahi, T., Ichimi, K., Yamaguchi, H., and Tada, K.: Horizontal distribution
of particulate matter and its characterization using phosphorus as an
indicator in surface coastal water, Harima-Nada, the Seto Inland Sea, Japan,
J. Oceanogr., 70, 277–287, 2014.
Aspila, K. I., Agemian, H., and Chau, A. S. Y.: A semi-automated Method for
the Determination of Inorganic, Organic and Total Phosphate in Sediments,
Analyst, 101, 187–197, 1976.
Baturin, G. N.: Issue of the relationship between primary productivity of
organic carbon in ocean and phosphate accumulation (Holocene–Late
Jurassic), Lithol. Miner. Resour., 42, 318–348, https://doi.org/10.1134/S0024490207040025,
2007.
Benitez-Nelson, C. R.: The biogeochemical cycling of phosphorus in marine
systems, Earth-Sci. Rev., 51, 109–135, 2000.
Benitez-Nelson, C. R., O'Neill, L., Kolowith, L. C., Pellechia, P., and
Thunell, R.: Phosphonates and particulate organic phosphorus cycling in an
anoxic marine basin, Limnol. Ocean., 49, 1593–1604, 2004.
Benitez-Nelson, C. R., O'Neill Madden, L. P., Styles, R. M., Thunell, R. C.,
and Astor, Y.: Inorganic and organic sinking particulate phosphorus fluxes
across the oxic/anoxic water column of Cariaco Basin, Venezuela, Mar.
Chem., 105, 90–100, 2007.
Bertics, V. J., Löscher, C. R., Salonen, I., Dale, A. W., Gier, J., Schmitz,
R. A., and Treude, T.: Occurrence of benthic microbial nitrogen fixation
coupled to sulfate reduction in the seasonally hypoxic Eckernförde Bay,
Baltic Sea, Biogeosciences, 10, 1243–1258, https://doi.org/10.5194/bg-10-1243-2013,
2013.
Boudreau, B. P.: The diffusive tortuosity of fine-grained unlithified
sediments, Geochim. Cosmochim. Ac., 60, 3139–3142, 1996.
Brock, J. and Schulz-Vogt, H. N.: Sulfide induces phosphate release from
polyphosphate in cultures of a marine Beggiatoa strain, ISME J., 5, 497–506,
2011.
Burnett, W. C., Beers, M. J., and Roe, K. K.: Growth Rates of Phosphate
Nodules from the Continental Margin Off Peru, Science, 215, 1616–1618, 1982.
Colman, A. S., Mackenzie, F. T., and Holland, H. D.: Redox Stabilization of
the Atmosphere and Oceans and Marine Productivity, Science, 275, 406–408,
1997.
Compton, J., Mallinson, D., Glenn, C., Filippelli, G., Föllmi, K.,
Shields, G., and Zanin, Y.: Variations in the global phosphorus cycle, in
Marine authigenesis: from global to microbial, SEPM (Society for Sedimentary
Geology), Special Publication No. 66, 21–33, 2000.
Cosmidis, J., Benzerara, K., Menguy, N., and Arning, E.: Microscopy evidence
of bacterial microfossils in phosphorite crusts of the Peruvian shelf:
Implications for phosphogenesis mechanisms, Chem. Geol., 359, 10–22, 2013.
Dale, A. W., Bertics, V. J., Treude, T., Sommer, S., and Wallmann, K.:
Modeling benthic-pelagic nutrient exchange processes and porewater
distributions in a seasonally hypoxic sediment: evidence for massive
phosphate release by Beggiatoa?, Biogeosciences, 10, 629–651,
https://doi.org/10.5194/bg-10-629-2013, 2013.
Dale, A. W., Sommer, S., Lomnitz, U., Montes, I., Treude, T., Liebetrau, V.,
Gier, J., Hensen, C., Dengler, M., Stolpovsky, K., Bryant, L. D., and
Wallmann, K.: Organic carbon production, mineralisation and preservation on
the Peruvian margin, Biogeosciences, 12, 1537–1559,
https://doi.org/10.5194/bg-12-1537-2015, 2015.
de Jager, H.-J. and Heyns, A. M.: Kinetics of Acid-Catalyzed Hydrolysis of a
Polyphosphate in Water, J. Phys. Chem. A, 102, 2838–2841, 1998.
Delaney, M. L.: Phosphorus accumulation in marine sediments and the oceanic
phosphorus cycle, Global Biogeochem. Cy., 12, 563–572, 1998.
Díaz-Ochoa, J. A., Lange, C. B., Pantoja, S., De Lange, G. J.,
Gutierrez, D., Munoz, P., and Salamanca, M.: Fish scales in sediments from
off Callao, central Peru, Deep-Sea Res. Pt. II, 56, 1113–1124, 2009.
Faul, K. L., Paytan, A., and Delaney, M. L.: Phosphorus distribution in
sinking oceanic particulate matter, Mar. Chem., 97, 307–333, 2005.
Filippelli, G. M.: The global phosphorus cycle, in Phosphates: Geochemical,
Geobiological, and Materials Importance, edited by: Kohn, M., Rakovan, J.,
and Hughes, J., Reviews in Mineralogy & Geochemistry, 391–425, 2002.
Filippelli, G. M.: The Global Phosphorus Cycle: Past, Present, and Future,
Elements, 4, 89–95, 2008.
Föllmi, K. B.: The phosphorus cycle, phosphogenesis and marine
phosphate-rich deposits, Earth-Sci. Rev., 40, 55–124, 1996.
Franz, J., Krahmann, G., Lavik, G., Grasse, P., Dittmar, T., and Riebesell,
U.: Dynamics and stoichiometry of nutrients and phytoplankton in waters
influenced by the oxygen minimum zone in the eastern tropical Pacific,
Deep-Sea Res. Pt. I, 62, 20–31, 2012.
Froelich, P. N., Arthur, M. A., Burnett, W. C., Deakin, M., Hensley, V.,
Jahnke, R., Kaul, L., Kim, K. H., Roe, K., Soutar, A., and Vathakanon, C.:
Early diagenesis of organic matter in Peru continental margin sediments:
Phosphorite precipitation, Mar. Geol., 80, 309–343, 1988.
Fuenzalida, R., Schneider, W., Garcés-Vargas, J., Bravo, L., and Lange,
C.: Vertical and horizontal extension of the oxygen minimum zone in the
eastern South Pacific Ocean, Deep-Sea Res. Pt. II, 56, 992–1003, 2009.
Ganeshram, R. S., Pedersen, T. F., Calvert, S., and Francois, R.: Reduced
nitrogen fixation in the glacial ocean inferred from changes in marine
nitrogen and phosphorus inventories, Nature, 415, 156–159, 2002.
Glenn, C. R. and Arthur, M. A.: Petrology and major element geochemistry of
Peru margin phosphorites and associated diagenetic minerals: Authigenesis in
modern organic-rich sediments, Mar. Geol., 80, 231–267, 1988.
Goldhammer, T., Bruchert, V., Ferdelman, T. G., and Zabel, M.: Microbial
sequestration of phosphorus in anoxic upwelling sediments, Nat. Geosci., 3,
557–561, 2010.
Govindaraju, K.: Compilation of working values and sample description for 383
geostandards, Geostandard Newslett., 18, 1–158, 1994.
Graco, M., Purca, S., Dewitte, B., Morón, O., Ledesma, J., Flores, G.,
Castro, C., and Gutiérrez, D.: The OMZ and nutrients features as a
signature of interannual and low frequency variability off the peruvian
upwelling system, Biogeosciences Discuss., https://doi.org/10.5194/bg-2015-567, in
review, 2016.
Grasshoff, K., Erhardt, M., and Kremling, K.: Methods of seawater analysis,
3rd Edn., Wiley-VCH, Weinheim, New York, Chiester,
Brisbane, Singapore, Toronto, 1999.
Gutiérrez, D., Enríquez, E., Purca, S., Quipúzcoa, L., Marquina,
R., Flores, G., and Graco, M.: Oxygenation episodes on the continental shelf
of central Peru: Remote forcing and benthic ecosystem response, Prog.
Oceanogr., 79, 177–189, 2008.
Hedges, J. I., Hu, F. S., Devol, A. H., Hartnett, H. E., Tsamakis, E., and
Keil, R. G.: Sedimentary organic matter preservation: A test for selective
degradation under oxic conditions, Am. J. Sci., 299, 529–555, 1999.
Høgslund, S., Revsbech, N. P., Kuenen, J. G., Jorgensen, B. B., Gallardo,
V. A., Vossenberg, J. V. D., Nielsen, J. L., Holmkvist, L., Arning, E. T.,
and Nielsen, L. P.: Physiology and behaviour of marine Thioploca, ISME J., 3,
647–657, 2009.
Holmkvist, L., Arning, E. T., Küster-Heins, K., Vandieken, V., Peckmann,
J., Zabel, M., and Jørgensen, B. B.: Phosphate geochemistry,
mineralization processes, and Thioploca distribution in shelf sediments off
central Chile, Mar. Geol., 277, 61–72, 2010.
Ingall, E. and Jahnke, R.: Evidence for enhanced phosphorus regeneration from
marine sediments overlain by oxygen depleted waters, Geochim. Cosmoch. Ac.,
58, 2571–2575, 1994.
Ingall, E. and Jahnke, R.: Influence of water-column anoxia on the elemental
fractionation of carbon and phosphorus during sediment diagenesis, Mar.
Geol., 139, 219–229, 1997.
Ingall, E., Kolowith, L., Lyons, T., and Hurtgen, M.: Sediment carbon,
nitrogen and phosphorus cycling in an anoxic fjord, Effingham Inlet, British
Columbia, Am. J. Sci., 305, 240–258, 2005.
Ingall, E. D.: Biogeochemistry: Phosphorus burial, Nat. Geosci., 3, 521–522,
2010.
Ingall, E. D. and Van Cappellen, P.: Relation between sedimentation rate and
burial of organic phosphorus and organic carbon in marine sediments, Geochim.
Cosmochim. Ac., 54, 373–386, 1990.
Jahnke, R. A.: Early diagenesis and recycling of biogenic debris at the
seafloor, Santa Monica Basin, California, J. Mar. Res., 48, 413–436, 1990.
Jilbert, T., Slomp, C. P., Gustafsson, B. G., and Boer, W.: Beyond the
Fe-P-redox connection: preferential regeneration of phosphorus from organic
matter as a key control on Baltic Sea nutrient cycles, Biogeosciences, 8,
1699–1720, https://doi.org/10.5194/bg-8-1699-2011, 2011.
Kraal, P., Slomp, C. P., Reed, D. C., Reichart, G.-J., and Poulton, S. W.:
Sedimentary phosphorus and iron cycling in and below the oxygen minimum zone
of the northern Arabian Sea, Biogeosciences, 9, 2603–2624,
https://doi.org/10.5194/bg-9-2603-2012, 2012.
Kraal, P., Bostick, B. C., Behrends, T., Reichart, G.-J., and Slomp, C. P.:
Characterization of phosphorus species in sediments from the Arabian Sea
oxygen minimum zone: Combining sequential extractions and X-ray spectroscopy,
Mar. Chem., 168, 1–8, 2015.
Krissek, L. A., Scheidegger, K. F., and Kulm, L. D.: Surface sediments of the
Peru-Chile continental margin and the Nazca plate, Geol. Soc. Am. Bull., 91,
321–331, 1980.
Labry, C., Youenou, A., Delmas, D., and Michelon, P.: Addressing the
measurement of particulate organic and inorganic phosphorus in estuarine and
coastal waters, Cont. Shelf Res., 60, 28–37, 2013.
Li, Y.-H. and Gregory, S.: Diffusion of ions in sea water andin deep-sea
sediments, Geochim. Cosmochim. Ac., 38, 703–714, 1974.
Loh, A. N. and Bauer, J. E.: Distribution, partitioning and fluxes of
dissolved and particulate organic C, N and P in the eastern North Pacific and
Southern Oceans, Deep-Sea Res. Pt. I, 47, 2287–2316, 2000.
Löscher, C. R., Kock, A., Könneke, M., LaRoche, J., Bange, H. W., and
Schmitz, R. A.: Production of oceanic nitrous oxide by ammonia-oxidizing
archaea, Biogeosciences, 9, 2419–2429, https://doi.org/10.5194/bg-9-2419-2012, 2012.
Lyons, G., Benitez-Nelson, C. R., and Thunell, R. C.: Phosphorus composition
of sinking particles in the Guaymas Basin, Gulf of California, Limnol.
Oceanogr., 56, 1093–1105, 2011.
McManus, J., Berelson, W. M., Coale, K. H., Johnson, K. S., and Kilgore, T.
E.: Phosphorus regeneration in continental margin sediments, Geochim.
Cosmochim. Ac., 61, 2891–2907, 1997.
Moffitt, S. E., Moffitt, R. A., Sauthoff, W., Davis, C. V., Hewett, K., and
Hill, T. M.: Paleoceanographic Insights on Recent Oxygen Minimum Zone
Expansion: Lessons for Modern Oceanography, PLoS ONE, 10, https://doi.org/10.1371/journal.pone.0115246, 2015.
Mort, H. P., Slomp, C. P., Gustafsson, B. G., and Andersen, T. J.: Phosphorus
recycling and burial in Baltic Sea sediments with contrasting redox
conditions, Geochim. Cosmochim. Ac., 74, 1350–1362, 2010.
Mosch, T., Sommer, S., Dengler, M., Noffke, A., Bohlen, L., Pfannkuche, O.,
Liebetrau, V., and Wallmann, K.: Factors influencing the distribution of
epibenthic megafauna across the Peruvian oxygen minimum zone, Deep-Sea Res.
Pt. I, 68, 123–135, 2012.
Noffke, A.: Phosphorus cycling in anoxic sediments, PhD dissertation,
University of Kiel, Kiel, 2014.
Noffke, A., Hensen, C., Sommer, S., Scholz, F., Bohlen L., Mosch, T., Graco,
M., and Wallmann, K.: Benthic iron and phosphorus fluxes across the Peruvian
oxygen minimum zone, Limnol. Oceanogr., 57, 851–867, 2012.
Noffke, A., Sommer, S., Dale, A. W., Hall, P. O. J., and Pfannkuche, O.:
Benthic nutrient fluxes in the Eastern Gotland Basin (Baltic Sea) with
particular focus on microbial mat ecosystems, J. Marine Syst., 158, 1–12,
https://doi.org/10.1016/j.jmarsys.2016.01.007, 2016.
Paytan, A. and McLaughlin, K.: The Oceanic Phosphorus Cycle, Chem. Rev., 107,
563–576, 2007.
Paytan, A., Cade-Menun, B. J., McLaughlin, K., and Faul, K. L.: Selective
phosphorus regeneration of sinking marine particles: evidence from 31P-NMR,
Mar. Chem., 82, 55–70, 2003.
Pennington, J. T., Mahoney, K. L., Kuwahara, V. S., Kolber, D. D., Calienes,
R., and Chavez, F. P.: Primary production in the eastern tropical Pacific: A
review, Prog. Oceanogr., 69, 285–317, 2006.
Redfield, A. C., Ketchum, B. H., and Richards, F. A.: The influence of
organisms on the composition of seawater, in: The Sea, Academic Press, London,
26–77, 1963.
Reimers, C. E. and Suess, E.: Spatial and temporal patterns of organic matter
accumulation on the Peru continental margin, in: Coastal Upwelling: Part B,
Sedimentary Record of Ancient Coastal Upwelling, edited by: Suess, E. and
Thiede, J., Plenum Press, New York, 311–346, 1983.
Roth, R., Ritz, S. P., and Joos, F.: Burial-nutrient feedbacks amplify the
sensitivity of atmospheric carbon dioxide to changes in organic matter
remineralisation, Earth Syst. Dynam., 5, 321–343,
https://doi.org/10.5194/esd-5-321-2014, 2014.
Ruttenberg, K. C.: The Global Phosphorus Cycle, in: Treatise on Geochemistry,
edited by: Turekian, K. K. and Holland, D. J., Elsevier, Oxford, 585–643, 2003.
Ruttenberg, K. C.: The Global Phosphorus Cycle, in: Treatise on Geochemistry,
edited by: Holland, H. D. and Turekian, K. K., Elsevier, Oxford, 499–558, 2014.
Ruttenberg, K. C. and Berner, R. A.: Authigenic apatite formation and burial
in sediments from non-upwelling, continental margin environments, Geochim.
Cosmochim. Ac., 57, 991–1007, 1993.
Salman, V., Amann, R., Girnth, A.-C., Polerecky, L., Bailey, J. V.,
Høgslund, S., Jessen, G., Pantoja, S., and Schulz-Vogt, H. N.: A
single-cell sequencing approach to the classification of large, vacuolated
sulfur bacteria, Syst. Appl. Microbiol., 34, 243–259, 2011.
Salman, V., Amann, R, Shub, D. A., and Schulz-Vogt, H. N.: Multiple
self-splicing introns in the 16S rRNA genes of giant sulfur bacteria, P.
Natl. Acad. Sci. USA, 109, 4203–4208, https://doi.org/10.1073/pnas.1120192109, 2012.
Sannigrahi, P. and Ingall, E.: Polyphosphates as a source of enhanced P
fluxes in marine sediments overlain by anoxic waters: Evidence from 31P NMR,
Geochem. T., 6, 52–59, 2005.
Sanudo-Wilhelmy, S. A., Tovar-Sanchez, A., Fu, F.-X., Capone, D. G.,
Carpenter, E. J., and Hutchins, D. A.: The impact of surface-adsorbed
phosphorus on phytoplankton Redfield stoichiometry, Nature, 432, 897–901,
2004.
Schenau, S. J. and De Lange, G. J.: A novel chemical method to quantify fish
debris in marine sediments, Limnol. Oceanogr., 45, 963–971, 2000.
Schenau, S. J. and De Lange, G. J.: Phosphorus regeneration vs. burial in
sediments of the Arabian Sea, Mar. Chem., 75, 201–217, 2001.
Scholz, F., Hensen, C., Noffke, A., Rohde, A., Liebetrau, V., and Wallmann,
K.: Early diagenesis of redox-sensitive trace metals in the Peru upwelling
area – response to ENSO-related oxygen fluctuations in the water column,
Geochim. Cosmochim. Ac., 75, 7257–7276, 2011.
Schulz, H. N. and Jørgensen, B. B.: Thiomargarita, in: Bergey's Manual of
Determinative Bacteriology, edited by: Krieg, N. R., Staley, J. T., and
Brenner, D. J., Vol. 2, part B, Springer-Verlag, Berlin, Heidelberg, New
York, 2005.
Schulz, H. N. and Schulz, H. D.: Large Sulfur Bacteria and the Formation of
Phosphorite, Science, 307, 416–418, 2005.
Schunck, H., Lavik, G., Desai, D. K., Großkopf, T., Kalvelage, T.,
Löscher, C. R., Paulmier, A., Contreras, S., Siegel, H., Holtappels, M.,
Rosenstiel, P., Schilhabel, M. B., Graco, M., Schmitz, R. A., Kuypers, M. M.
M., and LaRoche, J.: Giant Hydrogen Sulfide Plume in the Oxygen Minimum Zone
off Peru Supports Chemolithoautotrophy, PLoS ONE, 8, https://doi.org/10.1371/journal.pone.0068661, 2013.
Sekula-Wood, E., Benitez-Nelson, C. R., Bennett, M. A., and Thunell, R.:
Magnitude and composition of sinking particulate phosphorus fluxes in Santa
Barbara Basin, California, Global Biogeochem. Cy., 26, GB2023, https://doi.org/10.1029/2011GB004180, 2012.
Slomp, C. P. and Van Cappellen, P.: The global marine phosphorus cycle:
sensitivity to oceanic circulation, Biogeosciences, 4, 155–171,
https://doi.org/10.5194/bg-4-155-2007, 2007.
Slomp, C. P., Van der Gaast, S. J., and Van Raaphorst, W.: Phosphorus binding
by poorly crystalline iron oxides in North Sea sediments, Mar. Chem., 52,
55–73, 1996.
Slomp, C. P., Malschaert, J. F. P., and Van Raaphorst, W.: The role of
adsorption in sediment-water exchange of phosphate in North Sea continental
margin sediments, Limnol. Oceanogr., 43, 832–846, 1998.
Sommer, S., Linke, P., Pfannkuche, O., Schleicher, T., Schneider v. Deimling, J., Reitz, A., Haeckel, M., and
Hensen, C.: Seabed methane emissions and the habitat of frenulate tubeworms
on the Captain Arutyunov mud volcano (Gulf of Cadiz), Mar. Ecol.-Prog. Ser.,
382, 69–86, 2009.
Sommer, S., Gier, J., Treude, T., Lomnitz, U., Dengler, M., Cardich, J., and
Dale, A.: Depletion of oxygen, nitrate and nitrite in the Peruvian oxygen
minimum zone cause an imbalance of benthic nitrogen fluxes, Deep-Sea Res. Pt.
I, accepted, 2016.
Stramma, L., Johnson, G. C., Sprintall, J., and Mohrholz, V.: Expanding
Oxygen-Minimum Zones in the Tropical Oceans, Science, 320, 655–658, 2008.
Strub, P. T., Mesias, J. M., Montecino, V., Ontecino, R., and Salinas, S.:
Coastal ocean circulation of western South. America, in: The Sea, edited by:
Robinson, A. R. and Brink, K. H., Wiley, New York, 273–313, 1998.
Suess, E.: Phosphate regeneration from sediments of the Peru continental
margin by dissolution of fish debris, Geochim. Cosmochim. Ac., 45, 577–588,
1981.
Suess, E. and von Huene, R.: Ocean Drilling Program Leg 112, Peru continental
margin: Part 2, Sedimentary history and diagenesis in a coastal upwelling
environment, Geology, 16, 939–943, 1988.
Suess, E., Kulm, L. D., and Killingley, J. S.: Coastal upwelling and a
history of organic rich mudstone deposition off Peru, in: Marine Petroleum
Source rocks, edited by: Brooks, J. and Fleet, A. J., Geological Society
Spec, 1129–1145, 1987.
Sundby, B., Anderson, L. G., Hall, P. O. J., Iverfeldt, Å., van der
Loeff, M. M. R., and Westerlund, S. F. G.: The effect of oxygen on release
and uptake of cobalt, manganese, iron and phosphate at the sediment-water
interface, Geochim. Cosmochim. Ac., 50, 1281–1288, 1986.
Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S.: MEGA6,
Molecular Evolutionary Genetics Analysis Version 6.0., Mol. Biol. Evol., 30,
2725–2729, 2013.
Teske, A., Ramsing, N. B., Küver, J., and Fossing, H.: Phylogeny of
Thioploca and Related Filamentous Sulfide-Oxidizing Bacteria, Syst. Appl.
Microbiol., 18, 517–526, 1995.
Tsandev, I., Reed, D. C., and Slomp, C. P.: Phosphorus diagenesis in deep-sea
sediments: Sensitivity to water column conditions and global scale
implications, Chem. Geol., 330–331, 127–139, 2012.
Van Cappellen, P. and Ingall, E. D.: Redox Stabilization of the Atmosphere
and Oceans by Phosphorus-Limited Marine Productivity, Science, 271, 493–496,
1996.
Viers, J., Dupré, B., and Gaillardet, J.: Chemical composition of
suspended sediments in World Rivers: New insights from a new database, Sci.
Total Environ., 407, 853–868, 2009.
Wallmann, K.: Feedbacks between oceanic redox states and marine productivity:
A model perspective focused on benthic phosphorus cycling, Global Biogeochem.
Cy., 17, https://doi.org/10.1029/2002GB001968, 2003.
Wallmann, K.: Phosphorus imbalance in the global ocean?, Global Biogeochem.
Cy., 24, https://doi.org/10.1029/2009GB003643, 2010.
Short summary
The study presents a P budget including the P input from the water column, the P burial in the sediments, as well as the P release from the sediments. We found that the P input could not maintain the P release rates. Consideration of other P sources, e.g., terrigenous P and P released from the dissolution of Fe oxyhydroxides, showed that none of these can account for the missing P. Thus, it is likely that abundant sulfide-oxidizing bacteria release the missing P during our measurement period.
The study presents a P budget including the P input from the water column, the P burial in the...
Altmetrics
Final-revised paper
Preprint