Articles | Volume 14, issue 9
https://doi.org/10.5194/bg-14-2429-2017
https://doi.org/10.5194/bg-14-2429-2017
Research article
 | 
12 May 2017
Research article |  | 12 May 2017

Modelling the genesis of equatorial podzols: age and implications for carbon fluxes

Cédric Doupoux, Patricia Merdy, Célia Régina Montes, Naoise Nunan, Adolpho José Melfi, Osvaldo José Ribeiro Pereira, and Yves Lucas

Related authors

Electrical conductivity measurements as a proxy for diffusion-limited microbial activity in soils
Orsolya Fülöp, Naoise Nunan, Mamadou Gueye, and Damien Jougnot
EGUsphere, https://doi.org/10.5194/egusphere-2025-1730,https://doi.org/10.5194/egusphere-2025-1730, 2025
This preprint is open for discussion and under review for SOIL (SOIL).
Short summary
Soil organic carbon mobility in equatorial podzols: soil column experiments
Patricia Merdy, Yves Lucas, Bruno Coulomb, Adolpho J. Melfi, and Célia R. Montes
SOIL, 7, 585–594, https://doi.org/10.5194/soil-7-585-2021,https://doi.org/10.5194/soil-7-585-2021, 2021
Short summary
Dynamic upscaling of decomposition kinetics for carbon cycling models
Arjun Chakrawal, Anke M. Herrmann, John Koestel, Jerker Jarsjö, Naoise Nunan, Thomas Kätterer, and Stefano Manzoni
Geosci. Model Dev., 13, 1399–1429, https://doi.org/10.5194/gmd-13-1399-2020,https://doi.org/10.5194/gmd-13-1399-2020, 2020
Short summary
Simulating microbial degradation of organic matter in a simple porous system using the 3-D diffusion-based model MOSAIC
O. Monga, P. Garnier, V. Pot, E. Coucheney, N. Nunan, W. Otten, and C. Chenu
Biogeosciences, 11, 2201–2209, https://doi.org/10.5194/bg-11-2201-2014,https://doi.org/10.5194/bg-11-2201-2014, 2014

Related subject area

Biogeochemistry: Soils
Validating laboratory predictions of soil rewetting respiration pulses using field data
Xiankun Li, Marleen Pallandt, Dilip Naidu, Johannes Rousk, Gustaf Hugelius, and Stefano Manzoni
Biogeosciences, 22, 2691–2705, https://doi.org/10.5194/bg-22-2691-2025,https://doi.org/10.5194/bg-22-2691-2025, 2025
Short summary
Modelling the effect of climate–substrate interactions on soil organic matter decomposition with the Jena Soil Model
Marleen Pallandt, Marion Schrumpf, Holger Lange, Markus Reichstein, Lin Yu, and Bernhard Ahrens
Biogeosciences, 22, 1907–1928, https://doi.org/10.5194/bg-22-1907-2025,https://doi.org/10.5194/bg-22-1907-2025, 2025
Short summary
Solubility characteristics of soil humic substances as a function of pH: mechanisms and biogeochemical perspectives
Xuemei Yang, Jie Zhang, Khan M. G. Mostofa, Mohammad Mohinuzzaman, H. Henry Teng, Nicola Senesi, Giorgio S. Senesi, Jie Yuan, Yu Liu, Si-Liang Li, Xiaodong Li, Baoli Wang, and Cong-Qiang Liu
Biogeosciences, 22, 1745–1765, https://doi.org/10.5194/bg-22-1745-2025,https://doi.org/10.5194/bg-22-1745-2025, 2025
Short summary
Exploring microscale heterogeneity as a driver of biogeochemical transformations and gas transport in peat
Lukas Kohl, Petri Kiuru, Marjo Palviainen, Maarit Raivonen, Markku Koskinen, Mari Pihlatie, and Annamari Laurén
Biogeosciences, 22, 1711–1727, https://doi.org/10.5194/bg-22-1711-2025,https://doi.org/10.5194/bg-22-1711-2025, 2025
Short summary
Dissolved organic matter fosters core mercury-methylating microbiomes for methylmercury production in paddy soils
Qiang Pu, Bo Meng, Jen-How Huang, Kun Zhang, Jiang Liu, Yurong Liu, Mahmoud A. Abdelhafiz, and Xinbin Feng
Biogeosciences, 22, 1543–1556, https://doi.org/10.5194/bg-22-1543-2025,https://doi.org/10.5194/bg-22-1543-2025, 2025
Short summary

Cited articles

Baisden, W. T., Amundson, R., Brenner, D. L., Cook, A. C., Kendall, C., and Harden, J. W.: A multiisotope C and N modeling analysis of soil organic matter turnover and transport as a function of soil depth in a California annual grassland soil chronosequence, Global Biogeochem. Cy., 16, 82-1–82–26, https://doi.org/10.1029/2001GB001823, 2002.
Bardy, M., Derenne, S., Allard, T., Benedetti, M. F., and Fritsch, E.: Podzolisation and exportation of organic matter in black waters of the Rio Negro (upper Amazon basin, Brazil), Biogeochemistry, 106, 71–88, https://doi.org/10.1007/s10533-010-9564-9, 2011.
Chauvel, A., Lucas, Y., and Boulet, R.: On the genesis of the soil mantle of the region of Manaus, Central Amazonia, Brazil, Experientia, 43, 234–241, https://doi.org/10.1007/BF01945546, 1987.
Colinvaux, P. A. and De Oliveira, P. E.: Amazon plant diversity and climate through the Cenozoic, Palaeogeogr. Palaeocl., 166, 51–63, https://doi.org/10.1016/S0031-0182(00)00201-7, 2001.
Cornu, C., Luizão, F. J., Rouiller, J., and Lucas, Y.: Comparative study of litter decomposition and mineral element release in two Amazonian forest ecosystems?: litter bag experiments, Pedobiologia, 41, 456–471, 1997.
Download
Short summary
Amazonian podzol soils store huge amounts of carbon and play a key role in transferring organic matter to the Amazon River. We modelled their formation by constraining both total carbon and radiocarbon. We found that the most waterlogged zones of the podzolized areas are the main source of dissolved organic matter found in the river network. The genesis time calculated considering the more likely settings runs to around 15–25 and 150–250 kyr for young and old podzols, respectively.
Share
Altmetrics
Final-revised paper
Preprint