Articles | Volume 13, issue 5
https://doi.org/10.5194/bg-13-1367-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-13-1367-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Benthic phosphorus cycling in the Peruvian oxygen minimum zone
Ulrike Lomnitz
CORRESPONDING AUTHOR
GEOMAR Helmholtz Centre for Ocean Research Kiel,
Wischhofstr. 1–3, 24148 Kiel, Germany
Stefan Sommer
GEOMAR Helmholtz Centre for Ocean Research Kiel,
Wischhofstr. 1–3, 24148 Kiel, Germany
Andrew W. Dale
GEOMAR Helmholtz Centre for Ocean Research Kiel,
Wischhofstr. 1–3, 24148 Kiel, Germany
Carolin R. Löscher
GEOMAR Helmholtz Centre for Ocean Research Kiel,
Wischhofstr. 1–3, 24148 Kiel, Germany
Anna Noffke
Institut für Seenforschung (ISF) der LUBW, Argenweg
50/1, 88085 Langenargen, Germany
Klaus Wallmann
GEOMAR Helmholtz Centre for Ocean Research Kiel,
Wischhofstr. 1–3, 24148 Kiel, Germany
Christian Hensen
GEOMAR Helmholtz Centre for Ocean Research Kiel,
Wischhofstr. 1–3, 24148 Kiel, Germany
Related authors
A. W. Dale, S. Sommer, U. Lomnitz, I. Montes, T. Treude, V. Liebetrau, J. Gier, C. Hensen, M. Dengler, K. Stolpovsky, L. D. Bryant, and K. Wallmann
Biogeosciences, 12, 1537–1559, https://doi.org/10.5194/bg-12-1537-2015, https://doi.org/10.5194/bg-12-1537-2015, 2015
Sebastian I. Cantarero, Edgart Flores, Harry Allbrook, Paulina Aguayo, Cristian A. Vargas, John E. Tamanaha, J. Bentley C. Scholz, Lennart T. Bach, Carolin R. Löscher, Ulf Riebesell, Balaji Rajagopalan, Nadia Dildar, and Julio Sepúlveda
Biogeosciences, 21, 3927–3958, https://doi.org/10.5194/bg-21-3927-2024, https://doi.org/10.5194/bg-21-3927-2024, 2024
Short summary
Short summary
Our study explores lipid remodeling in response to environmental stress, specifically how cell membrane chemistry changes. We focus on intact polar lipids in a phytoplankton community exposed to diverse stressors in a mesocosm experiment. The observed remodeling indicates acyl chain recycling for energy storage in intact polar lipids during stress, reallocating resources based on varying growth conditions. This understanding is essential to grasp the system's impact on cellular pools.
Jakob Rønning, Zarah J. Kofoed, Mats Jacobsen, and Carolin R. Löscher
EGUsphere, https://doi.org/10.5194/egusphere-2023-2884, https://doi.org/10.5194/egusphere-2023-2884, 2024
Short summary
Short summary
In our study, we assessed the impact of olivine on marine primary producers of ocean-based solutions. The experiments revealed no negative effects on carbon fixation rates. Additions of the alkaline minerals did not establish growth inhibition; instead, they showed slight growth increases with species-specific responses. Ni exposure from olivine did not inhibit growth. However, limitations include the absence of responses in natural settings.
Naveenkumar Parameswaran, Everardo González, Ewa Burwicz-Galerne, Malte Braack, and Klaus Wallmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-1360, https://doi.org/10.5194/egusphere-2024-1360, 2024
Short summary
Short summary
Our research uses deep learning to predict organic carbon stocks in ocean sediments, crucial for understanding their role in the global carbon cycle. By analyzing over 22,000 samples and various seafloor characteristics, our model gives more accurate results than traditional methods. We estimate the top 10 cm of ocean sediments hold about 171 petagrams of carbon. This work enhances carbon stock estimates and helps plan future sampling strategies to better understand oceanic carbon burial.
Matthew D. Eisaman, Sonja Geilert, Phil Renforth, Laura Bastianini, James Campbell, Andrew W. Dale, Spyros Foteinis, Patricia Grasse, Olivia Hawrot, Carolin R. Löscher, Greg H. Rau, and Jakob Rønning
State Planet, 2-oae2023, 3, https://doi.org/10.5194/sp-2-oae2023-3-2023, https://doi.org/10.5194/sp-2-oae2023-3-2023, 2023
Short summary
Short summary
Ocean-alkalinity-enhancement technologies refer to various methods and approaches aimed at increasing the alkalinity of seawater. This chapter explores technologies for increasing ocean alkalinity, including electrochemical-based approaches, ocean liming, accelerated weathering of limestone, hydrated carbonate addition, and coastal enhanced weathering, and suggests best practices in research and development.
Ulf Riebesell, Daniela Basso, Sonja Geilert, Andrew W. Dale, and Matthias Kreuzburg
State Planet, 2-oae2023, 6, https://doi.org/10.5194/sp-2-oae2023-6-2023, https://doi.org/10.5194/sp-2-oae2023-6-2023, 2023
Short summary
Short summary
Mesocosm experiments represent a highly valuable tool in determining the safe operating space of ocean alkalinity enhancement (OAE) applications. By combining realism and biological complexity with controllability and replication, they provide an ideal OAE test bed and a critical stepping stone towards field applications. Mesocosm approaches can also be helpful in testing the efficacy, efficiency and permanence of OAE applications.
Zhibo Shao, Yangchun Xu, Hua Wang, Weicheng Luo, Lice Wang, Yuhong Huang, Nona Sheila R. Agawin, Ayaz Ahmed, Mar Benavides, Mikkel Bentzon-Tilia, Ilana Berman-Frank, Hugo Berthelot, Isabelle C. Biegala, Mariana B. Bif, Antonio Bode, Sophie Bonnet, Deborah A. Bronk, Mark V. Brown, Lisa Campbell, Douglas G. Capone, Edward J. Carpenter, Nicolas Cassar, Bonnie X. Chang, Dreux Chappell, Yuh-ling Lee Chen, Matthew J. Church, Francisco M. Cornejo-Castillo, Amália Maria Sacilotto Detoni, Scott C. Doney, Cecile Dupouy, Marta Estrada, Camila Fernandez, Bieito Fernández-Castro, Debany Fonseca-Batista, Rachel A. Foster, Ken Furuya, Nicole Garcia, Kanji Goto, Jesús Gago, Mary R. Gradoville, M. Robert Hamersley, Britt A. Henke, Cora Hörstmann, Amal Jayakumar, Zhibing Jiang, Shuh-Ji Kao, David M. Karl, Leila R. Kittu, Angela N. Knapp, Sanjeev Kumar, Julie LaRoche, Hongbin Liu, Jiaxing Liu, Caroline Lory, Carolin R. Löscher, Emilio Marañón, Lauren F. Messer, Matthew M. Mills, Wiebke Mohr, Pia H. Moisander, Claire Mahaffey, Robert Moore, Beatriz Mouriño-Carballido, Margaret R. Mulholland, Shin-ichiro Nakaoka, Joseph A. Needoba, Eric J. Raes, Eyal Rahav, Teodoro Ramírez-Cárdenas, Christian Furbo Reeder, Lasse Riemann, Virginie Riou, Julie C. Robidart, Vedula V. S. S. Sarma, Takuya Sato, Himanshu Saxena, Corday Selden, Justin R. Seymour, Dalin Shi, Takuhei Shiozaki, Arvind Singh, Rachel E. Sipler, Jun Sun, Koji Suzuki, Kazutaka Takahashi, Yehui Tan, Weiyi Tang, Jean-Éric Tremblay, Kendra Turk-Kubo, Zuozhu Wen, Angelicque E. White, Samuel T. Wilson, Takashi Yoshida, Jonathan P. Zehr, Run Zhang, Yao Zhang, and Ya-Wei Luo
Earth Syst. Sci. Data, 15, 3673–3709, https://doi.org/10.5194/essd-15-3673-2023, https://doi.org/10.5194/essd-15-3673-2023, 2023
Short summary
Short summary
N2 fixation by marine diazotrophs is an important bioavailable N source to the global ocean. This updated global oceanic diazotroph database increases the number of in situ measurements of N2 fixation rates, diazotrophic cell abundances, and nifH gene copy abundances by 184 %, 86 %, and 809 %, respectively. Using the updated database, the global marine N2 fixation rate is estimated at 223 ± 30 Tg N yr−1, which triplicates that using the original database.
Christian Furbo Reeder, Ina Stoltenberg, Jamileh Javidpour, and Carolin Regina Löscher
Ocean Sci., 18, 401–417, https://doi.org/10.5194/os-18-401-2022, https://doi.org/10.5194/os-18-401-2022, 2022
Short summary
Short summary
The Baltic Sea is predicted to freshen in the future. To explore the effect of decreasing salinity on N2 fixers, we followed the natural salinity gradient in the Baltic Sea from the Kiel Fjord to the Gotland Basin and identified an N2 fixer community dominated by Nodularia and UCYN-A. A salinity threshold was identified at a salinity of 10, with Nodularia dominating at low and UCYN-A dominating at higher salinity, suggesting a future expansion of Nodularia N2 fixers and a retraction of UCYN-A.
Carolin R. Löscher
Biogeosciences, 18, 4953–4963, https://doi.org/10.5194/bg-18-4953-2021, https://doi.org/10.5194/bg-18-4953-2021, 2021
Short summary
Short summary
The Bay of Bengal (BoB) is classically seen as an ocean region with low primary production, which has been predicted to decrease even further. Here, the importance of such a trend is used to explore what could happen to the BoB's low-oxygen core waters if primary production decreases. Lower biological production leads to less oxygen loss in deeper waters by respiration; thus it could be that oxygen will not further decrease and the BoB will not become anoxic, different to other low-oxygen areas.
Kai G. Schulz, Eric P. Achterberg, Javier Arístegui, Lennart T. Bach, Isabel Baños, Tim Boxhammer, Dirk Erler, Maricarmen Igarza, Verena Kalter, Andrea Ludwig, Carolin Löscher, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Elisabeth von der Esch, Bess B. Ward, and Ulf Riebesell
Biogeosciences, 18, 4305–4320, https://doi.org/10.5194/bg-18-4305-2021, https://doi.org/10.5194/bg-18-4305-2021, 2021
Short summary
Short summary
Upwelling of nutrient-rich deep waters to the surface make eastern boundary upwelling systems hot spots of marine productivity. This leads to subsurface oxygen depletion and the transformation of bioavailable nitrogen into inert N2. Here we quantify nitrogen loss processes following a simulated deep water upwelling. Denitrification was the dominant process, and budget calculations suggest that a significant portion of nitrogen that could be exported to depth is already lost in the surface ocean.
Siqi Wu, Moge Du, Xianhui Sean Wan, Corday Selden, Mar Benavides, Sophie Bonnet, Robert Hamersley, Carolin R. Löscher, Margaret R. Mulholland, Xiuli Yan, and Shuh-Ji Kao
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-104, https://doi.org/10.5194/bg-2021-104, 2021
Preprint withdrawn
Short summary
Short summary
Nitrogen (N2) fixation is one of the most important nutrient sources to the ocean. Here, we report N2 fixation in the deep, dark ocean in the South China Sea via a highly sensitive new method and elaborate controls, showing the overlooked importance of N2 fixation in the deep ocean. By global data compilation, we also provide an easy measured basic parameter to estimate deep N2 fixation. Our study may help to expand the area limit of N2 fixation studies and better constrain global N2 fixation.
Gerd Krahmann, Damian L. Arévalo-Martínez, Andrew W. Dale, Marcus Dengler, Anja Engel, Nicolaas Glock, Patricia Grasse, Johannes Hahn, Helena Hauss, Mark Hopwood, Rainer Kiko, Alexandra Loginova, Carolin R. Löscher, Marie Maßmig, Alexandra-Sophie Roy, Renato Salvatteci, Stefan Sommer, Toste Tanhua, and Hela Mehrtens
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-308, https://doi.org/10.5194/essd-2020-308, 2021
Preprint withdrawn
Short summary
Short summary
The project "Climate-Biogeochemistry Interactions in the Tropical Ocean" (SFB 754) was a multidisciplinary research project active from 2008 to 2019 aimed at a better understanding of the coupling between the tropical climate and ocean circulation and the ocean's oxygen and nutrient balance. On 34 research cruises, mainly in the Southeast Tropical Pacific and the Northeast Tropical Atlantic, 1071 physical, chemical and biological data sets were collected.
Jan Lüdke, Marcus Dengler, Stefan Sommer, David Clemens, Sören Thomsen, Gerd Krahmann, Andrew W. Dale, Eric P. Achterberg, and Martin Visbeck
Ocean Sci., 16, 1347–1366, https://doi.org/10.5194/os-16-1347-2020, https://doi.org/10.5194/os-16-1347-2020, 2020
Short summary
Short summary
We analyse the intraseasonal variability of the alongshore circulation off Peru in early 2017, this circulation is very important for the supply of nutrients to the upwelling regime. The causes of this variability and its impact on the biogeochemistry are investigated. The poleward flow is strengthened during the observed time period, likely by a downwelling coastal trapped wave. The stronger current causes an increase in nitrate and reduces the deficit of fixed nitrogen relative to phosphorus.
Lennart Thomas Bach, Allanah Joy Paul, Tim Boxhammer, Elisabeth von der Esch, Michelle Graco, Kai Georg Schulz, Eric Achterberg, Paulina Aguayo, Javier Arístegui, Patrizia Ayón, Isabel Baños, Avy Bernales, Anne Sophie Boegeholz, Francisco Chavez, Gabriela Chavez, Shao-Min Chen, Kristin Doering, Alba Filella, Martin Fischer, Patricia Grasse, Mathias Haunost, Jan Hennke, Nauzet Hernández-Hernández, Mark Hopwood, Maricarmen Igarza, Verena Kalter, Leila Kittu, Peter Kohnert, Jesus Ledesma, Christian Lieberum, Silke Lischka, Carolin Löscher, Andrea Ludwig, Ursula Mendoza, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Joaquin Ortiz Cortes, Jonna Piiparinen, Claudia Sforna, Kristian Spilling, Sonia Sanchez, Carsten Spisla, Michael Sswat, Mabel Zavala Moreira, and Ulf Riebesell
Biogeosciences, 17, 4831–4852, https://doi.org/10.5194/bg-17-4831-2020, https://doi.org/10.5194/bg-17-4831-2020, 2020
Short summary
Short summary
The eastern boundary upwelling system off Peru is among Earth's most productive ocean ecosystems, but the factors that control its functioning are poorly constrained. Here we used mesocosms, moored ~ 6 km offshore Peru, to investigate how processes in plankton communities drive key biogeochemical processes. We show that nutrient and light co-limitation keep productivity and export at a remarkably constant level while stoichiometry changes strongly with shifts in plankton community structure.
Alexandra N. Loginova, Andrew W. Dale, Frédéric A. C. Le Moigne, Sören Thomsen, Stefan Sommer, David Clemens, Klaus Wallmann, and Anja Engel
Biogeosciences, 17, 4663–4679, https://doi.org/10.5194/bg-17-4663-2020, https://doi.org/10.5194/bg-17-4663-2020, 2020
Short summary
Short summary
We measured dissolved organic carbon (DOC), nitrogen (DON) and matter (DOM) optical properties in pore waters and near-bottom waters of the eastern tropical South Pacific off Peru. The difference between diffusion-driven and net fluxes of DOC and DON and qualitative changes in DOM optical properties suggested active microbial utilisation of the released DOM at the sediment–water interface. Our results suggest that the sediment release of DOM contributes to microbial processes in the area.
Anna Plass, Christian Schlosser, Stefan Sommer, Andrew W. Dale, Eric P. Achterberg, and Florian Scholz
Biogeosciences, 17, 3685–3704, https://doi.org/10.5194/bg-17-3685-2020, https://doi.org/10.5194/bg-17-3685-2020, 2020
Short summary
Short summary
We compare the cycling of Fe and Cd in sulfidic sediments of the Peruvian oxygen minimum zone. Due to the contrasting solubility of their sulfide minerals, the sedimentary Fe release and Cd burial fluxes covary with spatial and temporal distributions of H2S. Depending on the solubility of their sulfide minerals, sedimentary trace metal fluxes will respond differently to ocean deoxygenation/expansion of H2S concentrations, which may change trace metal stoichiometry of upwelling water masses.
Sebastian Beil, Wolfgang Kuhnt, Ann Holbourn, Florian Scholz, Julian Oxmann, Klaus Wallmann, Janne Lorenzen, Mohamed Aquit, and El Hassane Chellai
Clim. Past, 16, 757–782, https://doi.org/10.5194/cp-16-757-2020, https://doi.org/10.5194/cp-16-757-2020, 2020
Short summary
Short summary
Comparison of Cretaceous OAE1a and OAE2 in two drill cores with unusually high sedimentation rates shows that long-lasting negative δ13C excursions precede the positive δ13C excursions and that the evolution of the marine δ13C positive excursions is similar during both OAEs, although the durations of individual phases differ substantially. Phosphorus speciation data across OAE2 and the Mid-Cenomanian Event suggest a positive feedback loop, enhancing marine productivity during OAEs.
Claudia Frey, Hermann W. Bange, Eric P. Achterberg, Amal Jayakumar, Carolin R. Löscher, Damian L. Arévalo-Martínez, Elizabeth León-Palmero, Mingshuang Sun, Xin Sun, Ruifang C. Xie, Sergey Oleynik, and Bess B. Ward
Biogeosciences, 17, 2263–2287, https://doi.org/10.5194/bg-17-2263-2020, https://doi.org/10.5194/bg-17-2263-2020, 2020
Short summary
Short summary
The production of N2O via nitrification and denitrification associated with low-O2 waters is a major source of oceanic N2O. We investigated the regulation and dynamics of these processes with respect to O2 and organic matter inputs. The transcription of the key nitrification gene amoA rapidly responded to changes in O2 and strongly correlated with N2O production rates. N2O production by denitrification was clearly stimulated by organic carbon, implying that its supply controls N2O production.
Sonja Geilert, Patricia Grasse, Kristin Doering, Klaus Wallmann, Claudia Ehlert, Florian Scholz, Martin Frank, Mark Schmidt, and Christian Hensen
Biogeosciences, 17, 1745–1763, https://doi.org/10.5194/bg-17-1745-2020, https://doi.org/10.5194/bg-17-1745-2020, 2020
Short summary
Short summary
Marine silicate weathering is a key process of the marine silica cycle; however, its controlling processes are not well understood. In the Guaymas Basin, silicate weathering has been studied under markedly differing ambient conditions. Environmental settings like redox conditions or terrigenous input of reactive silicates appear to be major factors controlling marine silicate weathering. These factors need to be taken into account in future oceanic mass balances of Si and in modeling studies.
Carolin R. Löscher, Wiebke Mohr, Hermann W. Bange, and Donald E. Canfield
Biogeosciences, 17, 851–864, https://doi.org/10.5194/bg-17-851-2020, https://doi.org/10.5194/bg-17-851-2020, 2020
Short summary
Short summary
Oxygen minimum zones (OMZs) are ocean areas severely depleted in oxygen as a result of physical, chemical, and biological processes. Biologically, organic material is produced in the sea surface and exported to deeper waters, where it respires. In the Bay of Bengal (BoB), an OMZ is present, but there are traces of oxygen left. Our study now suggests that this is because one key process, nitrogen fixation, is absent in the BoB, thus preventing primary production and consecutive respiration.
Tronje P. Kemena, Angela Landolfi, Andreas Oschlies, Klaus Wallmann, and Andrew W. Dale
Earth Syst. Dynam., 10, 539–553, https://doi.org/10.5194/esd-10-539-2019, https://doi.org/10.5194/esd-10-539-2019, 2019
Short summary
Short summary
Oceanic deoxygenation is driven by climate change in several areas of the global ocean. Measurements indicate that ocean volumes with very low oxygen levels expand, with consequences for marine organisms and fishery. We found climate-change-driven phosphorus (P) input in the ocean is hereby an important driver for deoxygenation on longer timescales with effects in the next millennia.
Sonja Geilert, Christian Hensen, Mark Schmidt, Volker Liebetrau, Florian Scholz, Mechthild Doll, Longhui Deng, Annika Fiskal, Mark A. Lever, Chih-Chieh Su, Stefan Schloemer, Sudipta Sarkar, Volker Thiel, and Christian Berndt
Biogeosciences, 15, 5715–5731, https://doi.org/10.5194/bg-15-5715-2018, https://doi.org/10.5194/bg-15-5715-2018, 2018
Short summary
Short summary
Abrupt climate changes in Earth’s history might have been triggered by magmatic intrusions into organic-rich sediments, which can potentially release large amounts of greenhouse gases. In the Guaymas Basin, vigorous hydrothermal venting at the ridge axis and off-axis inactive vents show that magmatic intrusions are an effective way to release carbon but must be considered as very short-lived processes in a geological sense. These results need to be taken into account in future climate models.
Konstantin Stolpovsky, Andrew W. Dale, and Klaus Wallmann
Biogeosciences, 15, 3391–3407, https://doi.org/10.5194/bg-15-3391-2018, https://doi.org/10.5194/bg-15-3391-2018, 2018
Short summary
Short summary
The paper describes a new way to parameterize G-type models in marine sediments using data about reactivity of organic carbon sinking to the seafloor.
Johanna Maltby, Lea Steinle, Carolin R. Löscher, Hermann W. Bange, Martin A. Fischer, Mark Schmidt, and Tina Treude
Biogeosciences, 15, 137–157, https://doi.org/10.5194/bg-15-137-2018, https://doi.org/10.5194/bg-15-137-2018, 2018
Short summary
Short summary
The activity and environmental controls of methanogenesis (MG) within the sulfate-reducing zone (0–30 cm below the seafloor) were investigated in organic-rich sediments of the seasonally hypoxic Eckernförde Bay, SW Baltic Sea. MG activity was mostly linked to non-competitive substrates. The major controls identified were organic matter availability, C / N, temperature, and O2 in the water column, revealing higher rates in warm, stratified, hypoxic seasons compared to colder, oxygenated seasons.
Johannes Karstensen, Florian Schütte, Alice Pietri, Gerd Krahmann, Björn Fiedler, Damian Grundle, Helena Hauss, Arne Körtzinger, Carolin R. Löscher, Pierre Testor, Nuno Vieira, and Martin Visbeck
Biogeosciences, 14, 2167–2181, https://doi.org/10.5194/bg-14-2167-2017, https://doi.org/10.5194/bg-14-2167-2017, 2017
Short summary
Short summary
High-resolution observational data from underwater gliders and ships are used to investigate drivers and pathways of nutrient upwelling in high-productive whirling ecosystems (eddies). The data suggest that the upwelling is created by the interaction of wind-induced internal waves with the local rotation of the eddy. Because of differences in nutrient and oxygen pathways, a low-oxygen core is established at shallow depth in the high-productive eddies.
Björn Fiedler, Damian S. Grundle, Florian Schütte, Johannes Karstensen, Carolin R. Löscher, Helena Hauss, Hannes Wagner, Alexandra Loginova, Rainer Kiko, Péricles Silva, Toste Tanhua, and Arne Körtzinger
Biogeosciences, 13, 5633–5647, https://doi.org/10.5194/bg-13-5633-2016, https://doi.org/10.5194/bg-13-5633-2016, 2016
Short summary
Short summary
Oxygen-depleted mesoscale features in the open eastern tropical North Atlantic, which are formed in the Mauritanian upwelling region, were discovered recently. This study examines biogeochemical structure and magnitudes of related processes within these isolated water masses. We found very low oxygen concentrations and strongly enhanced acidity at near-surface depth. Oxygen utilization and downward carbon export were found to exceed known values for this ocean region.
Jessica Gier, Stefan Sommer, Carolin R. Löscher, Andrew W. Dale, Ruth A. Schmitz, and Tina Treude
Biogeosciences, 13, 4065–4080, https://doi.org/10.5194/bg-13-4065-2016, https://doi.org/10.5194/bg-13-4065-2016, 2016
Short summary
Short summary
Benthic nitrogen fixation and sulfate reduction were investigated in the Peruvian oxygen minimum zone. The data suggest a coupling of both activities to a large extent, but that also sulfide and organic matter availability are controlling the benthic diazotrophy in this area. The molecular analysis confirms the presence of heterotrophic diazotrophs. This work improves our understanding of N cycling in OMZ sediments and the understanding of N sources in the marine environment.
Carolin R. Löscher, Hermann W. Bange, Ruth A. Schmitz, Cameron M. Callbeck, Anja Engel, Helena Hauss, Torsten Kanzow, Rainer Kiko, Gaute Lavik, Alexandra Loginova, Frank Melzner, Judith Meyer, Sven C. Neulinger, Markus Pahlow, Ulf Riebesell, Harald Schunck, Sören Thomsen, and Hannes Wagner
Biogeosciences, 13, 3585–3606, https://doi.org/10.5194/bg-13-3585-2016, https://doi.org/10.5194/bg-13-3585-2016, 2016
Short summary
Short summary
The ocean loses oxygen due to climate change. Addressing this issue in tropical ocean regions (off Peru and Mauritania), we aimed to understand the effects of oxygen depletion on various aspects of marine biogeochemistry, including primary production and export production, the nitrogen cycle, greenhouse gas production, organic matter fluxes and remineralization, and the role of zooplankton and viruses.
Pei-Chuan Chuang, Megan B. Young, Andrew W. Dale, Laurence G. Miller, Jorge A. Herrera-Silveira, and Adina Paytan
Biogeosciences, 13, 2981–3001, https://doi.org/10.5194/bg-13-2981-2016, https://doi.org/10.5194/bg-13-2981-2016, 2016
Short summary
Short summary
A transport-reaction model was used to simulate porewater methane and sulfate concentrations. Model results and sediment slurry incubation experiments show high methane production rates supported by non-competitive substrates and ample dissolved and labile organic matter as well as methane from deeper sediment through bubbles dissolution and diffusion. The shallow methane production and accumulation depths in these sediments promote high methane fluxes to the water column and atmosphere.
Carolin R. Löscher, Annie Bourbonnais, Julien Dekaezemacker, Chawalit N. Charoenpong, Mark A. Altabet, Hermann W. Bange, Rena Czeschel, Chris Hoffmann, and Ruth Schmitz
Biogeosciences, 13, 2889–2899, https://doi.org/10.5194/bg-13-2889-2016, https://doi.org/10.5194/bg-13-2889-2016, 2016
Short summary
Short summary
The ocean is full of eddies and they play a key role for ocean biogeochemistry. In order to understand dinitrogen (N2) fixation, one major control of oceanic primary production, we investigated three eddies in the eastern tropical South Pacific off Peru. We conducted the first detailed survey and found increased N2 fixation in the oxygen-depleted cores of anticyclonic mode water eddies. Taken together, we could – for the first time – show that eddies play an important role in N2 fixation off Peru.
Helena Hauss, Svenja Christiansen, Florian Schütte, Rainer Kiko, Miryam Edvam Lima, Elizandro Rodrigues, Johannes Karstensen, Carolin R. Löscher, Arne Körtzinger, and Björn Fiedler
Biogeosciences, 13, 1977–1989, https://doi.org/10.5194/bg-13-1977-2016, https://doi.org/10.5194/bg-13-1977-2016, 2016
Short summary
Short summary
In a low-oxygen eddy in the tropical Atlantic, total zooplankton biomass was increased. Larger plankton avoided the oxygen minimum zone (OMZ, < 20 µmol O2 kg−1). We identified four strategies by different plankton groups: (i) shallow OMZ avoidance and compression at surface, (ii) migration to shallow OMZ core during daytime, migration to surface at nighttime, (iii) residing in shallow OMZ day and night and (iv) migration through the shallow OMZ from oxygenated depths to surface and back.
Lorenzo Rovelli, Marcus Dengler, Mark Schmidt, Stefan Sommer, Peter Linke, and Daniel F. McGinnis
Biogeosciences, 13, 1609–1620, https://doi.org/10.5194/bg-13-1609-2016, https://doi.org/10.5194/bg-13-1609-2016, 2016
Damian L. Arévalo-Martínez, Annette Kock, Carolin R. Löscher, Ruth A. Schmitz, Lothar Stramma, and Hermann W. Bange
Biogeosciences, 13, 1105–1118, https://doi.org/10.5194/bg-13-1105-2016, https://doi.org/10.5194/bg-13-1105-2016, 2016
Short summary
Short summary
We present the first measurements of N2O across three mesoscale eddies in the eastern tropical South Pacific. Eddie's vertical structure, offshore transport, properties during its formation and near-surface primary production determined the N2O distribution. Substantial depletion of N2O within the core of anticyclonic eddies suggests that although these are transient features, N-loss processes within their centres can lead to an enhanced N2O sink which is not accounted for in marine N2O budgets.
K. Wallmann, B. Schneider, and M. Sarnthein
Clim. Past, 12, 339–375, https://doi.org/10.5194/cp-12-339-2016, https://doi.org/10.5194/cp-12-339-2016, 2016
Short summary
Short summary
An Earth system model was set up and applied to evaluate the effects of sea-level change, ocean dynamics, and nutrient utilization on seawater composition and atmospheric pCO2 over the last glacial cycle. The model results strongly suggest that global sea-level change contributed significantly to the slow glacial decline in atmospheric pCO2 and the gradual pCO2 increase over the Holocene whereas the rapid deglacial pCO2 rise was induced by fast changes in ocean dynamics and nutrient utilization.
A. Kock, D. L. Arévalo-Martínez, C. R. Löscher, and H. W. Bange
Biogeosciences, 13, 827–840, https://doi.org/10.5194/bg-13-827-2016, https://doi.org/10.5194/bg-13-827-2016, 2016
Short summary
Short summary
We measured the nitrous oxide (N2O) distribution in the water column in the oxygen minimum zone off Peru, an area with extremely high N2O emissions. Our data show very variable and often very high N2O concentrations in the water column at the coast, which lead to high N2O emissions when these waters are brought to the surface. The very high N2O production off Peru may be caused by high nutrient turnover rates together with rapid changes in the oxygen concentrations.
J. Meyer, C. R. Löscher, S. C. Neulinger, A. F. Reichel, A. Loginova, C. Borchard, R. A. Schmitz, H. Hauss, R. Kiko, and U. Riebesell
Biogeosciences, 13, 781–794, https://doi.org/10.5194/bg-13-781-2016, https://doi.org/10.5194/bg-13-781-2016, 2016
J. Maltby, S. Sommer, A. W. Dale, and T. Treude
Biogeosciences, 13, 283–299, https://doi.org/10.5194/bg-13-283-2016, https://doi.org/10.5194/bg-13-283-2016, 2016
Short summary
Short summary
The concurrence of methanogenesis and sulfate reduction was investigated in surface sediments (0–25cm b.s.f.) traversing the Peruvian margin. Surface methanogenesis was mainly based on non-competitive substrates to avoid competition with sulfate reducers. Accordingly, surface methanogenesis was mainly controlled by the availability of labile organic matter. The high relevance of surface methanogenesis especially on the shelf indicates its underestimated role within benthic methane budgeting.
C. R. Löscher, M. A. Fischer, S. C. Neulinger, B. Fiedler, M. Philippi, F. Schütte, A. Singh, H. Hauss, J. Karstensen, A. Körtzinger, S. Künzel, and R. A. Schmitz
Biogeosciences, 12, 7467–7482, https://doi.org/10.5194/bg-12-7467-2015, https://doi.org/10.5194/bg-12-7467-2015, 2015
Short summary
Short summary
The waters of the tropical Atlantic Open Ocean usually contain comparably high concentrations of oxygen. Now, it became clear that there are watermasses related to eddies that are nearly anoxic. We surveyed one of those eddies and found a biosphere that largely differed from the usual biosphere present in this area with a specific community responsible for primary production and for degradation processes. Further, we found the very first indication for active nitrogen loss in the open Atlantic.
P. Steeb, S. Krause, P. Linke, C. Hensen, A. W. Dale, M. Nuzzo, and T. Treude
Biogeosciences, 12, 6687–6706, https://doi.org/10.5194/bg-12-6687-2015, https://doi.org/10.5194/bg-12-6687-2015, 2015
Short summary
Short summary
We combined field, laboratory (sediment-flow-through system) and numerical modeling work to investigate cold seep sediments at Quespos Slide, offshore of Costa Rica. The results demonstrated the efficiency of the benthic methane filter and provided an estimate for its response time (ca. 170 days) to changes in fluid fluxes.
A. W. Dale, S. Sommer, U. Lomnitz, I. Montes, T. Treude, V. Liebetrau, J. Gier, C. Hensen, M. Dengler, K. Stolpovsky, L. D. Bryant, and K. Wallmann
Biogeosciences, 12, 1537–1559, https://doi.org/10.5194/bg-12-1537-2015, https://doi.org/10.5194/bg-12-1537-2015, 2015
J. Friedrich, F. Janssen, D. Aleynik, H. W. Bange, N. Boltacheva, M. N. Çagatay, A. W. Dale, G. Etiope, Z. Erdem, M. Geraga, A. Gilli, M. T. Gomoiu, P. O. J. Hall, D. Hansson, Y. He, M. Holtappels, M. K. Kirf, M. Kononets, S. Konovalov, A. Lichtschlag, D. M. Livingstone, G. Marinaro, S. Mazlumyan, S. Naeher, R. P. North, G. Papatheodorou, O. Pfannkuche, R. Prien, G. Rehder, C. J. Schubert, T. Soltwedel, S. Sommer, H. Stahl, E. V. Stanev, A. Teaca, A. Tengberg, C. Waldmann, B. Wehrli, and F. Wenzhöfer
Biogeosciences, 11, 1215–1259, https://doi.org/10.5194/bg-11-1215-2014, https://doi.org/10.5194/bg-11-1215-2014, 2014
S. Krause, P. Steeb, C. Hensen, V. Liebetrau, A. W. Dale, M. Nuzzo, and T. Treude
Biogeosciences, 11, 507–523, https://doi.org/10.5194/bg-11-507-2014, https://doi.org/10.5194/bg-11-507-2014, 2014
N. Glock, J. Schönfeld, A. Eisenhauer, C. Hensen, J. Mallon, and S. Sommer
Biogeosciences, 10, 4767–4783, https://doi.org/10.5194/bg-10-4767-2013, https://doi.org/10.5194/bg-10-4767-2013, 2013
V. J. Bertics, C. R. Löscher, I. Salonen, A. W. Dale, J. Gier, R. A. Schmitz, and T. Treude
Biogeosciences, 10, 1243–1258, https://doi.org/10.5194/bg-10-1243-2013, https://doi.org/10.5194/bg-10-1243-2013, 2013
A. W. Dale, V. J. Bertics, T. Treude, S. Sommer, and K. Wallmann
Biogeosciences, 10, 629–651, https://doi.org/10.5194/bg-10-629-2013, https://doi.org/10.5194/bg-10-629-2013, 2013
K. Soetaert, D. van Oevelen, and S. Sommer
Biogeosciences, 9, 5341–5352, https://doi.org/10.5194/bg-9-5341-2012, https://doi.org/10.5194/bg-9-5341-2012, 2012
Related subject area
Biogeochemistry: Sediment
The fate of fixed nitrogen in Santa Barbara Basin sediments during seasonal anoxia
How is particulate organic carbon transported through the river-fed Congo Submarine Canyon to the deep-sea?
Distinct oxygenation modes of the Gulf of Oman over the past 43 000 years – a multi-proxy approach
Potential impacts of cable bacteria activity on hard-shelled benthic foraminifera: implications for their interpretation as bioindicators or paleoproxies
Seafloor sediment characterization to improve estimate of organic carbon standing stocks in continental shelves
Evidence of cryptic methane cycling and non-methanogenic methylamine consumption in the sulfate-reducing zone of sediment in the Santa Barbara Basin, California
Assessing global-scale organic matter reactivity patterns in marine sediments using a lognormal reactive continuum model
Deposit-feeding of Nonionellina labradorica (foraminifera) from an Arctic methane seep site and possible association with a methanotroph
Benthic silicon cycling in the Arctic Barents Sea: a reaction–transport model study
Long-term incubations provide insight into the mechanisms of anaerobic oxidation of methane in methanogenic lake sediments
Ideas and perspectives: Sea-level change, anaerobic methane oxidation, and the glacial–interglacial phosphorus cycle
Estimation of the natural background of phosphate in a lowland river using tidal marsh sediment cores
Geochemical consequences of oxygen diffusion from the oceanic crust into overlying sediments and its significance for biogeochemical cycles based on sediments of the northeast Pacific
Carbon sources of benthic fauna in temperate lakes across multiple trophic states
Deep-water inflow event increases sedimentary phosphorus release on a multi-year scale
Bioturbation has a limited effect on phosphorus burial in salt marsh sediments
Biogeochemical impact of cable bacteria on coastal Black Sea sediment
Organic carbon characteristics in ice-rich permafrost in alas and Yedoma deposits, central Yakutia, Siberia
The control of hydrogen sulfide on benthic iron and cadmium fluxes in the oxygen minimum zone off Peru
Quantity and distribution of methane entrapped in sediments of calcareous, Alpine glacier forefields
Assessing the potential for non-turbulent methane escape from the East Siberian Arctic Shelf
Vertical transport of sediment-associated metals and cyanobacteria by ebullition in a stratified lake
Evidence of changes in sedimentation rate and sediment fabric in a low-oxygen setting: Santa Monica Basin, CA
Authigenic formation of Ca–Mg carbonates in the shallow alkaline Lake Neusiedl, Austria
Vivianite formation in ferruginous sediments from Lake Towuti, Indonesia
Impact of ambient conditions on the Si isotope fractionation in marine pore fluids during early diagenesis
Impact of small-scale disturbances on geochemical conditions, biogeochemical processes and element fluxes in surface sediments of the eastern Clarion–Clipperton Zone, Pacific Ocean
Acetate turnover and methanogenic pathways in Amazonian lake sediments
Benthic alkalinity and dissolved inorganic carbon fluxes in the Rhône River prodelta generated by decoupled aerobic and anaerobic processes
Small-scale heterogeneity of trace metals including rare earth elements and yttrium in deep-sea sediments and porewaters of the Peru Basin, southeastern equatorial Pacific
Organic matter contents and degradation in a highly trawled area during fresh particle inputs (Gulf of Castellammare, southwestern Mediterranean)
Identifying the core bacterial microbiome of hydrocarbon degradation and a shift of dominant methanogenesis pathways in the oil and aqueous phases of petroleum reservoirs of different temperatures from China
Effects of eutrophication on sedimentary organic carbon cycling in five temperate lakes
Evidence for microbial iron reduction in the methanic sediments of the oligotrophic southeastern Mediterranean continental shelf
Fracture-controlled fluid transport supports microbial methane-oxidizing communities at Vestnesa Ridge
Hydrothermal alteration of aragonitic biocarbonates: assessment of micro- and nanostructural dissolution–reprecipitation and constraints of diagenetic overprint from quantitative statistical grain-area analysis
Large variations in iron input to an oligotrophic Baltic Sea estuary: impact on sedimentary phosphorus burial
Vivianite formation in methane-rich deep-sea sediments from the South China Sea
Benthic archaea as potential sources of tetraether membrane lipids in sediments across an oxygen minimum zone
Carbon amendment stimulates benthic nitrogen cycling during the bioremediation of particulate aquaculture waste
Modelling biogeochemical processes in sediments from the north-western Adriatic Sea: response to enhanced particulate organic carbon fluxes
Carbon mineralization in Laptev and East Siberian sea shelf and slope sediment
Reviews and syntheses: to the bottom of carbon processing at the seafloor
Scotland's forgotten carbon: a national assessment of mid-latitude fjord sedimentary carbon stocks
Does denitrification occur within porous carbonate sand grains?
Sediment phosphorus speciation and mobility under dynamic redox conditions
Pore water geochemistry along continental slopes north of the East Siberian Sea: inference of low methane concentrations
Experimental diagenesis: insights into aragonite to calcite transformation of Arctica islandica shells by hydrothermal treatment
Manganese and iron reduction dominate organic carbon oxidation in surface sediments of the deep Ulleung Basin, East Sea
Carbonate chemistry in sediment porewaters of the Rhône River delta driven by early diagenesis (northwestern Mediterranean)
Xuefeng Peng, David J. Yousavich, Annie Bourbonnais, Frank Wenzhöfer, Felix Janssen, Tina Treude, and David L. Valentine
Biogeosciences, 21, 3041–3052, https://doi.org/10.5194/bg-21-3041-2024, https://doi.org/10.5194/bg-21-3041-2024, 2024
Short summary
Short summary
Biologically available (fixed) nitrogen (N) is a limiting nutrient for life in the ocean. Under low-oxygen conditions, fixed N is either removed via denitrification or retained via dissimilatory nitrate reduction to ammonia (DNRA). Using in situ incubations in the Santa Barbara Basin, which undergoes seasonal anoxia, we found that benthic denitrification was the dominant nitrate reduction process, while nitrate availability and organic carbon content control the relative importance of DNRA.
Sophie Hage, Megan L. Baker, Nathalie Babonneau, Guillaume Soulet, Bernard Dennielou, Ricardo Silva Jacinto, Robert G. Hilton, Valier Galy, François Baudin, Christophe Rabouille, Clément Vic, Sefa Sahin, Sanem Açikalin, and Peter J. Talling
EGUsphere, https://doi.org/10.5194/egusphere-2024-900, https://doi.org/10.5194/egusphere-2024-900, 2024
Short summary
Short summary
Climate projections require to quantify the exchange of carbon between the atmosphere, land and oceans, yet the land-to-ocean flux of carbon is difficult to measure. Here, we quantify the carbon flux between the second largest river on Earth and the ocean. Carbon in the form of vegetation and soil is transported by episodic submarine avalanches in a 1000 km-long canyon at up to 5 km of water depth. The carbon flux induced by avalanches is at least ten times greater than that induced by tides.
Nicole Burdanowitz, Gerhard Schmiedl, Birgit Gaye, Philipp M. Munz, and Hartmut Schulz
Biogeosciences, 21, 1477–1499, https://doi.org/10.5194/bg-21-1477-2024, https://doi.org/10.5194/bg-21-1477-2024, 2024
Short summary
Short summary
We analyse benthic foraminifera, nitrogen isotopes and lipids in a sediment core from the Gulf of Oman to investigate how the oxygen minimum zone (OMZ) and bottom water (BW) oxygenation have reacted to climatic changes since 43 ka. The OMZ and BW deoxygenation was strong during the Holocene, but the OMZ was well ventilated during the LGM period. We found an unstable mode of oscillating oxygenation states, from moderately oxygenated in cold stadials to deoxygenated in warm interstadials in MIS 3.
Maxime Daviray, Emmanuelle Geslin, Nils Risgaard-Petersen, Vincent V. Scholz, Marie Fouet, and Edouard Metzger
Biogeosciences, 21, 911–928, https://doi.org/10.5194/bg-21-911-2024, https://doi.org/10.5194/bg-21-911-2024, 2024
Short summary
Short summary
Coastal marine sediments are subject to major acidification processes because of climate change and human activities, but these processes can also result from biotic activity. We studied the sediment acidifcation effect on benthic calcareous foraminifera in intertidal mudflats. The strong pH decrease in sediments probably caused by cable bacteria led to calcareous test dissolution of living and dead foraminifera, threatening the test preservation and their robustness as environmental proxies.
Catherine Brenan, Markus Kienast, Vittorio Maselli, Christopher Algar, Benjamin Misiuk, and Craig J. Brown
EGUsphere, https://doi.org/10.5194/egusphere-2024-5, https://doi.org/10.5194/egusphere-2024-5, 2024
Short summary
Short summary
Quantifying how much organic carbon is stored in seafloor sediments is key to assessing how human activities can accelerate the process of carbon storage at the seabed, an important consideration for climate change. This study uses seafloor sediment maps to model organic carbon content. Carbon estimates were six time higher when assuming the absence of detailed sediment maps, demonstrating that high-resolution seafloor mapping is critically important for improved estimates of organic carbon.
Sebastian J. E. Krause, Jiarui Liu, David J. Yousavich, DeMarcus Robinson, David W. Hoyt, Qianhui Qin, Frank Wenzhöfer, Felix Janssen, David L. Valentine, and Tina Treude
Biogeosciences, 20, 4377–4390, https://doi.org/10.5194/bg-20-4377-2023, https://doi.org/10.5194/bg-20-4377-2023, 2023
Short summary
Short summary
Methane is a potent greenhouse gas, and hence it is important to understand its sources and sinks in the environment. Here we present new data from organic-rich surface sediments below an oxygen minimum zone off the coast of California (Santa Barbara Basin) demonstrating the simultaneous microbial production and consumption of methane, which appears to be an important process preventing the build-up of methane in these sediments and the emission into the water column and atmosphere.
Sinan Xu, Bo Liu, Sandra Arndt, Sabine Kasten, and Zijun Wu
Biogeosciences, 20, 2251–2263, https://doi.org/10.5194/bg-20-2251-2023, https://doi.org/10.5194/bg-20-2251-2023, 2023
Short summary
Short summary
We use a reactive continuum model based on a lognormal distribution (l-RCM) to inversely determine model parameters μ and σ at 123 sites across the global ocean. Our results show organic matter (OM) reactivity is more than 3 orders of magnitude higher in shelf than in abyssal regions. In addition, OM reactivity is higher than predicted in some specific regions, yet the l-RCM can still capture OM reactivity features in these regions.
Christiane Schmidt, Emmanuelle Geslin, Joan M. Bernhard, Charlotte LeKieffre, Mette Marianne Svenning, Helene Roberge, Magali Schweizer, and Giuliana Panieri
Biogeosciences, 19, 3897–3909, https://doi.org/10.5194/bg-19-3897-2022, https://doi.org/10.5194/bg-19-3897-2022, 2022
Short summary
Short summary
This study is the first to show non-selective deposit feeding in the foraminifera Nonionella labradorica and the possible uptake of methanotrophic bacteria. We carried out a feeding experiment with a marine methanotroph to examine the ultrastructure of the cell and degradation vacuoles using transmission electron microscopy (TEM). The results revealed three putative methanotrophs at the outside of the cell/test, which could be taken up via non-targeted grazing in seeps or our experiment.
James P. J. Ward, Katharine R. Hendry, Sandra Arndt, Johan C. Faust, Felipe S. Freitas, Sian F. Henley, Jeffrey W. Krause, Christian März, Allyson C. Tessin, and Ruth L. Airs
Biogeosciences, 19, 3445–3467, https://doi.org/10.5194/bg-19-3445-2022, https://doi.org/10.5194/bg-19-3445-2022, 2022
Short summary
Short summary
The seafloor plays an important role in the cycling of silicon (Si), a key nutrient that promotes marine primary productivity. In our model study, we disentangle major controls on the seafloor Si cycle to better anticipate the impacts of continued warming and sea ice melt in the Barents Sea. We uncover a coupling of the iron redox and Si cycles, dissolution of lithogenic silicates, and authigenic clay formation, comprising a Si sink that could have implications for the Arctic Ocean Si budget.
Hanni Vigderovich, Werner Eckert, Michal Elul, Maxim Rubin-Blum, Marcus Elvert, and Orit Sivan
Biogeosciences, 19, 2313–2331, https://doi.org/10.5194/bg-19-2313-2022, https://doi.org/10.5194/bg-19-2313-2022, 2022
Short summary
Short summary
Anaerobic oxidation of methane (AOM) is one of the major processes limiting the release of the greenhouse gas methane from natural environments. Here we show that significant AOM exists in the methane zone of lake sediments in natural conditions and even after long-term (ca. 18 months) anaerobic slurry incubations with two stages. Methanogens were most likely responsible for oxidizing the methane, and humic substances and iron oxides are likely electron acceptors to support this oxidation.
Bjorn Sundby, Pierre Anschutz, Pascal Lecroart, and Alfonso Mucci
Biogeosciences, 19, 1421–1434, https://doi.org/10.5194/bg-19-1421-2022, https://doi.org/10.5194/bg-19-1421-2022, 2022
Short summary
Short summary
A glacial–interglacial methane-fuelled redistribution of reactive phosphorus between the oceanic and sedimentary phosphorus reservoirs can occur in the ocean when falling sea level lowers the pressure on the seafloor, destabilizes methane hydrates, and triggers the dissolution of P-bearing iron oxides. The mass of phosphate potentially mobilizable from the sediment is similar to the size of the current oceanic reservoir. Hence, this process may play a major role in the marine phosphorus cycle.
Florian Lauryssen, Philippe Crombé, Tom Maris, Elliot Van Maldegem, Marijn Van de Broek, Stijn Temmerman, and Erik Smolders
Biogeosciences, 19, 763–776, https://doi.org/10.5194/bg-19-763-2022, https://doi.org/10.5194/bg-19-763-2022, 2022
Short summary
Short summary
Surface waters in lowland regions have a poor surface water quality, mainly due to excess nutrients like phosphate. Therefore, we wanted to know the phosphate levels without humans, also called the pre-industrial background. Phosphate binds strongly to sediment particles, suspended in the river water. In this research we used sediments deposited by a river as an archive for surface water phosphate back to 1800 CE. Pre-industrial phosphate levels were estimated at one-third of the modern levels.
Gerard J. M. Versteegh, Andrea Koschinsky, Thomas Kuhn, Inken Preuss, and Sabine Kasten
Biogeosciences, 18, 4965–4984, https://doi.org/10.5194/bg-18-4965-2021, https://doi.org/10.5194/bg-18-4965-2021, 2021
Short summary
Short summary
Oxygen penetrates sediments not only from the ocean bottom waters but also from the basement. The impact of the latter is poorly understood. We show that this basement oxygen has a clear impact on the nitrogen cycle, the redox state, and the distribution of manganese, nickel cobalt and organic matter in the sediments. This is important for (1) global biogeochemical cycles, (2) understanding sedimentary life and (3) the interpretation of the sediment record to reconstruct the past.
Annika Fiskal, Eva Anthamatten, Longhui Deng, Xingguo Han, Lorenzo Lagostina, Anja Michel, Rong Zhu, Nathalie Dubois, Carsten J. Schubert, Stefano M. Bernasconi, and Mark A. Lever
Biogeosciences, 18, 4369–4388, https://doi.org/10.5194/bg-18-4369-2021, https://doi.org/10.5194/bg-18-4369-2021, 2021
Short summary
Short summary
Microbially produced methane can serve as a carbon source for freshwater macrofauna most likely through grazing on methane-oxidizing bacteria. This study investigates the contributions of different carbon sources to macrofaunal biomass. Our data suggest that the average contribution of methane-derived carbon is similar between different fauna but overall remains low. This is further supported by the low abundance of methane-cycling microorganisms.
Astrid Hylén, Sebastiaan J. van de Velde, Mikhail Kononets, Mingyue Luo, Elin Almroth-Rosell, and Per O. J. Hall
Biogeosciences, 18, 2981–3004, https://doi.org/10.5194/bg-18-2981-2021, https://doi.org/10.5194/bg-18-2981-2021, 2021
Short summary
Short summary
Sediments in oxygen-depleted ocean areas release high amounts of phosphorus, feeding algae that consume oxygen upon degradation, leading to further phosphorus release. Oxygenation is thought to trap phosphorus in the sediment and break this feedback. We studied the sediment phosphorus cycle in a previously anoxic area after an inflow of oxic water. Surprisingly, the sediment phosphorus release increased, showing that feedbacks between phosphorus release and oxygen depletion can be hard to break.
Sebastiaan J. van de Velde, Rebecca K. James, Ine Callebaut, Silvia Hidalgo-Martinez, and Filip J. R. Meysman
Biogeosciences, 18, 1451–1461, https://doi.org/10.5194/bg-18-1451-2021, https://doi.org/10.5194/bg-18-1451-2021, 2021
Short summary
Short summary
Some 540 Myr ago, animal life evolved in the ocean. Previous research suggested that when these early animals started inhabiting the seafloor, they retained phosphorus in the seafloor, thereby limiting photosynthesis in the ocean. We studied salt marsh sediments with and without animals and found that their impact on phosphorus retention is limited, which implies that their impact on the global environment might have been less drastic than previously assumed.
Martijn Hermans, Nils Risgaard-Petersen, Filip J. R. Meysman, and Caroline P. Slomp
Biogeosciences, 17, 5919–5938, https://doi.org/10.5194/bg-17-5919-2020, https://doi.org/10.5194/bg-17-5919-2020, 2020
Short summary
Short summary
This paper demonstrates that the recently discovered cable bacteria are capable of using a mineral, known as siderite, as a source for the formation of iron oxides. This work also demonstrates that the activity of cable bacteria can lead to a distinct subsurface layer in the sediment that can be used as a marker for their activity.
Torben Windirsch, Guido Grosse, Mathias Ulrich, Lutz Schirrmeister, Alexander N. Fedorov, Pavel Y. Konstantinov, Matthias Fuchs, Loeka L. Jongejans, Juliane Wolter, Thomas Opel, and Jens Strauss
Biogeosciences, 17, 3797–3814, https://doi.org/10.5194/bg-17-3797-2020, https://doi.org/10.5194/bg-17-3797-2020, 2020
Short summary
Short summary
To extend the knowledge on circumpolar deep permafrost carbon storage, we examined two deep permafrost deposit types (Yedoma and alas) in central Yakutia. We found little but partially undecomposed organic carbon as a result of largely changing sedimentation processes. The carbon stock of the examined Yedoma deposits is about 50 % lower than the general Yedoma domain mean, implying a very hetererogeneous Yedoma composition, while the alas is approximately 80 % below the thermokarst deposit mean.
Anna Plass, Christian Schlosser, Stefan Sommer, Andrew W. Dale, Eric P. Achterberg, and Florian Scholz
Biogeosciences, 17, 3685–3704, https://doi.org/10.5194/bg-17-3685-2020, https://doi.org/10.5194/bg-17-3685-2020, 2020
Short summary
Short summary
We compare the cycling of Fe and Cd in sulfidic sediments of the Peruvian oxygen minimum zone. Due to the contrasting solubility of their sulfide minerals, the sedimentary Fe release and Cd burial fluxes covary with spatial and temporal distributions of H2S. Depending on the solubility of their sulfide minerals, sedimentary trace metal fluxes will respond differently to ocean deoxygenation/expansion of H2S concentrations, which may change trace metal stoichiometry of upwelling water masses.
Biqing Zhu, Manuel Kübler, Melanie Ridoli, Daniel Breitenstein, and Martin H. Schroth
Biogeosciences, 17, 3613–3630, https://doi.org/10.5194/bg-17-3613-2020, https://doi.org/10.5194/bg-17-3613-2020, 2020
Short summary
Short summary
We provide evidence that the greenhouse gas methane (CH4) is enclosed in calcareous glacier-forefield sediments across Switzerland. Geochemical analyses confirmed that this ancient CH4 has its origin in the calcareous parent bedrock. Our estimate of the total quantity of CH4 enclosed in sediments across Switzerland indicates a large CH4 mass (~105 t CH4). We produced evidence that CH4 is stable in its enclosed state, but additional experiments are needed to elucidate its long-term fate.
Matteo Puglini, Victor Brovkin, Pierre Regnier, and Sandra Arndt
Biogeosciences, 17, 3247–3275, https://doi.org/10.5194/bg-17-3247-2020, https://doi.org/10.5194/bg-17-3247-2020, 2020
Short summary
Short summary
A reaction-transport model to assess the potential non-turbulent methane flux from the East Siberian Arctic sediments to water columns is applied here. We show that anaerobic oxidation of methane (AOM) is an efficient filter except for high values of sedimentation rate and advective flow, which enable considerable non-turbulent steady-state methane fluxes. Significant transient methane fluxes can also occur during the building-up phase of the AOM-performing biomass microbial community.
Kyle Delwiche, Junyao Gu, Harold Hemond, and Sarah P. Preheim
Biogeosciences, 17, 3135–3147, https://doi.org/10.5194/bg-17-3135-2020, https://doi.org/10.5194/bg-17-3135-2020, 2020
Short summary
Short summary
In this study, we investigate whether bubbles transport sediments containing arsenic and cyanobacteria from the bottom to the top of a polluted lake. We measured arsenic and cyanobacteria from bubble traps in the lake and from an experimental bubble column in the laboratory. We found that bubble transport was not an important source of arsenic in the surface waters but that bubbles could transport enough cyanobacteria to the surface to exacerbate harmful algal blooms.
Nathaniel Kemnitz, William M. Berelson, Douglas E. Hammond, Laura Morine, Maria Figueroa, Timothy W. Lyons, Simon Scharf, Nick Rollins, Elizabeth Petsios, Sydnie Lemieux, and Tina Treude
Biogeosciences, 17, 2381–2396, https://doi.org/10.5194/bg-17-2381-2020, https://doi.org/10.5194/bg-17-2381-2020, 2020
Short summary
Short summary
Our paper shows how sedimentation in a very low oxygen setting provides a unique record of environmental change. We look at the past 250 years through the filter of sediment accumulation via radioisotope dating and other physical and chemical analyses of these sediments. We conclude, remarkably, that there has been very little change in net sediment mass accumulation through the past 100–150 years, yet just prior to 1900 CE, sediments were accumulating at 50 %–70 % of today's rate.
Dario Fussmann, Avril Jean Elisabeth von Hoyningen-Huene, Andreas Reimer, Dominik Schneider, Hana Babková, Robert Peticzka, Andreas Maier, Gernot Arp, Rolf Daniel, and Patrick Meister
Biogeosciences, 17, 2085–2106, https://doi.org/10.5194/bg-17-2085-2020, https://doi.org/10.5194/bg-17-2085-2020, 2020
Short summary
Short summary
Dolomite (CaMg(CO3)2) is supersaturated in many aquatic settings (e.g., seawater) on modern Earth but does not precipitate directly from the fluid, a fact known as the dolomite problem. The widely acknowledged concept of dolomite precipitation involves microbial extracellular polymeric substances (EPSs) and anoxic conditions as important drivers. In contrast, results from Lake Neusiedl support an alternative concept of Ca–Mg carbonate precipitation under aerobic and alkaline conditions.
Aurèle Vuillemin, André Friese, Richard Wirth, Jan A. Schuessler, Anja M. Schleicher, Helga Kemnitz, Andreas Lücke, Kohen W. Bauer, Sulung Nomosatryo, Friedhelm von Blanckenburg, Rachel Simister, Luis G. Ordoñez, Daniel Ariztegui, Cynthia Henny, James M. Russell, Satria Bijaksana, Hendrik Vogel, Sean A. Crowe, Jens Kallmeyer, and the Towuti Drilling Project
Science team
Biogeosciences, 17, 1955–1973, https://doi.org/10.5194/bg-17-1955-2020, https://doi.org/10.5194/bg-17-1955-2020, 2020
Short summary
Short summary
Ferruginous lakes experience restricted primary production due to phosphorus trapping by ferric iron oxides under oxic conditions. We report the presence of large crystals of vivianite, a ferrous iron phosphate, in sediments from Lake Towuti, Indonesia. We address processes of P retention linked to diagenesis of iron phases. Vivianite crystals had light Fe2+ isotope signatures and contained mineral inclusions consistent with antecedent processes of microbial sulfate and iron reduction.
Sonja Geilert, Patricia Grasse, Kristin Doering, Klaus Wallmann, Claudia Ehlert, Florian Scholz, Martin Frank, Mark Schmidt, and Christian Hensen
Biogeosciences, 17, 1745–1763, https://doi.org/10.5194/bg-17-1745-2020, https://doi.org/10.5194/bg-17-1745-2020, 2020
Short summary
Short summary
Marine silicate weathering is a key process of the marine silica cycle; however, its controlling processes are not well understood. In the Guaymas Basin, silicate weathering has been studied under markedly differing ambient conditions. Environmental settings like redox conditions or terrigenous input of reactive silicates appear to be major factors controlling marine silicate weathering. These factors need to be taken into account in future oceanic mass balances of Si and in modeling studies.
Jessica B. Volz, Laura Haffert, Matthias Haeckel, Andrea Koschinsky, and Sabine Kasten
Biogeosciences, 17, 1113–1131, https://doi.org/10.5194/bg-17-1113-2020, https://doi.org/10.5194/bg-17-1113-2020, 2020
Short summary
Short summary
Potential future deep-sea mining of polymetallic nodules at the seafloor is expected to severely harm the marine environment. However, the consequences on deep-sea ecosystems are still poorly understood. This study on surface sediments from man-made disturbance tracks in the Pacific Ocean shows that due to the removal of the uppermost sediment layer and thereby the loss of organic matter, the geochemical system in the sediments is disturbed for millennia before reaching a new equilibrium.
Ralf Conrad, Melanie Klose, and Alex Enrich-Prast
Biogeosciences, 17, 1063–1069, https://doi.org/10.5194/bg-17-1063-2020, https://doi.org/10.5194/bg-17-1063-2020, 2020
Short summary
Short summary
Lake sediments release the greenhouse gas CH4. Acetate is an important precursor. Although Amazonian lake sediments all contained acetate-consuming methanogens, measurement of the turnover of labeled acetate showed that some sediments converted acetate not to CH4 plus CO2, as expected, but only to CO2. Our results indicate the operation of acetate-oxidizing microorganisms couples the oxidation process to syntrophic methanogenic partners and/or to the reduction of organic compounds.
Jens Rassmann, Eryn M. Eitel, Bruno Lansard, Cécile Cathalot, Christophe Brandily, Martial Taillefert, and Christophe Rabouille
Biogeosciences, 17, 13–33, https://doi.org/10.5194/bg-17-13-2020, https://doi.org/10.5194/bg-17-13-2020, 2020
Short summary
Short summary
In this paper, we use a large set of measurements made using in situ and lab techniques to elucidate the cause of dissolved inorganic carbon fluxes in sediments from the Rhône delta and its companion compound alkalinity, which carries the absorption capacity of coastal waters with respect to atmospheric CO2. We show that sediment processes (sulfate reduction, FeS precipitation and accumulation) are crucial in generating the alkalinity fluxes observed in this study by in situ incubation chambers.
Sophie A. L. Paul, Matthias Haeckel, Michael Bau, Rajina Bajracharya, and Andrea Koschinsky
Biogeosciences, 16, 4829–4849, https://doi.org/10.5194/bg-16-4829-2019, https://doi.org/10.5194/bg-16-4829-2019, 2019
Short summary
Short summary
We studied the upper 10 m of deep-sea sediments, including pore water, in the Peru Basin to understand small-scale variability of trace metals. Our results show high spatial variability related to topographical variations, which in turn impact organic matter contents, degradation processes, and trace metal cycling. Another interesting finding was the influence of dissolving buried nodules on the surrounding sediment and trace metal cycling.
Sarah Paradis, Antonio Pusceddu, Pere Masqué, Pere Puig, Davide Moccia, Tommaso Russo, and Claudio Lo Iacono
Biogeosciences, 16, 4307–4320, https://doi.org/10.5194/bg-16-4307-2019, https://doi.org/10.5194/bg-16-4307-2019, 2019
Short summary
Short summary
Chronic deep bottom trawling in the Gulf of Castellammare (SW Mediterranean) erodes large volumes of sediment, exposing over-century-old sediment depleted in organic matter. Nevertheless, the arrival of fresh and nutritious sediment recovers superficial organic matter in trawling grounds and leads to high turnover rates, partially and temporarily mitigating the impacts of bottom trawling. However, this deposition is ephemeral and it will be swiftly eroded by the passage of the next trawler.
Zhichao Zhou, Bo Liang, Li-Ying Wang, Jin-Feng Liu, Bo-Zhong Mu, Hojae Shim, and Ji-Dong Gu
Biogeosciences, 16, 4229–4241, https://doi.org/10.5194/bg-16-4229-2019, https://doi.org/10.5194/bg-16-4229-2019, 2019
Short summary
Short summary
This study shows a core bacterial microbiome with a small proportion of shared operational taxonomic units of common sequences among all oil reservoirs. Dominant methanogenesis shifts from the hydrogenotrophic pathway in water phase to the acetoclastic pathway in the oil phase at high temperatures, but the opposite is true at low temperatures. There are also major functional metabolism differences between the two phases for amino acids, hydrocarbons, and carbohydrates.
Annika Fiskal, Longhui Deng, Anja Michel, Philip Eickenbusch, Xingguo Han, Lorenzo Lagostina, Rong Zhu, Michael Sander, Martin H. Schroth, Stefano M. Bernasconi, Nathalie Dubois, and Mark A. Lever
Biogeosciences, 16, 3725–3746, https://doi.org/10.5194/bg-16-3725-2019, https://doi.org/10.5194/bg-16-3725-2019, 2019
Hanni Vigderovich, Lewen Liang, Barak Herut, Fengping Wang, Eyal Wurgaft, Maxim Rubin-Blum, and Orit Sivan
Biogeosciences, 16, 3165–3181, https://doi.org/10.5194/bg-16-3165-2019, https://doi.org/10.5194/bg-16-3165-2019, 2019
Short summary
Short summary
Microbial iron reduction participates in important biogeochemical cycles. In the last decade iron reduction has been observed in many aquatic sediments below its classical zone, in the methane production zone, suggesting a link between the two cycles. Here we present evidence for microbial iron reduction in the methanogenic depth of the oligotrophic SE Mediterranean continental shelf using mainly geochemical and microbial sedimentary profiles and suggest possible mechanisms for this process.
Haoyi Yao, Wei-Li Hong, Giuliana Panieri, Simone Sauer, Marta E. Torres, Moritz F. Lehmann, Friederike Gründger, and Helge Niemann
Biogeosciences, 16, 2221–2232, https://doi.org/10.5194/bg-16-2221-2019, https://doi.org/10.5194/bg-16-2221-2019, 2019
Short summary
Short summary
How methane is transported in the sediment is important for the microbial community living on methane. Here we report an observation of a mini-fracture that facilitates the advective gas transport of methane in the sediment, compared to the diffusive fluid transport without a fracture. We found contrasting bio-geochemical signals in these different transport modes. This finding can help to fill the gap in the fracture network system in modulating methane dynamics in surface sediments.
Laura A. Casella, Sixin He, Erika Griesshaber, Lourdes Fernández-Díaz, Martina Greiner, Elizabeth M. Harper, Daniel J. Jackson, Andreas Ziegler, Vasileios Mavromatis, Martin Dietzel, Anton Eisenhauer, Sabino Veintemillas-Verdaguer, Uwe Brand, and Wolfgang W. Schmahl
Biogeosciences, 15, 7451–7484, https://doi.org/10.5194/bg-15-7451-2018, https://doi.org/10.5194/bg-15-7451-2018, 2018
Short summary
Short summary
Biogenic carbonates record past environmental conditions. Fossil shell chemistry and microstructure change as metastable biogenic carbonates are replaced by inorganic calcite. Simulated diagenetic alteration at 175 °C of different shell microstructures showed that (nacreous) shell aragonite and calcite were partially replaced by coarse inorganic calcite crystals due to dissolution–reprecipitation reactions. EBSD maps allowed for qualitative assessment of the degree of diagenetic overprint.
Wytze K. Lenstra, Matthias Egger, Niels A. G. M. van Helmond, Emma Kritzberg, Daniel J. Conley, and Caroline P. Slomp
Biogeosciences, 15, 6979–6996, https://doi.org/10.5194/bg-15-6979-2018, https://doi.org/10.5194/bg-15-6979-2018, 2018
Short summary
Short summary
We show that burial rates of phosphorus (P) in an estuary in the northern Baltic Sea are very high. We demonstrate that at high sedimentation rates, P retention in the sediment is related to the formation of vivianite. With a reactive transport model, we assess the sensitivity of sedimentary vivianite formation. We suggest that enrichments of iron and P in the sediment are linked to periods of enhanced riverine input of Fe, which subsequently strongly enhances P burial in coastal sediments.
Jiarui Liu, Gareth Izon, Jiasheng Wang, Gilad Antler, Zhou Wang, Jie Zhao, and Matthias Egger
Biogeosciences, 15, 6329–6348, https://doi.org/10.5194/bg-15-6329-2018, https://doi.org/10.5194/bg-15-6329-2018, 2018
Short summary
Short summary
Our work provides new insights into the biogeochemical cycling of iron, methane and phosphorus. We found that vivianite, an iron-phosphate mineral, is pervasive in methane-rich sediments, suggesting that iron reduction at depth is coupled to phosphorus and methane cycling on a much greater spatial scale than previously assumed. Acting as an important burial mechanism for iron and phosphorus, vivianite authigenesis may be an under-considered process in both modern and ancient settings alike.
Marc A. Besseling, Ellen C. Hopmans, R. Christine Boschman, Jaap S. Sinninghe Damsté, and Laura Villanueva
Biogeosciences, 15, 4047–4064, https://doi.org/10.5194/bg-15-4047-2018, https://doi.org/10.5194/bg-15-4047-2018, 2018
Short summary
Short summary
Benthic archaea comprise a significant part of the total prokaryotic biomass in marine sediments. Here, we compared the archaeal diversity and intact polar lipid (IPL) composition in both surface and subsurface sediments with different oxygen regimes in the Arabian Sea oxygen minimum zone. The oxygenated sediments were dominated by Thaumarchaeota and IPL-GDGT-0. The anoxic sediment contained highly diverse archaeal communities and high relative abundances of IPL-GDGT-1 to -4.
Georgina Robinson, Thomas MacTavish, Candida Savage, Gary S. Caldwell, Clifford L. W. Jones, Trevor Probyn, Bradley D. Eyre, and Selina M. Stead
Biogeosciences, 15, 1863–1878, https://doi.org/10.5194/bg-15-1863-2018, https://doi.org/10.5194/bg-15-1863-2018, 2018
Short summary
Short summary
This study examined the effect of adding carbon to a sediment-based effluent treatment system to treat nitrogen-rich aquaculture waste. The research was conducted in incubation chambers to measure the exchange of gases and nutrients across the sediment–water interface and examine changes in the sediment microbial community. Adding carbon increased the amount of nitrogen retained in the treatment system, thereby reducing the levels of nitrogen needing to be discharged to the environment.
Daniele Brigolin, Christophe Rabouille, Bruno Bombled, Silvia Colla, Salvatrice Vizzini, Roberto Pastres, and Fabio Pranovi
Biogeosciences, 15, 1347–1366, https://doi.org/10.5194/bg-15-1347-2018, https://doi.org/10.5194/bg-15-1347-2018, 2018
Short summary
Short summary
We present the result of a study carried out in the north-western Adriatic Sea by combining two different types of models with field sampling. A mussel farm was taken as a local source of perturbation to the natural flux of particulate organic carbon to the sediment. Differences in fluxes were primarily associated with mussel physiological conditions. Although restricted, these changes in particulate organic carbon fluxes induced visible effects on sediment biogeochemistry.
Volker Brüchert, Lisa Bröder, Joanna E. Sawicka, Tommaso Tesi, Samantha P. Joye, Xiaole Sun, Igor P. Semiletov, and Vladimir A. Samarkin
Biogeosciences, 15, 471–490, https://doi.org/10.5194/bg-15-471-2018, https://doi.org/10.5194/bg-15-471-2018, 2018
Short summary
Short summary
We determined the aerobic and anaerobic degradation rates of land- and marine-derived organic material in East Siberian shelf sediment. Marine plankton-derived organic carbon was the main source for the oxic dissolved carbon dioxide production, whereas terrestrial organic material significantly contributed to the production of carbon dioxide under anoxic conditions. Our direct degradation rate measurements provide new constraints for the present-day Arctic marine carbon budget.
Jack J. Middelburg
Biogeosciences, 15, 413–427, https://doi.org/10.5194/bg-15-413-2018, https://doi.org/10.5194/bg-15-413-2018, 2018
Short summary
Short summary
Organic carbon processing at the seafloor is studied by geologists to better understand the sedimentary record, by biogeochemists to quantify burial and respiration, by organic geochemists to elucidate compositional changes, and by ecologists to follow carbon transfers within food webs. These disciplinary approaches have their strengths and weaknesses. This award talk provides a synthesis, highlights the role of animals in sediment carbon processing and presents some new concepts.
Craig Smeaton, William E. N. Austin, Althea L. Davies, Agnes Baltzer, John A. Howe, and John M. Baxter
Biogeosciences, 14, 5663–5674, https://doi.org/10.5194/bg-14-5663-2017, https://doi.org/10.5194/bg-14-5663-2017, 2017
Short summary
Short summary
Fjord sediments are recognised as hotspots for the burial and long-term storage of carbon. In this study, we use the Scottish fjords as a natural laboratory. Using geophysical and geochemical analysis in combination with upscaling techniques, we have generated the first full national sedimentary C inventory for a fjordic system. The results indicate that the Scottish fjords on a like-for-like basis are more effective as C stores than their terrestrial counterparts, including Scottish peatlands.
Perran Louis Miall Cook, Adam John Kessler, and Bradley David Eyre
Biogeosciences, 14, 4061–4069, https://doi.org/10.5194/bg-14-4061-2017, https://doi.org/10.5194/bg-14-4061-2017, 2017
Short summary
Short summary
Nitrogen is the key nutrient that typically limits productivity in coastal waters. One of the key controls on the amount of bioavailable nitrogen is the process of denitrification, which converts nitrate (bioavailable) into nitrogen gas. Previous studies suggest high rates of denitrification may take place within carbonate sediments, and one explanation for this is that this process may take place within the sand grains. Here we show evidence to support this hypothesis.
Chris T. Parsons, Fereidoun Rezanezhad, David W. O'Connell, and Philippe Van Cappellen
Biogeosciences, 14, 3585–3602, https://doi.org/10.5194/bg-14-3585-2017, https://doi.org/10.5194/bg-14-3585-2017, 2017
Short summary
Short summary
Phosphorus (P) has accumulated in sediments due to past human activities. The re-release of this P to water contributes to the growth of harmful algal blooms. Our research improves our mechanistic understanding of how P is partitioned between different chemical forms and between sediment and water under dynamic conditions. We demonstrate that P trapped within iron minerals may be less mobile during anoxic conditions than previously thought due to reversible changes to P forms within sediment.
Clint M. Miller, Gerald R. Dickens, Martin Jakobsson, Carina Johansson, Andrey Koshurnikov, Matt O'Regan, Francesco Muschitiello, Christian Stranne, and Carl-Magnus Mörth
Biogeosciences, 14, 2929–2953, https://doi.org/10.5194/bg-14-2929-2017, https://doi.org/10.5194/bg-14-2929-2017, 2017
Short summary
Short summary
Continental slopes north of the East Siberian Sea are assumed to hold large amounts of methane. We present pore water chemistry from the 2014 SWERUS-C3 expedition. These are among the first results generated from this vast climatically sensitive region, and they imply that abundant methane, including gas hydrates, do not characterize the East Siberian Sea slope or rise. This contradicts previous modeling and discussions, which due to the lack of data are almost entirely based assumption.
Laura A. Casella, Erika Griesshaber, Xiaofei Yin, Andreas Ziegler, Vasileios Mavromatis, Dirk Müller, Ann-Christine Ritter, Dorothee Hippler, Elizabeth M. Harper, Martin Dietzel, Adrian Immenhauser, Bernd R. Schöne, Lucia Angiolini, and Wolfgang W. Schmahl
Biogeosciences, 14, 1461–1492, https://doi.org/10.5194/bg-14-1461-2017, https://doi.org/10.5194/bg-14-1461-2017, 2017
Short summary
Short summary
Mollusc shells record past environments. Fossil shell chemistry and microstructure change as metastable biogenic aragonite transforms to stable geogenic calcite. We simulated this alteration of Arctica islandica shells by hydrothermal treatments. Below 175 °C the shell aragonite survived for weeks. At 175 °C the replacement of the original material starts after 4 days and yields submillimetre-sized calcites preserving the macroscopic morphology as well as the original internal micromorphology.
Jung-Ho Hyun, Sung-Han Kim, Jin-Sook Mok, Hyeyoun Cho, Tongsup Lee, Verona Vandieken, and Bo Thamdrup
Biogeosciences, 14, 941–958, https://doi.org/10.5194/bg-14-941-2017, https://doi.org/10.5194/bg-14-941-2017, 2017
Short summary
Short summary
The surface sediments of the Ulleung Basin (UB) in the East Sea are characterized by high organic carbon contents (> 2.5 %, dry wt.) and very high concentrations of Mn oxides (> 200 μmol cm−3) and Fe oxides (up to 100 μmol cm−3). For the first time in deep offshore sediments on the Asian margin with water depth over 2000 m, we report that Mn reduction and Fe reduction were the dominant organic carbon (Corg) oxidation pathways, comprising 45 % and 20 % of total Corg oxidation, respectively.
Jens Rassmann, Bruno Lansard, Lara Pozzato, and Christophe Rabouille
Biogeosciences, 13, 5379–5394, https://doi.org/10.5194/bg-13-5379-2016, https://doi.org/10.5194/bg-13-5379-2016, 2016
Short summary
Short summary
In situ O2 and pH measurements as well as determination of porewater concentrations of dissolved inorganic carbon, total alkalinity, sulfate and calcium have been measured in the sediments of the Rhône prodelta. Biogeochemical activity decreased with distance from the river mouth. Oxic processes decreased the carbonate saturation state (Ω) by lowering pH, whereas anaerobic organic matter degradation, dominated by sulfate reduction, was accompanied by increasing Ω and carbonate precipitation.
Cited articles
Anderson, L. D., Delaney, M. L., and Faul, K. L.: Carbon to phosphorus
ratios in sediments: Implications for nutrient cycling, Global Biogeochem. Cy., 15, 65–79, 2001.
Arning, E. T., Birgel, D., Schulz-Vogt, H. N., Holmkvist, L., Jørgensen,
B. B., Larson, A., and Peckmann, J.: Lipid Biomarker Patterns of
Phosphogenic Sediments from Upwelling Regions, Geomicrobiol. J.,
25, 69–82, 2008.
Arning, E. T., Birgel, D., Brunner, B., and Peckmann, J.: Bacterial
formation of phosphatic laminites off Peru, Geobiology, 7, 295–307,
2009a.
Arning, E. T., Lückge, A., Breuer, C., Gussone, N., Birgel, D., and
Peckmann, J.: Genesis of phosphorite crusts off Peru, Mar. Geol.,
262, 68–81, 2009b.
Asahi, T., Ichimi, K., Yamaguchi, H., and Tada, K.: Horizontal distribution
of particulate matter and its characterization using phosphorus as an
indicator in surface coastal water, Harima-Nada, the Seto Inland Sea, Japan,
J. Oceanogr., 70, 277–287, 2014.
Aspila, K. I., Agemian, H., and Chau, A. S. Y.: A semi-automated Method for
the Determination of Inorganic, Organic and Total Phosphate in Sediments,
Analyst, 101, 187–197, 1976.
Baturin, G. N.: Issue of the relationship between primary productivity of
organic carbon in ocean and phosphate accumulation (Holocene–Late
Jurassic), Lithol. Miner. Resour., 42, 318–348, https://doi.org/10.1134/S0024490207040025,
2007.
Benitez-Nelson, C. R.: The biogeochemical cycling of phosphorus in marine
systems, Earth-Sci. Rev., 51, 109–135, 2000.
Benitez-Nelson, C. R., O'Neill, L., Kolowith, L. C., Pellechia, P., and
Thunell, R.: Phosphonates and particulate organic phosphorus cycling in an
anoxic marine basin, Limnol. Ocean., 49, 1593–1604, 2004.
Benitez-Nelson, C. R., O'Neill Madden, L. P., Styles, R. M., Thunell, R. C.,
and Astor, Y.: Inorganic and organic sinking particulate phosphorus fluxes
across the oxic/anoxic water column of Cariaco Basin, Venezuela, Mar.
Chem., 105, 90–100, 2007.
Bertics, V. J., Löscher, C. R., Salonen, I., Dale, A. W., Gier, J., Schmitz,
R. A., and Treude, T.: Occurrence of benthic microbial nitrogen fixation
coupled to sulfate reduction in the seasonally hypoxic Eckernförde Bay,
Baltic Sea, Biogeosciences, 10, 1243–1258, https://doi.org/10.5194/bg-10-1243-2013,
2013.
Boudreau, B. P.: The diffusive tortuosity of fine-grained unlithified
sediments, Geochim. Cosmochim. Ac., 60, 3139–3142, 1996.
Brock, J. and Schulz-Vogt, H. N.: Sulfide induces phosphate release from
polyphosphate in cultures of a marine Beggiatoa strain, ISME J., 5, 497–506,
2011.
Burnett, W. C., Beers, M. J., and Roe, K. K.: Growth Rates of Phosphate
Nodules from the Continental Margin Off Peru, Science, 215, 1616–1618, 1982.
Colman, A. S., Mackenzie, F. T., and Holland, H. D.: Redox Stabilization of
the Atmosphere and Oceans and Marine Productivity, Science, 275, 406–408,
1997.
Compton, J., Mallinson, D., Glenn, C., Filippelli, G., Föllmi, K.,
Shields, G., and Zanin, Y.: Variations in the global phosphorus cycle, in
Marine authigenesis: from global to microbial, SEPM (Society for Sedimentary
Geology), Special Publication No. 66, 21–33, 2000.
Cosmidis, J., Benzerara, K., Menguy, N., and Arning, E.: Microscopy evidence
of bacterial microfossils in phosphorite crusts of the Peruvian shelf:
Implications for phosphogenesis mechanisms, Chem. Geol., 359, 10–22, 2013.
Dale, A. W., Bertics, V. J., Treude, T., Sommer, S., and Wallmann, K.:
Modeling benthic-pelagic nutrient exchange processes and porewater
distributions in a seasonally hypoxic sediment: evidence for massive
phosphate release by Beggiatoa?, Biogeosciences, 10, 629–651,
https://doi.org/10.5194/bg-10-629-2013, 2013.
Dale, A. W., Sommer, S., Lomnitz, U., Montes, I., Treude, T., Liebetrau, V.,
Gier, J., Hensen, C., Dengler, M., Stolpovsky, K., Bryant, L. D., and
Wallmann, K.: Organic carbon production, mineralisation and preservation on
the Peruvian margin, Biogeosciences, 12, 1537–1559,
https://doi.org/10.5194/bg-12-1537-2015, 2015.
de Jager, H.-J. and Heyns, A. M.: Kinetics of Acid-Catalyzed Hydrolysis of a
Polyphosphate in Water, J. Phys. Chem. A, 102, 2838–2841, 1998.
Delaney, M. L.: Phosphorus accumulation in marine sediments and the oceanic
phosphorus cycle, Global Biogeochem. Cy., 12, 563–572, 1998.
Díaz-Ochoa, J. A., Lange, C. B., Pantoja, S., De Lange, G. J.,
Gutierrez, D., Munoz, P., and Salamanca, M.: Fish scales in sediments from
off Callao, central Peru, Deep-Sea Res. Pt. II, 56, 1113–1124, 2009.
Faul, K. L., Paytan, A., and Delaney, M. L.: Phosphorus distribution in
sinking oceanic particulate matter, Mar. Chem., 97, 307–333, 2005.
Filippelli, G. M.: The global phosphorus cycle, in Phosphates: Geochemical,
Geobiological, and Materials Importance, edited by: Kohn, M., Rakovan, J.,
and Hughes, J., Reviews in Mineralogy & Geochemistry, 391–425, 2002.
Filippelli, G. M.: The Global Phosphorus Cycle: Past, Present, and Future,
Elements, 4, 89–95, 2008.
Föllmi, K. B.: The phosphorus cycle, phosphogenesis and marine
phosphate-rich deposits, Earth-Sci. Rev., 40, 55–124, 1996.
Franz, J., Krahmann, G., Lavik, G., Grasse, P., Dittmar, T., and Riebesell,
U.: Dynamics and stoichiometry of nutrients and phytoplankton in waters
influenced by the oxygen minimum zone in the eastern tropical Pacific,
Deep-Sea Res. Pt. I, 62, 20–31, 2012.
Froelich, P. N., Arthur, M. A., Burnett, W. C., Deakin, M., Hensley, V.,
Jahnke, R., Kaul, L., Kim, K. H., Roe, K., Soutar, A., and Vathakanon, C.:
Early diagenesis of organic matter in Peru continental margin sediments:
Phosphorite precipitation, Mar. Geol., 80, 309–343, 1988.
Fuenzalida, R., Schneider, W., Garcés-Vargas, J., Bravo, L., and Lange,
C.: Vertical and horizontal extension of the oxygen minimum zone in the
eastern South Pacific Ocean, Deep-Sea Res. Pt. II, 56, 992–1003, 2009.
Ganeshram, R. S., Pedersen, T. F., Calvert, S., and Francois, R.: Reduced
nitrogen fixation in the glacial ocean inferred from changes in marine
nitrogen and phosphorus inventories, Nature, 415, 156–159, 2002.
Glenn, C. R. and Arthur, M. A.: Petrology and major element geochemistry of
Peru margin phosphorites and associated diagenetic minerals: Authigenesis in
modern organic-rich sediments, Mar. Geol., 80, 231–267, 1988.
Goldhammer, T., Bruchert, V., Ferdelman, T. G., and Zabel, M.: Microbial
sequestration of phosphorus in anoxic upwelling sediments, Nat. Geosci., 3,
557–561, 2010.
Govindaraju, K.: Compilation of working values and sample description for 383
geostandards, Geostandard Newslett., 18, 1–158, 1994.
Graco, M., Purca, S., Dewitte, B., Morón, O., Ledesma, J., Flores, G.,
Castro, C., and Gutiérrez, D.: The OMZ and nutrients features as a
signature of interannual and low frequency variability off the peruvian
upwelling system, Biogeosciences Discuss., https://doi.org/10.5194/bg-2015-567, in
review, 2016.
Grasshoff, K., Erhardt, M., and Kremling, K.: Methods of seawater analysis,
3rd Edn., Wiley-VCH, Weinheim, New York, Chiester,
Brisbane, Singapore, Toronto, 1999.
Gutiérrez, D., Enríquez, E., Purca, S., Quipúzcoa, L., Marquina,
R., Flores, G., and Graco, M.: Oxygenation episodes on the continental shelf
of central Peru: Remote forcing and benthic ecosystem response, Prog.
Oceanogr., 79, 177–189, 2008.
Hedges, J. I., Hu, F. S., Devol, A. H., Hartnett, H. E., Tsamakis, E., and
Keil, R. G.: Sedimentary organic matter preservation: A test for selective
degradation under oxic conditions, Am. J. Sci., 299, 529–555, 1999.
Høgslund, S., Revsbech, N. P., Kuenen, J. G., Jorgensen, B. B., Gallardo,
V. A., Vossenberg, J. V. D., Nielsen, J. L., Holmkvist, L., Arning, E. T.,
and Nielsen, L. P.: Physiology and behaviour of marine Thioploca, ISME J., 3,
647–657, 2009.
Holmkvist, L., Arning, E. T., Küster-Heins, K., Vandieken, V., Peckmann,
J., Zabel, M., and Jørgensen, B. B.: Phosphate geochemistry,
mineralization processes, and Thioploca distribution in shelf sediments off
central Chile, Mar. Geol., 277, 61–72, 2010.
Ingall, E. and Jahnke, R.: Evidence for enhanced phosphorus regeneration from
marine sediments overlain by oxygen depleted waters, Geochim. Cosmoch. Ac.,
58, 2571–2575, 1994.
Ingall, E. and Jahnke, R.: Influence of water-column anoxia on the elemental
fractionation of carbon and phosphorus during sediment diagenesis, Mar.
Geol., 139, 219–229, 1997.
Ingall, E., Kolowith, L., Lyons, T., and Hurtgen, M.: Sediment carbon,
nitrogen and phosphorus cycling in an anoxic fjord, Effingham Inlet, British
Columbia, Am. J. Sci., 305, 240–258, 2005.
Ingall, E. D.: Biogeochemistry: Phosphorus burial, Nat. Geosci., 3, 521–522,
2010.
Ingall, E. D. and Van Cappellen, P.: Relation between sedimentation rate and
burial of organic phosphorus and organic carbon in marine sediments, Geochim.
Cosmochim. Ac., 54, 373–386, 1990.
Jahnke, R. A.: Early diagenesis and recycling of biogenic debris at the
seafloor, Santa Monica Basin, California, J. Mar. Res., 48, 413–436, 1990.
Jilbert, T., Slomp, C. P., Gustafsson, B. G., and Boer, W.: Beyond the
Fe-P-redox connection: preferential regeneration of phosphorus from organic
matter as a key control on Baltic Sea nutrient cycles, Biogeosciences, 8,
1699–1720, https://doi.org/10.5194/bg-8-1699-2011, 2011.
Kraal, P., Slomp, C. P., Reed, D. C., Reichart, G.-J., and Poulton, S. W.:
Sedimentary phosphorus and iron cycling in and below the oxygen minimum zone
of the northern Arabian Sea, Biogeosciences, 9, 2603–2624,
https://doi.org/10.5194/bg-9-2603-2012, 2012.
Kraal, P., Bostick, B. C., Behrends, T., Reichart, G.-J., and Slomp, C. P.:
Characterization of phosphorus species in sediments from the Arabian Sea
oxygen minimum zone: Combining sequential extractions and X-ray spectroscopy,
Mar. Chem., 168, 1–8, 2015.
Krissek, L. A., Scheidegger, K. F., and Kulm, L. D.: Surface sediments of the
Peru-Chile continental margin and the Nazca plate, Geol. Soc. Am. Bull., 91,
321–331, 1980.
Labry, C., Youenou, A., Delmas, D., and Michelon, P.: Addressing the
measurement of particulate organic and inorganic phosphorus in estuarine and
coastal waters, Cont. Shelf Res., 60, 28–37, 2013.
Li, Y.-H. and Gregory, S.: Diffusion of ions in sea water andin deep-sea
sediments, Geochim. Cosmochim. Ac., 38, 703–714, 1974.
Loh, A. N. and Bauer, J. E.: Distribution, partitioning and fluxes of
dissolved and particulate organic C, N and P in the eastern North Pacific and
Southern Oceans, Deep-Sea Res. Pt. I, 47, 2287–2316, 2000.
Löscher, C. R., Kock, A., Könneke, M., LaRoche, J., Bange, H. W., and
Schmitz, R. A.: Production of oceanic nitrous oxide by ammonia-oxidizing
archaea, Biogeosciences, 9, 2419–2429, https://doi.org/10.5194/bg-9-2419-2012, 2012.
Lyons, G., Benitez-Nelson, C. R., and Thunell, R. C.: Phosphorus composition
of sinking particles in the Guaymas Basin, Gulf of California, Limnol.
Oceanogr., 56, 1093–1105, 2011.
McManus, J., Berelson, W. M., Coale, K. H., Johnson, K. S., and Kilgore, T.
E.: Phosphorus regeneration in continental margin sediments, Geochim.
Cosmochim. Ac., 61, 2891–2907, 1997.
Moffitt, S. E., Moffitt, R. A., Sauthoff, W., Davis, C. V., Hewett, K., and
Hill, T. M.: Paleoceanographic Insights on Recent Oxygen Minimum Zone
Expansion: Lessons for Modern Oceanography, PLoS ONE, 10, https://doi.org/10.1371/journal.pone.0115246, 2015.
Mort, H. P., Slomp, C. P., Gustafsson, B. G., and Andersen, T. J.: Phosphorus
recycling and burial in Baltic Sea sediments with contrasting redox
conditions, Geochim. Cosmochim. Ac., 74, 1350–1362, 2010.
Mosch, T., Sommer, S., Dengler, M., Noffke, A., Bohlen, L., Pfannkuche, O.,
Liebetrau, V., and Wallmann, K.: Factors influencing the distribution of
epibenthic megafauna across the Peruvian oxygen minimum zone, Deep-Sea Res.
Pt. I, 68, 123–135, 2012.
Noffke, A.: Phosphorus cycling in anoxic sediments, PhD dissertation,
University of Kiel, Kiel, 2014.
Noffke, A., Hensen, C., Sommer, S., Scholz, F., Bohlen L., Mosch, T., Graco,
M., and Wallmann, K.: Benthic iron and phosphorus fluxes across the Peruvian
oxygen minimum zone, Limnol. Oceanogr., 57, 851–867, 2012.
Noffke, A., Sommer, S., Dale, A. W., Hall, P. O. J., and Pfannkuche, O.:
Benthic nutrient fluxes in the Eastern Gotland Basin (Baltic Sea) with
particular focus on microbial mat ecosystems, J. Marine Syst., 158, 1–12,
https://doi.org/10.1016/j.jmarsys.2016.01.007, 2016.
Paytan, A. and McLaughlin, K.: The Oceanic Phosphorus Cycle, Chem. Rev., 107,
563–576, 2007.
Paytan, A., Cade-Menun, B. J., McLaughlin, K., and Faul, K. L.: Selective
phosphorus regeneration of sinking marine particles: evidence from 31P-NMR,
Mar. Chem., 82, 55–70, 2003.
Pennington, J. T., Mahoney, K. L., Kuwahara, V. S., Kolber, D. D., Calienes,
R., and Chavez, F. P.: Primary production in the eastern tropical Pacific: A
review, Prog. Oceanogr., 69, 285–317, 2006.
Redfield, A. C., Ketchum, B. H., and Richards, F. A.: The influence of
organisms on the composition of seawater, in: The Sea, Academic Press, London,
26–77, 1963.
Reimers, C. E. and Suess, E.: Spatial and temporal patterns of organic matter
accumulation on the Peru continental margin, in: Coastal Upwelling: Part B,
Sedimentary Record of Ancient Coastal Upwelling, edited by: Suess, E. and
Thiede, J., Plenum Press, New York, 311–346, 1983.
Roth, R., Ritz, S. P., and Joos, F.: Burial-nutrient feedbacks amplify the
sensitivity of atmospheric carbon dioxide to changes in organic matter
remineralisation, Earth Syst. Dynam., 5, 321–343,
https://doi.org/10.5194/esd-5-321-2014, 2014.
Ruttenberg, K. C.: The Global Phosphorus Cycle, in: Treatise on Geochemistry,
edited by: Turekian, K. K. and Holland, D. J., Elsevier, Oxford, 585–643, 2003.
Ruttenberg, K. C.: The Global Phosphorus Cycle, in: Treatise on Geochemistry,
edited by: Holland, H. D. and Turekian, K. K., Elsevier, Oxford, 499–558, 2014.
Ruttenberg, K. C. and Berner, R. A.: Authigenic apatite formation and burial
in sediments from non-upwelling, continental margin environments, Geochim.
Cosmochim. Ac., 57, 991–1007, 1993.
Salman, V., Amann, R., Girnth, A.-C., Polerecky, L., Bailey, J. V.,
Høgslund, S., Jessen, G., Pantoja, S., and Schulz-Vogt, H. N.: A
single-cell sequencing approach to the classification of large, vacuolated
sulfur bacteria, Syst. Appl. Microbiol., 34, 243–259, 2011.
Salman, V., Amann, R, Shub, D. A., and Schulz-Vogt, H. N.: Multiple
self-splicing introns in the 16S rRNA genes of giant sulfur bacteria, P.
Natl. Acad. Sci. USA, 109, 4203–4208, https://doi.org/10.1073/pnas.1120192109, 2012.
Sannigrahi, P. and Ingall, E.: Polyphosphates as a source of enhanced P
fluxes in marine sediments overlain by anoxic waters: Evidence from 31P NMR,
Geochem. T., 6, 52–59, 2005.
Sanudo-Wilhelmy, S. A., Tovar-Sanchez, A., Fu, F.-X., Capone, D. G.,
Carpenter, E. J., and Hutchins, D. A.: The impact of surface-adsorbed
phosphorus on phytoplankton Redfield stoichiometry, Nature, 432, 897–901,
2004.
Schenau, S. J. and De Lange, G. J.: A novel chemical method to quantify fish
debris in marine sediments, Limnol. Oceanogr., 45, 963–971, 2000.
Schenau, S. J. and De Lange, G. J.: Phosphorus regeneration vs. burial in
sediments of the Arabian Sea, Mar. Chem., 75, 201–217, 2001.
Scholz, F., Hensen, C., Noffke, A., Rohde, A., Liebetrau, V., and Wallmann,
K.: Early diagenesis of redox-sensitive trace metals in the Peru upwelling
area – response to ENSO-related oxygen fluctuations in the water column,
Geochim. Cosmochim. Ac., 75, 7257–7276, 2011.
Schulz, H. N. and Jørgensen, B. B.: Thiomargarita, in: Bergey's Manual of
Determinative Bacteriology, edited by: Krieg, N. R., Staley, J. T., and
Brenner, D. J., Vol. 2, part B, Springer-Verlag, Berlin, Heidelberg, New
York, 2005.
Schulz, H. N. and Schulz, H. D.: Large Sulfur Bacteria and the Formation of
Phosphorite, Science, 307, 416–418, 2005.
Schunck, H., Lavik, G., Desai, D. K., Großkopf, T., Kalvelage, T.,
Löscher, C. R., Paulmier, A., Contreras, S., Siegel, H., Holtappels, M.,
Rosenstiel, P., Schilhabel, M. B., Graco, M., Schmitz, R. A., Kuypers, M. M.
M., and LaRoche, J.: Giant Hydrogen Sulfide Plume in the Oxygen Minimum Zone
off Peru Supports Chemolithoautotrophy, PLoS ONE, 8, https://doi.org/10.1371/journal.pone.0068661, 2013.
Sekula-Wood, E., Benitez-Nelson, C. R., Bennett, M. A., and Thunell, R.:
Magnitude and composition of sinking particulate phosphorus fluxes in Santa
Barbara Basin, California, Global Biogeochem. Cy., 26, GB2023, https://doi.org/10.1029/2011GB004180, 2012.
Slomp, C. P. and Van Cappellen, P.: The global marine phosphorus cycle:
sensitivity to oceanic circulation, Biogeosciences, 4, 155–171,
https://doi.org/10.5194/bg-4-155-2007, 2007.
Slomp, C. P., Van der Gaast, S. J., and Van Raaphorst, W.: Phosphorus binding
by poorly crystalline iron oxides in North Sea sediments, Mar. Chem., 52,
55–73, 1996.
Slomp, C. P., Malschaert, J. F. P., and Van Raaphorst, W.: The role of
adsorption in sediment-water exchange of phosphate in North Sea continental
margin sediments, Limnol. Oceanogr., 43, 832–846, 1998.
Sommer, S., Linke, P., Pfannkuche, O., Schleicher, T., Schneider v. Deimling, J., Reitz, A., Haeckel, M., and
Hensen, C.: Seabed methane emissions and the habitat of frenulate tubeworms
on the Captain Arutyunov mud volcano (Gulf of Cadiz), Mar. Ecol.-Prog. Ser.,
382, 69–86, 2009.
Sommer, S., Gier, J., Treude, T., Lomnitz, U., Dengler, M., Cardich, J., and
Dale, A.: Depletion of oxygen, nitrate and nitrite in the Peruvian oxygen
minimum zone cause an imbalance of benthic nitrogen fluxes, Deep-Sea Res. Pt.
I, accepted, 2016.
Stramma, L., Johnson, G. C., Sprintall, J., and Mohrholz, V.: Expanding
Oxygen-Minimum Zones in the Tropical Oceans, Science, 320, 655–658, 2008.
Strub, P. T., Mesias, J. M., Montecino, V., Ontecino, R., and Salinas, S.:
Coastal ocean circulation of western South. America, in: The Sea, edited by:
Robinson, A. R. and Brink, K. H., Wiley, New York, 273–313, 1998.
Suess, E.: Phosphate regeneration from sediments of the Peru continental
margin by dissolution of fish debris, Geochim. Cosmochim. Ac., 45, 577–588,
1981.
Suess, E. and von Huene, R.: Ocean Drilling Program Leg 112, Peru continental
margin: Part 2, Sedimentary history and diagenesis in a coastal upwelling
environment, Geology, 16, 939–943, 1988.
Suess, E., Kulm, L. D., and Killingley, J. S.: Coastal upwelling and a
history of organic rich mudstone deposition off Peru, in: Marine Petroleum
Source rocks, edited by: Brooks, J. and Fleet, A. J., Geological Society
Spec, 1129–1145, 1987.
Sundby, B., Anderson, L. G., Hall, P. O. J., Iverfeldt, Å., van der
Loeff, M. M. R., and Westerlund, S. F. G.: The effect of oxygen on release
and uptake of cobalt, manganese, iron and phosphate at the sediment-water
interface, Geochim. Cosmochim. Ac., 50, 1281–1288, 1986.
Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S.: MEGA6,
Molecular Evolutionary Genetics Analysis Version 6.0., Mol. Biol. Evol., 30,
2725–2729, 2013.
Teske, A., Ramsing, N. B., Küver, J., and Fossing, H.: Phylogeny of
Thioploca and Related Filamentous Sulfide-Oxidizing Bacteria, Syst. Appl.
Microbiol., 18, 517–526, 1995.
Tsandev, I., Reed, D. C., and Slomp, C. P.: Phosphorus diagenesis in deep-sea
sediments: Sensitivity to water column conditions and global scale
implications, Chem. Geol., 330–331, 127–139, 2012.
Van Cappellen, P. and Ingall, E. D.: Redox Stabilization of the Atmosphere
and Oceans by Phosphorus-Limited Marine Productivity, Science, 271, 493–496,
1996.
Viers, J., Dupré, B., and Gaillardet, J.: Chemical composition of
suspended sediments in World Rivers: New insights from a new database, Sci.
Total Environ., 407, 853–868, 2009.
Wallmann, K.: Feedbacks between oceanic redox states and marine productivity:
A model perspective focused on benthic phosphorus cycling, Global Biogeochem.
Cy., 17, https://doi.org/10.1029/2002GB001968, 2003.
Wallmann, K.: Phosphorus imbalance in the global ocean?, Global Biogeochem.
Cy., 24, https://doi.org/10.1029/2009GB003643, 2010.
Short summary
The study presents a P budget including the P input from the water column, the P burial in the sediments, as well as the P release from the sediments. We found that the P input could not maintain the P release rates. Consideration of other P sources, e.g., terrigenous P and P released from the dissolution of Fe oxyhydroxides, showed that none of these can account for the missing P. Thus, it is likely that abundant sulfide-oxidizing bacteria release the missing P during our measurement period.
The study presents a P budget including the P input from the water column, the P burial in the...
Altmetrics
Final-revised paper
Preprint