Articles | Volume 15, issue 7
https://doi.org/10.5194/bg-15-2033-2018
https://doi.org/10.5194/bg-15-2033-2018
Research article
 | 
09 Apr 2018
Research article |  | 09 Apr 2018

Shrub type dominates the vertical distribution of leaf C : N : P stoichiometry across an extensive altitudinal gradient

Wenqiang Zhao, Peter B. Reich, Qiannan Yu, Ning Zhao, Chunying Yin, Chunzhang Zhao, Dandan Li, Jun Hu, Ting Li, Huajun Yin, and Qing Liu

Related authors

Quantifying the role of ozone-caused damage to vegetation in the Earth system: A new parameterization scheme for photosynthetic and stomatal responses
Fang Li, Zhimin Zhou, Samuel Levis, Stephen Sitch, Felicity Hayes, Zhaozhong Feng, Peter Reich, Zhiyi Zhao, and Yanqing Zhou
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-6,https://doi.org/10.5194/gmd-2024-6, 2024
Revised manuscript accepted for GMD
Short summary
Century-scale wood nitrogen isotope trajectories from an oak savanna with variable fire frequencies
Matthew L. Trumper, Daniel Griffin, Sarah E. Hobbie, Ian M. Howard, David M. Nelson, Peter B. Reich, and Kendra K. McLauchlan
Biogeosciences, 17, 4509–4522, https://doi.org/10.5194/bg-17-4509-2020,https://doi.org/10.5194/bg-17-4509-2020, 2020
Short summary
Reviews and syntheses: Field data to benchmark the carbon cycle models for tropical forests
Deborah A. Clark, Shinichi Asao, Rosie Fisher, Sasha Reed, Peter B. Reich, Michael G. Ryan, Tana E. Wood, and Xiaojuan Yang
Biogeosciences, 14, 4663–4690, https://doi.org/10.5194/bg-14-4663-2017,https://doi.org/10.5194/bg-14-4663-2017, 2017
Short summary

Related subject area

Biogeochemistry: Land
Soil carbon-concentration and carbon-climate feedbacks in CMIP6 Earth system models
Rebecca M. Varney, Pierre Friedlingstein, Sarah E. Chadburn, Eleanor J. Burke, and Peter M. Cox
Biogeosciences, 21, 2759–2776, https://doi.org/10.5194/bg-21-2759-2024,https://doi.org/10.5194/bg-21-2759-2024, 2024
Short summary
Monitoring the impact of forest changes on carbon uptake with solar-induced fluorescence measurements from GOME-2A and TROPOMI for an Australian and Chinese case study
Juliëtte C. S. Anema, Klaas Folkert Boersma, Piet Stammes, Gerbrand Koren, William Woodgate, Philipp Köhler, Christian Frankenberg, and Jacqui Stol
Biogeosciences, 21, 2297–2311, https://doi.org/10.5194/bg-21-2297-2024,https://doi.org/10.5194/bg-21-2297-2024, 2024
Short summary
Technical note: Flagging inconsistencies in flux tower data
Martin Jung, Jacob Nelson, Mirco Migliavacca, Tarek El-Madany, Dario Papale, Markus Reichstein, Sophia Walther, and Thomas Wutzler
Biogeosciences, 21, 1827–1846, https://doi.org/10.5194/bg-21-1827-2024,https://doi.org/10.5194/bg-21-1827-2024, 2024
Short summary
Relevance of near-surface soil moisture vs. terrestrial water storage for global vegetation functioning
Prajwal Khanal, Anne J. Hoek Van Dijke, Timo Schaffhauser, Wantong Li, Sinikka J. Paulus, Chunhui Zhan, and René Orth
Biogeosciences, 21, 1533–1547, https://doi.org/10.5194/bg-21-1533-2024,https://doi.org/10.5194/bg-21-1533-2024, 2024
Short summary
Implications of climate and litter quality for simulations of litterbag decomposition at high latitudes
Elin Ristorp Aas, Inge Althuizen, Hui Tang, Sonya Geange, Eva Lieungh, Vigdis Vandvik, and Terje Koren Berntsen
EGUsphere, https://doi.org/10.5194/egusphere-2024-340,https://doi.org/10.5194/egusphere-2024-340, 2024
Short summary

Cited articles

Aerts, R. and Chapin III, F. S.: The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns, Adv. Ecol. Res., 30, 1–67, 1999.
Allen, A. P. and Gillooly, J. F.: Towards an integration of ecological stoichiometry and the metabolic theory of ecology to better understand nutrient cycling, Ecol. Lett., 12, 369–384, 2009.
Bui, E. N. and Henderson, B. L.: C : N : P stoichiometry in Australian soils with respect to vegetation and environmental factors, Plant Soil, 373, 553–568, 2013.
Cairney, J. W. G. and Burke, R. M.: Extracellular enzyme activities of the ericoid mycorrhizal endophyte Hymenoscyphus ericae (Read) Korf & Kernan: their likely roles in decomposition of dead plant tissue in soil, Plant Soil, 205, 181–192, 1998.
Campo, J. and Dirzo, R.: Leaf quality and herbivory responses to soil nutrient addition in secondary tropical dry forests of Yucatán, Mexico, J. Trop. Ecol., 19, 525–530, 2003.
Download
Short summary
We found larger shrub leaf C, C : N and lower leaf N, N : P levels compared to other terrestrial ecosystems. Alpine shrubs exhibited the greatest leaf C at low temperatures, whereas the largest leaf N and P occurred in valley deciduous shrubs. The large heterogeneity in nutrient uptake and physiological adaptation of shrub types to environments explained the largest fraction of leaf C : N : P variations, while climate indirectly affected leaf C : N : P via its interactive effects on shrub type or soil.
Altmetrics
Final-revised paper
Preprint