Articles | Volume 14, issue 22
https://doi.org/10.5194/bg-14-5115-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-14-5115-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Reviews and syntheses: on the roles trees play in building and plumbing the critical zone
Earth and Environmental Systems Institute and Department of Geosciences, Pennsylvania State University, University Park, PA, USA
David M. Eissenstat
Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA, USA
Jill A. Marshall
Earth and Planetary Science, University of California-Berkeley, Berkeley, CA, USA
Institute of Alpine and Arctic Research (INSTAAR), University of Colorado, Boulder, CO 80309, USA
Sarah E. Godsey
Department of Geosciences, Idaho State University, Pocatello, ID, USA
Zsuzsanna Balogh-Brunstad
Department of Geology and Environmental Sciences, Hartwick College, Oneonta, NY, USA
Diana L. Karwan
Department of Forest Resources, University of Minnesota, Saint Paul, MN, USA
Shirley A. Papuga
School of Natural Resources and Environment, University of Arizona, Tucson, AZ, USA
Department of Geology, Wayne State University, Detroit, MI, USA
Joshua Roering
Department of Geological Sciences, University of Oregon, Eugene, OR, USA
Todd E. Dawson
Department of Integrative Biology, University of California, Berkeley, CA, USA
Jaivime Evaristo
Department of Natural Resources and Environmental Science, University of Nevada, Reno, NV, USA
Oliver Chadwick
Department of Geography, University of California-Santa Barbara, Santa Barbara, CA, USA
Jeffrey J. McDonnell
School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Canada
Kathleen C. Weathers
Cary Institute of Ecosystem Studies, Millbrook, NY, USA
Related authors
Andrew R. Shaughnessy, Xin Gu, Tao Wen, and Susan L. Brantley
Hydrol. Earth Syst. Sci., 25, 3397–3409, https://doi.org/10.5194/hess-25-3397-2021, https://doi.org/10.5194/hess-25-3397-2021, 2021
Short summary
Short summary
It is often difficult to determine the sources of solutes in streams and how much each source contributes. We developed a new method of unmixing stream chemistry via machine learning. We found that sulfate in three watersheds is related to groundwater flowpaths. Our results emphasize that acid rain reduces a watershed's capacity to remove CO2 from the atmosphere, a key geological control on climate. Our method will help scientists unmix stream chemistry in watersheds where sources are unknown.
Jason Philip Kaye, Susan L. Brantley, Jennifer Zan Williams, and the SSHCZO team
Biogeosciences, 16, 4661–4669, https://doi.org/10.5194/bg-16-4661-2019, https://doi.org/10.5194/bg-16-4661-2019, 2019
Short summary
Short summary
Interdisciplinary teams can only capitalize on innovative ideas if members work well together through collegial and efficient use of field sites, instrumentation, samples, data, and model code. Thus, biogeoscience teams may benefit from developing a set of best practices for collaboration. We present one such example from a the Susquehanna Shale Hills critical zone observatory. Many of the themes from our example are universal, and they offer insights useful to other biogeoscience teams.
Daniel D. Richter, Sharon A. Billings, Peter M. Groffman, Eugene F. Kelly, Kathleen A. Lohse, William H. McDowell, Timothy S. White, Suzanne Anderson, Dennis D. Baldocchi, Steve Banwart, Susan Brantley, Jean J. Braun, Zachary S. Brecheisen, Charles W. Cook, Hilairy E. Hartnett, Sarah E. Hobbie, Jerome Gaillardet, Esteban Jobbagy, Hermann F. Jungkunst, Clare E. Kazanski, Jagdish Krishnaswamy, Daniel Markewitz, Katherine O'Neill, Clifford S. Riebe, Paul Schroeder, Christina Siebe, Whendee L. Silver, Aaron Thompson, Anne Verhoef, and Ganlin Zhang
Biogeosciences, 15, 4815–4832, https://doi.org/10.5194/bg-15-4815-2018, https://doi.org/10.5194/bg-15-4815-2018, 2018
Short summary
Short summary
As knowledge in biology and geology explodes, science becomes increasingly specialized. Given the overlap of the environmental sciences, however, the explosion in knowledge inevitably creates opportunities for interconnecting the biogeosciences. Here, 30 scientists emphasize the opportunities for biogeoscience collaborations across the world’s remarkable long-term environmental research networks that can advance science and engage larger scientific and public audiences.
Susan L. Brantley, William H. McDowell, William E. Dietrich, Timothy S. White, Praveen Kumar, Suzanne P. Anderson, Jon Chorover, Kathleen Ann Lohse, Roger C. Bales, Daniel D. Richter, Gordon Grant, and Jérôme Gaillardet
Earth Surf. Dynam., 5, 841–860, https://doi.org/10.5194/esurf-5-841-2017, https://doi.org/10.5194/esurf-5-841-2017, 2017
Short summary
Short summary
The layer known as the critical zone extends from the tree tops to the groundwater. This zone varies globally as a function of land use, climate, and geology. Energy and materials input from the land surface downward impact the subsurface landscape of water, gas, weathered material, and biota – at the same time that differences at depth also impact the superficial landscape. Scientists are designing observatories to understand the critical zone and how it will evolve in the future.
Susan L. Brantley, Roman A. DiBiase, Tess A. Russo, Yuning Shi, Henry Lin, Kenneth J. Davis, Margot Kaye, Lillian Hill, Jason Kaye, David M. Eissenstat, Beth Hoagland, Ashlee L. Dere, Andrew L. Neal, Kristen M. Brubaker, and Dan K. Arthur
Earth Surf. Dynam., 4, 211–235, https://doi.org/10.5194/esurf-4-211-2016, https://doi.org/10.5194/esurf-4-211-2016, 2016
Short summary
Short summary
In order to better understand and forecast the evolution of the environment from the top of the vegetation canopy down to bedrock, numerous types of intensive measurements have been made over several years in a small watershed. The ability to expand such a study to larger areas and different environments requiring fewer measurements is essential. This study presents one possible approach to such an expansion, to collect necessary and sufficient measurements in order to forecast this evolution.
E. M. Herndon, A. L. Dere, P. L. Sullivan, D. Norris, B. Reynolds, and S. L. Brantley
Hydrol. Earth Syst. Sci., 19, 3333–3347, https://doi.org/10.5194/hess-19-3333-2015, https://doi.org/10.5194/hess-19-3333-2015, 2015
Short summary
Short summary
Solute concentrations in headwater streams vary with discharge due to changing flow paths through the catchment during precipitation events. A comparison of stream chemistry across three headwater catchments reveals that solute heterogeneity across each landscape controls how different solutes respond to increasing discharge. Solute heterogeneity is at least partially controlled by landscape distributions of vegetation and soil organic matter.
Chen Yang, Zitong Jia, Wenjie Xu, Zhongwang Wei, Xiaolang Zhang, Yiguang Zou, Jeffrey McDonnell, Laura Condon, Yongjiu Dai, and Reed Maxwell
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-292, https://doi.org/10.5194/hess-2024-292, 2024
Preprint under review for HESS
Short summary
Short summary
We developed the first high-resolution, integrated surface water-groundwater hydrologic model of the entire continental China using ParFlow. The model shows good performance of streamflow and water table depth when compared to global data products and observations. It is essential for water resources management and decision making in China within a consistent framework in the changing world. It also has significant implications for similar modeling in other places in the world.
Greg Balco, Alan J. Hidy, William T. Struble, and Joshua J. Roering
Geochronology, 6, 71–76, https://doi.org/10.5194/gchron-6-71-2024, https://doi.org/10.5194/gchron-6-71-2024, 2024
Short summary
Short summary
We describe a new method of reconstructing the long-term, pre-observational frequency and/or intensity of wildfires in forested landscapes using trace concentrations of the noble gases helium and neon that are formed in soil mineral grains by cosmic-ray bombardment of the Earth's surface.
Annette I. Patton, Lisa V. Luna, Joshua J. Roering, Aaron Jacobs, Oliver Korup, and Benjamin B. Mirus
Nat. Hazards Earth Syst. Sci., 23, 3261–3284, https://doi.org/10.5194/nhess-23-3261-2023, https://doi.org/10.5194/nhess-23-3261-2023, 2023
Short summary
Short summary
Landslide warning systems often use statistical models to predict landslides based on rainfall. They are typically trained on large datasets with many landslide occurrences, but in rural areas large datasets may not exist. In this study, we evaluate which statistical model types are best suited to predicting landslides and demonstrate that even a small landslide inventory (five storms) can be used to train useful models for landslide early warning when non-landslide events are also included.
Leonie Kiewiet, Ernesto Trujillo, Andrew Hedrick, Scott Havens, Katherine Hale, Mark Seyfried, Stephanie Kampf, and Sarah E. Godsey
Hydrol. Earth Syst. Sci., 26, 2779–2796, https://doi.org/10.5194/hess-26-2779-2022, https://doi.org/10.5194/hess-26-2779-2022, 2022
Short summary
Short summary
Climate change affects precipitation phase, which can propagate into changes in streamflow timing and magnitude. This study examines how variations in rainfall and snowmelt affect discharge. We found that annual discharge and stream cessation depended on the magnitude and timing of rainfall and snowmelt and on the snowpack melt-out date. This highlights the importance of precipitation timing and emphasizes the need for spatiotemporally distributed simulations of snowpack and rainfall dynamics.
William T. Struble and Joshua J. Roering
Earth Surf. Dynam., 9, 1279–1300, https://doi.org/10.5194/esurf-9-1279-2021, https://doi.org/10.5194/esurf-9-1279-2021, 2021
Short summary
Short summary
We used a mathematical technique known as a wavelet transform to calculate the curvature of hilltops in western Oregon, which we used to estimate erosion rate. We find that this technique operates over 1000 times faster than other techniques and produces accurate erosion rates. We additionally built artificial hillslopes to test the accuracy of curvature measurement methods. We find that at fast erosion rates, curvature is underestimated, raising questions of measurement accuracy elsewhere.
Andrew R. Shaughnessy, Xin Gu, Tao Wen, and Susan L. Brantley
Hydrol. Earth Syst. Sci., 25, 3397–3409, https://doi.org/10.5194/hess-25-3397-2021, https://doi.org/10.5194/hess-25-3397-2021, 2021
Short summary
Short summary
It is often difficult to determine the sources of solutes in streams and how much each source contributes. We developed a new method of unmixing stream chemistry via machine learning. We found that sulfate in three watersheds is related to groundwater flowpaths. Our results emphasize that acid rain reduces a watershed's capacity to remove CO2 from the atmosphere, a key geological control on climate. Our method will help scientists unmix stream chemistry in watersheds where sources are unknown.
David Jon Furbish, Joshua J. Roering, Tyler H. Doane, Danica L. Roth, Sarah G. W. Williams, and Angel M. Abbott
Earth Surf. Dynam., 9, 539–576, https://doi.org/10.5194/esurf-9-539-2021, https://doi.org/10.5194/esurf-9-539-2021, 2021
Short summary
Short summary
Sediment particles skitter down steep hillslopes on Earth and Mars. Particles gain speed in going downhill but are slowed down and sometimes stop due to collisions with the rough surface. The likelihood of stopping depends on the energetics of speeding up (heating) versus slowing down (cooling). Statistical physics predicts that particle travel distances are described by a generalized Pareto distribution whose form varies with the Kirkby number – the ratio of heating to cooling.
David Jon Furbish, Sarah G. W. Williams, Danica L. Roth, Tyler H. Doane, and Joshua J. Roering
Earth Surf. Dynam., 9, 577–613, https://doi.org/10.5194/esurf-9-577-2021, https://doi.org/10.5194/esurf-9-577-2021, 2021
Short summary
Short summary
The generalized Pareto distribution of particle travel distances on steep hillslopes, as described in a companion paper (Furbish et al., 2021a), is entirely consistent with measurements of travel distances obtained from laboratory and field-based experiments, supplemented with high-speed imaging and audio recordings that highlight the effects of bumpety-bump particle motions. Particle size and shape, in concert with surface roughness, strongly influence particle energetics and deposition.
Chris M. DeBeer, Howard S. Wheater, John W. Pomeroy, Alan G. Barr, Jennifer L. Baltzer, Jill F. Johnstone, Merritt R. Turetsky, Ronald E. Stewart, Masaki Hayashi, Garth van der Kamp, Shawn Marshall, Elizabeth Campbell, Philip Marsh, Sean K. Carey, William L. Quinton, Yanping Li, Saman Razavi, Aaron Berg, Jeffrey J. McDonnell, Christopher Spence, Warren D. Helgason, Andrew M. Ireson, T. Andrew Black, Mohamed Elshamy, Fuad Yassin, Bruce Davison, Allan Howard, Julie M. Thériault, Kevin Shook, Michael N. Demuth, and Alain Pietroniro
Hydrol. Earth Syst. Sci., 25, 1849–1882, https://doi.org/10.5194/hess-25-1849-2021, https://doi.org/10.5194/hess-25-1849-2021, 2021
Short summary
Short summary
This article examines future changes in land cover and hydrological cycling across the interior of western Canada under climate conditions projected for the 21st century. Key insights into the mechanisms and interactions of Earth system and hydrological process responses are presented, and this understanding is used together with model application to provide a synthesis of future change. This has allowed more scientifically informed projections than have hitherto been available.
James W. Kirchner, Sarah E. Godsey, Madeline Solomon, Randall Osterhuber, Joseph R. McConnell, and Daniele Penna
Hydrol. Earth Syst. Sci., 24, 5095–5123, https://doi.org/10.5194/hess-24-5095-2020, https://doi.org/10.5194/hess-24-5095-2020, 2020
Short summary
Short summary
Streams and groundwaters often show daily cycles in response to snowmelt and evapotranspiration. These typically have a roughly 6 h time lag, which is often interpreted as a travel-time lag. Here we show that it is instead primarily a phase lag that arises because aquifers integrate their inputs over time. We further show how these cycles shift seasonally, mirroring the springtime retreat of snow cover to higher elevations and the seasonal advance and retreat of photosynthetic activity.
Lyssette Elena Muñoz-Villers, Josie Geris, María Susana Alvarado-Barrientos, Friso Holwerda, and Todd Dawson
Hydrol. Earth Syst. Sci., 24, 1649–1668, https://doi.org/10.5194/hess-24-1649-2020, https://doi.org/10.5194/hess-24-1649-2020, 2020
Short summary
Short summary
Our research showed, consistently, a complementary use of soil water sources between coffee (Coffea Arabica var. typica) plants and shade tree species during the dry and wet seasons in a traditional agroforestry ecosystem in central Veracruz, Mexico. However, more variability in plant water sources was observed among species in the rainy season when higher soil moisture conditions were present and water stress was largely absent.
Hang Wen, Julia Perdrial, Benjamin W. Abbott, Susana Bernal, Rémi Dupas, Sarah E. Godsey, Adrian Harpold, Donna Rizzo, Kristen Underwood, Thomas Adler, Gary Sterle, and Li Li
Hydrol. Earth Syst. Sci., 24, 945–966, https://doi.org/10.5194/hess-24-945-2020, https://doi.org/10.5194/hess-24-945-2020, 2020
Short summary
Short summary
Lateral carbon fluxes from terrestrial to aquatic systems remain central uncertainties in determining ecosystem carbon balance. This work explores how temperature and hydrology control production and export of dissolved organic carbon (DOC) at the catchment scale. Results illustrate the asynchrony of DOC production, controlled by temperature, and export, governed by flow paths; concentration–discharge relationships are determined by the relative contribution of shallow versus groundwater flow.
Bernd R. Schöne, Aliona E. Meret, Sven M. Baier, Jens Fiebig, Jan Esper, Jeffrey McDonnell, and Laurent Pfister
Hydrol. Earth Syst. Sci., 24, 673–696, https://doi.org/10.5194/hess-24-673-2020, https://doi.org/10.5194/hess-24-673-2020, 2020
Short summary
Short summary
We present the first annually resolved stable isotope record (1819–1998) from shells of Swedish river mussels. Data reflect hydrological processes in the catchment and changes in the isotope value of local precipitation. The latter is related to the origin of moisture from which precipitation formed (North Atlantic or the Arctic) and governed by large-scale atmospheric circulation patterns. Results help to better understand climate dynamics and constrain ecological changes in river ecosystems.
Jason Philip Kaye, Susan L. Brantley, Jennifer Zan Williams, and the SSHCZO team
Biogeosciences, 16, 4661–4669, https://doi.org/10.5194/bg-16-4661-2019, https://doi.org/10.5194/bg-16-4661-2019, 2019
Short summary
Short summary
Interdisciplinary teams can only capitalize on innovative ideas if members work well together through collegial and efficient use of field sites, instrumentation, samples, data, and model code. Thus, biogeoscience teams may benefit from developing a set of best practices for collaboration. We present one such example from a the Susquehanna Shale Hills critical zone observatory. Many of the themes from our example are universal, and they offer insights useful to other biogeoscience teams.
Magali F. Nehemy, Paolo Benettin, Mitra Asadollahi, Dyan Pratt, Andrea Rinaldo, and Jeffrey J. McDonnell
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-528, https://doi.org/10.5194/hess-2019-528, 2019
Preprint withdrawn
Sara K. E. Goulden, Naohiko Ohkouchi, Katherine H. Freeman, Yoshito Chikaraishi, Nanako O. Ogawa, Hisami Suga, Oliver Chadwick, and Benjamin Z. Houlton
Biogeosciences, 16, 3869–3882, https://doi.org/10.5194/bg-16-3869-2019, https://doi.org/10.5194/bg-16-3869-2019, 2019
Short summary
Short summary
We investigate whether soil organic compounds preserve information about nitrogen availability to plants. We isolate chlorophyll degradation products in leaves, litter, and soil and explore possible species and climate effects on preservation and interpretation. We find that compound-specific nitrogen isotope measurements in soil have potential as a new tool to reconstruct changes in nitrogen cycling on a landscape over time, avoiding issues that have limited other proxies.
Anna E. Coles, Jeffrey J. McDonnell, and Brian G. McConkey
Earth Syst. Sci. Data, 11, 1375–1383, https://doi.org/10.5194/essd-11-1375-2019, https://doi.org/10.5194/essd-11-1375-2019, 2019
Short summary
Short summary
Long hydrological records from cold regions with seasonally frozen ground are rare. This paper presents a 50-year dataset from a site (the Swift Current hillslopes) on the Canadian Prairies. The dataset includes information on runoff, soil and water nutrient concentrations, snowpack, soil moisture, agricultural practices and topography. This is a valuable resource for water management and sustainability research, particularly for understanding land use and climate change impacts in cold regions.
Katalyn A. Voss, Bodo Bookhagen, Dirk Sachse, and Oliver A. Chadwick
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-534, https://doi.org/10.5194/hess-2018-534, 2018
Preprint withdrawn
Short summary
Short summary
Water supply in the Himalayas is derived from rainfall, snowpack, glacial melt, and groundwater that vary spatially and seasonally. This study provides new data collected from rain, snow, and glacial-sourced surface waters over a 5000 m elevation range from April to October 2016. We identify water sourced from the summer monsoon versus winter westerly storms and track major snow and glacial melt events to elucidate the sourcing and timing of Himalayan streamflow and inform water management.
Daniele Penna, Luisa Hopp, Francesca Scandellari, Scott T. Allen, Paolo Benettin, Matthias Beyer, Josie Geris, Julian Klaus, John D. Marshall, Luitgard Schwendenmann, Till H. M. Volkmann, Jana von Freyberg, Anam Amin, Natalie Ceperley, Michael Engel, Jay Frentress, Yamuna Giambastiani, Jeff J. McDonnell, Giulia Zuecco, Pilar Llorens, Rolf T. W. Siegwolf, Todd E. Dawson, and James W. Kirchner
Biogeosciences, 15, 6399–6415, https://doi.org/10.5194/bg-15-6399-2018, https://doi.org/10.5194/bg-15-6399-2018, 2018
Short summary
Short summary
Understanding how water flows through ecosystems is needed to provide society and policymakers with the scientific background to manage water resources sustainably. Stable isotopes of hydrogen and oxygen in water are a powerful tool for tracking water fluxes, although the heterogeneity of natural systems and practical methodological issues still limit their full application. Here, we examine the challenges in this research field and highlight new perspectives based on interdisciplinary research.
Daniel D. Richter, Sharon A. Billings, Peter M. Groffman, Eugene F. Kelly, Kathleen A. Lohse, William H. McDowell, Timothy S. White, Suzanne Anderson, Dennis D. Baldocchi, Steve Banwart, Susan Brantley, Jean J. Braun, Zachary S. Brecheisen, Charles W. Cook, Hilairy E. Hartnett, Sarah E. Hobbie, Jerome Gaillardet, Esteban Jobbagy, Hermann F. Jungkunst, Clare E. Kazanski, Jagdish Krishnaswamy, Daniel Markewitz, Katherine O'Neill, Clifford S. Riebe, Paul Schroeder, Christina Siebe, Whendee L. Silver, Aaron Thompson, Anne Verhoef, and Ganlin Zhang
Biogeosciences, 15, 4815–4832, https://doi.org/10.5194/bg-15-4815-2018, https://doi.org/10.5194/bg-15-4815-2018, 2018
Short summary
Short summary
As knowledge in biology and geology explodes, science becomes increasingly specialized. Given the overlap of the environmental sciences, however, the explosion in knowledge inevitably creates opportunities for interconnecting the biogeosciences. Here, 30 scientists emphasize the opportunities for biogeoscience collaborations across the world’s remarkable long-term environmental research networks that can advance science and engage larger scientific and public audiences.
Natalie Orlowski, Lutz Breuer, Nicolas Angeli, Pascal Boeckx, Christophe Brumbt, Craig S. Cook, Maren Dubbert, Jens Dyckmans, Barbora Gallagher, Benjamin Gralher, Barbara Herbstritt, Pedro Hervé-Fernández, Christophe Hissler, Paul Koeniger, Arnaud Legout, Chandelle Joan Macdonald, Carlos Oyarzún, Regine Redelstein, Christof Seidler, Rolf Siegwolf, Christine Stumpp, Simon Thomsen, Markus Weiler, Christiane Werner, and Jeffrey J. McDonnell
Hydrol. Earth Syst. Sci., 22, 3619–3637, https://doi.org/10.5194/hess-22-3619-2018, https://doi.org/10.5194/hess-22-3619-2018, 2018
Short summary
Short summary
To extract water from soils for isotopic analysis, cryogenic water extraction is the most widely used removal technique. This work presents results from a worldwide laboratory intercomparison test of cryogenic extraction systems. Our results showed large differences in retrieved isotopic signatures among participating laboratories linked to interactions between soil type and properties, system setup, extraction efficiency, extraction system leaks, and each lab’s internal accuracy.
Sarah E. Godsey, Danny Marks, Patrick R. Kormos, Mark S. Seyfried, Clarissa L. Enslin, Adam H. Winstral, James P. McNamara, and Timothy E. Link
Earth Syst. Sci. Data, 10, 1207–1216, https://doi.org/10.5194/essd-10-1207-2018, https://doi.org/10.5194/essd-10-1207-2018, 2018
Short summary
Short summary
Weather data in mountainous rain-to-snow transition zones are limited, but are vital for water resources. We present a 10-year dataset for this zone that includes hourly temperatures, relative humidity, streamflow, snow depth, precipitation, wind speed/direction, solar energy, and soil moisture at 11 stations. Average air temperatures are near freezing 8 months each year, so that slight warming may determine whether rain falls instead of snow, affecting water supplies and fire risk.
Paolo Benettin, Till H. M. Volkmann, Jana von Freyberg, Jay Frentress, Daniele Penna, Todd E. Dawson, and James W. Kirchner
Hydrol. Earth Syst. Sci., 22, 2881–2890, https://doi.org/10.5194/hess-22-2881-2018, https://doi.org/10.5194/hess-22-2881-2018, 2018
Short summary
Short summary
Evaporation causes the isotopic composition of soil water to become different from that of the original precipitation source. If multiple samples originating from the same source are available, they can be used to reconstruct the original source composition. However, soil water is influenced by seasonal variability in both precipitation sources and evaporation patterns. We show that this variability, if not accounted for, can lead to biased estimates of the precipitation source water.
Susan L. Brantley, William H. McDowell, William E. Dietrich, Timothy S. White, Praveen Kumar, Suzanne P. Anderson, Jon Chorover, Kathleen Ann Lohse, Roger C. Bales, Daniel D. Richter, Gordon Grant, and Jérôme Gaillardet
Earth Surf. Dynam., 5, 841–860, https://doi.org/10.5194/esurf-5-841-2017, https://doi.org/10.5194/esurf-5-841-2017, 2017
Short summary
Short summary
The layer known as the critical zone extends from the tree tops to the groundwater. This zone varies globally as a function of land use, climate, and geology. Energy and materials input from the land surface downward impact the subsurface landscape of water, gas, weathered material, and biota – at the same time that differences at depth also impact the superficial landscape. Scientists are designing observatories to understand the critical zone and how it will evolve in the future.
Willem J. van Verseveld, Holly R. Barnard, Chris B. Graham, Jeffrey J. McDonnell, J. Renée Brooks, and Markus Weiler
Hydrol. Earth Syst. Sci., 21, 5891–5910, https://doi.org/10.5194/hess-21-5891-2017, https://doi.org/10.5194/hess-21-5891-2017, 2017
Short summary
Short summary
How stream water responds immediately to a rainfall or snow event, while the average time it takes water to travel through the hillslope can be years or decades and is poorly understood. We assessed this difference by combining a 24-day sprinkler experiment (a tracer was applied at the start) with a process-based hydrologic model. Immobile soil water, deep groundwater contribution and soil depth variability explained this difference at our hillslope site.
Lesego Khomo, Susan Trumbore, Carleton R. Bern, and Oliver A. Chadwick
SOIL, 3, 17–30, https://doi.org/10.5194/soil-3-17-2017, https://doi.org/10.5194/soil-3-17-2017, 2017
Short summary
Short summary
We evaluated mineral control of organic carbon dynamics by relating the content and age of carbon stored in soils of varied mineralogical composition found in the landscapes of Kruger National Park, South Africa. Carbon associated with smectite clay minerals, which have stronger surface–organic matter interactions, averaged about a thousand years old, while most soil carbon was only decades to centuries old and was associated with iron and aluminum oxide minerals.
Anna E. Coles, Willemijn M. Appels, Brian G. McConkey, and Jeffrey J. McDonnell
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-564, https://doi.org/10.5194/hess-2016-564, 2016
Manuscript not accepted for further review
Short summary
Short summary
We used a long-term hydrological and meteorological dataset to unravel the interactions and feedbacks between controls on snowmelt-runoff over Canadian Prairie hillslopes. We found a condition-dependent hierarchy of controls on snowmelt-runoff, which include soil water content, precipitation, melt season length and melt rate. These results have implications for hydrological modeling on seasonally-frozen ground, and for guiding cost-effective and useful field measurements.
Shabnam Saffarpour, Andrew W. Western, Russell Adams, and Jeffrey J. McDonnell
Hydrol. Earth Syst. Sci., 20, 4525–4545, https://doi.org/10.5194/hess-20-4525-2016, https://doi.org/10.5194/hess-20-4525-2016, 2016
Short summary
Short summary
A variety of threshold mechanisms influence the transfer of rainfall to runoff from catchments. Some of these mechanisms depend on the occurrence of intense rainfall and others depend on the catchment being wet. This article first provides a framework for considering which mechanisms are important in different situations and then uses that framework to examine the behaviour of a catchment in Australia that exhibits a mix of both rainfall intensity and catchment wetness dependent thresholds.
Clarissa L. Enslin, Sarah E. Godsey, Danny Marks, Patrick R. Kormos, Mark S. Seyfried, James P. McNamara, and Timothy E. Link
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2016-44, https://doi.org/10.5194/essd-2016-44, 2016
Preprint withdrawn
Short summary
Short summary
Weather data in mountainous rain-to-snow transition zones are limited, but vital for water resources. We present a 10-year dataset for this zone that includes hourly temperatures, relative humidity, stream flow, snow depth, precipitation, wind speed/direction, solar energy, and soil moisture at 11 stations. Average air temperatures are near freezing eight months each year, so that slight warming may determine whether rain falls instead of snow, affecting water supplies, ecosystems and fire risk.
Lyssette E. Muñoz-Villers, Daniel R. Geissert, Friso Holwerda, and Jeffrey J. McDonnell
Hydrol. Earth Syst. Sci., 20, 1621–1635, https://doi.org/10.5194/hess-20-1621-2016, https://doi.org/10.5194/hess-20-1621-2016, 2016
Short summary
Short summary
This study provides an important first step towards a better understanding of the hydrology of tropical montane regions and the factors influencing baseflow mean transit times (MTT). Our MTT estimates ranged between 1.2 and 2.7 years, suggesting deep and long subsurface pathways contributing to sustain dry season flows. Our findings showed that topography and subsurface permeability are the key factors controlling baseflow MTTs. Longest MTTs were found in the cloud forest headwater catchments.
Susan L. Brantley, Roman A. DiBiase, Tess A. Russo, Yuning Shi, Henry Lin, Kenneth J. Davis, Margot Kaye, Lillian Hill, Jason Kaye, David M. Eissenstat, Beth Hoagland, Ashlee L. Dere, Andrew L. Neal, Kristen M. Brubaker, and Dan K. Arthur
Earth Surf. Dynam., 4, 211–235, https://doi.org/10.5194/esurf-4-211-2016, https://doi.org/10.5194/esurf-4-211-2016, 2016
Short summary
Short summary
In order to better understand and forecast the evolution of the environment from the top of the vegetation canopy down to bedrock, numerous types of intensive measurements have been made over several years in a small watershed. The ability to expand such a study to larger areas and different environments requiring fewer measurements is essential. This study presents one possible approach to such an expansion, to collect necessary and sufficient measurements in order to forecast this evolution.
E. M. Herndon, A. L. Dere, P. L. Sullivan, D. Norris, B. Reynolds, and S. L. Brantley
Hydrol. Earth Syst. Sci., 19, 3333–3347, https://doi.org/10.5194/hess-19-3333-2015, https://doi.org/10.5194/hess-19-3333-2015, 2015
Short summary
Short summary
Solute concentrations in headwater streams vary with discharge due to changing flow paths through the catchment during precipitation events. A comparison of stream chemistry across three headwater catchments reveals that solute heterogeneity across each landscape controls how different solutes respond to increasing discharge. Solute heterogeneity is at least partially controlled by landscape distributions of vegetation and soil organic matter.
N. Martínez-Carreras, C. E. Wetzel, J. Frentress, L. Ector, J. J. McDonnell, L. Hoffmann, and L. Pfister
Hydrol. Earth Syst. Sci., 19, 3133–3151, https://doi.org/10.5194/hess-19-3133-2015, https://doi.org/10.5194/hess-19-3133-2015, 2015
Short summary
Short summary
We tested the hypothesis that different diatom species assemblages inhabit specific moisture domains of the catchment and, consequently, the presence of certain species assemblages in the stream during runoff events offers the potential for recording whether there was hydrological connectivity between these domains or not. In the Weierbach catchment, the transport of aerial diatoms during events suggested a rapid connectivity between the soil surface and the stream.
B. W. Abbott, J. B. Jones, S. E. Godsey, J. R. Larouche, and W. B. Bowden
Biogeosciences, 12, 3725–3740, https://doi.org/10.5194/bg-12-3725-2015, https://doi.org/10.5194/bg-12-3725-2015, 2015
Short summary
Short summary
As high latitudes warm, carbon and nitrogen stored in permafrost soil will be vulnerable to erosion and transport to Arctic streams and rivers. We sampled outflow from 83 permafrost collapse features in Alaska. Permafrost collapse caused substantial increases in dissolved organic carbon and inorganic nitrogen but decreased methane concentration by 90%. Upland thermokarst may be a dominant linkage transferring carbon and nutrients from terrestrial to aquatic ecosystems as the Arctic warms.
J. F. Costelloe, T. J. Peterson, K. Halbert, A. W. Western, and J. J. McDonnell
Hydrol. Earth Syst. Sci., 19, 1599–1613, https://doi.org/10.5194/hess-19-1599-2015, https://doi.org/10.5194/hess-19-1599-2015, 2015
Short summary
Short summary
Groundwater surface mapping is used as an independent data set to better estimate groundwater discharge to streamflow. The groundwater surfaces indicated when other techniques likely overestimated the groundwater discharge component of baseflow. Groundwater surfaces also identified areas where regional groundwater could not be contributing to tributary streamflow. This method adds significant value to water resource management where sufficient groundwater monitoring data are available.
J. Klaus, J. J. McDonnell, C. R. Jackson, E. Du, and N. A. Griffiths
Hydrol. Earth Syst. Sci., 19, 125–135, https://doi.org/10.5194/hess-19-125-2015, https://doi.org/10.5194/hess-19-125-2015, 2015
L. E. Muñoz-Villers and J. J. McDonnell
Hydrol. Earth Syst. Sci., 17, 3543–3560, https://doi.org/10.5194/hess-17-3543-2013, https://doi.org/10.5194/hess-17-3543-2013, 2013
Related subject area
Biogeophysics: Physical - Biological Coupling
Impact of livestock activity on near-surface ground temperatures in Mongolia
Impact of canopy environmental variables on the diurnal dynamics of water and carbon dioxide exchange at leaf and canopy level
Source-to-Sink Pathways of Dissolved Organic Carbon in the River-Estuary-Ocean Continuum: A Modeling Investigation
Unique ocean circulation pathways reshape the Indian Ocean oxygen minimum zone with warming
Contribution of the open ocean to the nutrient and phytoplankton inventory in a semi-enclosed coastal sea
The contrasted phytoplankton dynamics across a frontal system in the southwestern Mediterranean Sea
Sub-frontal niches of plankton communities driven by transport and trophic interactions at ocean fronts
Differential feeding habits of the shallow-water hydrothermal vent crab Xenograpsus testudinatus correlate with their resident vent types at a scale of meters
Satellite data reveal earlier and stronger phytoplankton blooms over fronts in the Gulf Stream region
Assimilation of multiple datasets results in large differences in regional- to global-scale NEE and GPP budgets simulated by a terrestrial biosphere model
Spatiotemporal lagging of predictors improves machine learning estimates of atmosphere–forest CO2 exchange
Phytoplankton reaction to an intense storm in the north-western Mediterranean Sea
Lagrangian and Eulerian time and length scales of mesoscale ocean chlorophyll from Bio-Argo floats and satellites
Reply to Lars Olof Björn's comment on “Fundamental molecules of life are pigments which arose and co-evolved as a response to the thermodynamic imperative of dissipating the prevailing solar spectrum” by Michaelian and Simeonov (2015)
Modelling submerged biofouled microplastics and their vertical trajectories
A Bayesian sequential updating approach to predict phenology of silage maize
Using an oceanographic model to investigate the mystery of the missing puerulus
Climate pathways behind phytoplankton-induced atmospheric warming
Impact of moderately energetic fine-scale dynamics on the phytoplankton community structure in the western Mediterranean Sea
Seasonal ecosystem vulnerability to climatic anomalies in the Mediterranean
Grazing behavior and winter phytoplankton accumulation
Episodic subduction patches in the western North Pacific identified from BGC-Argo float data
Do Loop Current eddies stimulate productivity in the Gulf of Mexico?
Quasi-tropical cyclone caused anomalous autumn coccolithophore bloom in the Black Sea
Divergent climate feedbacks on winter wheat growing and dormancy periods as affected by sowing date in the North China Plain
Microclimatic comparison of lichen heaths and shrubs: shrubification generates atmospheric heating but subsurface cooling during the growing season
Fire and vegetation dynamics in northwest Siberia during the last 60 years based on high-resolution remote sensing
Evidence of eddy-related deep-ocean current variability in the northeast tropical Pacific Ocean induced by remote gap winds
Root uptake under mismatched distributions of water and nutrients in the root zone
Interactive impacts of meteorological and hydrological conditions on the physical and biogeochemical structure of a coastal system
Protists and collembolans alter microbial community composition, C dynamics and soil aggregation in simplified consumer–prey systems
Abundance and viability of particle-attached and free-floating bacteria in dusty and nondusty air
Linking tundra vegetation, snow, soil temperature, and permafrost
Drivers of the spatial phytoplankton gradient in estuarine–coastal systems: generic implications of a case study in a Dutch tidal bay
Biological and biogeochemical methods for estimating bioirrigation: a case study in the Oosterschelde estuary
Dissolved inorganic nitrogen and particulate organic nitrogen budget in the Yucatán shelf: driving mechanisms through a physical–biogeochemical coupled model
Basal thermal regime affects the biogeochemistry of subglacial systems
Influence of oceanic conditions in the energy transfer efficiency estimation of a micronekton model
Modulation of the North Atlantic deoxygenation by the slowdown of the nutrient stream
Stand age and species composition effects on surface albedo in a mixedwood boreal forest
Assessing the peatland hummock–hollow classification framework using high-resolution elevation models: implications for appropriate complexity ecosystem modeling
Tidal and seasonal forcing of dissolved nutrient fluxes in reef communities
Ideas and perspectives: Development of nascent autotrophic carbon fixation systems in various redox conditions of the fluid degassing on early Earth
Vertical distribution of chlorophyll in dynamically distinct regions of the southern Bay of Bengal
Remote and local drivers of oxygen and nitrate variability in the shallow oxygen minimum zone off Mauritania in June 2014
Longitudinal contrast in turbulence along a ∼ 19° S section in the Pacific and its consequences for biogeochemical fluxes
Ideas and perspectives: Strengthening the biogeosciences in environmental research networks
Imprint of Southern Ocean mesoscale eddies on chlorophyll
Grazing increases litter decomposition rate but decreases nitrogen release rate in an alpine meadow
Large- to submesoscale surface circulation and its implications on biogeochemical/biological horizontal distributions during the OUTPACE cruise (southwest Pacific)
Robin B. Zweigel, Avirmed Dashtseren, Khurelbaatar Temuujin, Anarmaa Sharkhuu, Clare Webster, Hanna Lee, and Sebastian Westermann
EGUsphere, https://doi.org/10.5194/egusphere-2024-1790, https://doi.org/10.5194/egusphere-2024-1790, 2024
Short summary
Short summary
Intense grazing at grassland sites removes vegetation, reduces the snow cover, and inhibits litter layers from forming. Grazed sites generally have a larger annual ground surface temperature amplitude than ungrazed sites, but the net effect depends on effects in the transitional seasons. Our results also suggest that seasonal use of pastures can reduce ground temperatures, which can be a strategy to protect currently degrading grassland permafrost.
Raquel González-Armas, Jordi Vilà-Guerau de Arellano, Mary Rose Mangan, Oscar Hartogensis, and Hugo de Boer
Biogeosciences, 21, 2425–2445, https://doi.org/10.5194/bg-21-2425-2024, https://doi.org/10.5194/bg-21-2425-2024, 2024
Short summary
Short summary
This paper investigates the water and CO2 exchange for an alfalfa field with observations and a model with spatial scales ranging from the stomata to the atmospheric boundary layer. To relate the environmental factors to the leaf gas exchange, we developed three equations that quantify how many of the temporal changes of the leaf gas exchange occur due to changes in the environmental variables. The novelty of the research resides in the capacity to dissect the dynamics of the leaf gas exchange.
Jialing Yao, Zhi Chen, Jianzhong Ge, and Wenyan Zhang
Biogeosciences Discuss., https://doi.org/10.5194/bg-2024-2, https://doi.org/10.5194/bg-2024-2, 2024
Revised manuscript accepted for BG
Short summary
Short summary
The transformation of dissolved organic carbon (DOC) in estuaries is vital for costal carbon cycling. We studied source-to-sink pathways of DOC in the Changjiang Estuary using a physics-biogeochemistry model. Results showed a transition from sink to source of DOC in the plume area during summer, with a transition from terrestrial-dominant to marine-dominant. Terrigenous and marine DOC exports account for about 31 % and 69 %, respectively.
Sam Ditkovsky, Laure Resplandy, and Julius Busecke
Biogeosciences, 20, 4711–4736, https://doi.org/10.5194/bg-20-4711-2023, https://doi.org/10.5194/bg-20-4711-2023, 2023
Short summary
Short summary
The global ocean is losing oxygen due to warming. The Indian Ocean, however, is gaining oxygen in large parts of the basin, and its naturally occurring oxygen minimum zone is not expanding. This rather unexpected response is explained by the unique ocean circulation of the Indian Ocean, which is bounded by a continent to the north but connected to the Pacific Ocean by the Indonesian Throughflow.
Qian Leng, Xinyu Guo, Junying Zhu, and Akihiko Morimoto
Biogeosciences, 20, 4323–4338, https://doi.org/10.5194/bg-20-4323-2023, https://doi.org/10.5194/bg-20-4323-2023, 2023
Short summary
Short summary
Using a numerical model, we revealed that a large proportion of nutrients in a semi-enclosed sea (Seto Inland Sea, Japan) comes from the Pacific Ocean and supports about half of the phytoplankton growth in the sea. Such results imply that the human-made management of nutrient load from land needs to consider the presence of oceanic nutrients, which act as a background concentration and are not controlled by human activities.
Roxane Tzortzis, Andrea M. Doglioli, Monique Messié, Stéphanie Barrillon, Anne A. Petrenko, Lloyd Izard, Yuan Zhao, Francesco d'Ovidio, Franck Dumas, and Gérald Gregori
Biogeosciences, 20, 3491–3508, https://doi.org/10.5194/bg-20-3491-2023, https://doi.org/10.5194/bg-20-3491-2023, 2023
Short summary
Short summary
We studied a finescale frontal structure in order to highlight its influence on the dynamics and distribution of phytoplankton communities. We computed the growth rates of several phytoplankton groups identified by flow cytometry in two water masses separated by the front. We found contrasted phytoplankton dynamics on the two sides of the front, consistent with the distribution of their abundances. Our study gives new insights into the physical and biological coupling on a finescale front.
Inès Mangolte, Marina Lévy, Clément Haëck, and Mark D. Ohman
Biogeosciences, 20, 3273–3299, https://doi.org/10.5194/bg-20-3273-2023, https://doi.org/10.5194/bg-20-3273-2023, 2023
Short summary
Short summary
Ocean fronts are ecological hotspots, associated with higher diversity and biomass for many marine organisms, from bacteria to whales. Using in situ data from the California Current Ecosystem, we show that far from being limited to the production of diatom blooms, fronts are the scene of complex biophysical couplings between biotic interactions (growth, competition, and predation) and transport by currents that generate planktonic communities with an original taxonomic and spatial structure.
Jing-Ying Wu, Siou-Yan Lin, Jung-Fu Huang, Chen-Tung Arthur Chen, Jia-Jang Hung, Shao-Hung Peng, and Li-Lian Liu
Biogeosciences, 20, 2693–2706, https://doi.org/10.5194/bg-20-2693-2023, https://doi.org/10.5194/bg-20-2693-2023, 2023
Short summary
Short summary
The shallow-water hydrothermal vents off the Kueishan Island, Taiwan, have the most extreme records of pH values (1.52), temperatures (116 °C), and H2S concentrations (172.4 mmol mol−1) in the world. White and yellow vents differ in the color and physical and chemical characteristics of emitted plumes. We found that the feeding habits of the endemic vent crabs (Xenograpsus testudinatus) are adapted to their resident vent types at a distance of 100 m, and the trans-vent movement is uncommon.
Clément Haëck, Marina Lévy, Inès Mangolte, and Laurent Bopp
Biogeosciences, 20, 1741–1758, https://doi.org/10.5194/bg-20-1741-2023, https://doi.org/10.5194/bg-20-1741-2023, 2023
Short summary
Short summary
Phytoplankton vary in abundance in the ocean over large regions and with the seasons but also because of small-scale heterogeneities in surface temperature, called fronts. Here, using satellite imagery, we found that fronts enhance phytoplankton much more where it is already growing well, but despite large local increases the enhancement for the region is modest (5 %). We also found that blooms start 1 to 2 weeks earlier over fronts. These effects may have implications for ecosystems.
Cédric Bacour, Natasha MacBean, Frédéric Chevallier, Sébastien Léonard, Ernest N. Koffi, and Philippe Peylin
Biogeosciences, 20, 1089–1111, https://doi.org/10.5194/bg-20-1089-2023, https://doi.org/10.5194/bg-20-1089-2023, 2023
Short summary
Short summary
The impact of assimilating different dataset combinations on regional to global-scale C budgets is explored with the ORCHIDEE model. Assimilating simultaneously multiple datasets is preferable to optimize the values of the model parameters and avoid model overfitting. The challenges in constraining soil C disequilibrium using atmospheric CO2 data are highlighted for an accurate prediction of the land sink distribution.
Matti Kämäräinen, Juha-Pekka Tuovinen, Markku Kulmala, Ivan Mammarella, Juha Aalto, Henriikka Vekuri, Annalea Lohila, and Anna Lintunen
Biogeosciences, 20, 897–909, https://doi.org/10.5194/bg-20-897-2023, https://doi.org/10.5194/bg-20-897-2023, 2023
Short summary
Short summary
In this study, we introduce a new method for modeling the exchange of carbon between the atmosphere and a study site located in a boreal forest in southern Finland. Our method yields more accurate results than previous approaches in this context. Accurately estimating carbon exchange is crucial for gaining a better understanding of the role of forests in regulating atmospheric carbon and addressing climate change.
Stéphanie Barrillon, Robin Fuchs, Anne A. Petrenko, Caroline Comby, Anthony Bosse, Christophe Yohia, Jean-Luc Fuda, Nagib Bhairy, Frédéric Cyr, Andrea M. Doglioli, Gérald Grégori, Roxane Tzortzis, Francesco d'Ovidio, and Melilotus Thyssen
Biogeosciences, 20, 141–161, https://doi.org/10.5194/bg-20-141-2023, https://doi.org/10.5194/bg-20-141-2023, 2023
Short summary
Short summary
Extreme weather events can have a major impact on ocean physics and biogeochemistry, but their study is challenging. In May 2019, an intense storm occurred in the north-western Mediterranean Sea, during which in situ multi-platform measurements were performed. The results show a strong impact on the surface phytoplankton, highlighting the need for high-resolution measurements coupling physics and biology during these violent events that may become more common in the context of global change.
Darren C. McKee, Scott C. Doney, Alice Della Penna, Emmanuel S. Boss, Peter Gaube, Michael J. Behrenfeld, and David M. Glover
Biogeosciences, 19, 5927–5952, https://doi.org/10.5194/bg-19-5927-2022, https://doi.org/10.5194/bg-19-5927-2022, 2022
Short summary
Short summary
As phytoplankton (small, drifting photosynthetic organisms) drift with ocean currents, biomass accumulation rates should be evaluated in a Lagrangian (observer moves with a fluid parcel) as opposed to an Eulerian (observer is stationary) framework. Here, we use profiling floats and surface drifters combined with satellite data to analyse time and length scales of chlorophyll concentrations (a proxy for biomass) and of velocity to quantify how phytoplankton variability is related to water motion.
Karo Michaelian and Aleksandar Simeonov
Biogeosciences, 19, 4029–4034, https://doi.org/10.5194/bg-19-4029-2022, https://doi.org/10.5194/bg-19-4029-2022, 2022
Short summary
Short summary
We reply to Lars Björn's critique of our article concerning the importance of photon dissipation to the origin and evolution of the biosphere. Björn doubts our assertion that organic pigments, ecosystems, and the biosphere arose out of a non-equilibrium thermodynamic imperative to increase global photon dissipation. He shows that the albedo of some non-living material is less than that of living material. We point out, however, that photon dissipation involves other factors besides albedo.
Reint Fischer, Delphine Lobelle, Merel Kooi, Albert Koelmans, Victor Onink, Charlotte Laufkötter, Linda Amaral-Zettler, Andrew Yool, and Erik van Sebille
Biogeosciences, 19, 2211–2234, https://doi.org/10.5194/bg-19-2211-2022, https://doi.org/10.5194/bg-19-2211-2022, 2022
Short summary
Short summary
Since current estimates show that only about 1 % of the all plastic that enters the ocean is floating at the surface, we look at subsurface processes that can cause vertical movement of (micro)plastic. We investigate how modelled algal attachment and the ocean's vertical movement can cause particles to sink and oscillate in the open ocean. Particles can sink to depths of > 5000 m in regions with high wind intensity and mainly remain close to the surface with low winds and biological activity.
Michelle Viswanathan, Tobias K. D. Weber, Sebastian Gayler, Juliane Mai, and Thilo Streck
Biogeosciences, 19, 2187–2209, https://doi.org/10.5194/bg-19-2187-2022, https://doi.org/10.5194/bg-19-2187-2022, 2022
Short summary
Short summary
We analysed the evolution of model parameter uncertainty and prediction error as we updated parameters of a maize phenology model based on yearly observations, by sequentially applying Bayesian calibration. Although parameter uncertainty was reduced, prediction quality deteriorated when calibration and prediction data were from different maize ripening groups or temperature conditions. The study highlights that Bayesian methods should account for model limitations and inherent data structures.
Jessica Kolbusz, Tim Langlois, Charitha Pattiaratchi, and Simon de Lestang
Biogeosciences, 19, 517–539, https://doi.org/10.5194/bg-19-517-2022, https://doi.org/10.5194/bg-19-517-2022, 2022
Short summary
Short summary
Western rock lobster larvae spend up to 11 months in offshore waters before ocean currents and their ability to swim transport them back to the coast. In 2008, there was a reduction in the number of puerulus (larvae) settling into the fishery. We use an oceanographic model to see how the environment may have contributed to the reduction. Our results show that a combination of effects from local currents and a widespread quiet period in the ocean off WA likely led to less puerulus settlement.
Rémy Asselot, Frank Lunkeit, Philip B. Holden, and Inga Hense
Biogeosciences, 19, 223–239, https://doi.org/10.5194/bg-19-223-2022, https://doi.org/10.5194/bg-19-223-2022, 2022
Short summary
Short summary
Previous studies show that phytoplankton light absorption can warm the atmosphere, but how this warming occurs is still unknown. We compare the importance of air–sea heat versus CO2 flux in the phytoplankton-induced atmospheric warming and determine the main driver. To shed light on this research question, we conduct simulations with a climate model of intermediate complexity. We show that phytoplankton mainly warms the atmosphere by increasing the air–sea CO2 flux.
Roxane Tzortzis, Andrea M. Doglioli, Stéphanie Barrillon, Anne A. Petrenko, Francesco d'Ovidio, Lloyd Izard, Melilotus Thyssen, Ananda Pascual, Bàrbara Barceló-Llull, Frédéric Cyr, Marc Tedetti, Nagib Bhairy, Pierre Garreau, Franck Dumas, and Gérald Gregori
Biogeosciences, 18, 6455–6477, https://doi.org/10.5194/bg-18-6455-2021, https://doi.org/10.5194/bg-18-6455-2021, 2021
Short summary
Short summary
This work analyzes an original high-resolution data set collected in the Mediterranean Sea. The major result is the impact of a fine-scale frontal structure on the distribution of phytoplankton groups, in an area of moderate energy with oligotrophic conditions. Our results provide an in situ confirmation of the findings obtained by previous modeling studies and remote sensing about the structuring effect of the fine-scale ocean dynamics on the structure of the phytoplankton community.
Johannes Vogel, Eva Paton, and Valentin Aich
Biogeosciences, 18, 5903–5927, https://doi.org/10.5194/bg-18-5903-2021, https://doi.org/10.5194/bg-18-5903-2021, 2021
Short summary
Short summary
This study investigates extreme ecosystem impacts evoked by temperature and soil moisture in the Mediterranean Basin for the time span 1999–2019 with a specific focus on seasonal variations. The analysis showed that ecosystem vulnerability is caused by several varying combinations of both drivers during the yearly cycle. The approach presented here helps to provide insights on the specific phenological stage of the year in which ecosystem vulnerability to a certain climatic condition occurs.
Mara Freilich, Alexandre Mignot, Glenn Flierl, and Raffaele Ferrari
Biogeosciences, 18, 5595–5607, https://doi.org/10.5194/bg-18-5595-2021, https://doi.org/10.5194/bg-18-5595-2021, 2021
Short summary
Short summary
Observations reveal that in some regions phytoplankton biomass increases during the wintertime when growth conditions are sub-optimal, which has been attributed to a release from grazing during mixed layer deepening. Measurements of grazer populations to support this theory are lacking. We demonstrate that a release from grazing when the winter mixed layer is deepening holds only for certain grazing models, extending the use of phytoplankton observations to make inferences about grazer dynamics.
Shuangling Chen, Mark L. Wells, Rui Xin Huang, Huijie Xue, Jingyuan Xi, and Fei Chai
Biogeosciences, 18, 5539–5554, https://doi.org/10.5194/bg-18-5539-2021, https://doi.org/10.5194/bg-18-5539-2021, 2021
Short summary
Short summary
Subduction transports surface waters to the oceanic interior, which can supply significant amounts of carbon and oxygen to the twilight zone. Using a novel BGC-Argo dataset covering the western North Pacific, we successfully identified the imprints of episodic shallow subduction patches. These subduction patches were observed mainly in spring and summer (70.6 %), and roughly half of them extended below ~ 450 m, injecting carbon- and oxygen-enriched waters into the ocean interior.
Pierre Damien, Julio Sheinbaum, Orens Pasqueron de Fommervault, Julien Jouanno, Lorena Linacre, and Olaf Duteil
Biogeosciences, 18, 4281–4303, https://doi.org/10.5194/bg-18-4281-2021, https://doi.org/10.5194/bg-18-4281-2021, 2021
Short summary
Short summary
The Gulf of Mexico deep waters are relatively poor in phytoplankton biomass due to low levels of nutrients in the upper layers. Using modeling techniques, we find that the long-living anticyclonic Loop Current eddies that are shed episodically from the Yucatan Channel strongly shape the distribution of phytoplankton and, more importantly, stimulate their growth. This results from the contribution of multiple mechanisms of physical–biogeochemical interactions discussed in this study.
Sergey V. Stanichny, Elena A. Kubryakova, and Arseny A. Kubryakov
Biogeosciences, 18, 3173–3188, https://doi.org/10.5194/bg-18-3173-2021, https://doi.org/10.5194/bg-18-3173-2021, 2021
Short summary
Short summary
In this paper, we show that the short-term impact of tropical cyclones can trigger the intense, long-term bloom of coccolithophores, which are major marine calcifiers playing an important role in the balance and fluxes of inorganic carbon in the ocean. In our paper, we describe the evolution of and physical reasons for such an unusual bloom observed in autumn 2005 in the Black Sea on the basis of satellite data.
Fengshan Liu, Ying Chen, Nini Bai, Dengpan Xiao, Huizi Bai, Fulu Tao, and Quansheng Ge
Biogeosciences, 18, 2275–2287, https://doi.org/10.5194/bg-18-2275-2021, https://doi.org/10.5194/bg-18-2275-2021, 2021
Short summary
Short summary
The sowing date is key to the surface biophysical processes in the winter dormancy period. The climate effect of the sowing date shift is therefore very interesting and may contribute to the mitigation of climate change. An earlier sowing date always had a higher LAI but a higher temperature in the dormancy period and a lower temperature in the growth period. The main reason was the relative contributions of the surface albedo and energy partitioning processes.
Peter Aartsma, Johan Asplund, Arvid Odland, Stefanie Reinhardt, and Hans Renssen
Biogeosciences, 18, 1577–1599, https://doi.org/10.5194/bg-18-1577-2021, https://doi.org/10.5194/bg-18-1577-2021, 2021
Short summary
Short summary
In the literature, it is generally assumed that alpine lichen heaths keep their direct environment cool due to their relatively high albedo. However, we reveal that the soil temperature and soil heat flux are higher below lichens than below shrubs during the growing season, despite a lower net radiation for lichens. We also show that the differences in microclimatic conditions between these two vegetation types are more pronounced during warm and sunny days than during cold and cloudy days.
Oleg Sizov, Ekaterina Ezhova, Petr Tsymbarovich, Andrey Soromotin, Nikolay Prihod'ko, Tuukka Petäjä, Sergej Zilitinkevich, Markku Kulmala, Jaana Bäck, and Kajar Köster
Biogeosciences, 18, 207–228, https://doi.org/10.5194/bg-18-207-2021, https://doi.org/10.5194/bg-18-207-2021, 2021
Short summary
Short summary
In changing climate, tundra is expected to turn into shrubs and trees, diminishing reindeer pasture and increasing risks of tick-borne diseases. However, this transition may require a disturbance. Fires in Siberia are increasingly widespread. We studied wildfire dynamics and tundra–forest transition over 60 years in northwest Siberia near the Arctic Circle. Based on satellite data analysis, we found that transition occurs in 40 %–85 % of burned tundra compared to 5 %–15 % in non-disturbed areas.
Kaveh Purkiani, André Paul, Annemiek Vink, Maren Walter, Michael Schulz, and Matthias Haeckel
Biogeosciences, 17, 6527–6544, https://doi.org/10.5194/bg-17-6527-2020, https://doi.org/10.5194/bg-17-6527-2020, 2020
Short summary
Short summary
There has been a steady increase in interest in mining of deep-sea minerals in the eastern Pacific Ocean recently. The ocean state in this region is known to be highly influenced by rotating bodies of water (eddies), some of which can travel long distances in the ocean and impact the deeper layers of the ocean. Better insight into the variability of eddy activity in this region is of great help to mitigate the impact of the benthic ecosystem from future potential deep-sea mining activity.
Jing Yan, Nathaniel A. Bogie, and Teamrat A. Ghezzehei
Biogeosciences, 17, 6377–6392, https://doi.org/10.5194/bg-17-6377-2020, https://doi.org/10.5194/bg-17-6377-2020, 2020
Short summary
Short summary
An uneven supply of water and nutrients in soils often drives how plants behave. We observed that plants extract all their required nutrients from dry soil patches in sufficient quantity, provided adequate water is available elsewhere in the root zone. Roots in nutrient-rich dry patches facilitate the nutrient acquisition by extensive growth, water release, and modifying water retention in their immediate environment. The findings are valuable in managing nutrient losses in agricultural systems.
Onur Kerimoglu, Yoana G. Voynova, Fatemeh Chegini, Holger Brix, Ulrich Callies, Richard Hofmeister, Knut Klingbeil, Corinna Schrum, and Justus E. E. van Beusekom
Biogeosciences, 17, 5097–5127, https://doi.org/10.5194/bg-17-5097-2020, https://doi.org/10.5194/bg-17-5097-2020, 2020
Short summary
Short summary
In this study, using extensive field observations and a numerical model, we analyzed the physical and biogeochemical structure of a coastal system following an extreme flood event. Our results suggest that a number of anomalous observations were driven by a co-occurrence of peculiar meteorological conditions and increased riverine discharges. Our results call for attention to the combined effects of hydrological and meteorological extremes that are anticipated to increase in frequency.
Amandine Erktan, Matthias C. Rillig, Andrea Carminati, Alexandre Jousset, and Stefan Scheu
Biogeosciences, 17, 4961–4980, https://doi.org/10.5194/bg-17-4961-2020, https://doi.org/10.5194/bg-17-4961-2020, 2020
Short summary
Short summary
Soil aggregation is crucial for soil functioning. While the role of bacteria and fungi in soil aggregation is well established, how predators feeding on microbes modify soil aggregation has hardly been investigated. We showed for the first time that protists modify soil aggregation, presumably through changes in the production of bacterial mucilage, and that collembolans reduce soil aggregation, presumably by reducing the abundance of saprotrophic fungi.
Wei Hu, Kotaro Murata, Chunlan Fan, Shu Huang, Hiromi Matsusaki, Pingqing Fu, and Daizhou Zhang
Biogeosciences, 17, 4477–4487, https://doi.org/10.5194/bg-17-4477-2020, https://doi.org/10.5194/bg-17-4477-2020, 2020
Short summary
Short summary
This paper reports the first estimate of the status of bacteria in long-distance-transported Asian dust, demonstrating that airborne dust, which can carry viable and nonviable bacteria on particle surfaces, is an efficient medium for constantly spreading bacteria at regional and even global scales. Such data are essential to better model and understand the roles and activities of bioaerosols in environmental evolution and climate change and the potential risks of bioaerosols to human health.
Inge Grünberg, Evan J. Wilcox, Simon Zwieback, Philip Marsh, and Julia Boike
Biogeosciences, 17, 4261–4279, https://doi.org/10.5194/bg-17-4261-2020, https://doi.org/10.5194/bg-17-4261-2020, 2020
Short summary
Short summary
Based on topsoil temperature data for different vegetation types at a low Arctic tundra site, we found large small-scale variability. Winter temperatures were strongly influenced by vegetation through its effects on snow. Summer temperatures were similar below most vegetation types and not consistently related to late summer permafrost thaw depth. Given that vegetation type defines the relationship between winter and summer soil temperature and thaw depth, it controls permafrost vulnerability.
Long Jiang, Theo Gerkema, Jacco C. Kromkamp, Daphne van der Wal, Pedro Manuel Carrasco De La Cruz, and Karline Soetaert
Biogeosciences, 17, 4135–4152, https://doi.org/10.5194/bg-17-4135-2020, https://doi.org/10.5194/bg-17-4135-2020, 2020
Short summary
Short summary
A seaward increasing chlorophyll-a gradient is observed during the spring bloom in a Dutch tidal bay. Biophysical model runs indicate the roles of bivalve grazing and tidal import in shaping the gradient. Five common spatial phytoplankton patterns are summarized in global estuarine–coastal ecosystems: seaward increasing, seaward decreasing, concave with a chlorophyll maximum, weak spatial gradients, and irregular patterns.
Emil De Borger, Justin Tiano, Ulrike Braeckman, Tom Ysebaert, and Karline Soetaert
Biogeosciences, 17, 1701–1715, https://doi.org/10.5194/bg-17-1701-2020, https://doi.org/10.5194/bg-17-1701-2020, 2020
Short summary
Short summary
By applying a novel technique to quantify organism-induced sediment–water column fluid exchange (bioirrigation), we show that organisms in subtidal (permanently submerged) areas have similar bioirrigation rates as those that inhabit intertidal areas (not permanently submerged), but organisms in the latter irrigate deeper burrows in this study. Our results expand on traditional methods to quantify bioirrigation rates and broaden the pool of field measurements of bioirrigation rates.
Sheila N. Estrada-Allis, Julio Sheinbaum Pardo, Joao M. Azevedo Correia de Souza, Cecilia Elizabeth Enríquez Ortiz, Ismael Mariño Tapia, and Jorge A. Herrera-Silveira
Biogeosciences, 17, 1087–1111, https://doi.org/10.5194/bg-17-1087-2020, https://doi.org/10.5194/bg-17-1087-2020, 2020
Short summary
Short summary
Continental shelves are the most productive areas in the ocean and can have an important impact on the nutrient cycle as well as the climate system. The one in Yucatán is the largest shelf in the Gulf of Mexico. However, its nutrient budget remains unidentifiable. Here we propose not only a general nutrient budget for the Yucatán Shelf but also the physical processes responsible for its pathway modulation through a physical–biogeochemical coupled model of the whole Gulf of Mexico.
Ashley Dubnick, Martin Sharp, Brad Danielson, Alireza Saidi-Mehrabad, and Joel Barker
Biogeosciences, 17, 963–977, https://doi.org/10.5194/bg-17-963-2020, https://doi.org/10.5194/bg-17-963-2020, 2020
Short summary
Short summary
We found that glaciers with basal temperatures near the melting point mobilize more solutes, nutrients, and microbes from the underlying substrate and are more likely to promote in situ biogeochemical activity than glaciers with basal temperatures well below the melting point. The temperature at the base of glaciers is therefore an important control on the biogeochemistry of ice near glacier beds, and, ultimately, the potential solutes, nutrients, and microbes exported from glaciated watersheds.
Audrey Delpech, Anna Conchon, Olivier Titaud, and Patrick Lehodey
Biogeosciences, 17, 833–850, https://doi.org/10.5194/bg-17-833-2020, https://doi.org/10.5194/bg-17-833-2020, 2020
Short summary
Short summary
Micronekton is an important, yet poorly known, component of the trophic chain, which partly contributes to the storage of CO2 in the deep ocean thanks to biomass vertical migrations. In this study, we characterize the ideal sampling regions to estimate the amount of biomass that undergoes theses migrations. We find that observations made in warm, nondynamic and productive waters reduce the error of the estimation by 20 %. This result should likely serve for future in situ network deployment.
Filippos Tagklis, Takamitsu Ito, and Annalisa Bracco
Biogeosciences, 17, 231–244, https://doi.org/10.5194/bg-17-231-2020, https://doi.org/10.5194/bg-17-231-2020, 2020
Short summary
Short summary
Deoxygenation of the oceans is potentially one of the most severe ecosystem stressors resulting from global warming given the high sensitivity of dissolved oxygen to ocean temperatures. Climate models suggest that despite the thermodynamic tendency of the oceans to lose oxygen, certain regions experience significant changes in the biologically driven O2 consumption, resulting in a resistance against deoxygenation. Overturning circulation changes are responsible for such a behavior.
Mohammad Abdul Halim, Han Y. H. Chen, and Sean C. Thomas
Biogeosciences, 16, 4357–4375, https://doi.org/10.5194/bg-16-4357-2019, https://doi.org/10.5194/bg-16-4357-2019, 2019
Short summary
Short summary
Using field data collected over 4 years across a range of stand ages, we investigated how seasonal surface albedo in boreal forest varies with stand age, stand structure, and composition. Our results indicate that successional change in species composition is a key driver of age–related patterns in albedo, with hardwood species associated with higher albedo. The patterns described have important implications for both climate modeling and
climate–smartboreal forest management.
Paul A. Moore, Maxwell C. Lukenbach, Dan K. Thompson, Nick Kettridge, Gustaf Granath, and James M. Waddington
Biogeosciences, 16, 3491–3506, https://doi.org/10.5194/bg-16-3491-2019, https://doi.org/10.5194/bg-16-3491-2019, 2019
Short summary
Short summary
Using very-high-resolution digital elevation models (DEMs), we assessed the basic structure and microtopographic variability of hummock–hollow plots at boreal and hemi-boreal sites primarily in North America. Using a simple model of peatland biogeochemical function, our results suggest that both surface heating and moss productivity may not be adequately resolved in models which only consider idealized hummock–hollow units.
Renee K. Gruber, Ryan J. Lowe, and James L. Falter
Biogeosciences, 16, 1921–1935, https://doi.org/10.5194/bg-16-1921-2019, https://doi.org/10.5194/bg-16-1921-2019, 2019
Short summary
Short summary
Researchers from the University of Western Australia's Oceans Institute are studying large tides (up to 12 m range) that occur in the Kimberley region of Australia. These tides flush coral reefs with water rich in nutrients, which supports the growth of reef organisms. In this paper, we show how tidal cycles and seasons control nutrient availability on reefs. This study is among the first published accounts of reefs and water quality data in the remote and pristine Kimberley region.
Sergey A. Marakushev and Ol'ga V. Belonogova
Biogeosciences, 16, 1817–1828, https://doi.org/10.5194/bg-16-1817-2019, https://doi.org/10.5194/bg-16-1817-2019, 2019
Short summary
Short summary
Among the existing theories of the autotrophic origin of life, CO2 is usually considered to be the carbon source for nascent autotrophic metabolism. However, ancestral carbon used in metabolism may have been derived from CH4 if the outflow of magma fluid to the surface of the Earth consisted mainly of methane. The hydrothermal system model is considered in the form of a phase diagram, which demonstrates the area of redox and P and T conditions favorable to development of primary methanotroph.
Venugopal Thushara, Puthenveettil Narayana Menon Vinayachandran, Adrian J. Matthews, Benjamin G. M. Webber, and Bastien Y. Queste
Biogeosciences, 16, 1447–1468, https://doi.org/10.5194/bg-16-1447-2019, https://doi.org/10.5194/bg-16-1447-2019, 2019
Short summary
Short summary
Chlorophyll distribution in the ocean remains to be explored in detail, despite its climatic significance. Here, we document the vertical structure of chlorophyll in the Bay of Bengal using observations and a model. The shape of chlorophyll profiles, characterized by prominent deep chlorophyll maxima, varies in dynamically different regions, controlled by the monsoonal forcings. The present study provides new insights into the vertical distribution of chlorophyll, rarely observed by satellites.
Soeren Thomsen, Johannes Karstensen, Rainer Kiko, Gerd Krahmann, Marcus Dengler, and Anja Engel
Biogeosciences, 16, 979–998, https://doi.org/10.5194/bg-16-979-2019, https://doi.org/10.5194/bg-16-979-2019, 2019
Short summary
Short summary
Physical and biogeochemical observations from an autonomous underwater vehicle in combination with ship-based measurements are used to investigate remote and local drivers of the oxygen and nutrient variability off Mauritania. Beside the transport of oxygen and nutrients characteristics from remote areas towards Mauritania also local remineralization of organic material close to the seabed seems to be important for the distribution of oxygen and nutrients.
Pascale Bouruet-Aubertot, Yannis Cuypers, Andrea Doglioli, Mathieu Caffin, Christophe Yohia, Alain de Verneil, Anne Petrenko, Dominique Lefèvre, Hervé Le Goff, Gilles Rougier, Marc Picheral, and Thierry Moutin
Biogeosciences, 15, 7485–7504, https://doi.org/10.5194/bg-15-7485-2018, https://doi.org/10.5194/bg-15-7485-2018, 2018
Short summary
Short summary
The OUTPACE cruise took place between New Caledonia and French Polynesia. The main purpose was to understand how micro-organisms can survive in a very poor environment. One main source of nutrients is at depth, below the euphotic layer where micro-organisms live. The purpose of the turbulence measurements was to determine to which extent turbulence may
upliftnutrients into the euphotic layer. The origin of the turbulence that was found contrasted along the transect was also determined.
Daniel D. Richter, Sharon A. Billings, Peter M. Groffman, Eugene F. Kelly, Kathleen A. Lohse, William H. McDowell, Timothy S. White, Suzanne Anderson, Dennis D. Baldocchi, Steve Banwart, Susan Brantley, Jean J. Braun, Zachary S. Brecheisen, Charles W. Cook, Hilairy E. Hartnett, Sarah E. Hobbie, Jerome Gaillardet, Esteban Jobbagy, Hermann F. Jungkunst, Clare E. Kazanski, Jagdish Krishnaswamy, Daniel Markewitz, Katherine O'Neill, Clifford S. Riebe, Paul Schroeder, Christina Siebe, Whendee L. Silver, Aaron Thompson, Anne Verhoef, and Ganlin Zhang
Biogeosciences, 15, 4815–4832, https://doi.org/10.5194/bg-15-4815-2018, https://doi.org/10.5194/bg-15-4815-2018, 2018
Short summary
Short summary
As knowledge in biology and geology explodes, science becomes increasingly specialized. Given the overlap of the environmental sciences, however, the explosion in knowledge inevitably creates opportunities for interconnecting the biogeosciences. Here, 30 scientists emphasize the opportunities for biogeoscience collaborations across the world’s remarkable long-term environmental research networks that can advance science and engage larger scientific and public audiences.
Ivy Frenger, Matthias Münnich, and Nicolas Gruber
Biogeosciences, 15, 4781–4798, https://doi.org/10.5194/bg-15-4781-2018, https://doi.org/10.5194/bg-15-4781-2018, 2018
Short summary
Short summary
Although mesoscale ocean eddies are ubiquitous in the Southern Ocean (SO), their regional and seasonal association with phytoplankton has not been quantified. We identify over 100 000 eddies and determine the associated phytoplankton biomass anomalies using satellite-based chlorophyll (Chl) as a proxy. The emerging Chl anomalies can be explained largely by lateral advection of Chl by eddies. This impact of eddies on phytoplankton may implicate downstream effects on SO biogeochemical properties.
Yi Sun, Xiong Z. He, Fujiang Hou, Zhaofeng Wang, and Shenghua Chang
Biogeosciences, 15, 4233–4243, https://doi.org/10.5194/bg-15-4233-2018, https://doi.org/10.5194/bg-15-4233-2018, 2018
Short summary
Short summary
To investigate how grazing alters litter composition, quality and decomposition, we collected litter from grazing (GP) and grazing exclusion paddocks (GEP) and incubated them in situ and across sites. Grazing increased litter N and grazing exclusion increased litter mass of palatable species and promoted SOC. Litter decomposed faster in GP and N was opposite. Site environment had more impact on litter decomposition. Results may be helpful in developing strategies to restore degraded grasslands.
Louise Rousselet, Alain de Verneil, Andrea M. Doglioli, Anne A. Petrenko, Solange Duhamel, Christophe Maes, and Bruno Blanke
Biogeosciences, 15, 2411–2431, https://doi.org/10.5194/bg-15-2411-2018, https://doi.org/10.5194/bg-15-2411-2018, 2018
Short summary
Short summary
The patterns of the large- and fine-scale surface circulation on biogeochemical and biological distributions are examined in the western tropical South Pacific (WTSP) in the context of the OUTPACE oceanographic cruise. The combined use of in situ and satellite data allows for the identification of water mass transport pathways and fine-scale structures, such as fronts, that drive surface distribution of tracers and microbial community structures.
Cited articles
Aciego, S. M., Riebe, C. S., Hart, S. C., Blakowski, M. A., Carey, C. J., Aarons, S. M., Dove, N. C., Botthoff, J. K., Sims, K. W. W., and Aronson, E. L.: Dust outpaces bedrock in nutrient supply to montane forest ecosystems, Nat. Commun., 8, 14800, https://doi.org/10.1038/ncomms14800, 2017.
Adams, T. S., McCormack, M. L., and Eissenstat, D. M.: Foraging strategies in trees of different root morphology: the role of root lifespan, Tree Physiol., 33, 940–948, 2013.
Ahmed, E. and Holmstrom, S. J.: Microbe-mineral interactions: the impact of surface attachment on mineral weathering and element selectivity by microorganisms, Chem. Geol., 403, 13–23, 2015.
Allen, M. F.: Mycorrhizal fungi: highways for water and nutrients in arid soils, Vadose Zone J., 6, 291–297, https://doi.org/10.2136/vzj2006.0068, 2007.
Allison, G. B., Barnes, C. J., Hughes, M. W., and Leaney, F. W.: Effect of climate and vegetation on 18O and deuterium profiles in soils, Proceedings Conference on Isotopes in Hydrology, International Atomic Energy Agency, Vienna, Austria, 105–123, 1983.
Amundson, R.: Soil formation, in: Treatise in Geochemistry: Surface and Ground Water, Weathering, and Soils, edited by: Drever, J. I., Elsevier Pergamon, Amsterdam, 1–35, 2004.
Anderson, M. A., Graham, R. C., Alyanakian, G. J., and Martynn, D. Z.: Late summer water status of soils and weathered bedrock in a giant sequoia grove, Soil Sci., 160, 415–422, https://doi.org/10.1097/00010694-199512000-00007, 1995.
Anderson, S. A., Bales, R. C., and Duffy, C. J.: Critical Zone Observatories: building a network to advance interdisciplinary study of Earth surface processes, Mineral. Mag., 72, 7–10, 2008.
Armas, C., Kim, J. H., Bleby, T. M., and Jackson, R. B.: The effect of hydraulic lift on organic matter decomposition, soil nitrogen cycling, and nitrogen acquisition by a grass species, Oecologia, 168, 11–22, https://doi.org/10.1007/s00442-011-2065-2, 2012.
Augé, R. M.: Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis, Mycorrhiza, 11, 3–42, https://doi.org/10.1007/s005720100097, 2001.
Augustin, F., Houle, D., Gagnon, C., and Courchesne, F.: Long-term base cation weathering rates in forested catchments of the Canadian Shield, Geoderma, 247–248, 12–23, 2015.
Balogh-Brunstad, Z., Keller, C. K., Bormann, B. T., O'Brien, R., Wang, D., and Hawley, G.: Chemical weathering and chemical denudation dynamics through ecosystem development and disturbance, Global Biogeochem. Cy., 22, 1–11, https://doi.org/10.1029/2007GB002957, 2008a.
Balogh-Brunstad, Z., Keller, C. K., Gill, R. A., Bormann, B. T., and Li, C. Y.: The effect of bacteria and fungi on chemical weathering and chemical denudation fluxes in pine growth experiments, Biogeochemistry, 88, 153–167, https://doi.org/10.1007/s10533-008-9202-y, 2008b.
Banwart, S., Menon, M., Bernasconi, S. M., Bloem, J., Blum, W. E. H., Souza, D. M. D., Davidsdotir, B., Duffy, C., Lair, G. J., Kram, P., Lamacova, A., Lundin, L., Nikolaidis, N. P., Novak, M., Panagos, P., Ragnarsdottir, K. V., Reynolds, B., Robinson, D., Rousseva, S., de Ruiter, P., van Gaans, P., Weng, L., White, T., and Zhang, B.: Soil processes and functions across an international network of Critical Zone Observatories: introduction to experimental methods and initial results, CR Geosci., 344, 758–772, https://doi.org/10.1016/j.crte.2012.10.007, 2012.
Bárzana, G., Aroca, R., Paz, J. A., Chaumont, F., Martinez-Ballesta, M. C., Carvajal, M., and Ruiz-Lozano, J. M.: Arbuscular mycorrhizal symbiosis increases relative apoplastic water flow in roots of the host plant under both well-watered and drought stress conditions, Ann. Bot.-London, 109, 1009–1017, https://doi.org/10.1093/aob/mcs007, 2012.
Bazilevskaya, E., Rother, G., Mildner, D. F. R., Pavich, M., Cole, D., Bhatt, M. P., Jin, L., Steefel, C. I., and Brantley, S. L.: How oxidation and dissolution in diabase and granite control porosity during weathering, Soil Sci. Soc. Am. J., 79, 55–73, https://doi.org/10.2136/sssaj2014.04.0135, 2015.
Becker, G. F.: Reconnaissance of the Gold Fields of the Southern Appalachians, Department of the Interior, US Geological Survey, Washington, 5–85, 1895.
Belt, T.: The Naturalist in Nicaragua, University of Chicago Press, Chicago, 326 pp., 1874.
Bennie, A. T. P.: Growth and mechanical impedance, in: Plant Roots: the Hidden Half, edited by: Waisel, Y., Eshel, A., Kafkafi, U., Marcel Dekker, Inc., New York, 453–470, 1991.
Bern, C. R., Thompson, A., and Chadwick, O. A.: Quantification of colloidal and aqueous element transfer in soils: the dual-phase mass balance model, Geochim. Cosmochim. Ac., 151, 1–18, https://doi.org/10.1016/j.gca.2014.12.008, 2015.
Berner, E. K., Berner, R. A., and Moulton, K. L.: Plants and mineral weathering: present and past, in: Treatise in Geochemistry: Volume 5. Surface and Ground Water, Weathering, and Soils, edited by: Drever, J. I., Elsevier, Amsterdam, 169–188, 2003.
Berry, Z. C., Evaristo, J., Moore, G., Poca, M., Steppe, K., Verrot, L., Asbjornsen, H., Borma, L. S., Bretfeld, M., Herve-Fernandez, P., Seyfried, M., Schwendenmann, L., Sinacore, K., De Wispelaere, L., and McDonnell, J.: The two water worlds hypothesis: addressing multiple working hypotheses and proposing a way forward, Ecohydrology, 2017, e1843, https://doi.org/10.1002/eco.1843, 2017.
Bonneville, S., Smits, M. M., Brown, A., Harrington, J., Leake, J. R., Brydson, R., and Benning, L. G.: Plant-driven fungal weathering: early stages of mineral alteration at the nanometer scale, Geology, 37, 615–618, https://doi.org/10.1130/G25699A.1, 2009.
Bonneville, S., Morgan, D. J., Schmalenberger, A., Bray, A., Brown, A., Banwart, S. A., and Benning, L. G.: Tree-mycorrhiza symbiosis accelerate mineral weathering: evidences from nanometer-scale elemental fluxes at the hypha-mineral interface, Geochim. Cosmochim., 75, 6988–7005, 2011.
Bornyasz, M. A., Graham, R. C., and Allen, M. G.: Ectomycorrhizae in a soil-weathered granitic bedrock regolith: linking matrix reources to plants, Geoderma, 126, 141–160, 2005.
Bowling, D. R., Schulze, E. S., and Hall, S. J.: Revisiting streamside trees that do not use stream water: Can the two water worlds hypothesis and snowpack isotopic effects explain a missing water source?, Ecohydrology, 10, e1771, https://doi.org/10.1002/eco.1771, 2016.
Bowling, D. R., Schulze, E. S., and Hall, S. J.: Revisiting streamside trees that do not use stream water: can the two water worlds hypothesis and snowpack isotopic effects explain a missing water source?, Ecohydrology, 2017, 1–12, https://doi.org/10.1002/eco.1771, 2017.
Boyle, J. F., Chiverrell, R. C., Norton, S. A., and Plater, A. J.: A leaky model of long-term soil phosphorus dynamics, Global Biogeochem. Cy., 27, 516–525, https://doi.org/10.1002/gbc.20054, 2013.
Brantley, S. L., Lebedeva, M., and Hausrath, E. M.: A geobiological view of weathering and erosion, in: Fundamentals of Geobiology, edited by: Knoll, A., Canfield, D., Konhauser, K., Wiley-Blackwell, West Sussex, 205–227, 2012.
Brantley, S. L., Lebedeva, M. I., Balashov, V. N., Singha, K., Sullivan, P. L., and Stinchcomb, G.: Toward a conceptual model relating chemical reaction fronts to water flow paths in hills, Geomorphology, 277, 100–117, https://doi.org/10.1016/j.geomorph.2016.09.027, 2017a.
Brantley, S. L., McDowell, W. H., Dietrich, W. E., White, T. S., Kumar, P., Anderson, S., Chorover, J., Lohse, K. A., Bales, R. C., Richter, D., Grant, G., and Gaillardet, J.: Designing a network of critical zone observatories to explore the living skin of the terrestrial Earth, Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2017-36, in review, 2017b.
Brimhall, G. H., Chadwick, O. A., Lewis, C. J., Compston, W., Williams, I. S., Danti, K. J., Dietrich, W. E., Power, M. E., Hendricks, D., and Bratt, J.: Deformational mass transport and invasive processes in soil evolution, Science, 255, 692–702, 1992.
Brooks, J. R., Barnard, H. R., Coulombe, R., and McDonnell, J. J.: Ecohydrologic separation of water between trees and streams in a Mediterranean climate, Nat. Geosci., 3, 100–104, https://doi.org/10.1038/NGEO1722, 2010.
Brownlee, C., Duddridge, J., Malibari, A., and Read, D.: The structure and function of mycelial systems of ectomycorrhizal roots with special reference to their role in forming inter-plant connections and providing pathways for ammisilate and water transport, Plant Soil, 71, 433–443, 1983.
Brundrett, M. C.: Co-evolution of roots and mycorrhizas of land plants, New Phytol., 154, 275–304, 2002.
Bryla, D. R. and Duniway, J. M.: Water uptake by safflower and wheat roots infected with arbuscular mycorrhizal fungi, New Phytol., 136, 591–601, 1997.
Burgess, S. O., Adams, M. A., Turner, N. C., and Ong, C. K.: The redistribution of soil water by tree root systems, Oecologia, 115, 306–311, 1998.
Busch, D. E., Ingraham, N. L., and Smith, S. D.: Water-uptake in woody riparian phreatophytes of the southwestern United States – a stable isotope study, Ecol. Appl., 2, 450–459, 1992.
Caldwell, M. M., Dawson, T. E., and Richards, J. H.: Hydraulic lift: consequences of water efflux from the roots of plants, Oecologia, 113, 151–161, 1998.
Callesen, I., Harrison, R., Stupak, I., Hatten, J., Raulund-Rasmussen, K., Boyle, J., Clarke, N., and Zabowski, D.: Carbon storage and nutrient mobilization from soil minerals by deep roots and rhizospheres, Forest Ecol. Manage., 359, 322–331, 2016.
Calvaruso, C., Mareschal, L., Turpault, M. P., and Leclerc, E.: Rapid clay weathering in the rhizosphere of Norway spruce and oak in an acid forest ecosystem, Soil Sci. Soc. Am. J., 73, 331–338, 2009.
Calvaruso, C., Collignon, C., Kies, A., and Turpault, M. P.: Seasonal evolution of the rhizosphere effect on major and trace elements in soil solutions of Norway spruce (Picea abies Karst) and beech (Quercus sessiliflora Smith) in an acidic forest soil, Open J. Soil Sci., 4, 323–336, 2014.
Canadell, J. and Zedler, P.: Underground structures of woody plants in Mediterranean ecosystems of Australia, California and Chile, in: Ecology and Biogeography of Mediterranean Ecosystems in Chile, California and Australia, edited by: Arroyo, M. T. K., Zedler, P., and Fox, M. D., Springer-Verlag, Berlin, 177–210, 1995.
Canadell, J., Jackson, R. B., Ehleringer, J. R., Mooney, H. A., Sala, O. E., and Schulze, E.-D.: Maximum rooting depth of vegetation types at the global scale, Oecologia, 108, 583–595, 1996.
Cavanaugh, M. L., Kurc, S. A., and Scott, R. L.: Evapotranspiration partioning in semiarid shrubland ecosystems: a two-site evaluation of soil moisture control on transpiration, Ecohydrology, 4, 671–681, 2011.
Chadwick, O. A., Derry, L. A., Vitousek, P. M., Huebert, B. J., and Hedin, L. O.: Changing sources of nutrients during four million years of ecosystem development, Nature, 397, 491–497, 1999.
Chadwick, O. A., Roering, J. J., Heimsath, A. M., Levick, S. R., Asner, G. P., and Khomo, L.: Shaping post-orogenic landscapes by climate and chemical weathering, Geology, 41, 1171–1174, https://doi.org/10.1130/G34721.1, 2013.
Chen, W., Zeng, H., Eissenstat, D. M., and Guo, D.: Variation of first-order root traits across climatic gradients and evolutionary trends in geological time, Global Ecol. Biogeogr., 22, 846–856, https://doi.org/10.1111/geb.12048, 2013.
Chen, W., Koide, R. T., Adams, T. S., DeForest, J. L., Cheng, L., and Eissenstat, D. M.: Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees, P. Natl. Acad. Sci. USA, 113, 8741–8746, https://doi.org/10.1073/pnas.1601006113, 2016.
Cheng, L., Chen, W., Adams, T. S., Wei, X., Li, L., McCormack, M. L., DeForest, J. L., Koide, R. T., and Eissenstat, D. M.: Mycorrhizal fungi and roots are complementary in foraging within nutrient patches, Ecology, 97, 2815–2823, https://doi.org/10.1002/ecy.1514, 2016.
Clark, L. J., Whalley, W. R., and Barraclough, P. B.: How do roots penetrate strong soil?, Plant Soil, 255, 93–104, https://doi.org/10.1023/A:1026140122848, 2003.
Corenblit, D., Baas, A. C. W., Bornette, G., Darrozes, J., Delmotte, S., Francis, R. A., Gurnell, A. M., Julien, F., Naiman, R., and Steiger, J.: Feedbacks between geomorphology and biota controlling Earth surface processes and landforms: a review of foundation concepts and current understandings, Earth-Sci. Rev., 106, 307–331, https://doi.org/10.1016/j.earscirev.2011.03.002, 2011.
Cornelis, J.-T., Ranger, J., Iserentant, A., and Delvaux, B.: Tree species impact the terrestrial cycle of silicon through various uptakes, Biogeochemistry, 97, 231–245, https://doi.org/10.1007/s10533-009-9369-x, 2009.
Cox, N. J.: On the relationship between bedrock lowering and regolith thickness, Earth Surf. Process., 5, 271–274, 1980.
Dawson, T. E. and Ehleringer, J. R.: Streamside trees that do not use stream water, Nature, 350, 335–337, 1991.
Dawson, T. E. and Pate, J. S.: Seasonal water uptake and movement in root systems of Australian phraeatophytic plants of dimorphic root morphology: a stable isotope investigation, Oecologia, 107, 13–20, 1996.
Dawson, T. E., Mambelli, S., Plamboeck, A. H., Templer, P. H., and Tu, K. P.: Stable isotopes in plant ecology, Annu. Rev. Ecol. Syst., 33, 507–559, https://doi.org/10.1146/annurev.ecolsys.33.020602.095451, 2002.
Denny, C. S. and Goodlett, J. C.: Microrelief resulting from fallen trees, USGS Prof. Publication 288, USGS, 59–68, 1956.
Deveau, A., Plett, J. M., Legue, V., Frey-Klett, P., and Martin, F.: Communication between plant, ectomycorrhizal fungi and helper bacteria, in: Biocommunication of Fungi, edited by: Witzany, G., Springer, Dordrecht, 229–247, 2012.
Dietrich, W. E. and Perron, J. T.: The search for a topographic signature of life, Nature, 439, 411–418, 2006.
Dijkstra, F. A. and Smits, M. M.: Tree species effects on calcium cycling: the role of calcium uptake in deep soils, Ecosystems, 5, 385–398, https://doi.org/10.1007/s10021-001-0082-4, 2002.
Dokuchaev, V. V.: Russian Chernozem, in: Selected Works of V. V. Dokuchaev, S. Monson, Jerusalem, 14–419, 1883.
Duddridge, J. A., Malibari, A., and Read, D. J.: Structure and function of mycorrhizal rhizomorphs with special reference to their role in water transport, Nature, 287, 834–836, https://doi.org/10.1038/287834a0, 1980.
Eavis, B. W., Ratliff, L. F., and Taylor, H. M.: Use of the dead-load technique to determine the axial root growth pressure, Agron. J., 61, 640–643, 1969.
Egerton-Warburton, L. M., Graham, R. C., and Hubbert, K. R.: Spatial variability in mycorrhizal hyphae and nutrient and water availability in a soil-weathered bedrock profile, Plant Soil, 249, 331–342, 2003.
Ehleringer, J. R., Phillips, S. L., Schuster, W. S. F., and Sandquist, D. R.: Differential utilization of summer rains by desert plants, Oecologia, 88, 430–424, 1991.
Eissenstat, D. M., Kucharski, J. M., Zadworny, M., Adams, T. S., and Koide, R. T.: Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest, New Phytol., 208, 114–124, https://doi.org/10.1111/nph.13451, 2015.
Estrada-Medina, H., Graham, R. C., Allen, M. F., Jimenez-Osornio, J. J., and Robles-Casolco, S.: The importance of limestone bedrock and dissolution karst features on tree root distribution in northern Yucatan, Mexico, Plant Soil, 362, 37–50, https://doi.org/10.1007/s11104-012-1175-x, 2013.
Evaristo, J., Jasechko, S., and McDonnell, J. J.: Global separation of plant transpiration from groundwater and streamflow, Nature, 525, 91–94, 2015.
Fimmen, R. L., Richter, D., Vasudevan, D., Williams, M. A., and West, L. T.: Rhizogenic Fe-C redox cycling: a hypothetical biogeochemical mechanism that drives crustal weathering in upland soils, Biogeochemistry, 87, 127–141, 2007.
Finzi, A. C., Abramoff, R. Z., Spiller, K. S., Brzostek, E. R., Darby, B. A., Kramer, M., and Phillips, R. P.: Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles, Global Change Biol., 21, 2082–2094, 2015.
Fletcher, R. C., Buss, H. L., and Brantley, S. L.: A spheroidal weathering model coupling porewater chemistry to soil thicknesses during steady-state denudation, Earth Planet. Sc. Lett., 244, 444–457, 2006.
Furbish, D. J. and Fagherazzi, S.: Stability of creeping soil and implications for hillslope evolution, Water Resour. Res., 37, 2607–2618, 2001.
Gabet, E. J. and Mudd, S. M.: Bedrock erosion by root fracture and tree throw: a coupled biogeomorphic model to explore the humped soil production function and the persistence of hillslope soils, J. Geophys. Res.-Earth, 115, F04005, https://doi.org/10.1029/2009JF001526, 2010.
Gabet, E. J., Reichman, O. J., and Seabloom, E. W.: The effects of bioturbation on soil processes and sediment transport, Annu. Rev. Earth Pl. Sc., 31, 249–273, 2003.
Gaines, K. P., Stanley, J. W., Meinzer, F. C., McCulloh, K. A., Woodruff, D. R., Chen, W., Adams, T. S., Lin, H., and Eissenstat, D. M.: Reliance on shallow soil water in a mixed-hardwood forest in central Pennsylvania, Tree Physiol., 36, 444–458, https://doi.org/10.1093/treephys/tpv113, 2016.
Gaj, M., Kaufhold, S., and McDonnell, J. J.: Potential limitation of cryogenic vacuum extractions and spiked experiments, Rapid Commun. Mass Spectrom., https://doi.org/10.1002/rcm.7850, 2017.
Gale, M. R. and Grigal, D. F.: Vertical root distributions of northern tree species in relation to successional status, Can. J. Forest Res., 17, 829–834, 1987.
George, E., Haussler, K.-U., Vetterlein, D., Gorgus, E., and Marschner, H.: Water and nutrient translocation by hyphae of Glomus mosseae, Can. J. Bot., 70, 2130–2137, 1992.
Ghestem, M., Sidle, R. C., and Stokes, A.: The influence of plant root systems on subsurface flow: implications for slope stability, BioScience, 61, 869–879, 2011.
Gill, W. R. and Bolt, G. H.: Pferrer's studies of the root growth pressures exerted by plants, Agron. J., 47, 166–168, https://doi.org/10.2134/agronj1955.00021962004700040004x, 1955.
Godderis, Y. and Brantley, S. L.: Earthcasting the future Critical Zone, Elementa, 1, 1–10, https://doi.org/10.12952/journal.elementa.000019, 2014.
Godsey, S. E., Kirchner, J. W., and Clow, D. W.: Concentration-discharge relationships reflect chemostatic characteristics of US catchments, Hydrol. Process., 23, 1844–1864, https://doi.org/10.1002/hyp.7315, 2009.
Good, S. P., Noone, D., and Bowen, G.: Hydrologic connectivity constrains partitioning of global terrestrial water fluxes, Science, 349, 175–177, 2015.
Graham, R. C., Rossi, A. M., and Hubbert, K. R.: Rock to regolith conversion: producing hospitable substrates for terrestrial ecosystems, GSA Today, 20, 4–9, 2010.
Grantham, M. C., Dove, P. M., and DiChristina, T. J.: Microbially catalyzed dissolution of iron and aluminum oxyhydroxide mineral surface coatings, Geochim. Cosmochim. Ac., 61, 4467–4477, 1997.
Green, M. B., Bailey, A. S., Bailey, S. W., Battles, J. J., Campbell, J. L., Driscoll, C. T., Fahey, T. J., Lepine, L. C., Likens, G. E., Ollinger, S. V., and Schaberg, P. G.: Decreased water flowing from a forest amended with calcium silicate, P. Natl. Acad. Sci. USA, 110, 5999–6003, https://doi.org/10.1073/pnas.1302445110, 2013.
Green, S. and Clothier, B.: The root zone dynamics of water uptake by a mature apple tree, Plant Soil, 206, 61–77, 1999.
Gregory, P. J.: Roots, rhizosphere and soil: the route to a better understanding of soil science, Eur. J. Soil Sci., 57, 11, https://doi.org/10.1111/j.1365-2389.2005.00778.x, 2006.
Hahm, W. J., Riebe, C. S., Lukens, C. E., and Araki, S.: Bedrock composition regulates mouontain ecosystems and landscape evolution, P. Natl. Acad. Sci. USA, 111, 3338–3343, https://doi.org/10.1073/pnas.1315667111, 2014.
Hartmann, A., Rothballer, M., and Schmid, M.: Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research, Plant Soil, 312, 7–14, 2008.
Hasenmueller, E. A., Gu, X., Weitzman, J. N., Adams, T. S., Stinchcomb, G. E., Eissenstat, D. M., Drohan, P. J., Brantley, S. L., and Kaye, J. P.: Weathering of rock to regolith: the activity of deep roots in bedrock fractures, Geoderma, 300, 11–31, https://doi.org/10.1016/j.geoderma.2017.03.020, 2017.
Hasselquist, N. J., Allen, M. F., and Santiago, L. S.: Water relations of evergreen and drought-deciduous trees along a seasonally dry tropical forest chronosequence, Oecologia, 164, 881–890, https://doi.org/10.1007/s00442-010-1725-y, 2010.
Heimsath, A. M., Dietrich, W. E., Nishiizumi, K., and Finkel, R. C.: The soil production function and landscape equilibrium, Nature, 388, 358–361, 1997.
Heimsath, A. M., Dietrich, W. E., Nishiizumi, K., and Finkel, R. C.: Stochastic processes of soil production and transport: erosion rates, topographic variation and cosmogenic nuclides in the Oregon Coast Range, Earth Surf. Proc. Land., 26, 531–552, 2001.
Heimsath, A. M., Furbish, D. J., and Dietrich, W. E.: The illusion of diffusion: field evidence for depth dependent sediment transport, Geology, 33, 949–952, 2005.
Heimsath, A. M., Chappell, J., and Fifield, K.: Eroding Australia: Rates and Processes from Bega Valley to Arnhem Land, Geological Society, Special Publications, London, 2010.
Hellmers, H., Horton, J. S., Juhren, G., and O'Keefe, J.: Root systems of some chaparral plants in Southern California, Ecology, 36, 667–678, 1955.
Hemwall, J. B.: The fixation of phosphorus by soil, Adv. Agron., 9, 95–112, 1957.
Herndon, E. M., Dere, A. L., Sullivan, P. L., Norris, D., Reynolds, B., and Brantley, S. L.: Landscape heterogeneity drives contrasting concentration–discharge relationships in shale headwater catchments, Hydrol. Earth Syst. Sci., 19, 3333–3347, https://doi.org/10.5194/hess-19-3333-2015, 2015.
Hiltner, L.: Ueber neuere Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologie und unter besonderer BerUcksichtigung der Grundungung und Brache, Arb. Deut. Landw. Gesell., 98, 59–78, 1904.
Hiscock, K. M., George, M. A., and Dennis, P. F.: Stable isotope evidence for hydrogeological characteristics of clay-rich till in northern East Anglia, Q. J. Eng. Geol. Hydroge., 44, 173–189, 2011.
Hoffman, B. S. S. and Anderson, R. S.: Tree root mounds and their role in transporting soil on forested landscapes, Earth Surf. Proc. Land., 39, 711–722, https://doi.org/10.1002/esp.3470, 2014.
Holdo, R. M.: Revisiting the two-layer hypothesis: coexistence of alternative functional rooting strategies in Savannas, PLoS One, 8, e69625, https://doi.org/10.1371/journal.pone.0069625, 2013.
Hubbert, K. R., Beyers, J. L., and Graham, R. C.: Roles of weathered bedrock and soil in seasonal water relations of Pinus Jeffreyi and Arctostaphylos patula, Can. J. Forest Res., 31, 1947–1957, 2001a.
Hubbert, K. R., Graham, R. C., and Anderson, M. A.: Soil and weathered bedrock: components of a Jeffrey pine plantation substrate, Soil Sci. Soc. Am. J., 65, 1255–1262, https://doi.org/10.2136/sssaj2001.6541255x, 2001b.
Jackson, G. and Sheldon, J.: The vegetation of magnesian limestone cliffs at MarklandGrips Near Sheffield, J. Ecol., 37, 38–50, 1949.
Jackson, R. B., Moore, L. A., Hoffmann, W. A., Pockman, W. T., and Linder, C. R.: Ecosystem rooting depth determined with caves and DNA, P. Natl. Acad. Sci. USA, 96, 11387–11392, 1999.
James, A. L. and Roulet, N. T.: Investigating hydrologic connectivity and its association with threshold change in runoff response in a temperate forested watershed, Hydrol. Process., 21, 3391–3408, https://doi.org/10.1002/hyp.6554, 2007.
Jasechko, S., Sharp, Z. D., Gibson, J. J., Birks, S. J., Yi, Y., and Fawcett, P.: Terrestrial water fluxes dominated by transpiration, Nature, 496, 347–350, https://doi.org/10.1038/nature11983, 2013.
Jin, L., Ravella, R., Ketchum, B., Bierman, P. R., Heaney, P., White, T., and Brantley, S. L.: Mineral weathering and elemental transport during hillslope evolution at the Susquehanna/Shale Hills Critical Zone Observatory, Geochim. Cosmochim. Ac., 74, 3669–3691, 2010.
Jobbagy, E. G. and Jackson, R. B.: The uplift of soil nutrients by plants: biogeochemical consequences across scales, Ecology, 85, 2380–2389, 2004.
Johnson, J. E., Hamann, L. M. S., Dettman, D. L., Kim-Hak, D., Leavitt, S. W., Monson, R. K., and Papuga, S. A.: Performance of induction module-cavity ring-down spectroscopy (IM-CRDS) for measuring δ18O and δ2H values of soil, stem, and leaf waters, Rapid Commun. Mass Spectrom., 31, 547–560, 2017.
Johnson, M. S. and Lehmann, J.: Double-funneling of trees: stemflow and root-induced preferential flow, Ecoscience, 13, 324–333, 2006.
Keenan, T. F., Hollinger, D. Y., Bohrer, G., Dragoni, D., Munger, J. W., Schmid, H. P., and Richardson, A. D.: Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise, Nature, 499, 324, https://doi.org/10.1038/nature12291, 2013.
Keller, C. K., White, T. M., O'Brien, R., and Smith, J. L.: Soil CO2 dynamics and fluxes as affected by tree harvest in an experimental sand ecosystem, J. Geophys. Res.-Biogeo., 111, 1–10, https://doi.org/10.1029/2005JG000157, 2006.
Kelly, E. F., Chadwick, O. A., and Hilinski, T. E.: The effect of plants on mineral weathering, Biogeochemistry, 42, 21–53, 1998.
Khomo, L., Bern, C. R., Hartshorn, A. R., Rogers, K. H., and Chadwick, O. A.: Chemical transfers along slowly eroding catenas on grantic cratons in southern Africa, Geoderma, 202–203, 192–202, 2013.
Kleber, M., Sollins, P., and Sutton, R.: A conceptual model of organo-mineral interactions in soils: self-assembly of organic molecular fragments into zonal structures on mineral surfaces, Biogeochemistry, 85, 9–24, 2007.
Kochenderfer, J.: Root distribution under some forest types native to West Virginia, Ecology, 54, 445–448, 1973.
Koide, R. T.: Physiology of the Mycorrhizal Plant, in: Advances in Plant Pathology, edited by: Tommerup, I. C., Academic Press, New York, 33–54, 1993.
Kothari, S. K., Marschner, H., and George, E.: Effect of VA mycorrhizal fungi and rhizosphere microorganisms on root and shoot morphology, growth and water relations in maize, New Phytol., 116, 303–311, 1990.
Kramer, P. J. and Boyer, J. S.: Water Relations of Plants and Soils, Academic Press, Inc., San Diego, 1995.
Kurc, S. A. and Benton, L. M.: Digital image-derived greenness links deep soil moisture to carbon uptake in a creosotebush-dominated shrubland, J. Arid Environ., 74, 585–594, 2010.
Kurc, S. A. and Small, E. E.: Soil moisture variations and ecosystem-scale fluxes of water and carbon in semiarid grassland and shrubland, Water Resour. Res., 43, W06416, https://doi.org/10.1029/2006/WR005011, 2007.
Larsen, L. G., Choi, J., Nungesser, M. K., and Harvey, J. W.: Directional connectivity in hydrology and ecology, Ecol. Appl., 22, 2204–2220, https://doi.org/10.1890/11-1948.1, 2012.
Leake, J. R., Johnson, D., Donnelly, D., Muckle, G. E., Boddy, L., and Read, D. J.: Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agro-ecosystem functioning, Can. J. Bot., 82, 1016–1045, 2004.
Leake, J. R., Duran, A. L., Hardy, K. E., Johnson, I., Beerling, D. J., Banwart, S. A., and Smits, M. M.: Biological weathering in soil: the role of symbiotic root-associated fungi biosensing minerals and directing photosynthate-energy into grain-scale mineral weathering, Mineral Mag., 72, 85–89, 2008.
Lebedeva, M. I., Fletcher, R. C., Balashov, V. N., and Brantley, S. L.: A reactive diffusion model describing transformation of bedrock to saprolite, Chem. Geol., 244, 624–645, 2007.
Lehto, T. and Zwiazek, J. J.: Ectomycorrhizas and water relations of trees: a review, Mycorrhiza, 21, 21, https://doi.org/10.1007/s00572-010-0348-9, 2011.
Lewis, D. C. and Burgy, R. H.: The relationshiop between oak tree roots and groundwater in fractured rock as determined by tritium tracing, J. Geophys. Res., 69, 2579–2588, https://doi.org/10.1029/JZ069i012p02579, 1964.
Lichtner, P. C.: The quasi-stationary state approximation to coupled mass transport and fluid-rock interaction in a porous medium, Geochim. Cosmochim. Ac., 52, 143–165, 1988.
Lin, G., McCormack, M. L., Ma, C., and Guo, D.: Similar below-ground carbon cycling dynamics but contrasting modes of nitrogen cycling between arbuscular mycorrhizal and ectomycorrhizal forests, New Phytol., 213, 1440–1451, https://doi.org/10.1111/nph.14206, 2017.
Lonsdale, W. M.: The self-thinning rule: dead or alive?, Ecology, 71, 1373–1388, 1990.
Lutz, H. J. and Griswold, F. S.: The influence of tree roots on soil morphology, Am. J. Sci., 237, 389–400, 1939.
Maeght, J.-L., Rewald, B., and Pierret, A.: How to study deep roots-and why it matters, Front. Plant Sci., 4, 1–14, 2013.
Maher, K., Steefel, C. I., White, A. F., and Stonestrom, D. A.: The role of reaction affinity and secondary minerals in regulating chemical weathering rates at the Santa Cruz soil chronosequence, California, Geochim. Cosmochim. Ac., 73, 2804–2831, 2009.
Marschner, H.: Marschner's Mineral Nutrition of Higher Plants, edited by: Marschner, P., Academic Press, London, 2011.
Marshall, J. A. and Roering, J. J.: Diagenetic variation in the Oregon Coast Range: implications for rock strength, soil production, hillslope form, and landscape evolution, J. Geophys. Res.-Earth, 119, 1395–1417, 2014.
Martinez-Vilalta, J., Poyatos, R., Aguade, D., Retana, J., and Mencuccini, M.: A new look at water transport regulation in plants, New Phytol., 204, 105–115, 2014.
McCormack, M. L., Dickie, I. A., Eissenstat, D. M., Fahey, T. J., Fernandez, C. W., Guo, D., Helmisaari, H.-S., Hobbie, E. A., Iversen, C. M., Jackson, R. B., Leppalammi-Kujansuu, J., Norby, R. J., Phillips, R. P., Pregitzer, K. S., Pritchard, S. G., Rewald, B., and Zadworny, M.: Redefining fine roots improves understanding of belowground contributions to terrestrial biosphere processes, New Phytol., 207, 505–518, 2015.
McCulley, R. L., Jobbagy, E. G., Pockman, W. T., and Jackson, R. B.: Nutrient uptake as a contributing explanation for deep rooting in arid and semi-arid ecosystems, Oecologia, 141, 620–628, 2004.
McCully, M.: How do real roots work?, Plant Physiol., 109, 1–6, https://doi.org/10.1104/pp.109.1.1, 1995.
McDonnell, J. J.: The two water worlds hypothesis: ecohydrological separation of water between streams and trees?, WIREs Water, 1, 323–329, https://doi.org/10.1002/wat1002.1027, 2014.
McGahan, D. G., Southard, R. J., and Zasoski, R. J.: Rhizosphere effects on soil solution composition and mineral stability, Geoderma, 226, 340–347, 2014.
McNear, J. D. H.: The rhizosphere-roots, soil and everything in between, The Nature Education: Knowledge Project, Nature Education Knowledge, 4, 3, 1, 2013.
McNickle, G. G. and Dybzinski, R.: Game theory and plant ecology, Ecol. Lett., 16, 545–555, 2013.
Meinzer, F. C., Woodruff, D. R., Marias, D. E., Smith, D. D., McCulloh, K. A., Howard, A. R., and Magedman, A. L.: Mapping “hydroscapes” along the iso-to anisohydric continuum of stomatal regulation of plant water status, Ecol. Lett., 19, 1343–1352, 2016.
Miller, D. J. and Dunne, T.: Topographic perturbations of regional stresses and consequent bedrock fracturing, J. Geophys. Res.-Sol. Ea., 101, 25523–25536, https://doi.org/10.1029/96JB02531, 1996.
Minasny, B., McBratney, A. B., and Salvador-Blanes, S.: Quantitative models for pedogenesis – a review, Geoderma, 144, 140–157, 2008.
Misra, R. K., Dexter, A. R., and Alston, A. M.: Maximum axial and radial growth pressures of plant roots, Plant Soil, 95, 315–326, https://doi.org/10.1007/BF02374612, 1986.
Moulton, K. K., West, J., and Berner, R. A.: Solute flux and mineral mass balance approaches to the quantification of plant effects on silicate weathering, Am. J. Sci., 300, 539–570, 2000.
Murphy, B. P., Johnson, J. P. L., Gasparini, N. M., and Sklar, L. S.: Chemical weathering as a mechanism for the climatic control of bedrock river incision, Nature, 532, 223–227, https://doi.org/10.1038/nature17449, 2016.
Newman, B. D., Wilcox, B. P., and Graham, R. C.: Snowmelt-driven macropore flow and soil saturation in a semiarid forest, Hydrol. Process., 18, 1035–1042, 2004.
Nicoll, B. C., Berthier, S., Achim, A., Gouskou, K., Danjon, F., and van Beek, L. P. H.: The architecture of Picea sitchensis structural root systems on horizontal and sloping terrain, Trees, 20, 701–712, https://doi.org/10.1007/s00468-006-0085-z, 2006.
Nie, Y., Chen, H., Wang, K., and Yang, J.: Water source utilization by woody plants growing on dolomite outcrops and nearby soils during dry seasons in karst region of Southwest China, J. Hydrol., 264–274, https://doi.org/10.1016/j.jhydrol.2011.12.011, 2012.
Nippert, J. B. and Knapp, A. K.: Linking water uptake with rooting patterns in grassland species, Oecologia, 153, 261–272, 2007.
Norman, S. A., Schaetzl, R. J., and Small, T. W.: Effects of slope angle on mass movement by tree uprooting, Geomorphology, 14, 19–27, 1995.
Oerter, E., Finstad, K., Schaefer, J., Goldsmith, G., Dawson, T., Amundson, R.: Oxygen isotope fractionation effects in soil water via interaction with cations (Mg, Ca, K, Na) adsorbed to phyllosilicate clay minerals, J. Hydrol., 515, 1–9, 2014.
Okin, G. S., Mahowald, N., Chadwick, O. A., and Artaxo, P.: Impact of desert dust on the biogeochemistry of phosphorus in terrestrial ecosystems, Global Biogeochem. Cy., 18, GB2005, https://doi.org/10.1029/2003GB002145, 2004.
Oliveira, R. S., Dawson, T. E., Burgess, S. S. O., and Nepstad, D. C.: Hydraulic redistribution in three Amazonian trees, Oecologia, 145, 354–363, https://doi.org/10.1007/s00442-005-0108-2, 2005.
Ollier, C.: Weathering, Longman, London, 270 pp., 1984.
Orlowski, N., Breuer, L., and McDonnell, J. J.: Critical issues with cryogenic extraction of soil water for stable isotope analysis, Ecohydrology, 9, 1–5, https://doi.org/10.1002/eco.1722, 2016a.
Orlowski, N., Pratt, D. L., and McDonnell, J. J.: Intercomparison of soil pore water extraction methods for stable isotope analysis, Hydrol. Process., 30, 3434–3449, https://doi.org/10.1002/hyp.10870, 2016b.
Oshun, J., Dietrich, W. E., Dawson, T. E., and Fung, I.: Dynamic, structured heterogeneity of water isotopes inside hillslopes, Water Resour. Res., 52, 164–189, https://doi.org/10.1002/2015WR017485, 2016.
Pate, J. S., Jesche, D., Dawson, T. E., Raphael, C., Hartung, W., and Bowen, B. J.: Growth and seasonal utilization of water and nutrients by Banskia prionotes, Aust. J. Bot., 46, 511–532, 1998.
Pavich, M., Leo, G. W., Obermeier, S. F., and Estabrook, J. R.: Investigations of the characteristics, origin, and residence time of the upland residual mantle of the Piedmont of Fairfax County, Virginia, U. S. G. S. Professional Paper 1352, US Geological Survey, Washington, 1–58, 1989.
Pawlik, L., Phillips, J., and Samonil, P.: Roots, rock, and regolith: biomechanical and biochemical weathering by trees and its impact on hillslopes – a critical literature review, Earth-Sci. Rev., 159, 142–159, https://doi.org/10.1016/j.earscirev.2016.06.002, 2016.
Pett-Ridge, J. C.: Contributions of dust to phosphorus cycling in tropical forests of the Luquillo Mountains, Puerto Rico, Biogeochemistry, 94, 63–80, https://doi.org/10.1007/s10533-009-9308-x, 2009.
Philippot, L., Raaijmakers, J. M., Lemanceau, P., and van der Putten, W. H.: Going back to the roots: the microbial ecology of the rhizosphere, Nat. Rev. Microbiol., 11, 789–799, 2013.
Phillips, J. D.: Biological energy in landscape evolution, Am. J. Sci., 309, 271–289, 2009.
Phillips, R. P., Brzostek, E., and Midgley, M. G.: The mycorrhizal-associated nutrient economy: a new framework for predicting carbon-nutrient couplings in temperate forests, New Phytol., 199, 41–51, 2013.
Phillips, S. L. and Ehleringer, J. R.: Limited uptake of summer precipitation by bigtooth maple (Acer grandidentatum Nutt) and Gambel's oak (Quercus gambelii Nutt), Trees, 9, 214–219, 1995.
Plamboeck, A. H., Dawson, T. E., Egerton-Warburton, L. M., North, M., Bruns, T. D., and Querejeta, J. I.: Water transfer via ectomycorrhizal fungal hyphae to conifer seedlings, Mycorrhiza, 17, 439–447, https://doi.org/10.1007/s00572-007-0119-4, 2007.
Poot, P., Hopper, S. D., and van Diggelen, J. M. H.: Exploring rock fissures: does a specialized root morphology explain endemism on granite outcrops?, Ann. Bot.-Lond., 110, 291–300, https://doi.org/10.1093/aob/mcr322, 2012.
Porder, S. and Chadwick, O. A.: Climate and soil-age constraints on nutrient uplift and retention by plants, Ecology, 90, 623–636, 2009.
Porder, S., Vitousek, P. M., Chadwick, O. A., Chamberlain, C. P., and Hilley, G. E.: Uplift, erosion, and phosphorus limitation in terrestrial ecosystems, Ecosystems, 10, 159–171, 2007.
Prosser, I. P., Dietrich, W. E., and Stevenson, J.: Flow resistance and sediment transport by concentrated overland flow in a grassland valley, Geomorphology, 13, 71–86, 1995.
Read, D.: Mycorrhizal fungi: the ties that bind, Nature, 388, 517–518, 1997.
Reed, S. C., Townsend, A. R., Taylor, P. G., and Cleveland, C. C.: Phosphorus cycling in tropical forests growing on highly weathered soils, in: Phosphorus in Action, Springer-Verlag, Berlin, Heidelberg, 339–369, 2011.
Reinhardt, K., Castanha, C., Germino, M. J., and Kueppers, L. M.: Ecophysiological variation in two provenances of Pinus flexilis seedlings across an elevation gradient from forest to alpine, Tree Physiol., 31, 615–625, https://doi.org/10.1093/treephys/tpr055, 2011.
Rempe, D. M. and Dietrich, W. E.: A bottom-up control on fresh-bedrock topography under landscapes, P. Natl. Acad. Sci. USA, 111, 6576–6581, 2014.
Reneau, S. L. and Dietrich, W. E.: Erosion rates in the Southern Oregon Coast Range: evidence for an equilibrium between hillslope erosion and sediment yield, Earth Surf. Proc. Land., 16, 307–322, 1991.
Retallack, G. J.: Early forest soils and their role in Devonian global change, Science, 276, 583–585, https://doi.org/10.1126/science.276.5312.583, 1997.
Roering, J. J., Marshall, J., Booth, A. M., Mort, M., and Jin, Q.: Evidence for biotic controls on topography and soil production, Earth Planet. Sc. Lett., 298, 183–190, 2010.
Rose, K. L., Graham, R. C., and Parker, D. R.: Water source utilization by Pinus jeffreyi and Arctostaphylos patula on thin soils over bedrock, Oecologia, 134, 46–54, 2003.
Rosling, A., Landeweert, R., Lindahl, B. D., Larsson, K. H., Kuyper, T. W., Taylor, A. F. S., and Finlay, R. D.: Vertical distribution of ectomycorrhizal fungal taxa in a podzol soil profile, New Phytol., 159, 775–783, https://doi.org/10.1046/j.1469-8137.2003.00829.x, 2003.
Schaetzl, R. J., Burns, S. F., Small, T. W., and Johnson, D. L.: Tree uprooting: review of types and patterns of soil disturbance, Phys. Geogr., 11, 277–291, 1990.
Schaetzl, R. J. and Follmer, L. R.: Longevity of treethrow microtopography: implications for mass wasting, Geomorphology, 3, 113–123, 1990.
Schenk, H. J.: Soil depth, plant rooting strategies, and species' niches, New Phytol., 178, 223–225, https://doi.org/10.1111/j.1469-8137.2008.02427.x, 2008.
Schenk, H. J. and Jackson, R. B.: Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems, J. Ecol., 90, 480–494, https://doi.org/10.1046/j.1365-2745.2002.00682.x, 2002a.
Schenk, H. J. and Jackson, R. B.: The global biogeography of roots, Ecol. Monogr., 72, 311–328, https://doi.org/10.1890/0012-9615(2002)072[0311:TGBOR]2.0.CO;2, 2002b.
Schenk, H. J. and Jackson, R. B.: Mapping the global distribution of deep roots in relation to climate and soil charateristics, Geoderma, 126, 129–140, https://doi.org/10.1016/j.geoderma.2004.11.018, 2005.
Schlesinger, W. H. and Jasechko, S.: Transpiration in the global water cycle, Agr. Forest Meteorol., 189–190, 115–117, 2014.
Schmidt, K. M., Roering, J. J., Stock, J. D., Dietrich, W. E., Montgomery, D. R., and Schaub, T.: The variability of root cohesion as an influence on shallow landslide susceptibility in the Oregon Coast Range, Can. Geotech. J., 38, 995–1024, 2001.
Scholl, D. G.: Soil moisture flux and evaporation determined from soil hydraulic properties in a chaparral stand, Soil Sci. Soc. Am. J., 40, 414–418, 1976.
Schwinning, S.: The water relations of two evergreen tree species in a karst savanna, Oecologia, 158, 373–383, https://doi.org/10.1007/s00442-008-1147-2, 2008.
Schwinning, S.: The ecohydrology of roots in rocks, Ecohydrology, 3, 238–245, https://doi.org/10.1002/eco.134, 2010.
Selby, M. J.: Hillslope Materials and Processes, Oxford University Press, Oxford, 480 pp., 1993.
Silvertown, J., Araya, Y., and Gowing, D.: Hydrological niches in terrestrial plant communities: a review, J. Ecol., 103, 93–108, 2015.
Sklar, L. S., Riebe, C. S., Marshall, J. A., Genetti, J., Leclere, S., Lukens, C. L., and Merces, V.: The problem of predicting the size distribution of sediment supplied by hillslopes to rivers, Geomorphology, 277, 31–49, 2017.
Smith, L. A., Eissenstat, D. M., and Kaye, M. W.: Variability in aboveground carbon driven by slope aspect and curvature in an eastern deciduous forest, USA, Can. J. Forest Res., 47, 149–158, https://doi.org/10.1139/cjfr-2016-0147, 2017.
Smith, S. E. and Read, D. J.: Mycorrhizal Symbiosis, Academic Press, London, 800 pp., 2008.
Smith, S. E., Facelli, E., Pope, S., and Smith, F. A.: Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas, Plant Soil, 326, 3–20, https://doi.org/10.1007/s11104-009-9981-5, 2010.
Smits, M. M., Bonneville, S., and Benning, L. G.: Plant-driven weathering of apatite – the role of an ectomycorrhizal fungus, Geobiology, 10, 445–456, 2012.
Snyder, K. A. and Williams, D. G.: Water sources used by riparian trees varies among stream types on the San Pedro River, Arizona, Agr. Forest Meteorol., 105, 227–240, https://doi.org/10.1016/S0168-1923(00)00193-3, 2000.
Spence, C. and Phillips, R. W.: Refining understanding of hydrological connectivity in a boreal catchment, Hydrol. Process., 29, 3491–3503, https://doi.org/10.1002/hyp.10270, 2015.
Sprenger, M., Leistert, H., Gimbel, L., and Weiler, M.: Illuminating hydrological processes at the soil-vegetation-atmosphere interface with water stable isotopes, Rev. Geophys., 54, 674–704, https://doi.org/10.1002/2015RG000515, 2016.
St. Clair, J., Moon, S., Holbrook, S., Perron, J. T., Riebe, C. S., Martel, S., Carr, B., Harman, C., Singha, K., and Richter, D.: Geophysical imaging reveals topographic stress control of bedrock weathering, Science, 350, 534–538, https://doi.org/10.1126/science.aab2210, 2015.
Sternberg, P. D., Anderson, M. A., Graham, R. C., Beyers, J. L., and Tice, K. R.: Root distribution and seasonal water status in weathered granitic bedrock under chaparral, Geoderma, 72, 9, https://doi.org/10.1016/0016-7061(96)00019-5, 1996.
Sterner, R. and Elser, J.: Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere, Princeton University Press, Princeton, 584 pp., 2002.
Stewart, J. B., Moran, C. J., and Wood, J. T.: Macropore sheath: quantification of plant root and soil macropore, Plant Soil, 211, 59–67, 1999.
Stone, E. L. and Kalisz, P. J.: On the maximum extent of tree roots, Forest Ecol. Manage., 46, 59–102, 1991.
Taylor, L. L., Leake, J. R., Quirk, J., Hardy, K., Banwart, S. A., and Beerling, D. J.: Biological weathering and the long-term carbon cycle: integrating mycorrhizal evolution and function into the current paradigm, Geobiology, 7, 171–191, 2009.
Tromp-van Meerveld, H. J. and McDonnell, J. J.: Threshold relations in subsurface stormflow 1: A 147 storm analysis of the Panola hillslope trench, Water Resour. Res., 42, W02410, https://doi.org/10.1029/2004WR003778, 2006.
US National Research Council Committee on Basic Research Opportunities in the Earth Sciences: Basic Research Opportunities in Earth Science, National Academy Press, Washington, D. C., 154 pp., 2001.
van Breemen, N., Finlay, R., Lundstrom, U., Jongmans, A. G., Giesler, R., and Olsson, M.: Mycorrhizal weathering: a true case of mineral plant nutrition?, Biogeochemistry, 49, 53–67, 2000.
van der Heijden, M. G., Martin, F. M., Selosse, M. A., and Sanders, I. R.: Mycorrhizal ecology and evolution: the past, the present, and the future, New Phytol., 205, 1406–1423, 2015.
van Meerveld, H. J., Seibert, J., and Peters, N. E.: Hillslope-riparian-stream connectivity and flow directions at the Panola Mountain Research Watershed, Hydrol. Process., 29, 3556–3574, https://doi.org/10.1002/hyp.10508, 2015.
van Scholl, L., Hoffland, E., and van Breeman, N.: Organic anion exudation by ectomycorrhizal fungi and Pinus sylvestris in response to nutrient deficiencies, New Phytol., 170, 153–163, 2006a.
van Scholl, L., Smits, M. M., and Hoffland, E.: Ectomycorrhizal weathering of the soil minerals muscovite and hornblende, New Phytol., 171, 805–814, 2006b.
Van Scholl, L., Kuyper, T. W., Smits, M. M., Landeweert, R., Hoffland, E., and Van Breemen, N.: Rock-eating mycorrhizas: their role in plant nutrition and biogeochemical cycles, Plant Soil, 303, 35–47, 2008.
Vargas, A. I., Schaffer, B., Yuhong, L., and da Silveira Lobo Sternberg, L.: Testing plant use of mobile vs. immobile soil water sources using stable isotope experiments, New Phytol., 215, 582–594, https://doi.org/10.1111/nph.14616, 2017.
Venkateshwaran, M., Volkening, J. D., Sussman, M. R., and Ane, J. M.: Symbiosis and the social network of higher plants, Curr. Opin. Plant Biol., 16, 118–127, 2013.
Venter, F. J., Scholes, R. J., and Eckhardt, H. C.: The abiotic template and its associated vegetation pattern, in: The Kruger Experience: Ecology and Management of Savanna Heterogeneity, edited by: du Toit, J. T., Rogers, K. H., Biggs, H., Island Press, Washington, D.C., 83–129, 2003.
Vitousek, P. M., Porder, S., Houlton, B. Z., and Chadwick, O. A.: Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions, Ecol. Appl., 20, 5–15, 2010.
Walker, C. D. and Richardson, S. B.: The use of stable isotopes of water in characterizing the source of water in vegetation, Chem. Geol., 94, 145–158, 1991.
Wallander, H. and Ekblad, A.: The importance of ectomycorrhizal networks for nutrient retention and carbon sequestration in forest ecosystems, in: Mycorrhizal Networks, edited by: Horton, T. R., Springer Netherlands, Dordrecht, 69–90, 2015.
Walter, H.: Grassland, Savanne und Busch der arideren Teile Afrikas in ihrer ökologischen Bedingtheit, Jahrb. Wissensch. Bot., 87, 750–860, 1939.
Ward, D., Wiegand, K., and Getzin, S.: Walter's two-layer hypothesis revisited: back to the roots!, Oecologia, 172, 617–630, https://doi.org/10.1007/s00442-012-2538-y, 2013.
Warren, J. M., Brooks, J. R., Meinzer, F. C., and Eberhart, J. L.: Hydraulic redistribution of water from Pinus ponderosa trees to seedlings: evidence for an ectomycorrhizal pathway, New Phytol., 178, 382–394, 2008.
Washburn, E. W. and Smith, E. R.: The isotope fractionation of water by physiological processes, Science, 79, 188–189, 1934.
Weathers, K. C., Groffman, P. M., VanDolah, E., Bernhardt, E., Grimm, N. B., McMahon, K. A., Schimel, J., Paolisso, M., Baer, S., Brauman, K., and Hinckley, E. S.: Frontiers in ecosystem ecology from a community perspective: the future is boundless and bright, Ecosystems, 19, 753–770, https://doi.org/10.1007/s10021-016-9967-0, 2016.
Weltzin, J. F. and McPherson, G. R.: Spatial and temporal soil moisture resource partitioning by trees and grasses in a temperate savannna, Arizona, USA, Oecologia, 112, 156–164, https://doi.org/10.1007/s004420050295, 1997.
West, N., Kirby, E., Bierman, P. R., Slingerland, R., Ma, L., Rood, D., and Brantley, S. L.: Regolith production and transport at the Susquehanna Shale Hills Critical Zone Observatory: Part 2 – Insights from meteoric 10Be, J. Geophys. Res.-Earth, 118, 1877–1896, https://doi.org/10.1002/jgrf.20121, 2013.
White, J. W. C., Cook, E. R., Lawrence, J. R., and Broecher, W. S.: The DH ratios of sap in trees: implications for water sources and tree ring DH ratios, Geochim. Cosmochim. Ac., 49, 237–246, https://doi.org/10.1016/0016-7037(85)90207-8, 1985.
Wilkinson, M. T. and Humphreys, G. S.: Exploring pedogenesis via nuclide-based soil production rates and OSL-based bioturbation rates, Aust. J. Soil Res., 43, 767–779, https://doi.org/10.1071/SR04158, 2005.
Witty, J. H., Graham, R. C., Hubbert, K. R., Doolittle, J. A., and Wald, J. A.: Contributions of water supply from the weathered bedrock zone to forest soil quality, Geoderma, 114, 389–400, https://doi.org/10.1016/S0016-7061(03)00051-X, 2003.
Wu, Y., Guo, L., Cui, X., Chen, J., Cao, X., and Lin, H.: Ground-penetrating radar-based automatic reconstruction of three-dimensional coarse root system architecture, Plant Soil, 383, 155–172, https://doi.org/10.1007/s11104-014-2139-0, 2014.
Wyrick, G. G. and Borchers, J. W.: Hydrologic effects of stress-relief fracturing in an Appalachian valley, United States Geological Survey Water-Supply Paper 2177, United States Geological Survey, Washington, 51 pp., 1981.
Yoo, K., Weinman, B., Mudd, S. M., Hurst, M., Attal, M., and Maher, K.: Evolution of hillslope soils: the geomorphic theater and the geochemical play, Appl. Geochem., 26, S149–S153, https://doi.org/10.1016/j.apgeochem.2011.03.054, 2011.
Zadworny, M. and Eissenstat, D. M.: Contrasting the morphology, anatomy and fungal colonization of new pioneer and fibrous roots, New Phytol., 190, 213–221, 2011.
Zhao, L., Wang, L., Cernusak, L. A., Liu, X., Xiao, H., Zhou, M., and Zhang, S.: Significant difference in hydrogen isotope composition between xylem and tissue water in Populus Euphratica, Plant Cell Environ., 39, 1848–1857, 2016.
Zhu, Y., Duan, G., Chen, B., Peng, X., Chen, Z., and Sun, G.: Mineral weathering and element cycling in soil-microorganism-plant system, Sci. China Earth Sci., 57, 888–896, 2014.
Zwieniecki, M. A. and Newton, M.: Root distribution of 12-year-old forests at rocky sites in southwestern Oregon: effects of rock physical properties, Can. J. Forest Res., 24, 1791–1796, 1994.
Zwieniecki, M. A. and Newton, M.: Roots growing in rock fissures: their morphological adaptation, Plant Soil, 172, 181–187, https://doi.org/10.1007/BF00011320, 1995.
Zwieniecki, M. A. and Newton, M.: Seasonal pattern of water depletion from soil-rock profiles in a Mediterranean climate in southwestern Oregon, Can. J. Forest Res., 26, 1346–1352, 1996.
Short summary
This review represents the outcome from an invigorating workshop discussion that involved tree physiologists, geomorphologists, ecologists, geochemists, and hydrologists and developed nine hypotheses that could be tested. We argue these hypotheses point to the essence of issues we must explore if we are to understand how the natural system of the earth surface evolves, and how humans will affect its evolution. This paper will create discussion and interest both before and after publication.
This review represents the outcome from an invigorating workshop discussion that involved tree...
Altmetrics
Final-revised paper
Preprint