Articles | Volume 15, issue 19
https://doi.org/10.5194/bg-15-5847-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-15-5847-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Reviews and syntheses: Ocean iron fertilization experiments – past, present, and future looking to a future Korean Iron Fertilization Experiment in the Southern Ocean (KIFES) project
Joo-Eun Yoon
Department of Marine Science, Incheon National University, Incheon
22012, Republic of Korea
Kyu-Cheul Yoo
Korea Polar Research Institute, Incheon 21990, Republic of Korea
Alison M. Macdonald
Woods Hole Oceanographic Institution, MS 21, 266 Woods Hold Rd., Woods Hole, MA 02543, USA
Ho-Il Yoon
Korea Polar Research Institute, Incheon 21990, Republic of Korea
Ki-Tae Park
Korea Polar Research Institute, Incheon 21990, Republic of Korea
Eun Jin Yang
Korea Polar Research Institute, Incheon 21990, Republic of Korea
Hyun-Cheol Kim
Korea Polar Research Institute, Incheon 21990, Republic of Korea
Jae Il Lee
Korea Polar Research Institute, Incheon 21990, Republic of Korea
Min Kyung Lee
Korea Polar Research Institute, Incheon 21990, Republic of Korea
Jinyoung Jung
Korea Polar Research Institute, Incheon 21990, Republic of Korea
Jisoo Park
Korea Polar Research Institute, Incheon 21990, Republic of Korea
Jiyoung Lee
Department of Marine Science, Incheon National University, Incheon
22012, Republic of Korea
Soyeon Kim
Department of Marine Science, Incheon National University, Incheon
22012, Republic of Korea
Seong-Su Kim
Department of Marine Science, Incheon National University, Incheon
22012, Republic of Korea
Kitae Kim
Korea Polar Research Institute, Incheon 21990, Republic of Korea
Il-Nam Kim
CORRESPONDING AUTHOR
Department of Marine Science, Incheon National University, Incheon
22012, Republic of Korea
Related authors
No articles found.
Jiyeon Park, Hyojin Kang, Yeontae Gim, Eunho Jang, Ki-Tae Park, Sangjong Park, Chang Hoon Jung, Darius Ceburnis, Colin O'Dowd, and Young Jun Yoon
EGUsphere, https://doi.org/10.5194/egusphere-2023-707, https://doi.org/10.5194/egusphere-2023-707, 2023
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We measured the number size distribution of 2.5–300 nm particles and cloud condensation nuclei (CCN) number concentrations at King Sejong Station in the Antarctic Peninsula continuously from January 1 to December 31, 2018. During the pristine and clean periods, Ninety-seven new particle formation (NPF) events were detected. Of the 83 events, CCN concentrations increased by 2–268 % (median 44 %) following 1 to 36 hours (median 8 hours) after NPF events.
Jinyoung Jung, Yuzo Miyazaki, Jin Hur, Yun Kyung Lee, Mi Hae Jeon, Youngju Lee, Kyoung-Ho Cho, Hyun Young Chung, Kitae Kim, Jung-Ok Choi, Catherine Lalande, Joo-Hong Kim, Taejin Choi, Young Jun Yoon, Eun Jin Yang, and Sung-Ho Kang
Atmos. Chem. Phys., 23, 4663–4684, https://doi.org/10.5194/acp-23-4663-2023, https://doi.org/10.5194/acp-23-4663-2023, 2023
Short summary
Short summary
This study examined the summertime fluorescence properties of water-soluble organic carbon (WSOC) in aerosols over the western Arctic Ocean. We found that the WSOC in fine-mode aerosols in coastal areas showed a higher polycondensation degree and aromaticity than in sea-ice-covered areas. The fluorescence properties of atmospheric WSOC in the summertime marine Arctic boundary can improve our understanding of the WSOC chemical and biological linkages at the ocean–sea-ice–atmosphere interface.
Silvia Becagli, Elena Barbaro, Simone Bonamano, Laura Caiazzo, Alcide di Sarra, Matteo Feltracco, Paolo Grigioni, Jost Heintzenberg, Luigi Lazzara, Michel Legrand, Alice Madonia, Marco Marcelli, Chiara Melillo, Daniela Meloni, Caterina Nuccio, Giandomenico Pace, Ki-Tae Park, Suzanne Preunkert, Mirko Severi, Marco Vecchiato, Roberta Zangrando, and Rita Traversi
Atmos. Chem. Phys., 22, 9245–9263, https://doi.org/10.5194/acp-22-9245-2022, https://doi.org/10.5194/acp-22-9245-2022, 2022
Short summary
Short summary
Measurements of phytoplanktonic dimethylsulfide and its oxidation products in the Antarctic atmosphere allow us to understand the role of the oceanic (sea ice melting, Chl α and dimethylsulfoniopropionate) and atmospheric (wind direction and speed, humidity, solar radiation and transport processes) factors in the biogenic aerosol formation, concentration and characteristic ratio between components in an Antarctic coastal site facing the polynya of the Ross Sea.
Stephen M. Platt, Øystein Hov, Torunn Berg, Knut Breivik, Sabine Eckhardt, Konstantinos Eleftheriadis, Nikolaos Evangeliou, Markus Fiebig, Rebecca Fisher, Georg Hansen, Hans-Christen Hansson, Jost Heintzenberg, Ove Hermansen, Dominic Heslin-Rees, Kim Holmén, Stephen Hudson, Roland Kallenborn, Radovan Krejci, Terje Krognes, Steinar Larssen, David Lowry, Cathrine Lund Myhre, Chris Lunder, Euan Nisbet, Pernilla B. Nizzetto, Ki-Tae Park, Christina A. Pedersen, Katrine Aspmo Pfaffhuber, Thomas Röckmann, Norbert Schmidbauer, Sverre Solberg, Andreas Stohl, Johan Ström, Tove Svendby, Peter Tunved, Kjersti Tørnkvist, Carina van der Veen, Stergios Vratolis, Young Jun Yoon, Karl Espen Yttri, Paul Zieger, Wenche Aas, and Kjetil Tørseth
Atmos. Chem. Phys., 22, 3321–3369, https://doi.org/10.5194/acp-22-3321-2022, https://doi.org/10.5194/acp-22-3321-2022, 2022
Short summary
Short summary
Here we detail the history of the Zeppelin Observatory, a unique global background site and one of only a few in the high Arctic. We present long-term time series of up to 30 years of atmospheric components and atmospheric transport phenomena. Many of these time series are important to our understanding of Arctic and global atmospheric composition change. Finally, we discuss the future of the Zeppelin Observatory and emerging areas of future research on the Arctic atmosphere.
Molly O. Patterson, Richard H. Levy, Denise K. Kulhanek, Tina van de Flierdt, Huw Horgan, Gavin B. Dunbar, Timothy R. Naish, Jeanine Ash, Alex Pyne, Darcy Mandeno, Paul Winberry, David M. Harwood, Fabio Florindo, Francisco J. Jimenez-Espejo, Andreas Läufer, Kyu-Cheul Yoo, Osamu Seki, Paolo Stocchi, Johann P. Klages, Jae Il Lee, Florence Colleoni, Yusuke Suganuma, Edward Gasson, Christian Ohneiser, José-Abel Flores, David Try, Rachel Kirkman, Daleen Koch, and the SWAIS 2C Science Team
Sci. Dril., 30, 101–112, https://doi.org/10.5194/sd-30-101-2022, https://doi.org/10.5194/sd-30-101-2022, 2022
Short summary
Short summary
How much of the West Antarctic Ice Sheet will melt and how quickly it will happen when average global temperatures exceed 2 °C is currently unknown. Given the far-reaching and international consequences of Antarctica’s future contribution to global sea level rise, the SWAIS 2C Project was developed in order to better forecast the size and timing of future changes.
Jamey Stutz, Andrew Mackintosh, Kevin Norton, Ross Whitmore, Carlo Baroni, Stewart S. R. Jamieson, Richard S. Jones, Greg Balco, Maria Cristina Salvatore, Stefano Casale, Jae Il Lee, Yeong Bae Seong, Robert McKay, Lauren J. Vargo, Daniel Lowry, Perry Spector, Marcus Christl, Susan Ivy Ochs, Luigia Di Nicola, Maria Iarossi, Finlay Stuart, and Tom Woodruff
The Cryosphere, 15, 5447–5471, https://doi.org/10.5194/tc-15-5447-2021, https://doi.org/10.5194/tc-15-5447-2021, 2021
Short summary
Short summary
Understanding the long-term behaviour of ice sheets is essential to projecting future changes due to climate change. In this study, we use rocks deposited along the margin of the David Glacier, one of the largest glacier systems in the world, to reveal a rapid thinning event initiated over 7000 years ago and endured for ~ 2000 years. Using physical models, we show that subglacial topography and ocean heat are important drivers for change along this sector of the Antarctic Ice Sheet.
Sehyun Jang, Ki-Tae Park, Kitack Lee, Young Jun Yoon, Kitae Kim, Hyun Young Chung, Eunho Jang, Silvia Becagli, Bang Yong Lee, Rita Traversi, Konstantinos Eleftheriadis, Radovan Krejci, and Ove Hermansen
Atmos. Chem. Phys., 21, 9761–9777, https://doi.org/10.5194/acp-21-9761-2021, https://doi.org/10.5194/acp-21-9761-2021, 2021
Short summary
Short summary
This study provides comprehensive datasets encompassing seasonal and interannual variations in sulfate and MSA concentration in aerosol particles in the Arctic atmosphere. As oxidation products of DMS have important roles in new particle formation and growth, we focused on factors affecting their variability and the branching ratio of DMS oxidation. We found a strong correlation between the ratio and the light condition, chemical properties of particles, and biological activities near Svalbard.
Romana Melis, Lucilla Capotondi, Fiorenza Torricella, Patrizia Ferretti, Andrea Geniram, Jong Kuk Hong, Gerhard Kuhn, Boo-Keun Khim, Sookwan Kim, Elisa Malinverno, Kyu Cheul Yoo, and Ester Colizza
J. Micropalaeontol., 40, 15–35, https://doi.org/10.5194/jm-40-15-2021, https://doi.org/10.5194/jm-40-15-2021, 2021
Short summary
Short summary
Integrated micropaleontological (planktic and benthic foraminifera, diatoms, and silicoflagellates) analysis, together with textural and geochemical results of a deep-sea core from the Hallett Ridge (northwestern Ross Sea), provides new data for late Quaternary (23–2 ka) paleoenvironmental and paleoceanographic reconstructions of this region. Results allow us to identify three time intervals: the glacial–deglacial transition, the deglacial period, and the interglacial period.
Haebum Lee, Kwangyul Lee, Chris Rene Lunder, Radovan Krejci, Wenche Aas, Jiyeon Park, Ki-Tae Park, Bang Yong Lee, Young Jun Yoon, and Kihong Park
Atmos. Chem. Phys., 20, 13425–13441, https://doi.org/10.5194/acp-20-13425-2020, https://doi.org/10.5194/acp-20-13425-2020, 2020
Short summary
Short summary
New particle formation (NPF) contributes to enhance the number of particles in the ambient atmosphere, affecting local air quality and cloud condensation nuclei (CCN) concentration. This study investigated NPF characteristics in the Arctic and showed that although formation and growth rates of nanoparticles were much lower than those in continental areas, NPF occurrence frequency was comparable and marine biogenic sources played important roles in production of condensing vapors for NPF.
Jeong-Won Park, Anton Andreevich Korosov, Mohamed Babiker, Joong-Sun Won, Morten Wergeland Hansen, and Hyun-Cheol Kim
The Cryosphere, 14, 2629–2645, https://doi.org/10.5194/tc-14-2629-2020, https://doi.org/10.5194/tc-14-2629-2020, 2020
Short summary
Short summary
A new Sentinel-1 radar-based sea ice classification algorithm is proposed. We show that the readily available ice charts from operational ice services can reduce the amount of manual work in preparation of large amounts of training/testing data and feed highly reliable data to the trainer in an efficient way. Test results showed that the classifier is capable of retrieving three generalized cover types with overall accuracy of 87 % and 67 % in the winter and summer seasons, respectively.
Jiyeon Park, Manuel Dall'Osto, Kihong Park, Yeontae Gim, Hyo Jin Kang, Eunho Jang, Ki-Tae Park, Minsu Park, Seong Soo Yum, Jinyoung Jung, Bang Yong Lee, and Young Jun Yoon
Atmos. Chem. Phys., 20, 5573–5590, https://doi.org/10.5194/acp-20-5573-2020, https://doi.org/10.5194/acp-20-5573-2020, 2020
Short summary
Short summary
The physical properties of aerosol particles throughout the Arctic Ocean and Pacific Ocean were measured aboard the Korean icebreaker R/V Araon during the summer of 2017. A number of new particle formation (NPF) events and growth were frequently observed in both Arctic terrestrial and Arctic marine air masses. This suggests that terrestrial ecosystems – including river outflows and tundra – strongly affect aerosol emissions in the Arctic coastal areas, affecting
radiative forcing.
Jinyoung Jung, Sang-Bum Hong, Meilian Chen, Jin Hur, Liping Jiao, Youngju Lee, Keyhong Park, Doshik Hahm, Jung-Ok Choi, Eun Jin Yang, Jisoo Park, Tae-Wan Kim, and SangHoon Lee
Atmos. Chem. Phys., 20, 5405–5424, https://doi.org/10.5194/acp-20-5405-2020, https://doi.org/10.5194/acp-20-5405-2020, 2020
Short summary
Short summary
Characteristics of atmospheric sulfur and organic carbon species in marine aerosols and the environmental factors influencing their distributions were investigated over the Southern Ocean and the Amundsen Sea, Antarctica, during austral summer. The simultaneous measurements of chemical species in aerosols as well as the chemical and biological properties of seawater in the Amundsen Sea allowed for a better understanding of the effect of the ocean ecosystem on marine aerosols.
Young Jun Kim, Hyun-Cheol Kim, Daehyeon Han, Sanggyun Lee, and Jungho Im
The Cryosphere, 14, 1083–1104, https://doi.org/10.5194/tc-14-1083-2020, https://doi.org/10.5194/tc-14-1083-2020, 2020
Short summary
Short summary
In this study, we proposed a novel 1-month sea ice concentration (SIC) prediction model with eight predictors using a deep-learning approach, convolutional neural networks (CNNs). The proposed CNN model was evaluated and compared with the two baseline approaches, random-forest and simple-regression models, resulting in better performance. This study also examined SIC predictions for two extreme cases in 2007 and 2012 in detail and the influencing factors through a sensitivity analysis.
Jinpei Yan, Jinyoung Jung, Miming Zhang, Federico Bianchi, Yee Jun Tham, Suqing Xu, Qi Lin, Shuhui Zhao, Lei Li, and Liqi Chen
Atmos. Chem. Phys., 20, 3259–3271, https://doi.org/10.5194/acp-20-3259-2020, https://doi.org/10.5194/acp-20-3259-2020, 2020
Short summary
Short summary
Methanesulfonic acid (MSA) is important to the CCN in the MBL. The uptake of MSA on particles is lacking in knowledge. The characteristics of MSA uptake on different particles were studied in the Southern Ocean. The MSA uptake on different particles was associated with particle properties. Uptake of MSA on sea salt particles was favored, while acidic and hydrophobic particles suppressed the MSA uptake. The results extend the knowledge of MSA formation and behavior in the atmosphere.
Jaeseok Kim, Young Jun Yoon, Yeontae Gim, Jin Hee Choi, Hyo Jin Kang, Ki-Tae Park, Jiyeon Park, and Bang Yong Lee
Atmos. Chem. Phys., 19, 7583–7594, https://doi.org/10.5194/acp-19-7583-2019, https://doi.org/10.5194/acp-19-7583-2019, 2019
Short summary
Short summary
This paper focuses on the seasonal variation in parameters related to particle formation (e.g., occurrence, formation rate, growth rate, condensation sink and source rate of condensable vapor) at King Sejong Station in the Antarctic Peninsula from March 2009 to December 2016. The contribution of particle formation to cloud condensation nuclei concentration (CCN) is also investigated. This study is the first to report the characteristics of new particle formation (NPF) in the Antarctic Peninsula.
Eunho Jang, Ki-Tae Park, Young Jun Yoon, Tae-Wook Kim, Sang-Bum Hong, Silvia Becagli, Rita Traversi, Jaeseok Kim, and Yeontae Gim
Atmos. Chem. Phys., 19, 7595–7608, https://doi.org/10.5194/acp-19-7595-2019, https://doi.org/10.5194/acp-19-7595-2019, 2019
Short summary
Short summary
We reported long-term observations (from 2009 to 2016) of the nanoparticles measured at the Antarctic Peninsula (62.2° S, 58.8° W), and satellite-derived estimates of the biological characteristics were analyzed to identify the link between new particle formation and marine biota. The key finding from this research is that the formation of nanoparticles was strongly associated not only with the biomass of phytoplankton but, more importantly, also its taxonomic composition in the Antarctic Ocean.
Manuel Dall'Osto, David C. S. Beddows, Peter Tunved, Roy M. Harrison, Angelo Lupi, Vito Vitale, Silvia Becagli, Rita Traversi, Ki-Tae Park, Young Jun Yoon, Andreas Massling, Henrik Skov, Robert Lange, Johan Strom, and Radovan Krejci
Atmos. Chem. Phys., 19, 7377–7395, https://doi.org/10.5194/acp-19-7377-2019, https://doi.org/10.5194/acp-19-7377-2019, 2019
Short summary
Short summary
We present a cluster analysis of particle size distributions simultaneously collected from three European high Arctic sites centred in the Fram Strait during a 3-year period. Confined for longer time periods by consolidated pack sea ice regions, the Greenland site shows lower ultrafine-mode aerosol concentrations during summer relative to the Svalbard sites. Our study supports international environmental cooperation concerning the Arctic region.
C. U. Hyun and H. C. Kim
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-1, 211–215, https://doi.org/10.5194/isprs-archives-XLII-1-211-2018, https://doi.org/10.5194/isprs-archives-XLII-1-211-2018, 2018
J.-I. Kim and H.-C. Kim
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2, 501–505, https://doi.org/10.5194/isprs-archives-XLII-2-501-2018, https://doi.org/10.5194/isprs-archives-XLII-2-501-2018, 2018
Sanggyun Lee, Hyun-cheol Kim, and Jungho Im
The Cryosphere, 12, 1665–1679, https://doi.org/10.5194/tc-12-1665-2018, https://doi.org/10.5194/tc-12-1665-2018, 2018
Short summary
Short summary
Arctic sea ice leads play a major role in exchanging heat and momentum between the Arctic atmosphere and ocean. In this study, we propose a novel lead
detection approach based on waveform mixture analysis. The performance of the proposed approach in detecting leads was promising when compared to the
existing methods. The robustness of the proposed approach also lies in the fact that it does not require the rescaling of parameters, as it directly uses L1B waveform data.
Jaeseok Kim, Young Jun Yoon, Yeontae Gim, Hyo Jin Kang, Jin Hee Choi, Ki-Tae Park, and Bang Yong Lee
Atmos. Chem. Phys., 17, 12985–12999, https://doi.org/10.5194/acp-17-12985-2017, https://doi.org/10.5194/acp-17-12985-2017, 2017
Short summary
Short summary
This paper reports the long-term measurements of atmospheric aerosol physical properties at King Sejong Station, Antarctic Peninsula. It has been found that a strong seasonality of the characteristics exists in aerosol concentration and cloud condensation nuclei.
Sang H. Lee, Bo Kyung Kim, Yu Jeong Lim, HuiTae Joo, Jae Joong Kang, Dabin Lee, Jisoo Park, Sun-Yong Ha, and Sang Hoon Lee
Biogeosciences, 14, 3705–3713, https://doi.org/10.5194/bg-14-3705-2017, https://doi.org/10.5194/bg-14-3705-2017, 2017
Short summary
Short summary
Little information on the contribution of small-sized phytoplankton is currently available in the Amundsen Sea. Based on a strong negative correlation between the contributions of small phytoplankton and the total daily primary production of phytoplankton found in this study, we concluded that a potential decrease in total primary production would be led by increasing contribution of small phytoplankton in the Amundsen Sea under rapidly warming environmental conditions.
Ki-Tae Park, Sehyun Jang, Kitack Lee, Young Jun Yoon, Min-Seob Kim, Kihong Park, Hee-Joo Cho, Jung-Ho Kang, Roberto Udisti, Bang-Yong Lee, and Kyung-Hoon Shin
Atmos. Chem. Phys., 17, 9665–9675, https://doi.org/10.5194/acp-17-9665-2017, https://doi.org/10.5194/acp-17-9665-2017, 2017
Short summary
Short summary
We evaluated the connection between DMS and the formation of aerosol particles in the Arctic atmosphere by analyzing multiple datasets of atmospheric DMS, aerosol particle size distributions and aerosol chemical composition that were collected at Ny-Ålesund, Svalbard (78.5° N, 11.8° E), during April–May 2015. The key finding from this research is that the contribution of biogenic DMS to the formation of aerosol particles was substantial during the phytoplankton bloom period.
C. Lavoie, E. W. Domack, E. C. Pettit, T. A. Scambos, R. D. Larter, H.-W. Schenke, K. C. Yoo, J. Gutt, J. Wellner, M. Canals, J. B. Anderson, and D. Amblas
The Cryosphere, 9, 613–629, https://doi.org/10.5194/tc-9-613-2015, https://doi.org/10.5194/tc-9-613-2015, 2015
J. Jung, H. Furutani, M. Uematsu, S. Kim, and S. Yoon
Atmos. Chem. Phys., 13, 411–428, https://doi.org/10.5194/acp-13-411-2013, https://doi.org/10.5194/acp-13-411-2013, 2013
Related subject area
Biogeochemistry: Open Ocean
Fossil coccolith morphological attributes as a new proxy for deep ocean carbonate chemistry
Reconstructing ocean carbon storage with CMIP6 Earth system models and synthetic Argo observations
Using machine learning and Biogeochemical-Argo (BGC-Argo) floats to assess biogeochemical models and optimize observing system design
The representation of alkalinity and the carbonate pump from CMIP5 to CMIP6 Earth system models and implications for the carbon cycle
Model estimates of metazoans' contributions to the biological carbon pump
Tracing differences in iron supply to the Mid-Atlantic Ridge valley between hydrothermal vent sites: implications for the addition of iron to the deep ocean
Exploring the role of different data types and timescales for the quality of marine biogeochemical model calibration
Nitrite cycling in the primary nitrite maxima of the eastern tropical North Pacific
All about Nitrite: Exploring Nitrite Sources and Sinks in the Eastern Tropical North Pacific Oxygen Minimum Zone
Hotspots and drivers of compound marine heatwaves and low net primary production extremes
Ecosystem impacts of marine heat waves in the northeast Pacific
Importance of multiple sources of iron for the upper ocean biogeochemistry over the northern Indian Ocean
Tracing the role of Arctic shelf processes in Si and N cycling and export through the Fram Strait: insights from combined silicon and nitrate isotopes
Controls on the relative abundances and rates of nitrifying microorganisms in the ocean
The response of diazotrophs to nutrient amendment in the South China Sea and western North Pacific
Influence of GEOTRACES data distribution and misfit function choice on objective parameter retrieval in a marine zinc cycle model
Physiological flexibility of phytoplankton impacts modelled chlorophyll and primary production across the North Pacific Ocean
Observation-constrained estimates of the global ocean carbon sink from Earth system models
Early winter barium excess in the southern Indian Ocean as an annual remineralisation proxy (GEOTRACES GIPr07 cruise)
Controlling factors on the global distribution of a representative marine non-cyanobacterial diazotroph phylotype (Gamma A)
Summer trends and drivers of sea surface fCO2 and pH changes observed in the southern Indian Ocean over the last two decades (1998–2019)
Global nutrient cycling by commercially targeted marine fish
Major processes of the dissolved cobalt cycle in the North and equatorial Pacific Ocean
The impact of the South-East Madagascar Bloom on the oceanic CO2 sink
Nitrite regeneration in the oligotrophic Atlantic Ocean
Bridging the gaps between particulate backscattering measurements and modeled particulate organic carbon in the ocean
Biological production in two contrasted regions of the Mediterranean Sea during the oligotrophic period: an estimate based on the diel cycle of optical properties measured by BioGeoChemical-Argo profiling floats
Acidification of the Nordic Seas
Reconstruction of global surface ocean pCO2 using region-specific predictors based on a stepwise FFNN regression algorithm
Biogeochemical controls on ammonium accumulation in the surface layer of the Southern Ocean
Oxygen export to the deep ocean following Labrador Sea Water formation
N2 fixation in the Mediterranean Sea related to the composition of the diazotrophic community and impact of dust under present and future environmental conditions
Dissolution of a submarine carbonate platform by a submerged lake of acidic seawater
Seasonal flux patterns and carbon transport from low-oxygen eddies at the Cape Verde Ocean Observatory: lessons learned from a time series sediment trap study (2009–2016)
Subsurface iron accumulation and rapid aluminum removal in the Mediterranean following African dust deposition
Long-distance particle transport to the central Ionian Sea
Deep chlorophyll maximum and nutricline in the Mediterranean Sea: emerging properties from a multi-platform assimilated biogeochemical model experiment
Phosphorus cycling in the upper waters of the Mediterranean Sea (PEACETIME cruise): relative contribution of external and internal sources
Fast local warming is the main driver of recent deoxygenation in the northern Arabian Sea
Influence of atmospheric deposition on biogeochemical cycles in an oligotrophic ocean system
Impact of dust addition on the metabolism of Mediterranean plankton communities and carbon export under present and future conditions of pH and temperature
Comparing CLE-AdCSV applications using SA and TAC to determine the Fe-binding characteristics of model ligands in seawater
Impact of dust addition on Mediterranean plankton communities under present and future conditions of pH and temperature: an experimental overview
Reviews and syntheses: Trends in primary production in the Bay of Bengal – is it at a tipping point?
Incorporating the stable carbon isotope 13C in the ocean biogeochemical component of the Max Planck Institute Earth System Model
Seasonal cycling of zinc and cobalt in the south-eastern Atlantic along the GEOTRACES GA10 section
Carbon export and fate beneath a dynamic upwelled filament off the California coast
Contrasted release of insoluble elements (Fe, Al, rare earth elements, Th, Pa) after dust deposition in seawater: a tank experiment approach
On the barium–oxygen consumption relationship in the Mediterranean Sea: implications for mesopelagic marine snow remineralization
Compound high-temperature and low-chlorophyll extremes in the ocean over the satellite period
Amanda Gerotto, Hongrui Zhang, Renata Hanae Nagai, Heather M. Stoll, Rubens César Lopes Figueira, Chuanlian Liu, and Iván Hernández-Almeida
Biogeosciences, 20, 1725–1739, https://doi.org/10.5194/bg-20-1725-2023, https://doi.org/10.5194/bg-20-1725-2023, 2023
Short summary
Short summary
Based on the analysis of the response of coccolithophores’ morphological attributes in a laboratory dissolution experiment and surface sediment samples from the South China Sea, we proposed that the thickness shape (ks) factor of fossil coccoliths together with the normalized ks variation, which is the ratio of the standard deviation of ks (σ) over the mean ks (σ/ks), is a robust and novel proxy to reconstruct past changes in deep ocean carbon chemistry.
Katherine E. Turner, Doug M. Smith, Anna Katavouta, and Richard G. Williams
Biogeosciences, 20, 1671–1690, https://doi.org/10.5194/bg-20-1671-2023, https://doi.org/10.5194/bg-20-1671-2023, 2023
Short summary
Short summary
We present a new method for reconstructing ocean carbon using climate models and temperature and salinity observations. To test this method, we reconstruct modelled carbon using synthetic observations consistent with current sampling programmes. Sensitivity tests show skill in reconstructing carbon trends and variability within the upper 2000 m. Our results indicate that this method can be used for a new global estimate for ocean carbon content.
Alexandre Mignot, Hervé Claustre, Gianpiero Cossarini, Fabrizio D'Ortenzio, Elodie Gutknecht, Julien Lamouroux, Paolo Lazzari, Coralie Perruche, Stefano Salon, Raphaëlle Sauzède, Vincent Taillandier, and Anna Teruzzi
Biogeosciences, 20, 1405–1422, https://doi.org/10.5194/bg-20-1405-2023, https://doi.org/10.5194/bg-20-1405-2023, 2023
Short summary
Short summary
Numerical models of ocean biogeochemistry are becoming a major tool to detect and predict the impact of climate change on marine resources and monitor ocean health. Here, we demonstrate the use of the global array of BGC-Argo floats for the assessment of biogeochemical models. We first detail the handling of the BGC-Argo data set for model assessment purposes. We then present 23 assessment metrics to quantify the consistency of BGC model simulations with respect to BGC-Argo data.
Alban Planchat, Lester Kwiatkowski, Laurent Bopp, Olivier Torres, James R. Christian, Momme Butenschön, Tomas Lovato, Roland Séférian, Matthew A. Chamberlain, Olivier Aumont, Michio Watanabe, Akitomo Yamamoto, Andrew Yool, Tatiana Ilyina, Hiroyuki Tsujino, Kristen M. Krumhardt, Jörg Schwinger, Jerry Tjiputra, John P. Dunne, and Charles Stock
Biogeosciences, 20, 1195–1257, https://doi.org/10.5194/bg-20-1195-2023, https://doi.org/10.5194/bg-20-1195-2023, 2023
Short summary
Short summary
Ocean alkalinity is critical to the uptake of atmospheric carbon and acidification in surface waters. We review the representation of alkalinity and the associated calcium carbonate cycle in Earth system models. While many parameterizations remain present in the latest generation of models, there is a general improvement in the simulated alkalinity distribution. This improvement is related to an increase in the export of biotic calcium carbonate, which closer resembles observations.
Jérôme Pinti, Tim DeVries, Tommy Norin, Camila Serra-Pompei, Roland Proud, David A. Siegel, Thomas Kiørboe, Colleen M. Petrik, Ken H. Andersen, Andrew S. Brierley, and André W. Visser
Biogeosciences, 20, 997–1009, https://doi.org/10.5194/bg-20-997-2023, https://doi.org/10.5194/bg-20-997-2023, 2023
Short summary
Short summary
Large numbers of marine organisms such as zooplankton and fish perform daily vertical migration between the surface (at night) and the depths (in the daytime). This fascinating migration is important for the carbon cycle, as these organisms actively bring carbon to depths where it is stored away from the atmosphere for a long time. Here, we quantify the contributions of different animals to this carbon drawdown and storage and show that fish are important to the biological carbon pump.
Alastair J. M. Lough, Alessandro Tagliabue, Clément Demasy, Joseph A. Resing, Travis Mellett, Neil J. Wyatt, and Maeve C. Lohan
Biogeosciences, 20, 405–420, https://doi.org/10.5194/bg-20-405-2023, https://doi.org/10.5194/bg-20-405-2023, 2023
Short summary
Short summary
Iron is a key nutrient for ocean primary productivity. Hydrothermal vents are a source of iron to the oceans, but the size of this source is poorly understood. This study examines the variability in iron inputs between hydrothermal vents in different geological settings. The vents studied release different amounts of Fe, resulting in plumes with similar dissolved iron concentrations but different particulate concentrations. This will help to refine modelling of iron-limited ocean productivity.
Iris Kriest, Julia Getzlaff, Angela Landolfi, Volkmar Sauerland, Markus Schartau, and Andreas Oschlies
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-9, https://doi.org/10.5194/bg-2023-9, 2023
Revised manuscript accepted for BG
Short summary
Short summary
Global biogeochemical ocean models are often subjectively assessed and tuned against observations. We applied different strategies to calibrate a global model against observations. Although the calibrated models show similar tracer distributions at the surface, they differ in global biogeochemical fluxes, especially in global particle flux. Simulated global volume of oxygen minimum zones varies strongly with calibration strategy and over time, rendering its temporal extrapolation difficult.
Nicole M. Travis, Colette L. Kelly, Margaret R. Mulholland, and Karen L. Casciotti
Biogeosciences, 20, 325–347, https://doi.org/10.5194/bg-20-325-2023, https://doi.org/10.5194/bg-20-325-2023, 2023
Short summary
Short summary
The primary nitrite maximum is a ubiquitous upper ocean feature where nitrite accumulates, but we still do not understand its formation and the co-occurring microbial processes involved. Using correlative methods and rates measurements, we found strong spatial patterns between environmental conditions and depths of the nitrite maxima, but not the maximum concentrations. Nitrification was the dominant source of nitrite, with occasional high nitrite production from phytoplankton near the coast.
John C. Tracey, Andrew R. Babbin, Elizabeth Wallace, Xin Sun, Katherine L. DuRussel, Claudia Frey, Donald E. Martocello III, Tyler Tamasi, Sergey Oleynik, and Bess B. Ward
EGUsphere, https://doi.org/10.5194/egusphere-2022-1437, https://doi.org/10.5194/egusphere-2022-1437, 2022
Short summary
Short summary
Nitrogen (N) is essential for life. Thus, its availability plays a key role in determining marine productivity. Using incubations of seawater spiked with a rare form of N measurable on a mass spectrometer, we quantified microbial pathways that determine marine N availability. The results highlight the central role of nitrite in the N cycle, provide new data towards understanding how much N is available for marine productivity, and answer several open questions in marine N biogeochemistry.
Natacha Le Grix, Jakob Zscheischler, Keith B. Rodgers, Ryohei Yamaguchi, and Thomas L. Frölicher
Biogeosciences, 19, 5807–5835, https://doi.org/10.5194/bg-19-5807-2022, https://doi.org/10.5194/bg-19-5807-2022, 2022
Short summary
Short summary
Compound events threaten marine ecosystems. Here, we investigate the potentially harmful combination of marine heatwaves with low phytoplankton productivity. Using satellite-based observations, we show that these compound events are frequent in the low latitudes. We then investigate the drivers of these compound events using Earth system models. The models share similar drivers in the low latitudes but disagree in the high latitudes due to divergent factors limiting phytoplankton production.
Abigale M. Wyatt, Laure Resplandy, and Adrian Marchetti
Biogeosciences, 19, 5689–5705, https://doi.org/10.5194/bg-19-5689-2022, https://doi.org/10.5194/bg-19-5689-2022, 2022
Short summary
Short summary
Marine heat waves (MHWs) are a frequent event in the northeast Pacific, with a large impact on the region's ecosystems. Large phytoplankton in the North Pacific Transition Zone are greatly affected by decreased nutrients, with less of an impact in the Alaskan Gyre. For small phytoplankton, MHWs increase the spring small phytoplankton population in both regions thanks to reduced light limitation. In both zones, this results in a significant decrease in the ratio of large to small phytoplankton.
Priyanka Banerjee
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-224, https://doi.org/10.5194/bg-2022-224, 2022
Revised manuscript accepted for BG
Short summary
Short summary
This study shows that atmospheric deposition is the most important source of iron to the upper northern Indian Ocean for phytoplankton growth. This is followed by iron from continental shelf sediment. Phytoplankton increase following iron addition is possible only with high background levels of nitrate. Vertical mixing is the most important physical process supplying iron to the upper ocean in this region throughout the year. The importance of ocean currents in supplying iron varies seasonally.
Margot C. F. Debyser, Laetitia Pichevin, Robyn E. Tuerena, Paul A. Dodd, Antonia Doncila, and Raja S. Ganeshram
Biogeosciences, 19, 5499–5520, https://doi.org/10.5194/bg-19-5499-2022, https://doi.org/10.5194/bg-19-5499-2022, 2022
Short summary
Short summary
We focus on the exchange of key nutrients for algae production between the Arctic and Atlantic oceans through the Fram Strait. We show that the export of dissolved silicon here is controlled by the availability of nitrate which is influenced by denitrification on Arctic shelves. We suggest that any future changes in the river inputs of silica and changes in denitrification due to climate change will impact the amount of silicon exported, with impacts on Atlantic algal productivity and ecology.
Emily J. Zakem, Barbara Bayer, Wei Qin, Alyson E. Santoro, Yao Zhang, and Naomi M. Levine
Biogeosciences, 19, 5401–5418, https://doi.org/10.5194/bg-19-5401-2022, https://doi.org/10.5194/bg-19-5401-2022, 2022
Short summary
Short summary
We use a microbial ecosystem model to quantitatively explain the mechanisms controlling observed relative abundances and nitrification rates of ammonia- and nitrite-oxidizing microorganisms in the ocean. We also estimate how much global carbon fixation can be associated with chemoautotrophic nitrification. Our results improve our understanding of the controls on nitrification, laying the groundwork for more accurate predictions in global climate models.
Zuozhu Wen, Thomas J. Browning, Rongbo Dai, Wenwei Wu, Weiying Li, Xiaohua Hu, Wenfang Lin, Lifang Wang, Xin Liu, Zhimian Cao, Haizheng Hong, and Dalin Shi
Biogeosciences, 19, 5237–5250, https://doi.org/10.5194/bg-19-5237-2022, https://doi.org/10.5194/bg-19-5237-2022, 2022
Short summary
Short summary
Fe and P are key factors controlling the biogeography and activity of marine N2-fixing microorganisms. We found lower abundance and activity of N2 fixers in the northern South China Sea than around the western boundary of the North Pacific, and N2 fixation rates switched from Fe–P co-limitation to P limitation. We hypothesize the Fe supply rates and Fe utilization strategies of each N2 fixer are important in regulating spatial variability in community structure across the study area.
Claudia Eisenring, Sophy E. Oliver, Samar Khatiwala, and Gregory F. de Souza
Biogeosciences, 19, 5079–5106, https://doi.org/10.5194/bg-19-5079-2022, https://doi.org/10.5194/bg-19-5079-2022, 2022
Short summary
Short summary
Given the sparsity of observational constraints on micronutrients such as zinc (Zn), we assess the sensitivities of a framework for objective parameter optimisation in an oceanic Zn cycling model. Our ensemble of optimisations towards synthetic data with varying kinds of uncertainty shows that deficiencies related to model complexity and the choice of the misfit function generally have a greater impact on the retrieval of model Zn uptake behaviour than does the limitation of data coverage.
Yoshikazu Sasai, Sherwood Lan Smith, Eko Siswanto, Hideharu Sasaki, and Masami Nonaka
Biogeosciences, 19, 4865–4882, https://doi.org/10.5194/bg-19-4865-2022, https://doi.org/10.5194/bg-19-4865-2022, 2022
Short summary
Short summary
We have investigated the adaptive response of phytoplankton growth to changing light, nutrients, and temperature over the North Pacific using two physical-biological models. We compare modeled chlorophyll and primary production from an inflexible control model (InFlexPFT), which assumes fixed carbon (C):nitrogen (N):chlorophyll (Chl) ratios, to a recently developed flexible phytoplankton functional type model (FlexPFT), which incorporates photoacclimation and variable C:N:Chl ratios.
Jens Terhaar, Thomas L. Frölicher, and Fortunat Joos
Biogeosciences, 19, 4431–4457, https://doi.org/10.5194/bg-19-4431-2022, https://doi.org/10.5194/bg-19-4431-2022, 2022
Short summary
Short summary
Estimates of the ocean sink of anthropogenic carbon vary across various approaches. We show that the global ocean carbon sink can be estimated by three parameters, two of which approximate the ocean ventilation in the Southern Ocean and the North Atlantic, and one of which approximates the chemical capacity of the ocean to take up carbon. With observations of these parameters, we estimate that the global ocean carbon sink is 10 % larger than previously assumed, and we cut uncertainties in half.
Natasha René van Horsten, Hélène Planquette, Géraldine Sarthou, Thomas James Ryan-Keogh, Nolwenn Lemaitre, Thato Nicholas Mtshali, Alakendra Roychoudhury, and Eva Bucciarelli
Biogeosciences, 19, 3209–3224, https://doi.org/10.5194/bg-19-3209-2022, https://doi.org/10.5194/bg-19-3209-2022, 2022
Short summary
Short summary
The remineralisation proxy, barite, was measured along 30°E in the southern Indian Ocean during early austral winter. To our knowledge this is the first reported Southern Ocean winter study. Concentrations throughout the water column were comparable to observations during spring to autumn. By linking satellite primary production to this proxy a possible annual timescale is proposed. These findings also suggest possible carbon remineralisation from satellite data on a basin scale.
Zhibo Shao and Ya-Wei Luo
Biogeosciences, 19, 2939–2952, https://doi.org/10.5194/bg-19-2939-2022, https://doi.org/10.5194/bg-19-2939-2022, 2022
Short summary
Short summary
Non-cyanobacterial diazotrophs (NCDs) may be an important player in fixing N2 in the ocean. By conducting meta-analyses, we found that a representative marine NCD phylotype, Gamma A, tends to inhabit ocean environments with high productivity, low iron concentration and high light intensity. It also appears to be more abundant inside cyclonic eddies. Our study suggests a niche differentiation of NCDs from cyanobacterial diazotrophs as the latter prefers low-productivity and high-iron oceans.
Coraline Leseurre, Claire Lo Monaco, Gilles Reverdin, Nicolas Metzl, Jonathan Fin, Claude Mignon, and Léa Benito
Biogeosciences, 19, 2599–2625, https://doi.org/10.5194/bg-19-2599-2022, https://doi.org/10.5194/bg-19-2599-2022, 2022
Short summary
Short summary
Decadal trends of fugacity of CO2 (fCO2), total alkalinity (AT), total carbon (CT) and pH in surface waters are investigated in different domains of the southern Indian Ocean (45°S–57°S) from ongoing and station observations regularly conducted in summer over the period 1998–2019. The fCO2 increase and pH decrease are mainly driven by anthropogenic CO2 estimated just below the summer mixed layer, as well as by a warming south of the polar front or in the fertilized waters near Kerguelen Island.
Priscilla Le Mézo, Jérôme Guiet, Kim Scherrer, Daniele Bianchi, and Eric Galbraith
Biogeosciences, 19, 2537–2555, https://doi.org/10.5194/bg-19-2537-2022, https://doi.org/10.5194/bg-19-2537-2022, 2022
Short summary
Short summary
This study quantifies the role of commercially targeted fish biomass in the cycling of three important nutrients (N, P, and Fe), relative to nutrients otherwise available in water and to nutrients required by primary producers, and the impact of fishing. We use a model of commercially targeted fish biomass constrained by fish catch and stock assessment data to assess the contributions of fish at the global scale, at the time of the global peak catch and prior to industrial fishing.
Rebecca Chmiel, Nathan Lanning, Allison Laubach, Jong-Mi Lee, Jessica Fitzsimmons, Mariko Hatta, William Jenkins, Phoebe Lam, Matthew McIlvin, Alessandro Tagliabue, and Mak Saito
Biogeosciences, 19, 2365–2395, https://doi.org/10.5194/bg-19-2365-2022, https://doi.org/10.5194/bg-19-2365-2022, 2022
Short summary
Short summary
Dissolved cobalt is present in trace amounts in seawater and is a necessary nutrient for marine microbes. On a transect from the Alaskan coast to Tahiti, we measured seawater concentrations of dissolved cobalt. Here, we describe several interesting features of the Pacific cobalt cycle including cobalt sources along the Alaskan coast and Hawaiian vents, deep-ocean particle formation, cobalt activity in low-oxygen regions, and how our samples compare to a global biogeochemical model’s predictions.
Nicolas Metzl, Claire Lo Monaco, Coraline Leseurre, Céline Ridame, Jonathan Fin, Claude Mignon, Marion Gehlen, and Thi Tuyet Trang Chau
Biogeosciences, 19, 1451–1468, https://doi.org/10.5194/bg-19-1451-2022, https://doi.org/10.5194/bg-19-1451-2022, 2022
Short summary
Short summary
During an oceanographic cruise conducted in January 2020 in the south-western Indian Ocean, we observed very low CO2 concentrations associated with a strong phytoplankton bloom that occurred south-east of Madagascar. This biological event led to a strong regional CO2 ocean sink not previously observed.
Darren R. Clark, Andrew P. Rees, Charissa M. Ferrera, Lisa Al-Moosawi, Paul J. Somerfield, Carolyn Harris, Graham D. Quartly, Stephen Goult, Glen Tarran, and Gennadi Lessin
Biogeosciences, 19, 1355–1376, https://doi.org/10.5194/bg-19-1355-2022, https://doi.org/10.5194/bg-19-1355-2022, 2022
Short summary
Short summary
Measurements of microbial processes were made in the sunlit open ocean during a research cruise (AMT19) between the UK and Chile. These help us to understand how microbial communities maintain the function of remote ecosystems. We find that the nitrogen cycling microbes which produce nitrite respond to changes in the environment. Our insights will aid the development of models that aim to replicate and ultimately project how marine environments may respond to ongoing climate change.
Martí Galí, Marcus Falls, Hervé Claustre, Olivier Aumont, and Raffaele Bernardello
Biogeosciences, 19, 1245–1275, https://doi.org/10.5194/bg-19-1245-2022, https://doi.org/10.5194/bg-19-1245-2022, 2022
Short summary
Short summary
Part of the organic matter produced by plankton in the upper ocean is exported to the deep ocean. This process, known as the biological carbon pump, is key for the regulation of atmospheric carbon dioxide and global climate. However, the dynamics of organic particles below the upper ocean layer are not well understood. Here we compared the measurements acquired by autonomous robots in the top 1000 m of the ocean to a numerical model, which can help improve future climate projections.
Marie Barbieux, Julia Uitz, Alexandre Mignot, Collin Roesler, Hervé Claustre, Bernard Gentili, Vincent Taillandier, Fabrizio D'Ortenzio, Hubert Loisel, Antoine Poteau, Edouard Leymarie, Christophe Penkerc'h, Catherine Schmechtig, and Annick Bricaud
Biogeosciences, 19, 1165–1194, https://doi.org/10.5194/bg-19-1165-2022, https://doi.org/10.5194/bg-19-1165-2022, 2022
Short summary
Short summary
This study assesses marine biological production in two Mediterranean systems representative of vast desert-like (oligotrophic) areas encountered in the global ocean. We use a novel approach based on non-intrusive high-frequency in situ measurements by two profiling robots, the BioGeoChemical-Argo (BGC-Argo) floats. Our results indicate substantial yet variable production rates and contribution to the whole water column of the subsurface layer, typically considered steady and non-productive.
Filippa Fransner, Friederike Fröb, Jerry Tjiputra, Nadine Goris, Siv K. Lauvset, Ingunn Skjelvan, Emil Jeansson, Abdirahman Omar, Melissa Chierici, Elizabeth Jones, Agneta Fransson, Sólveig R. Ólafsdóttir, Truls Johannessen, and Are Olsen
Biogeosciences, 19, 979–1012, https://doi.org/10.5194/bg-19-979-2022, https://doi.org/10.5194/bg-19-979-2022, 2022
Short summary
Short summary
Ocean acidification, a direct consequence of the CO2 release by human activities, is a serious threat to marine ecosystems. In this study, we conduct a detailed investigation of the acidification of the Nordic Seas, from 1850 to 2100, by using a large set of samples taken during research cruises together with numerical model simulations. We estimate the effects of changes in different environmental factors on the rate of acidification and its potential effects on cold-water corals.
Guorong Zhong, Xuegang Li, Jinming Song, Baoxiao Qu, Fan Wang, Yanjun Wang, Bin Zhang, Xiaoxia Sun, Wuchang Zhang, Zhenyan Wang, Jun Ma, Huamao Yuan, and Liqin Duan
Biogeosciences, 19, 845–859, https://doi.org/10.5194/bg-19-845-2022, https://doi.org/10.5194/bg-19-845-2022, 2022
Short summary
Short summary
A predictor selection algorithm was constructed to decrease the predicting error in the surface ocean partial pressure of CO2 (pCO2) mapping by finding better combinations of pCO2 predictors in different regions. Compared with previous research using the same combination of predictors in all regions, using different predictors selected by the algorithm in different regions can effectively decrease pCO2 predicting errors.
Shantelle Smith, Katye E. Altieri, Mhlangabezi Mdutyana, David R. Walker, Ruan G. Parrott, Sedick Gallie, Kurt A. M. Spence, Jessica M. Burger, and Sarah E. Fawcett
Biogeosciences, 19, 715–741, https://doi.org/10.5194/bg-19-715-2022, https://doi.org/10.5194/bg-19-715-2022, 2022
Short summary
Short summary
Ammonium is a crucial yet poorly understood component of the Southern Ocean nitrogen cycle. We attribute our finding of consistently high ammonium concentrations in the winter mixed layer to limited ammonium consumption and sustained ammonium production, conditions under which the Southern Ocean becomes a source of carbon dioxide to the atmosphere. From similar data collected over an annual cycle, we propose a seasonal cycle for ammonium in shallow polar waters – a first for the Southern Ocean.
Jannes Koelling, Dariia Atamanchuk, Johannes Karstensen, Patricia Handmann, and Douglas W. R. Wallace
Biogeosciences, 19, 437–454, https://doi.org/10.5194/bg-19-437-2022, https://doi.org/10.5194/bg-19-437-2022, 2022
Short summary
Short summary
In this study, we investigate oxygen variability in the deep western boundary current in the Labrador Sea from multiyear moored records. We estimate that about half of the oxygen taken up in the interior Labrador Sea by air–sea gas exchange during deep water formation is exported southward the same year. Our results underline the complexity of the oxygen uptake and export in the Labrador Sea and highlight the important role this region plays in supplying oxygen to the deep ocean.
Céline Ridame, Julie Dinasquet, Søren Hallstrøm, Estelle Bigeard, Lasse Riemann, France Van Wambeke, Matthieu Bressac, Elvira Pulido-Villena, Vincent Taillandier, Fréderic Gazeau, Antonio Tovar-Sanchez, Anne-Claire Baudoux, and Cécile Guieu
Biogeosciences, 19, 415–435, https://doi.org/10.5194/bg-19-415-2022, https://doi.org/10.5194/bg-19-415-2022, 2022
Short summary
Short summary
We show that in the Mediterranean Sea spatial variability in N2 fixation is related to the diazotrophic community composition reflecting different nutrient requirements among species. Nutrient supply by Saharan dust is of great importance to diazotrophs, as shown by the strong stimulation of N2 fixation after a simulated dust event under present and future climate conditions; the magnitude of stimulation depends on the degree of limitation related to the diazotrophic community composition.
Matthew P. Humphreys, Erik H. Meesters, Henk de Haas, Szabina Karancz, Louise Delaigue, Karel Bakker, Gerard Duineveld, Siham de Goeyse, Andreas F. Haas, Furu Mienis, Sharyn Ossebaar, and Fleur C. van Duyl
Biogeosciences, 19, 347–358, https://doi.org/10.5194/bg-19-347-2022, https://doi.org/10.5194/bg-19-347-2022, 2022
Short summary
Short summary
A series of submarine sinkholes were recently discovered on Luymes Bank, part of Saba Bank, a carbonate platform in the Caribbean Netherlands. Here, we investigate the waters inside these sinkholes for the first time. One of the sinkholes contained a body of dense, low-oxygen and low-pH water, which we call the
acid lake. We use measurements of seawater chemistry to work out what processes were responsible for forming the acid lake and discuss the consequences for the carbonate platform.
Gerhard Fischer, Oscar E. Romero, Johannes Karstensen, Karl-Heinz Baumann, Nasrollah Moradi, Morten Iversen, Götz Ruhland, Marco Klann, and Arne Körtzinger
Biogeosciences, 18, 6479–6500, https://doi.org/10.5194/bg-18-6479-2021, https://doi.org/10.5194/bg-18-6479-2021, 2021
Short summary
Short summary
Low-oxygen eddies in the eastern subtropical North Atlantic can form an oasis for phytoplankton growth. Here we report on particle flux dynamics at the oligotrophic Cape Verde Ocean Observatory. We observed consistent flux patterns during the passages of low-oxygen eddies. We found distinct flux peaks in late winter, clearly exceeding background fluxes. Our findings suggest that the low-oxygen eddies sequester higher organic carbon than expected for oligotrophic settings.
Matthieu Bressac, Thibaut Wagener, Nathalie Leblond, Antonio Tovar-Sánchez, Céline Ridame, Vincent Taillandier, Samuel Albani, Sophie Guasco, Aurélie Dufour, Stéphanie H. M. Jacquet, François Dulac, Karine Desboeufs, and Cécile Guieu
Biogeosciences, 18, 6435–6453, https://doi.org/10.5194/bg-18-6435-2021, https://doi.org/10.5194/bg-18-6435-2021, 2021
Short summary
Short summary
Phytoplankton growth is limited by the availability of iron in about 50 % of the ocean. Atmospheric deposition of desert dust represents a key source of iron. Here, we present direct observations of dust deposition in the Mediterranean Sea. A key finding is that the input of iron from dust primarily occurred in the deep ocean, while previous studies mainly focused on the ocean surface. This new insight will enable us to better represent controls on global marine productivity in models.
Léo Berline, Andrea Michelangelo Doglioli, Anne Petrenko, Stéphanie Barrillon, Boris Espinasse, Frederic A. C. Le Moigne, François Simon-Bot, Melilotus Thyssen, and François Carlotti
Biogeosciences, 18, 6377–6392, https://doi.org/10.5194/bg-18-6377-2021, https://doi.org/10.5194/bg-18-6377-2021, 2021
Short summary
Short summary
While the Ionian Sea is considered a nutrient-depleted and low-phytoplankton biomass area, it is a crossroad for water mass circulation. In the central Ionian Sea, we observed a strong contrast in particle distribution across a ~100 km long transect. Using remote sensing and Lagrangian simulations, we suggest that this contrast finds its origin in the long-distance transport of particles from the north, west and east of the Ionian Sea, where phytoplankton production was more intense.
Anna Teruzzi, Giorgio Bolzon, Laura Feudale, and Gianpiero Cossarini
Biogeosciences, 18, 6147–6166, https://doi.org/10.5194/bg-18-6147-2021, https://doi.org/10.5194/bg-18-6147-2021, 2021
Short summary
Short summary
During summer, maxima of phytoplankton chlorophyll concentration (DCM) occur in the subsurface of the Mediterranean Sea and can play a relevant role in carbon sequestration into the ocean interior. A numerical model based on in situ and satellite observations provides insights into the range of DCM conditions across the relatively small Mediterranean Sea and shows a western DCM that is 25 % shallower and with a higher phytoplankton chlorophyll concentration than in the eastern Mediterranean.
Elvira Pulido-Villena, Karine Desboeufs, Kahina Djaoudi, France Van Wambeke, Stéphanie Barrillon, Andrea Doglioli, Anne Petrenko, Vincent Taillandier, Franck Fu, Tiphanie Gaillard, Sophie Guasco, Sandra Nunige, Sylvain Triquet, and Cécile Guieu
Biogeosciences, 18, 5871–5889, https://doi.org/10.5194/bg-18-5871-2021, https://doi.org/10.5194/bg-18-5871-2021, 2021
Short summary
Short summary
We report on phosphorus dynamics in the surface layer of the Mediterranean Sea. Highly sensitive phosphate measurements revealed vertical gradients above the phosphacline. The relative contribution of diapycnal fluxes to total external supply of phosphate to the mixed layer decreased towards the east, where atmospheric deposition dominated. Taken together, external sources of phosphate contributed little to total supply, which was mainly sustained by enzymatic hydrolysis of organic phosphorus.
Zouhair Lachkar, Michael Mehari, Muchamad Al Azhar, Marina Lévy, and Shafer Smith
Biogeosciences, 18, 5831–5849, https://doi.org/10.5194/bg-18-5831-2021, https://doi.org/10.5194/bg-18-5831-2021, 2021
Short summary
Short summary
This study documents and quantifies a significant recent oxygen decline in the upper layers of the Arabian Sea and explores its drivers. Using a modeling approach we show that the fast local warming of sea surface is the main factor causing this oxygen drop. Concomitant summer monsoon intensification contributes to this trend, although to a lesser extent. These changes exacerbate oxygen depletion in the subsurface, threatening marine habitats and altering the local biogeochemistry.
France Van Wambeke, Vincent Taillandier, Karine Desboeufs, Elvira Pulido-Villena, Julie Dinasquet, Anja Engel, Emilio Marañón, Céline Ridame, and Cécile Guieu
Biogeosciences, 18, 5699–5717, https://doi.org/10.5194/bg-18-5699-2021, https://doi.org/10.5194/bg-18-5699-2021, 2021
Short summary
Short summary
Simultaneous in situ measurements of (dry and wet) atmospheric deposition and biogeochemical stocks and fluxes in the sunlit waters of the open Mediterranean Sea revealed complex physical and biological processes occurring within the mixed layer. Nitrogen (N) budgets were computed to compare the sources and sinks of N in the mixed layer. The transitory effect observed after a wet dust deposition impacted the microbial food web down to the deep chlorophyll maximum.
Frédéric Gazeau, France Van Wambeke, Emilio Marañón, Maria Pérez-Lorenzo, Samir Alliouane, Christian Stolpe, Thierry Blasco, Nathalie Leblond, Birthe Zäncker, Anja Engel, Barbara Marie, Julie Dinasquet, and Cécile Guieu
Biogeosciences, 18, 5423–5446, https://doi.org/10.5194/bg-18-5423-2021, https://doi.org/10.5194/bg-18-5423-2021, 2021
Short summary
Short summary
Our study shows that the impact of dust deposition on primary production depends on the initial composition and metabolic state of the tested community and is constrained by the amount of nutrients added, to sustain both the fast response of heterotrophic prokaryotes and the delayed one of phytoplankton. Under future environmental conditions, heterotrophic metabolism will be more impacted than primary production, therefore reducing the capacity of surface waters to sequester anthropogenic CO2.
Loes J. A. Gerringa, Martha Gledhill, Indah Ardiningsih, Niels Muntjewerf, and Luis M. Laglera
Biogeosciences, 18, 5265–5289, https://doi.org/10.5194/bg-18-5265-2021, https://doi.org/10.5194/bg-18-5265-2021, 2021
Short summary
Short summary
For 3 decades, competitive ligand exchange–adsorptive cathodic stripping voltammetry was used to estimate the Fe-binding capacity of organic matter in seawater. In this paper the performance of the competing ligands is compared through the analysis of a series of model ligands.
The main finding of this paper is that the determined speciation parameters are not independent of the application, making interpretation of Fe speciation data more complex than it was thought before.
Frédéric Gazeau, Céline Ridame, France Van Wambeke, Samir Alliouane, Christian Stolpe, Jean-Olivier Irisson, Sophie Marro, Jean-Michel Grisoni, Guillaume De Liège, Sandra Nunige, Kahina Djaoudi, Elvira Pulido-Villena, Julie Dinasquet, Ingrid Obernosterer, Philippe Catala, and Cécile Guieu
Biogeosciences, 18, 5011–5034, https://doi.org/10.5194/bg-18-5011-2021, https://doi.org/10.5194/bg-18-5011-2021, 2021
Short summary
Short summary
This paper shows that the impacts of Saharan dust deposition in different Mediterranean basins are as strong as those observed in coastal waters but differed substantially between the three tested stations, differences attributed to variable initial metabolic states. A stronger impact of warming and acidification on mineralization suggests a decreased capacity of Mediterranean surface communities to sequester CO2 following the deposition of atmospheric particles in the coming decades.
Carolin R. Löscher
Biogeosciences, 18, 4953–4963, https://doi.org/10.5194/bg-18-4953-2021, https://doi.org/10.5194/bg-18-4953-2021, 2021
Short summary
Short summary
The Bay of Bengal (BoB) is classically seen as an ocean region with low primary production, which has been predicted to decrease even further. Here, the importance of such a trend is used to explore what could happen to the BoB's low-oxygen core waters if primary production decreases. Lower biological production leads to less oxygen loss in deeper waters by respiration; thus it could be that oxygen will not further decrease and the BoB will not become anoxic, different to other low-oxygen areas.
Bo Liu, Katharina D. Six, and Tatiana Ilyina
Biogeosciences, 18, 4389–4429, https://doi.org/10.5194/bg-18-4389-2021, https://doi.org/10.5194/bg-18-4389-2021, 2021
Short summary
Short summary
We incorporate a new representation of the stable carbon isotope 13C in a global ocean biogeochemistry model. The model well reproduces the present-day 13C observations. We find a recent observation-based estimate of the oceanic 13C Suess effect (the decrease in 13C/12C ratio due to uptake of anthropogenic CO2; 13CSE) possibly underestimates 13CSE by 0.1–0.26 per mil. The new model will aid in better understanding the past ocean state via comparison to 13C/12C measurements from sediment cores.
Neil J. Wyatt, Angela Milne, Eric P. Achterberg, Thomas J. Browning, Heather A. Bouman, E. Malcolm S. Woodward, and Maeve C. Lohan
Biogeosciences, 18, 4265–4280, https://doi.org/10.5194/bg-18-4265-2021, https://doi.org/10.5194/bg-18-4265-2021, 2021
Short summary
Short summary
Using data collected during two expeditions to the South Atlantic Ocean, we investigated how the interaction between external sources and biological activity influenced the availability of the trace metals zinc and cobalt. This is important as both metals play essential roles in the metabolism and growth of phytoplankton and thus influence primary productivity of the oceans. We found seasonal changes in both processes that helped explain upper-ocean trace metal cycling.
Hannah L. Bourne, James K. B. Bishop, Elizabeth J. Connors, and Todd J. Wood
Biogeosciences, 18, 3053–3086, https://doi.org/10.5194/bg-18-3053-2021, https://doi.org/10.5194/bg-18-3053-2021, 2021
Short summary
Short summary
To learn how the biological carbon pump works in productive coastal upwelling systems, four autonomous carbon flux explorers measured carbon flux through the twilight zone beneath an offshore-flowing filament of biologically productive water. Strikingly different particle classes dominated the carbon fluxes during successive stages of the filament evolution over 30 d. Both flux and transfer efficiency were far greater than expected, suggesting an outsized filament impact in California waters.
Matthieu Roy-Barman, Lorna Foliot, Eric Douville, Nathalie Leblond, Fréderic Gazeau, Matthieu Bressac, Thibaut Wagener, Céline Ridame, Karine Desboeufs, and Cécile Guieu
Biogeosciences, 18, 2663–2678, https://doi.org/10.5194/bg-18-2663-2021, https://doi.org/10.5194/bg-18-2663-2021, 2021
Short summary
Short summary
The release of insoluble elements such as aluminum (Al), iron (Fe), rare earth elements (REEs), thorium (Th) and protactinium (Pa) when Saharan dust falls over the Mediterranean Sea was studied during tank experiments under present and future climate conditions. Each element exhibited different dissolution kinetics and dissolution fractions (always lower than a few percent). Changes in temperature and/or pH under greenhouse conditions lead to a lower Th release and a higher light REE release.
Stéphanie H. M. Jacquet, Dominique Lefèvre, Christian Tamburini, Marc Garel, Frédéric A. C. Le Moigne, Nagib Bhairy, and Sophie Guasco
Biogeosciences, 18, 2205–2212, https://doi.org/10.5194/bg-18-2205-2021, https://doi.org/10.5194/bg-18-2205-2021, 2021
Short summary
Short summary
We present new data concerning the relation between biogenic barium (Baxs, a tracer of carbon remineralization at mesopelagic depths), O2 consumption and prokaryotic heterotrophic production (PHP) in the Mediterranean Sea. The purpose of this paper is to improve our understanding of the relation between Baxs, PHP and O2 and to test the validity of the Dehairs transfer function in the Mediterranean Sea. This relation has never been tested in the Mediterranean Sea.
Natacha Le Grix, Jakob Zscheischler, Charlotte Laufkötter, Cecile S. Rousseaux, and Thomas L. Frölicher
Biogeosciences, 18, 2119–2137, https://doi.org/10.5194/bg-18-2119-2021, https://doi.org/10.5194/bg-18-2119-2021, 2021
Short summary
Short summary
Marine ecosystems could suffer severe damage from the co-occurrence of a marine heat wave with extremely low chlorophyll concentration. Here, we provide a first assessment of compound marine heat wave and
low-chlorophyll events in the global ocean from 1998 to 2018. We reveal hotspots of these compound events in the equatorial Pacific and in the Arabian Sea and show that they mostly occur in summer at high latitudes and their frequency is modulated by large-scale modes of climate variability.
Cited articles
Abbott, M. R., Richman, J. G., and Bartlett, J. S.: The spring bloom in the
Antarctic Polar Frontal Zone as observed from a mesoscale array of
bio-optical sensors. Deep-Sea Res. Pt. II, 47, 3285–3314,
https://doi.org/10.1016/S0967-0645(00)00069-2, 2000.
Abelmann, A., Gersonde, R., Cortese, G., Kuhn, G., and Smetacek, V.:
Extensive phytoplankton blooms in the Atlantic sector of the glacial
Southern Ocean, Paleoceanography, 21, PA1013, https://doi.org/10.1029/2005PA001199,
2006.
Abraham, E. R., Law, C. S., Boyd, P. W., Lavender, S. J., Maldonado, M.
T., and Bowie, A. R.: Importance of stirring in the development of an
iron-fertilized phytoplankton bloom, Nature, 407, 727–730,
https://doi.org/10.1038/35037555, 2000.
ACE CRC: Position Analysis: Ocean Fertilisation: Science and Policy Issues,
ACE CRC, Hobart, 2008.
ACE CRC: Position Analysis: Ocean Fertilisation, ACE CRC, Hobart, 2015.
Aiken, J., Hardman-Mountford, N. J., Barlow, R., Fishwick, J., Hirata, T.,
and Smyth, T.: Functional links between bioenergetics and bio-optical traits
of phytoplankton taxonomic groups: an overarching hypothesis with
applications for ocean colour remote sensing, J. Plankton Res., 30, 165–181,
https://doi.org/10.1093/plankt/fbm098, 2008.
Anderson, M. A. and Morel, F. M. M.: The influence of aqueous iron chemistry
on the uptake of iron by the coastal diatom Thalassiosira weissflogii,
Limnol. Oceanogr., 27, 789–813, https://doi.org/10.4319/lo.1982.27.5.0789, 1982.
Aono, T., Yamada, M., Kudo, I., Imai, K., Nojiri, Y., and Tsuda, A.: Export
fluxes of particulate organic carbon estimated from 234Th/238U
disequilibrium during the Subarctic Pacific Iron Experiment for Ecosystem
Dynamics Study (SEEDS 2001), Prog. Oceanogr., 64, 263–282,
https://doi.org/10.1016/j.pocean.2005.02.013, 2005.
Aramaki, T., Nojiri, Y., and Imai, K.: Behavior of particulate materials
during iron fertilization experiments in the Western Subarctic Pacific
(SEEDS and SEEDS II), Deep-Sea Res. Pt. II, 56, 2875–2888,
https://doi.org/10.1016/j.dsr2.2009.07.005, 2009.
Arrieta, J. M., Weinbauer, M. G., Lute, C., and Herndl, G. J.: Response of
bacterioplankton to iron fertilization in the Southern Ocean, Limnol.
Oceanogr., 49, 799–808, https://doi.org/10.4319/lo.2004.49.3.0799, 2004.
Assmy, P., Henjes, J., Klaas, C., and Smetacek, V.: Mechanisms determining
species dominance in a phytoplankton bloom induced by the iron fertilization
experiment EisenEx in the Southern Ocean, Deep-Sea Res. Pt. I, 54, 340–362,
https://doi.org/10.1016/j.dsr.2006.12.005, 2007.
Assmy, P., Smetacek, V., Montresor, M., Klaas, C., Henjes, J., Strass, V.
H., Arrieta, J. M., Bathmann, U., Berg, G. M., Breitbarth, E., Cisewski, B.,
Friedrichs, L., Fuchs, N., Herndl, G. J., Jansen, S., Kragefsky, S., Latasa,
M., Peeken, I., Rottgers, R., Scharek, R., Schuller, S. E., Steigenberger,
S., Webb, A., and Wolf-Gladrow, D.: Thick-shelled, grazer-protected diatoms
decouple ocean carbon and silicon cycles in the iron-limited Antarctic
Circumpolar Current, P. Natl. Acad. Sci. USA, 110, 20633–20638,
https://doi.org/10.1073/pnas.1309345110, 2013.
Aumont, O. and Bopp, L.: Globalizing results from ocean in situ iron
fertilization studies, Global Biogeochem. Cy., 20, GB2017,
https://doi.org/10.1029/2005GB002591, 2006.
Bakker, D. C. E., Watson, A. J., and Law, C. S.: Southern Ocean iron
enrichment promotes inorganic carbon drawdown, Deep-Sea Res. Pt. II, 48,
2483–2507, https://doi.org/10.1016/S0967-0645(01)00005-4, 2001.
Bakker, D. C. E., Bozec, Y., Nightingale, P. D., Goldson, L., Messias,
M.-J., de Baar, H. J. W., Liddicoat, M., Skjelvan, I., Strass, V., and
Watson, A. J.: Iron and mixing affect biological carbon uptake in SOIREE and
EisenEx, two Southern Ocean iron fertilisation experiments, Deep-Sea Res.
Pt. I, 52, 1001–1019, https://doi.org/10.1016/j.dsr.2004.11.015, 2005.
Bange, H. W.: New Directions: The importance of oceanic nitrous oxide
emissions, Atmos. Environ., 40, 198–199, https://doi.org/10.1016/j.atmosenv.2005.09.030,
2006.
Barber, R. T. and Hiscock, M. R.: A rising tide lifts all phytoplankton:
Growth response of other phytoplankton taxa in diatom-dominated blooms,
Global Biogeochem. Cy., 20, GB4S03, https://doi.org/10.1029/2006GB002726, 2006.
Barnola, J. M., Raynaud, D., Korotkevich, Y. S., and Lorius, C.: Vostok ice
core provides 160,000-year record of atmospheric CO2, Nature, 329,
408–414, https://doi.org/10.1038/329408a0, 1987.
Behrenfeld, M. J., Bale, A. J., Kolber, Z. S., Aiken, J., and Falkowski, P.
G.: Confirmation of Iron Limitation of Phytoplankton Photosynthesis in the
Equatorial Pacific-Ocean, Nature, 383, 508–511, https://doi.org/10.1038/383508a0, 1996.
Belviso, S., Bopp, L., Mosseri, J., Tedetti, M., Garcia, N., Griffiths, B.,
Joux, F., Obernosterer, I., Uitz, J., and Veldhuis, M. J. W.: Effect of
natural iron fertilisation on the distribution of DMS and DMSP in the Indian
sector of the Southern Ocean, Deep-Sea Res. Pt. II, 55, 893–900,
https://doi.org/10.1016/j.dsr2.2007.12.040, 2008.
Berg, G. M., Mills, M. M., Long, M. C., Bellerby, R., Strass, V., Savoye,
N., Rottgers, R., Croot, P. L., Webb, A., and Arrigo, K. R.: Variation in
particulate C and N isotope composition following iron fertilization in two
successive phytoplankton communities in the Southern Ocean, Global
Biogeochem. Cy., 25, GB3013, https://doi.org/10.1029/2010GB003824, 2011.
Bidigare, R. R., Hanson, K. L., Buesseler, K. O., Wakeham, S. G., Freeman,
K. H., Pancost, R. D., Millero, F. J., Steinberg, P., Popp, B. N., Latasa,
M., Landry, M. R., and Laws, E. A.: Iron-stimulated changes in 13C
fractionation and export by equatorial Pacific phytoplankton: Toward a
paleogrowth rate proxy, Paleoceanography, 14, 589–595,
https://doi.org/10.1029/1999PA900026, 1999.
Bishop, J. K. B., Wood, T. J., Davis, R. E., and Sherman, J. T.: Robotic
Observations of Enhanced Carbon Biomass and Export at 55∘ S During SOFeX,
Science, 304, 417–420, https://doi.org/10.1126/science.1087717, 2004.
Blain, S., Queguiner, B., Armand, L., Belviso, S., Bombled, B., Bopp, L.,
Bowie, A., Brunet, C., Brussaard, C., Carlotti, F., Christaki, U., Corbiere,
A., Durand, I., Ebersbach, F., Fuda, J.-L., Garcia, N., Gerringa, L.,
Griffiths, B., Guigue, C., Guillerm, C., Jacquet, S., Jeandel, C., Laan, P.,
Lefevre, D., Lo Monaco, C., Malits, A., Mosseri, J., Obernosterer, I., Park,
Y.-H., Picheral, M., Pondaven, P., Remenyi, T., Sandroni, V., Sarthou, G.,
Savoye, N., Scouarnec, L., Souhaut, M., Thuiller, D., Timmermans, K., Trull,
T., Uitz, J., van Beek, P., Veldhuis, M., Vincent, D., Viollier, E., Vong,
L., and Wagener, T.: Effect of natural iron fertilization on carbon
sequestration in the Southern Ocean, Nature, 446, 1070–1074,
https://doi.org/10.1038/nature05700, 2007.
Blain, S., Sarthou, G., and Laan, P.: Distribution of dissolved iron during
the natural iron-fertilization experiment KEOPS (Kerguelen Plateau, Southern
Ocean), Deep-Sea Res. Pt. II, 55, 594–605, https://doi.org/10.1016/j.dsr2.2007.12.028,
2008.
Blain, S., Capparos, J., Guéneuguès, A., Obernosterer, I., and Oriol, L.:
Distributions and stoichiometry of dissolved nitrogen and phosphorus in the
iron-fertilized region near Kerguelen (Southern Ocean), Biogeosciences, 12, 623–635, https://doi.org/10.5194/bg-12-623-2015, 2015.
Bopp, L., Aumont, O., Belviso, S., and Blain, S.: Modelling the effect of
iron fertilization on dimethylsulphide emissions in the Southern Ocean,
Deep-Sea Res. Pt. II, 55, 901–912, https://doi.org/10.1016/j.dsr2.2007.12.002, 2008.
Bowie, A. R., Maldonado, M. T., Frew, R. D., Croot, P. L., Achterberg, E.
P., Mantoura, R. F. C., Worsfold, P. J., Law, C. S., and Boyd, P. W.: The
fate of added iron during a mesoscale fertilisation experiment in the
Southern Ocean, Deep-Sea Res. Pt. II, 48, 2703–2743,
https://doi.org/10.1016/S0967-0645(01)00015-7, 2001.
Boyd, P. W.: The role of iron in the biogeochemistry of the Southern Ocean
and equatorial Pacific: a comparison of in situ iron enrichments, Deep-Sea
Res. Pt. II, 49, 1803–1821, https://doi.org/10.1016/S0967-0645(02)00013-9, 2002.
Boyd, P. W. and Abraham, E. R.: Iron-mediated changes in phytoplankton
photosynthetic competence during SOIREE, Deep-Sea Res. Pt. II, 48,
2529–2550, https://doi.org/10.1016/S0967-0645(01)00007-8, 2001.
Boyd, P. W. and Law, C. S.: The Southern Ocean Iron RElease Experiment
(SOIREE) – introduction and summary, Deep-Sea Res. Pt. II, 48, 2425–2438,
https://doi.org/10.1016/S0967-0645(01)00002-9, 2001.
Boyd, P. W., Watson, A. J., Law, C. S., Abraham, E. R., Trull, T., Murdoch,
R., Bakker, D. C. E., Bowie, A. R., Buesseler, K. O., Chang, H., Charette,
M., Croot, P., Downing, K., Frew, R., Gall, M., Hadfield, M., Hall, J.,
Harvey, M., Jameson, G., LaRoche, J., Liddicoat, M., Ling, R., Maldonado, M.
T., McKay, R. M., Nodder, S., Pickmere, S., Pridmore, R., Rintoul, S., Safi,
K., Sutton, P., Strzepek, R., Tanneberger, K., Turner, S., Waite, A., and
Zeldis, J.: A mesoscale phytoplankton bloom in the polar Southern Ocean
stimulated by iron fertilization, Nature, 407, 695–702,
https://doi.org/10.1038/35037500, 2000.
Boyd, P. W., Law, C. S., Wong, C. S., Nojiri, Y., Tsuda, A., Levasseur, M.,
Takeda, S., Rivkin, R., Harrison, P. J., Strzepek, R., Gower, J., McKay, R.
M., Abraham, E., Arychuk, M., Barwell-Clarke, J., Crawford, W., Crawford,
D., Hale, M., Harada, K., Johnson, K., Kiyosawa, H., Kudo, I., Marchetti,
A., Miller, W., Needoba, J., Nishioka, J., Ogawa, H., Page, J., Robert, M.,
Saito, H., Sastri, A., Sherry, N., Soutar, T., Sutherland, N., Taira, Y.,
Whitney, F., Wong, S.-K. E., and Yoshimura, T.: The decline and fate of an
iron-induced subarctic phytoplankton bloom, Nature, 428, 549–553,
https://doi.org/10.1038/nature02437, 2004.
Boyd, P. W., Strzepek, R., Takeda, S., Jackson, G., Wong, C. S., McKay, R.
M., Law, C., Kiyosawa, H., Saito, H., Sherry, N., Johnson, K., Gower, J.,
and Ramaiah, N.: The evolution and termination of an iron-induced mesoscale
bloom in the northeast subarctic Pacific, Limnol. Oceanogr., 50, 1872–1886,
https://doi.org/10.4319/lo.2005.50.6.1872, 2005.
Boyd, P. W., Jickells, T., Law, C. S., Blain, S., Boyle, E. A., Buesseler,
K. O., Coale, K. H., Cullen, J. J., de Baar, H. J. W., Follows, M., Harvey,
M., Lancelot, C., Levasseur, M., Owens, N. P. J., Pollard, R., Rivkin, R.
B., Sarmiento, J., Schoemann, V., Smetacek, V., Takeda, S., Tsuda, A.,
Turner, S., and Watson, A. J.: Mesoscale Iron Enrichment Experiments
1993–2005: Synthesis and Future Directions, Science, 315, 612–617,
https://doi.org/10.1126/science.1131669, 2007.
Bozec, Y., Bakker, D. C. E., Hartmann, C., Thomas, H., Bellerby, R. G. J.,
Nightingale, P. D., Riebesell, U., Watson, A. J., and de Baar, H. J. W.: The
CO2 system in a Redfield context during an iron enrichment experiment
in the Southern Ocean, Mar. Chem., 95, 89–105,
https://doi.org/10.1016/j.marchem.2004.08.004, 2005.
Brand, L. E.: Minimum iron requirements in marine phytoplankton and the
implications for the biogeochemical control of new production, Limnol.
Oceanogr., 36, 1756–1772, https://doi.org/10.4319/lo.1991.36.8.1756, 1991.
Briggs, N., Perry, M. J., Cetinić, I., Lee, C., D'Asaro, E., Gray, A.
M., and Rehm, E.: High-resolution observations of aggregate flux during a
sub-polar North Atlantic spring bloom, Deep-Sea Res. Pt. I, 58, 1031–1039,
https://doi.org/10.1016/j.dsr.2011.07.007, 2011.
Broecker, W. S.: Ocean chemistry during glacial time, Geochim. Cosmochim.
Ac., 46, 1689–1705, https://doi.org/10.1016/0016-7037(82)90110-7, 1982.
Broecker, W. S. and Henderson, G. M.: The sequence of events surrounding
Termination II and their implications for the cause of glacial-interglacial
CO2 changes, Paleoceanography, 13, 352–364, https://doi.org/10.1029/98PA00920,
1998.
Buesseler, K. O.: Do upper-ocean sediment traps provide an accurate record
of particle flux?, Nature, 353, 420–423, https://doi.org/10.1038/353420a0, 1991.
Buesseler, K. O.: The decoupling of production and particulate export in the
surface ocean, Global Biogeochem. Cy., 12, 297–310, https://doi.org/10.1029/97GB03366,
1998.
Buesseler, K. O. and Boyd, P. W.: Will Ocean Fertilization Work?, Science,
300, 67–68, https://doi.org/10.1126/science.1082959, 2003.
Buesseler, K. O., Steinberg, D. K., Michaels, A. F., Johnson, R. J.,
Andrews, J. E., Valdes, J. R., and Price, J. F.: A comparison of the
quantity and quality of material caught in a neutrally buoyant versus
surface-tethered sediment trap, Deep-Sea Res. Pt. I, 47, 277–294,
https://doi.org/10.1016/s0967-0637(99)00056-4, 2000.
Buesseler, K. O., Andrews, J. E., Pike, S. M., and Charette, M. A.: The
Effects of Iron Fertilization on Carbon Sequestration in the Southern Ocean,
Science, 304, 414–417, https://doi.org/10.1126/science.1086895, 2004.
Buesseler, K. O., Andrews, J. E., Pike, S. M., Charette, M. A., Goldson, L.
E., Brzezinski, M. A., and Lance, V. P.: Particle export during the Southern
Ocean Iron Experiment (SOFeX), Limnol. Oceanogr., 1, 311–327,
https://doi.org/10.4319/lo.2005.50.1.0311, 2005.
Buesseler, K. O., Benitez-Nelson, C. R., Moran, S. B., Burd, A., Charette,
M., Cochran, J. K., Coppola, L., Fisher, N. S., Fowler, S. W., Gardner, W.
D., Guo, L. D., Gustafsson, O., Lamborg, C., Masque, P., Miquel, J. C.,
Passow, U., Santschi, P. H., Savoye, N., Stewart, G., and Trull, T.: An
assessment of particulate organic carbon to thorium-234 ratios in the ocean
and their impact on the application of 234Th as a POC flux proxy, Mar.
Chem., 100, 213–233, https://doi.org/10.1016/j.marchem.2005.10.013, 2006.
Buesseler, K. O., Antia, A. N., Chen, M., Fowler, S. W., Gardner, W. D.,
Gustafsson, O., Harada, K., Michaels, A. F., Rutgers v. d. Loeff, M., Sarin,
M., Steinberg, D. K., and Trull, T.: An assessment of the use of sediment
traps for estimating upper ocean particle fluxes, J. Mar. Res., 65,
345–416, https://doi.org/10.1357/002224007781567621, 2007.
Butler, W. L.: Energy Distribution in the Photochemical Apparatus of
Photosynthesis, Ann. Rev. Plant Physio., 29, 345–378,
https://doi.org/10.1146/annurev.pp.29.060178.002021, 1978.
Cavagna, A. J., Fripiat, F., Dehairs, F., Wolf-Gladrow, D., Cisewski, B.,
Savoye, N., Andre, L., and Cardinal, D.: Silicon uptake and supply during a
Southern Ocean iron fertilization experiment (EIFEX) tracked by Si isotopes,
Limnol. Oceanogr., 56, 147–160, https://doi.org/10.4319/lo.2011.56.1.0147, 2011.
Cavender-Bares, K. K., Mann, E. L., Chisholm, S. W., Ondrusek, M. E., and
Bidigare, R. R.: Differential response of equatorial Pacific phytoplankton
to iron fertilization, Limnol. Oceanogr., 44, 237–246,
https://doi.org/10.4319/lo.1999.44.2.0237, 1999.
Charette, M. A. and Buesseler, K. O.: Does iron fertilization lead to rapid
carbon export in the Southern Ocean?, Geochem. Geophys. Geosyst., 1,
2000GC000069, https://doi.org/10.1029/2000GC000069, 2000.
Charlson, R. J., Lovelock, J. E., Andreae, M. O., and Warren, S. G.: Oceanic
phytoplankton, atmospheric sulphur, cloud albedo and climate, Nature, 326,
655–661, https://doi.org/10.1038/326655a0, 1987.
Chisholm, S. W., Falkowski, P. G., and Cullen, J. J.: Dis-Crediting Ocean
Fertilization, Science, 294, 309–310, https://doi.org/10.1126/science.1065349, 2001.
Cisewski, B., Strass, V. H., Losch, M., and Prandke, H.: Mixed layer
analysis of a mesoscale eddy in the Antarctic Polar Front Zone, J. Geophys.
Res., 113, C05017, https://doi.org/10.1029/2007JC004372, 2008.
Coale, K. H. and Bruland, K. W.: 234Th: 238U disequilibria within the
California Current, Limnol. Oceanogr., 30, 22–33,
https://doi.org/10.4319/lo.1985.30.1.0022, 1985.
Coale, K. H., Johnson, K. S., Fitzwater, S. E., Gordon, R. M., Tanner, S.,
Chavez, F. P., Ferioli, L., Sakamoto, C., Rogers, P., Millero, F.,
Steinberg, P., Nightingale, P., Cooper, D., Cochlan, W. P., Landry, M. R.,
Constantinou, J., Rollwagen, G., Trasvina, A., and Kudela, R.: A massive
phytoplankton bloom induced by an ecosystem-scale iron fertilization
experiment in the equatorial Pacific Ocean, Nature, 383, 495–501,
https://doi.org/10.1038/383495a0, 1996.
Coale, K. H., Johnson, K. S., Fitzwater, S. E., Blain, S. P. G., Stanton, T.
P., and Coley, T. L.: IronEx-I, an in situ iron-enrichment experiment:
Experimental design, implementation and results, Deep-Sea Res. Pt. II, 45,
919–945, https://doi.org/10.1016/S0967-0645(98)00019-8, 1998.
Coale, K. H., Johnson, K. S., Chavez, F. P., Buesseler, K. O., Barber, R.
T., Brzezinski, M. A., Cochlan, W. P., Millero, F. J., Falkowski, P. G.,
Bauer, J. E., Wanninkhof, R. H., Kudela, R. M., Altabet, M. A., Hales, B.
E., Takahashi, T., Landry, M. R., Bidigare, R. R., Wang, X., Chase, Z.,
Strutton, P. G., Friederich, G. E., Gorbunov, M. Y., Lance, V. P., Hilting,
A. K., Hiscock, M. R., Demarest, M., Hiscock, W. T., Sullivan, K. F.,
Tanner, S. J., Gordon, R. M., Hunter, C. N., Elrod, V. A., Fitzwater, S. E.,
Jones, J. L., Tozzi, S., Koblizek, M., Roberts, A. E., Herndon, J.,
Brewster, J., Ladizinsky, N., Smith, G., Cooper, D., Timothy, D., Brown, S.
L., Selph, K. E., Sheridan, C. C., Twining, B. S., and Johnson, Z. I.:
Southern Ocean Iron Enrichment Experiment: Carbon Cycling in High- and
Low-Si Waters, Science, 304, 408–414, https://doi.org/10.1126/science.1089778, 2004.
Cochlan, W. P.: The heterotrophic bacterial response during a mesoscale iron
enrichment experiment (IronEx II) in the eastern Equatorial Pacific Ocean,
Limnol. Oceanogr., 46, 428–435, https://doi.org/10.4319/lo.2001.46.2.0428, 2001.
Cooper, D. J., Watson, A. J., and Nightingale, P. D.: Large decrease in
ocean-surface CO2 fugacity in response to in situ iron fertilization,
Nature, 383, 511–513, https://doi.org/10.1038/383511a0, 1996.
Croot, P. L., Bluhm, K., Schlosser, C., Streu, P., Breitbarth, E., Frew, R.,
and Van Ardelan, M.: Regeneration of Fe(II) during EIFeX and SOFeX, Geophys.
Res. Lett., 35, L19606, https://doi.org/10.1029/2008GL035063, 2008.
Cullen, J. J.: Status of the iron hypothesis after the Open-Ocean Enrichment
Experiment, Limnol. Oceanogr., 40, 1336–1343, https://doi.org/10.4319/lo.1995.40.7.1336,
1995.
Currie, K. I., Macaskill, B., Reid, M. R., and Law, C. S.: Processes
governing the carbon chemistry during the SAGE experiment, Deep-Sea Res. Pt.
II, 58, 851–860, https://doi.org/10.1016/j.dsr2.2010.10.023, 2011.
Dacey, J. W. H. and Wakeham, S. G.: Oceanic dimethylsulfide: production during
zooplankton grazing on phytoplankton, Science, 233, 1314–1316,
https://doi.org/10.1126/science.233.4770.1314, 1986.
Dall'Olmo, G. and Mork, K. A.: Carbon export by small particles in the
Norwegian Sea, Geophys. Res. Lett., 41, 2921–2927, https://doi.org/10.1002/2014GL059244,
2014.
de Baar, H. J. W., de Jong, J. T. M., Bakker, D. C. E., Loscher, B. M., Veth,
C., Bathmann, U., and Smetacek, V.: Importance of iron for plankton blooms
and carbon dioxide drawdown in the Southern Ocean, Nature, 373, 412–415,
https://doi.org/10.1038/373412a0, 1995.
de Baar, H. J. W., Boyd, P. W., Coale, K. H., Landry, M. R., Tsuda, A.,
Assmy, P., Bakker, D. C. E., Bozec, Y., Barber, R. T., Brzezinski, M. A.,
Buesseler, K. O., Boye, M., Croot, P. L., Gervais, F., Gorbunov, M. Y.,
Harrison, P. J., Hiscock, W. T., Laan, P., Lancelot, C., Law, C. S.,
Levasseur, M., Marchetti, A., Millero, F. J., Nishioka, J., Nojiri, Y., van
Oijen, T., Riebesell, U., Rijkenberg, M. J. A., Saito, H., Takeda, S.,
Timmermans, K. R., Veldhuis, M. J. W., Waite, A. M., and Wong, C.-S.:
Synthesis of iron fertilization experiments: From the Iron Age in the Age of
Enlightenment, J. Geophys. Res., 110, C09S16, https://doi.org/10.1029/2004JC002601,
2005.
De La Rocha, C. L.: The Biological Pump, in: Treatise on Geochemistry
update, edited by: Holland, H. D. and Turekian, K. K., Elsevier Pergamon,
Oxford, 1–29, https://doi.org/10.1016/B0-08-043751-6/06107-7, 2007.
Denman, K. L.: Climate change, ocean processes and ocean iron fertilization,
Mar. Ecol.-Prog. Ser., 364, 219–225, https://doi.org/10.3354/meps07542, 2008.
DiTullio, G. R., Hutchins, D. A., and Bruland, K. W.: Interaction of iron and
major nutrients controls phytoplankton growth and species composition in the
tropical North Pacific Ocean, Limnol. Oceanogr., 38, 495–508,
https://doi.org/10.4319/lo.1993.38.3.0495, 1993.
Duce, R. A. and Tindale, N. W.: Atmospheric transport of iron and its
deposition in the ocean, Limnol. Oceanogr., 36, 1715–1726,
https://doi.org/10.4319/lo.1991.36.8.1715, 1991.
Dunne, J. P., Devol, A. H., and Emerson, S.: The Oceanic Remote
Chemical/Optical Analyzer (ORCA) – An Autonomous Moored Profiler, J. Atmos.
Oceanic Technol., 19, 1709–1721, https://doi.org/10.1175/1520-0426(2002)019<1709:TORCOA>2.0.CO;2, 2002.
Ebersbach, F., Assmy, P., Martin, P., Schulz, I., Wolzenburg, S., and
Nothig, E.-M.: Particle flux characterisation and sedimentation patterns of
protistan plankton during the iron fertilisation experiment LOHAFEX in the
Southern Ocean, Deep-Sea Res. Pt. I, 89, 94–103,
https://doi.org/10.1016/j.dsr.2014.04.007, 2014.
Faghmous, J. H., Frenger, I., Yao, Y., Warmka, R., Lindell, A., and Kumar,
V.: A daily global mesoscale ocean eddy dataset from satellite altimetry,
Sci. Data, 2, 150028, https://doi.org/10.1038/sdata.2015.28, 2015.
Falkowski, P. G.: Evolution of the nitrogen cycle and its influence on the
biological sequestration of CO2 in the ocean, Nature, 387, 272–275,
https://doi.org/10.1038/387272a0, 1997.
Farías, L., Florez-Leiva, L., Besoain, V., Sarthou, G., and Fernández, C.:
Dissolved greenhouse gases (nitrous oxide and methane) associated with the naturally
iron-fertilized Kerguelen region (KEOPS 2 cruise) in the
Southern Ocean, Biogeosciences, 12, 1925–1940, https://doi.org/10.5194/bg-12-1925-2015, 2015.
Fine, R. A.: Observations of CFCs and SF6 as Ocean Tracers, Annu. Rev.
Mar. Sci., 3, 173–195, https://doi.org/10.1146/annurev.marine.010908.163933, 2011.
Fitzwater, S. E., Coale, K. H., Gordon, R. M., Johnson, K. S., and Ondrusek,
M. E.: Iron deficiency and phytoplankton growth in the equatorial Pacific,
Deep-Sea Res. Pt. II, 43, 995–1015, https://doi.org/10.1016/0967-0645(96)00033-1, 1996.
Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D.
W., Haywood, J., Lean, J., Lowe, D. C., Myhre, G., Nganga, J., Prinn, R.,
Raga, G., Schultz, M., and Van Dorland, R.: Changes in atmospheric
constituents and in radiative forcing, Cambridge, United Kingdom, Cambridge
University Press, 129–234, 2007.
Freestone, D. and Rayfuse, R. G.: Iron Ocean Fertilization and
International Law, Mar. Ecol. Prog. Ser., 364, 227–233,
https://doi.org/10.3354/meps07543, 2008.
Frew, R. D., Bowie, A. R., Croot, P. L., and Pickmere, S.: Macronutrient and
trace-metal geochemistry of an in situ iron-induced Southern Ocean bloom,
Deep-Sea Res. Pt. II, 48, 2467–2481, https://doi.org/10.1016/S0967-0645(01)00004-2,
2001.
Frost, B. W.: Phytoplankton bloom on iron rations, Nature, 383, 475–476,
https://doi.org/10.1038/383475a0, 1996.
Fuhrman, J. A. and Capone, D. G.: Possible biogeochemical consequences of
ocean fertilization, Limnol. Oceanogr., 36, 1951–1959,
https://doi.org/10.4319/lo.1991.36.8.1951, 1991.
Gall, M. P., Boyd, P. W., Hall, J., Safi, K. A., and Chang, H.: Phytoplankton
processes. Part 1: community structure during the Southern Ocean iron
release experiment (SOIREE), Deep-Sea Res. Pt. II, 48, 2551–2570,
https://doi.org/10.1016/S0967-0645(01)00008-X, 2001a.
Gall, M. P., Strzepek, R., Maldonado, M., and Boyd, P. W.: Phytoplankton
processes. Part 2: Rates of primary production and factors controlling algal
growth during the Southern Ocean Iron RElease Experiment (SOIREE), Deep-Sea
Res. Pt. II, 48, 2571–2590, https://doi.org/10.1016/S0967-0645(01)00009-1, 2001b.
Gardner, W. D., Hinga, K. R., and Marra, J.: Observations on the degradation
of biogenic material in the deep ocean with implications on the accuracy of
sediment trap fluxes, J. Mar. Res., 41, 195–214,
https://doi.org/10.1357/002224083788520180, 1983.
Gerringa, L. J. A., Alderkamp, A.-C., Laan, P., Thuroczy, C.-E., De Baar, H.
J. W., Mills, M. M., van Dijken, G. L., Haren, H. V., and Arrigo, K. R.:
Iron from melting glaciers fuels the phytoplankton blooms in Amundsen Sea
(Southern Ocean): Iron biogeochemistry, Deep-Sea Res. Pt. II, 71–76, 16–31,
https://doi.org/10.1016/j.dsr2.2012.03.007, 2012.
Gervais, F., Riebesell, U., and Gorbunov, M. Y.: Changes in primary
productivity and chlorophyll a in response to iron fertilization in the
Southern Polar Frontal Zone, Limnol. Oceanogr., 47, 1324–1335,
https://doi.org/10.4319/lo.2002.47.5.1324, 2002.
Gnanadesikan, A., Sarmiento, J. L., and Slater, R. D.: Effects of patchy
ocean fertilization on atmospheric carbon dioxide and biological production,
Global Biogeochem. Cy., 17, 1050, https://doi.org/10.1029/2002GB001940, 2003.
Gordon, R. M., Johnson, K. S., and Coale, K. H.: The behaviour of iron and
other trace elements during the IronEx-I and PlumEx experiments in the
Equatorial Pacific, Deep-Sea Res. Pt. II, 45, 995–1041,
https://doi.org/10.1016/S0967-0645(98)00012-5, 1998.
Hadfield, M. G.: Expected and observed conditions during the SAGE iron
addition experiment in Subantarctic waters, Deep-Sea Res. Pt. II, 58,
764–775, https://doi.org/10.1016/j.dsr2.2010.10.016, 2011.
Hall, J. A. and Safi, K.: The impact of in situ Fe fertilisation on the
microbial food web in the Southern Ocean, Deep-Sea Res. Pt. II, 48,
2591–2613, https://doi.org/10.1016/S0967-0645(01)00010-8, 2001.
Harvey, M. J., Law, C. S., Smith, M. J., Hall, J. A., Abraham, E. R.,
Stevens, C. L., Hadfield, M. G., Ho, D. T., Ward, B., Archer, S. D., Cainey,
J. M., Currie, K. I., Devries, D., Ellwood, M. J., Hill, P., Jones, G. B.,
Katz, D., Kuparinen, J., Macaskill, B., Main, W., Marriner, A., McGregor,
J., McNeil, C., Minnett, P. J., Nodder, S. D., Peloquin, J., Pickmere, S.,
Pinkerton, M. H., Safi, K. A., Thompson, R., Walkington, M., Wright, S. W.,
and Ziolkowski, L. A.: The SOLAS air–sea gas exchange experiment (SAGE)
2004, Deep-Sea Res. Pt. II, 58, 753–763, https://doi.org/10.1016/j.dsr2.2010.10.015,
2010.
Hauck, .J., Kohler, P., Wolf-Gladrow, D., and Volker, C.: Iron fertilisation
and century-scale effects of open ocean dissolution of olivine in a
simulated CO2 removal experiment, Environ. Res. Lett., 11, 024007,
https://doi.org/10.1088/1748-9326/11/2/024007, 2016.
Hiscock, W. T. and Millero, F. J.: Nutrient and carbon parameters during the
Southern Ocean iron experiment (SOFeX), Deep-Sea Res. Pt. I, 52, 2086–2108,
https://doi.org/10.1016/j.dsr.2005.06.010, 2005.
Hoffmann, L. J., Peeken, I., Lochte, K., Assmy, P., and Veldhuis, M.:
Different reactions of Southern Ocean phytoplankton size classes to iron
fertilization, Limnol. Oceanogr., 51, 1217–1229,
https://doi.org/10.4319/lo.2006.51.3.1217, 2006.
Hudson, J. M. and Morel, F. M. M.: Iron transport in marine phytoplankton:
kinetics and cellular and medium coordination reactions, Limnol. Oceanogr.,
35, 1002–1020, https://doi.org/10.4319/lo.1990.35.5.1002, 1990.
Hunt, B. P. V. and Hosie, G. W.: The seasonal succession of zooplankton in
the Southern Ocean south of Australia, part II: The Sub-Antarctic to Polar
Frontal Zones, Deep-Sea Res. Pt. I, 53, 1203–1223,
https://doi.org/10.1016/j.dsr.2006.05.001, 2006.
Hutchins, D. A., Ditullio, G. R., and Bruland, K. W.: Iron and regenerated
production: Evidence for biological iron recycling in two marine
environments, Limnol. Oceanogr., 38, 1242–1255,
https://doi.org/10.4319/lo.1993.38.6.1242, 1993.
IPCC: Climate Change: The IPCC Scientific Assessment of Climate Change,
edited by: Houghton,
J. T., Jenkins, G. J., and Ephraums, J. J., Cambridge Univ. Press,
Cambridge, 1990.
IPCC: Climate Change 1992: The Supplementary Report to the IPCC Scientific
Assessment, edited by: Houghton, J. T., Callander, B. A., and Varney, S. K.,
Cambridge Univ. Press, 1992.
IPCC: Climate Change 1995: The Science of Climate Change, Contribution of
Working Group 1 to the Second Assessment Report of the Intergovernmental
Panel on Climate Change, edited by: Houghton, J. T., Meira Filho, L. G.,
Callander, B. A., Harris, N., Kattenberg, A., and Maskell, K., Cambridge Univ. Press,
Cambridge, 1995.
IPCC: Emissions scenarios: special report of Working Group III of the
Intergovernmental Panel on Climate Change, edited by: Nakicenovic, N. and Swart, R.,
Cambridge Univ. Press, Cambridge, 2000.
IPCC: Climate Change 2001: The Scientific Basis, Contribution of Working
Group 1 to the Third Assessment Report of the Intergovernmental Panel on
Climate Change, edited by: Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X.,
Maskell,
K., and Johnson, C. A., Cambridge Univ. Press, Cambridge, 2001.
IPCC: Climate Change 2007: Mitigation of Climate Change, Contribution of
Working Group III to the Fourth Assessment Report of the Intergovernmental
Panel on Climate Change, edited by: Metz, B., Davidson, O. R., Bosch, P. R., Dave, R.,
Meyer,
L. A., Cambridge Univ. Press, Cambridge, 2007.
IPCC: Climate Change 2013: The Physical Science Basis, Contribution of
Working Group I to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K.,
Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and
Midgley, P. M., Cambridge Univ. Press, Cambridge, 2013.
IPCC: Climate Change 2014: Mitigation of Climate Change, Contribution of
Working Group III to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change, edited by: Edenhofer, O., Pichs-Madruga, R., Sokona, Y.,
Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S.,
Eickemeier, P., Kriemann, B., Savolainen, J., Schlomer, S., von Stechow, C.,
Zwickel, T., and Minx, J. C., Cambridge Univ. Press, Cambridge, 2014.
Jacquet, S. H. M., Savoye, N., Dehairs, F., Strass, V. H., and Cardinal, D.:
Mesopelagic carbon remineralization during the European Iron Fertilization
Experiment, Global Biogeochem. Cy., 22, GB1023, https://doi.org/10.1029/2006GB002902,
2008.
Jin, X. and Gruber, N.: Offsetting the radiative benefit of ocean iron
fertilization by enhancing N2O emissions, Geophys. Res. Lett., 30,
2249, https://doi.org/10.1029/2003GL018458, 2003.
Jin, X., Gruber, N., Frenzel, H., Doney, S. C., and McWilliams, J. C.:
The impact on atmospheric CO2 of iron fertilization induced changes in
the ocean's biological pump, Biogeosciences, 5, 385–406, https://doi.org/10.5194/bg-5-385-2008, 2008.
Johnson, K. S. and Karl, D. M.: Is Ocean Fertilization Credible and
Creditable?, Science, 296, 467–468, https://doi.org/10.1126/science.296.5567.467b, 2002.
Joos, F., Sarmiento, J. L., and Siegenthaler, U.: Estimates of the effect of
Southern Ocean iron fertilization on atmospheric CO2 concentrations,
Nature, 349, 772–775, https://doi.org/10.1038/349772a0, 1991.
Kahler, P. and Bauerfeind, E.: Organic particles in a shallow sediment
trap, Substantial loss to the dissolved phase, Limnol. Oceanogr., 46,
719–723, https://doi.org/10.4319/lo.2001.46.3.0719, 2001.
Karl, D. M. and Knauer, G. A.: Swimmers, a recapitulation of the problem and
a potential solution, Oceanography, 2, 32–35, https://doi.org/10.5670/oceanog.1989.28,
1989.
Keller, D. P., Feng, E. Y., and Oschlies, A.: Potential climate engineering
effectiveness and side effects during a high carbon dioxide-emission
scenario, Nat. Commun., 5, 3304, https://doi.org/10.1038/ncomms4304, 2014.
Knauer, G. A., Karl, D. M., Martin, J. H., and Hunter, C. N.: In situ
effects of selected preservatives on total carbon, nitrogen and metals
collected in sediment traps, J. Mar. Res., 42, 445–462,
https://doi.org/10.1357/002224084788502710, 1984.
Kolber, Z. S., Barber, R. T., Coale, K. H., Fitzwateri, S. E., Greene, R.
M., Johnson, K. S., Lindley, S., and Falkowski, P. G.: Iron limitation of
phytoplankton photosynthesis in the equatorial Pacific Ocean, Nature, 371,
145–149, https://doi.org/10.1038/371145a0, 1994.
Kudo, I., Noiri, Y., Cochlan, W. P., Suzuki, K., Aramaki, T., Ono, T., and
Nojiri, Y.: Primary productivity, bacterial productivity and nitrogen uptake
in response to iron enrichment during the SEEDS II, Deep-Sea Res. Pt. II,
56, 2755–2766, https://doi.org/10.1016/j.dsr2.2009.06.003, 2009.
Kurz, K. D. and Maier-Reimer, E.: Iron fertilization of the austral
ocean – the Hamburg model assessment, Global Biogeochem. Cy., 7, 229–244,
https://doi.org/10.1029/92GB02910, 1993.
Lampitt, R. S., Achterberg, E. P., Anderson, T. R., Hughes, J. A.,
Iglesias-Rodriguez, M. D., Kelly-Gerreyn, B. A., Lucas, M., Popova, E. E.,
Sanders, R., Shepherd, J. G., Smythe-Wright, D., and Yool, A.: Ocean
fertilization: a potential means of geoengineering?, Phil. Trans. R. Soc. A,
366, 3919–3945, https://doi.org/10.1098/rsta.2008.0139, 2008.
Landry, M. R., Ondrusek, M. E., Tanner, S. J., Brown, S. L., Constantinou,
J., Bidigare, R. R., Coale, K. H., and Fitzwater, S.: Biological response to
iron fertilization in the eastern equatorial Pacific (IronEx II). I.
Microplankton community abundances and biomass, Mar. Ecol. Prog. Ser., 201,
27–42, https://doi.org/10.3354/meps201027, 2000.
Latasa, M., Henjes, J., Scharek, R., Assmy, P., Rottgers, R., and Smetacek,
V.: Progressive decoupling between phytoplankton growth and microzooplankton
grazing during an iron-induced phytoplankton bloom in the Southern Ocean
(EIFEX), Mar. Ecol. Prog. Ser., 513, 39–50, https://doi.org/10.3354/meps10937, 2014.
Law, C. S.: Predicting and monitoring the effects of large-scale ocean iron
fertilization on marine trace gas emissions, Mar. Ecol. Prog. Ser., 364,
283–288, https://doi.org/10.3354/meps07549, 2008.
Law, C. S. and Ling, R. D.: Nitrous oxide flux and response to increased
iron availability in the Antarctic Circumpolar Current, Deep-Sea Res. Pt.
II, 48, 2509–2527, https://doi.org/10.1016/S0967-0645(01)00006-6, 2001.
Law, C. S., Watson, A. J., Liddicoat, M. I., and Stanton, T.: Sulphur
hexafluoride as a tracer of biogeochemical and physical processes in an
open-ocean iron fertilisation experiment, Deep-Sea Res. Pt. II, 45, 977–994,
https://doi.org/10.1016/S0967-0645(98)00022-8, 1998.
Law, C. S., Abraham, E. R., Watson, A. J., and Liddicoat, M. I.: Vertical
eddy diffusion and nutrient supply to the surface mixed layer of the
Antarctic Circumpolar Current, J. Geophys. Res., 108, 3272,
https://doi.org/10.1029/2002JC001604, 2003.
Law, C. S., Crawford, W. R., Smith, M. J., Boyd, P. W., Wong, C. S., Nojiri,
Y., Robert, M., Abraham, E. R., Johnson, W. K., Forsland, V., and Arychuk,
M.: Patch evolution and the biogeochemical impact of entrainment during an
iron fertilisation experiment in the sub-Arctic Pacific, Deep-Sea Res. Pt.
II, 53, 2012–2033, https://doi.org/10.1016/j.dsr2.2006.05.028, 2006.
Law, C. S., Smith, M. J., Stevens, C. L., Abraham, E. R., Ellwood, M. J.,
Hill, P., Nodder, S., Peloquin, J., Pickmere, S., Safi, K., and Walkington,
C. M.: Did dilution limit the phytoplankton response to iron addition in
HNLCLSi sub-Antarctic waters during the SAGE experiment?, Deep-Sea Res. Pt.
II, 58, 786–799, https://doi.org/10.1016/j.dsr2.2010.10.018, 2011.
Lawrence, M. G.: Side Effects of Oceanic Iron Fertilization, Science, 297,
1993, https://doi.org/10.1126/science.297.5589.1993b, 2002.
Lenton, T. M. and Vaughan, N. E.: The radiative forcing potential of different
climate geoengineering options, Atmos. Chem. Phys., 9, 5539–5561, https://doi.org/10.5194/acp-9-5539-2009, 2009.
Leung, D. Y. C., Caramanna, G., and Maroto-Valer, M. M.: An overview of
current status of carbon dioxide capture and storage technologies, Renew.
Sust. Energ. Rev., 39, 426–443, https://doi.org/10.1016/j.rser.2014.07.093, 2014.
Levasseur, M., Scarratt, M. G., Michaud, S., Merzouk, A., Wong, C. S.,
Arychuk, M., Richardson, W., Rivkin, R. B., Hale, M., Wong, E., Marchetti,
A., and Kiyosawa, H.: DMSP and DMS dynamics during a mesoscale iron
fertilization experiment in the Northeast Pacific – Part I: Temporal and
vertical distributions, Deep-Sea Res. Pt. II, 53, 2353–2369,
https://doi.org/10.1016/j.dsr2.2006.05.023, 2006.
Liss, P., Chuck, A., Bakker, D., and Turner, S.: Ocean fertilization with
iron: effects on climate and air quality, Tellus B, 57, 269–271,
https://doi.org/10.1111/j.1600-0889.2005.00141.x, 2005.
London Convention: Convention on the Prevention of Marine Pollution by
Dumping of Wastes and Other Matter 1972, 1972.
London Protocol: 1996 Protocol to the Convention on the Prevention of Marine
Pollution by Dumping of Wastes and Other Matter, 1972, 1996.
Marchetti, A., Sherry, N. D., Juneau, P., Strzepek, R. F., and Harrison, P.
J.: Phytoplankton processes during a mesoscale iron enrichment in the NE
subarctic Pacific: Part III – Primary productivity, Deep-Sea Res. Pt. II,
53, 2131–2151, https://doi.org/10.1016/j.dsr2.2006.05.032, 2006a.
Marchetti, A., Sherry, N. D., Kiyosawa, H., Tsuda, A., and Harrison, P. J.:
Phytoplankton processes during a mesoscale iron enrichment in the NE
subarctic Pacific: Part I – Biomass and assemblage, Deep-Sea Res. Pt. II,
53, 2095–2113, https://doi.org/10.1016/j.dsr2.2006.05.038, 2006b.
Marchetti, A., Lundholm, N., Kotaki, Y., Hubbard, K., Harrison, P. J., and
Virginia Armbrust, E.: Identification and assessment of domoic acid
production in oceanic Pseudo-nitzschia (Bacillariophyceae) from iron-limited
waters in the Northeast Subarctic Pacific, J. Phycol.,
650–661, https://doi.org/10.1111/j.1529-8817.2008.00526.x, 2008.
Marshall, J. and Speer, K.: Closure of the meridional overturning
circulation through Southern Ocean upwelling, Nat. Geosci., 5, 171–180,
https://doi.org/10.1038/ngeo1391, 2012.
Martin, J. H. and Fitzwater, S. E.: Iron deficiency limits phytoplankton
growth in the north-east Pacific subarctic, Nature, 331, 341–343,
https://doi.org/10.1038/331341a0, 1988.
Martin, J. H.: Glacial-interglacial CO2 change: The Iron Hypothesis,
Paleoceanography, 5, 1–13, https://doi.org/10.1029/PA005i001p00001, 1990.
Martin, J. H. and Chisholm, P.: Design for a mesoscale iron enrichment
experiment. Woods Hole Oceanographic Institution, U.S. JGOFS Planning Report,
15, 1992.
Martin, J. H., Coale, K. H., Johnson, K. S., Fitzwater, S. E., Gordon, R.
M., Tanner, S. J., Hunter, C. N., Elrod, V. A., Nowicki, J. L., Coley, T.
L., Barber, R. T., Lindley, S., Watson, A. J., Van Scoy, K., Law, C. S.,
Liddicoat, M. I., Ling, R., Stanton, T., Stockel, J., Collins, C., Anderson,
A., Bidigare, R., Ondrusek, M., Latasa, M., Millero, F. J., Lee, K., Yao,
W., Zhang, J. Z., Friederich, G., Sakamoto, C., Chavez, F., Buck, K.,
Kolber, Z., Greene, R., Falkowski, P., Chisholm, S. W., Hoge, F., Swift, R.,
Yungel, J., Turner, S., Nightingale, P., Hatton, A., Liss, P., and Tindale,
N. W.: Testing the iron hypothesis in ecosystems of the equatorial Pacific
Ocean, Nature, 371, 123–129, https://doi.org/10.1038/371123a0, 1994.
Martin, P., van der Loeff, M. R., Cassar, N., Vandromme, P., d'Ovidio, F.,
Stemmann, L., Rengarajan, R., Soares, M., Gonzalez, H. E., Ebersbach, F.,
Lampitt, R. S., Sanders, R., Barnett, B. A., Smetacek, V., and Naqvi, S. W.
A.: Iron fertilization enhanced net community production but not downward
particle flux during the Southern Ocean iron fertilization experiment
LOHAFEX, Global Biogeochem. Cy., 27, 871–881, https://doi.org/10.1002/gbc.20077, 2013.
Matthews, B.: Climate engineering: a critical review of proposals, their
scientific and political context, and possible impacts, Compiled for
scientists for global responsibility,
available at: http://www.chooseclimate.org/cleng/part1b.html
(last access: 6 September 2018), 1996.
McElroy, M. B.: Marine biological controls on atmospheric CO2 and
climate, Nature, 302, 328–329, https://doi.org/10.1038/302328a0, 1983.
Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M. L. T.,
Lamarque, J.-F., Matsumoto, K., Montzka, S. A., Raper, S. C. B., Riahi, K.,
Thomson, A., Velders, G. J. M., and van Vuuren, D. P. P.: The RCP greenhouse
gas concentrations and their extensions from 1765 to 2300, Clim. Change,
109, 213, https://doi.org/10.1007/s10584-011-0156-z, 2011.
Mengelt, C., Abbott, M. R., Barth, J. A., Letelier, R. M., Measures, C. I.,
and Vink, S.: Phytoplankton pigment distribution in relation to silicic
acid, iron and the physical structure across the Antarctic Polar Front,
170∘ W, during austral summer, Deep-Sea Res. Pt. II, 48, 4081–4100,
https://doi.org/10.1016/S0967-0645(01)00081-9, 2001.
Mills, M. M., Ridame, C., Davey, M., La Roche, J., and Geider, R. J.: Iron
and phosphorus co-limit nitrogen fixation in the eastern tropical North
Atlantic, Nature, 429, 292, https://doi.org/10.1038/nature02550, 2004.
Ming, T., de Richter, R., Liu, W., and Caillol, S.: Fighting global warming
by climate engineering: Is the Earth radiation management and the solar
radiation management any option for fighting climate change?, Renew. Sust.
Energ. Rev., 31, 792–834, https://doi.org/10.1016/j.rser.2013.12.032, 2014.
Mitchell, B. G., Brody, E. A., Holm-Hansen, O., McClain, C., and Bishop, J.:
Light limitation of phytoplankton biomass and macronutrient utilization in
the Southern Ocean, Limnol. Oceanogr., 36, 1662–1677,
https://doi.org/10.4319/lo.1991.36.8.1662, 1991.
Moore, J. K. and Abbott, M. R.: Surface chlorophyll concentrations in
relation to the Antarctic Polar Front: seasonal and spatial patterns from
satellite observations, J. Marine Syst., 37, 69–86,
https://doi.org/10.1016/S0924-7963(02)00196-3, 2002.
Morel, F. M. M. and Price, N. M.: The Biogeochemical Cycles of Trace Metals
in the Oceans, Science, 300, 944–947, https://doi.org/10.1126/science.1083545, 2003.
Morris, P. J. and Charette, M. A.: A synthesis of upper ocean carbon and
dissolved iron budgets for Southern Ocean natural iron fertilisation
studies, Deep-Sea Res. Pt. II, 90, 147–157, https://doi.org/10.1016/j.dsr2.2013.02.001,
2013.
Morrow, R. and Le Traon, P.-Y.: Recent advances in observing mesoscale ocean
dynamics with satellite altimetry, Adv. Space Res., 50, 1062–1076,
https://doi.org/10.1016/j.asr.2011.09.033, 2012.
Nagao, I., Hashimoto, S., Suzuki, K., Toda, S., Narita, Y., Tsuda, A.,
Saito, H., Kudo, I., Kato, S., Kajii, Y., and Uematsu, M.: Responses of DMS
in the seawater and atmosphere to iron enrichment in the subarctic western
North Pacific (SEEDS-II), Deep-Sea Res. Pt. II, 56, 2899–2917,
https://doi.org/10.1016/j.dsr2.2009.07.001, 2009.
Neftel, A., Oeschger, H., Schwander, J., Stauffer, B., and Zumbrunn, R.: Ice
core sample measurements give atmospheric CO2 content during the past
40,000 yr, Nature, 295, 220–223, https://doi.org/10.1038/295220a0, 1982.
Nelson, D. M., Brzezinski, M. A., Sigmon, D. E., and Franck, V. M.: A
seasonal progression of Si limitation in the Pacific sector of the Southern
Ocean, Deep-Sea Res. Pt. II, 48, 3973–3995,
https://doi.org/10.1016/S0967-0645(01)00076-5, 2001.
Nevison, C., Butler, J. H., and Elkins, J. W.: Global distribution of
N2O and the ΔN2O-AOU yield in the subsurface ocean, Global
Biogeochem. Cy., 17, 1119, https://doi.org/10.1029/2003GB002068, 2003.
Nishioka, J., Takeda, S., Baar, H. J. W. D., Croot, P. L., Boye, M., Laan,
P., and Timmermans, K. R.: Changes in the concentration of iron in different
size fractions during an iron enrichment experiment in the open Southern
Ocean, Mar. Chem., 95, 51–63, https://doi.org/10.1016/j.marchem.2004.06.040, 2005.
Nodder, S. D. and Waite, A. M.: Is Southern Ocean organic carbon and
biogenic silica export enhanced by iron-stimulated increases in biological
production? Sediment trap results from SOIREE, Deep-Sea Res. Pt. II, 48,
2681–2701, https://doi.org/10.1016/S0967-0645(01)00014-5, 2001.
Nodder, S. D., Charette, M. A., Waite, A. M., Trull, T. W., Boyd, P. W.,
Zeldis, J., and Buesseler, K. O.: Particle transformations and export flux
during an in situ iron-stimulated algal bloom in the Southern Ocean,
Geophys. Res. Lett., 28, 2409–2412, https://doi.org/10.1029/2001GL013008, 2001.
Noiri, Y., Kudo, I., Kiyosawa, H., Nishioka, J., and Tsuda, A.: Influence of
iron and temperature on growth, nutrient utilization ratios and
phytoplankton species composition in the western subarctic Pacific Ocean
during the SEEDS experiment, Prog. Oceanogr., 64, 149–166,
https://doi.org/10.1016/j.pocean.2005.02.006, 2005.
Oliver, J. L., Barber, R. T., Smith, W. O., and Ducklow, H. W.: The
heterotrophic bacterial response during the Southern Ocean Iron Experiment
(SOFeX), Limnol. Oceanogr., 49, 2129–2140, https://doi.org/10.4319/lo.2004.49.6.2129,
2004.
Oschlies, A., Koeve, W., Rickels, W., and Rehdanz, K.: Side effects and accounting
aspects of hypothetical large-scale Southern Ocean iron
fertilization, Biogeosciences, 7, 4017–4035, https://doi.org/10.5194/bg-7-4017-2010, 2010.
Park, K.-T., Lee, K., Shin, K., Yang, E. J., Hyun, B., Kim, J.-M., Noh, J.
H., Kim, M., Kong, B., Choi, D. H., Choi, S.-J., Jang, P.-G., and Jeong, H. J.:
Direct linkage between dimethyl sulfide production and microzooplankton
grazing, resulting from prey composition change under high partial pressure
of carbon dioxide conditions, Environ. Sci. Technol., 48, 4750–4756,
https://doi.org/10.1021/es403351h, 2014.
Peloquin, J., Hall, J., Safi, K., Ellwood, M., Law, C. S., Thompson, K.,
Kuparinen, J., Harvey, M., and Pickmere, S.: Control of the phytoplankton
response during the SAGE experiment: A synthesis, Deep-Sea Res. Pt. II, 58,
824–838, https://doi.org/10.1016/j.dsr2.2010.10.019, 2011a.
Peloquin, J., Hall, J., Safi, K., Smith, W. O., Wright, S., and van den
Enden, R.: The response of phytoplankton to iron enrichment in Sub-Antarctic
HNLCLSi waters: Results from the SAGE experiment, Deep-Sea Res. Pt. II, 58,
808–823, https://doi.org/10.1016/j.dsr2.2010.10.021, 2011b.
Peng, T.-H. and Broecker, W. S.: Factors limiting the reduction of
atmospheric CO2 by iron fertilization, Limnol. Oceanogr., 36,
1919–1927, https://doi.org/10.4319/lo.1991.36.8.1919, 1991.
Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J. M.,
Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte,
M., Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., Pepin, L.,
Ritz, C., Saltzman, E., and Stievenard, M.: Climate and atmospheric history
of the past 420,000 years from the Vostok ice core, Antarctica, Nature, 399,
429–436, https://doi.org/10.1038/20859, 1999.
Pollard, R. T., Salter, I., Sanders, R. J., Lucas, M. I., Moore, C. M.,
Mills, R. A., Statham, P. J., Allen, J. T., Baker, A. R., Bakker, D. C. E.,
Charette, M. A., Fielding, S., Fones, G. R., French, M., Hickman, A. E.,
Holland, R. J., Hughes, J. A., Jickells, T. D., Lampitt, R. S., Morris, P.
J., Nedelec, F. H., Nielsdottir, M., Planquette, H., Popova, E. E., Poulton,
A. J., Read, J. F., Seeyave, S., Smith, T., Stinchcombe, M., Taylor, S.,
Thomalla, S., Venables, H. J., Williamson, R., and Zubkov, M. V.: Southern
Ocean deep-water carbon export enhanced by natural iron fertilization,
Nature, 457, 577–580, https://doi.org/10.1038/nature07716, 2009.
Purser, A., Thomsen, L., Barnes, C., Best, M., Chapman, R., Hofbauer, M.,
Menzel, M., and Wagner, H.: Temporal and spatial benthic data collection via
an internet operated Deep Sea Crawler, Methods in Oceanography, 5, 1–18,
https://doi.org/10.1016/j.mio.2013.07.001, 2013.
Queguiner, B., Treguer, P., Peeken, I., and Scharek, R.: Biogeochemical
dynamics and the silicon cycle in the Atlantic sector of the Southern Ocean
during austral spring 1992, Deep-Sea Res. Pt. II, 44, 69–89,
https://doi.org/10.1016/S0967-0645(96)00066-5, 1997.
Rees, A. P., Nightingale, P. D., Owens, N. J. P., and Team, P. F.: FeeP – An
in situ PO and Fe2+ addition experiment to waters of the
sub-tropical north-east Atlantic, Geophys. Res. Abstr., 9, 01440, 2007.
Rembauville, M., Blain, S., Armand, L., Quéguiner, B., and Salter, I.: Export fluxes
in a naturally iron-fertilized area of the Southern Ocean – Part 2:
Importance of diatom resting spores and faecal pellets for export, Biogeosciences, 12, 3171–3195, https://doi.org/10.5194/bg-12-3171-2015, 2015.
Rembauville, M., Manno, C., Tarling, G. A., Blain, S., and Salter, I.:
Strong contribution of diatom resting spores to deep-sea carbon transfer in
naturally iron-fertilized waters downstream of South Georgia, Deep-Sea Res.
Pt. I, 115, 22–35, https://doi.org/10.1016/j.dsr.2016.05.002, 2016.
Resolution LC-LP.1: Regulation of Ocean Fertilization, LC 30/16, Annex 6,
2008.
Resolution LC-LP.2: Assessment Framework for Scientific Research Involving
Ocean Fertilization, LC 32/15, Annex 6, 2010.
Resolution LP.4 (8): Amendment to the London Protocol to Regulate the
Placement of Matter for Ocean Fertilization and Other Marine Geoengineering
Activities, LP.8, LC 35/15, Annex 4, Annex 5, 2013.
Rogelj, J., Michiel, S., Malte, M., Reto, K., Joseph, A., Keywan, R., and
William, H.: Zero emission targets as long-term global goals for climate
protection, Environ. Res. Lett., 10, 105007,
https://doi.org/10.1088/1748-9326/10/10/105007, 2015.
Rollwagen Bollens, G. C. and Landry, M. R.: Biological response to iron
fertilization in the eastern equatorial Pacific (IronEx II). II.
Mesozooplankton abundance, biomass, depth distribution and grazing, Mar.
Ecol. Pro. Ser., 201, 43–56, https://doi.org/10.3354/meps201043, 2000.
Salter, I., Lampitt, R. S., Sanders, R., Poulton, A., Kemp, A. E. S.,
Boorman, B., Saw, K., and Pearce, R.: Estimating carbon, silica and diatom
export from a naturally fertilised phytoplankton bloom in the Southern Ocean
using PELAGRA: A novel drifting sediment trap, Deep-Sea Res. Pt. II, 54,
2233–2259, https://doi.org/10.1016/j.dsr2.2007.06.008, 2007.
Sarmiento, J. L. and Gruber, N.: Ocean Biogeochemical Dynamics, Princeton
University Press, Princeton, New Jersey, 2006.
Sarmiento, J. L. and Orr, J. C.: Three-dimensional simulations of the impact
of Southern Ocean nutrient depletion on atmospheric CO2 and ocean
chemistry, Limnol. Oceanogr., 36, 1928–1950, https://doi.org/10.4319/lo.1991.36.8.1928,
1991.
Sarmiento, J. L., Slater, R. D., Dunne, J., Gnanadesikan, A., and Hiscock, M. R.:
Efficiency of small scale carbon mitigation by patch iron fertilization, Biogeosciences, 7, 3593–3624, https://doi.org/10.5194/bg-7-3593-2010, 2010.
Sato, M., Takeda, S., and Furuya, K.: Responses of pico- and
nanophytoplankton to artificial iron infusions observed during the second
iron enrichment experiment in the western subarctic Pacific (SEEDS II),
Deep-Sea Res. Pt. II, 56, 2745–2754, https://doi.org/10.1016/j.dsr2.2009.06.002, 2009.
Schiermeier, Q.: The oresmen, Nature, 421, 109–110, https://doi.org/10.1038/421109a,
2003.
Schlitzer, R.: Ocean Data View, available at:
http://odv.awi.de (last access: 6 September 2018), 2017.
Schnetzer, A., Miller, P. E., Schaffner, R. A., Stauffer, B. A., Jones, B.
H., Weisberg, S. B., DiGiacomo, P. M., Berelson, W. M., and Caron, D. A.:
Blooms of Pseudo-nitzschia and domoic acid in the San Pedro Channel and Los
Angeles harbor areas of the Southern California Bight, 2003–2004, Harmful
Algae, 6, 372–387, https://doi.org/10.1016/j.hal.2006.11.004, 2007.
Scholin, C. A., Gulland, F., Doucette, G. J., Benson, S., Busman, M.,
Chavez, F. P., Cordaro, J., DeLong, R., De Vogelaere, A., Harvey, J.,
Haulena, M., Lefebvre, K., Lipscomb, T., Loscutoff, S., Lowenstine, L. J.,
Marin Iii, R., Miller, P. E., McLellan, W. A., Moeller, P. D. R., Powell, C.
L., Rowles, T., Silvagni, P., Silver, M., Spraker, T., Trainer, V., and Van
Dolah, F. M.: Mortality of sea lions along the central California coast
linked to a toxic diatom bloom, Nature, 403, 80, https://doi.org/10.1038/47481, 2000.
Schultes, S., Verity, P. G., and Bathmann, U.: Copepod grazing during an
iron-induced diatom bloom in the Antarctic Circumpolar Current (EisenEx): I.
Feeding patterns and grazing impact on prey populations, J. Exp. Mar. Bio.
Ecol., 338, 16–34, https://doi.org/10.1016/j.jembe.2006.06.028, 2006.
Sigman, D. M. and Boyle, E. A.: Glacial/interglacial variations in
atmospheric carbon dioxide, Nature, 407, 859–869, https://doi.org/10.1038/35038000,
2000.
Silver, M. W., Bargu, S., Coale, S. L., Benitez-Nelson, C. R., Garcia, A.
C., Roberts, K. J., Sekula-Wood, E., Bruland, K. W., and Coale, K. H.: Toxic
diatoms and domoic acid in natural and iron enriched waters of the oceanic
Pacific, P. Natl. Acad. Sci. USA, 107, 20762–20767,
https://doi.org/10.1073/pnas.1006968107, 2010.
Smetacek, V.: EisenEx: International Team Conducts Iron Experiment In
Southern Ocean, U.S. JGOFS News, 11, 11–14, 2001.
Smetacek, V.: Ocean iron fertilization experiments: The dawn of a new era in
applied ocean sciences?, KOPRI, Korea, 2015.
Smetacek, V. and Naqvi, S. W. A.: The next generation of iron fertilization
experiments in the Southern Ocean, Philos. T. Roy. Soc. A,
366, 3947–3967, https://doi.org/10.1098/rsta.2008.0144, 2008.
Smetacek, V.: Seeing is believing: Diatoms and the Ocean Carbon Cycle
revisited, Protist, https://doi.org/10.1016/j.protis.2018.08.004, in press, 2018.
Smetacek, V. and Naqvi, S. W. A.: The expedition of the research vessel
“Polarstern” to the Antarctic in 2009 (ANT-XXV/3 - LOHAFEX), Berichte zur
Polar- und Meeresforschung (Reports on Polar and Marine Research), Alfred Wegener Institute for Polar and Marine Research,
Bremerhaven, 613,
2010.
Smetacek, V., Klaas, C., Menden-Deuer, S., and Rynearson, T. A.: Mesoscale
distribution of dominant diatom species relative to the hydrographical field
along the Antarctic Polar Front, Deep-Sea Res. Pt. II, 49, 3835–3848,
https://doi.org/10.1016/S0967-0645(02)00113-3, 2002.
Smetacek, V., Bathmann, U., and Helmke, E.: The expeditions Antarktis
XXI/3-4-5 of the Research Vessel “Polarstern” in 2004, Reports on Polar and
Marine Research, 500, 1–299, 2005.
Smetacek, V., Klaas, C., Strass, V. H., Assmy, P., Montresor, M., Cisewski,
B., Savoye, N., Webb, A., d/'Ovidio, F., Arrieta, J. M., Bathmann, U.,
Bellerby, R., Berg, G. M., Croot, P., Gonzalez, S., Henjes, J., Herndl, G.
J., Hoffmann, L. J., Leach, H., Losch, M., Mills, M. M., Neill, C., Peeken,
I., Rottgers, R., Sachs, O., Sauter, E., Schmidt, M. M., Schwarz, J.,
Terbruggen, A., and Wolf-Gladrow, D.: Deep carbon export from a Southern
Ocean iron-fertilized diatom bloom, Nature, 487, 313–319,
https://doi.org/10.1038/nature11229, 2012.
Solomon, S., Garcia, R. R., and Ravishankara, A. R.: On the role of iodine
in ozone depletion, J. Geophys. Res., 99, 20491–20499,
https://doi.org/10.1029/94JD02028, 1994.
Spolaor, A., Vallelonga, P., Cozzi, G., Gabrieli, J., Varin, C., Kehrwald,
N., Zennaro, P., Boutron, C., and Barbante, C.: Iron speciation in aerosol
dust influences iron bioavailability over glacial-interglacial timescales,
Geophys. Res. Lett., 40, 1618–1623, https://doi.org/10.1002/grl.50296, 2013.
Stanton, T. P., Law, C. S., and Watson, A. J.: Physical evolution of the
IronEx-I open ocean tracer patch, Deep-Sea Res. Pt. II, 45, 947–975,
https://doi.org/10.1016/S0967-0645(98)00018-6, 1998.
Steinberg, P. A., Millero, F. J., and Zhu, X.: Carbonate system response to
iron enrichment, Mar. Chem., 62, 31–43, https://doi.org/10.1016/S0304-4203(98)00031-0,
1998.
Strong, A. L., Cullen, J. J., and Chisholm, S. W.: Ocean fertilization:
Science, policy, and commerce, Oceanography, 22, 236–261,
https://doi.org/10.5670/oceanog.2009.83, 2009.
Suess, E.: Particulate organic carbon flux in the oceans – Surface
productivity and oxygen utilization, Nature, 288, 260–263,
https://doi.org/10.1038/288260a0, 1980.
Sunda, W. G., Swift, D. G., and Hunstman, S.: Low requirement for growth in
oceanic phytoplankton, Nature, 351, 55–57, https://doi.org/10.1038/351055a0, 1991.
Suzuki, K., Hinuma, A., Saito, H., Kiyosawa, H., Liu, H., Saino, T., and
Tsuda, A.: Responses of phytoplankton and heterotrophic bacteria in the
northwest subarctic Pacific to in situ iron fertilization as estimated by
HPLC pigment analysis and flow cytometry, Prog. Oceanogr., 64, 167–187,
https://doi.org/10.1016/j.pocean.2005.02.007, 2005.
Suzuki, K., Saito, H., Isada, T., Hattori-Saito, A., Kiyosawa, H., Nishioka,
J., McKay, R. M. L., Kuwata, A., and Tsuda, A.: Community structure and
photosynthetic physiology of phytoplankton in the northwest subarctic
Pacific during an in situ iron fertilization experiment (SEEDS-II), Deep-Sea
Res. Pt. II, 56, 2733–2744, https://doi.org/10.1016/j.dsr2.2009.06.001, 2009.
Takeda, S. and Tsuda, A.: An in situ iron-enrichment experiment in the
western subarctic Pacific (SEEDS): Introduction and summary, Prog.
Oceanogr., 64, 95–109, https://doi.org/10.1016/j.pocean.2005.02.004, 2005.
Thiele, S., Fuchs, B. M., Ramaiah, N., and Amann, R.: Microbial Community
Response during the Iron Fertilization Experiment LOHAFEX, Appl. Environ.
Microbiol., 78, 8803-8812, https://doi.org/10.1128/AEM.01814-12, 2012.
Treguer, P., Nelson, D. M., Van Bennekom, A. J., DeMaster, D. J., Leynaert,
A., and Queguiner, B.: The Silica Balance in the World Ocean: A Reestimate,
Science, 268, 375–379, https://doi.org/10.1126/science.268.5209.375, 1995.
Trick, C. G., Bill, B. D., Cochlan, W. P., Wells, M. L., Trainer, V. L., and
Pickell, L. D.: Iron enrichment stimulates toxic diatom production in
high-nitrate, low-chlorophyll areas, P. Natl. Acad. Sci. USA, 107,
5887–5892, https://doi.org/10.1073/pnas.0910579107, 2010.
Trull, T., and Armand, L. K.: Insights into Southern Ocean carbon export
from the δ13C of particles and dissolved inorganic carbon during the
SOIREE iron release experiment, Deep-Sea Res. Pt. II, 48, 2655–2680,
https://doi.org/10.1016/S0967-0645(01)00013-3, 2001.
Tsuda, A., Takeda, S., Saito, H., Nishioka, J., Nojiri, Y., Kudo, I.,
Kiyosawa, H., Shiomoto, A., Imai, K., Ono, T., Shimamoto, A., Tsumune, D.,
Yoshimura, T., Aono, T., Hinuma, A., Kinugasa, M., Suzuki, K., Sohrin, Y.,
Noiri, Y., Tani, H., Deguchi, Y., Tsurushima, N., Ogawa, H., Fukami, K.,
Kuma, K., and Saino, T.: A Mesoscale Iron Enrichment in the Western
Subarctic Pacific Induces a Large Centric Diatom Bloom, Science, 300,
958–961, https://doi.org/10.1126/science.1082000, 2003.
Tsuda, A., Kiyosawa, H., Kuwata, A., Mochizuki, M., Shiga, N., Saito, H.,
Chiba, S., Imai, K., Nishioka, J., and Ono, T.: Responses of diatoms to
iron-enrichment (SEEDS) in the western subarctic Pacific, temporal and
spatial comparisons, Prog. Oceanogr., 64, 189–205,
https://doi.org/10.1016/j.pocean.2005.02.008, 2005.
Tsuda, A., Takeda, S., Saito, H., Nishioka, J., Kudo, I., Nojiri, Y.,
Suzuki, K., Uematsu, M., Wells, M. L., Tsumune, D., Yoshimura, T., Aono, T.,
Aramaki, T., Cochlan, W. P., Hayakawa, M., Imai, K., Isada, T., Iwamoto, Y.,
Johnson, W. K., Kameyama, S., Kato, S., Kiyosawa, H., Kondo, Y., Levasseur,
M., Machida, R. J., Nagao, I., Nakagawa, F., Nakanishi, T., Nakatsuka, S.,
Narita, A., Noiri, Y., Obata, H., Ogawa, H., Oguma, K., Ono, T., Sakuragi,
T., Sasakawa, M., Sato, M., Shimamoto, A., Takata, H., Trick, C. G.,
Watanabe, Y. W., Wong, C. S., and Yoshie, N.: Evidence for the grazing
hypothesis: Grazing reduces phytoplankton responses of the HNLC ecosystem to
iron enrichment in the western subarctic pacific (SEEDS II), J. Oceanogr.,
63, 983–994, https://doi.org/10.1007/s10872-007-0082-x, 2007.
Tsumune, D., Nishioka, J., Shimamoto, A., Takeda, S., and Tsuda, A.:
Physical behavior of the SEEDS iron-fertilized patch by sulphur hexafluoride
tracer release, Prog. Oceanogr., 64, 111–127,
https://doi.org/10.1016/j.pocean.2005.02.018, 2005.
Tsumune, D., Nishioka, J., Shimamoto, A., Watanabe, Y. W., Aramaki, T.,
Nojiri, Y., Takeda, S., Tsuda, A., and Tsubono, T.: Physical behaviors of
the iron-fertilized patch in SEEDS II, Deep-Sea Res. Pt. II, 56, 2948–2957,
https://doi.org/10.1016/j.dsr2.2009.07.004, 2009.
Turner, S. M., Nightingale, P. D., Spokes, L. J., Liddicoat, M. I., and
Liss, P. S.: Increased dimethyl sulphide concentrations in sea water from in
situ iron enrichment, Nature, 383, 513–517, https://doi.org/10.1038/383513a0, 1996.
Turner, S. M., Harvey, M. J., Law, C. S., Nightingale, P. D., and Liss, P.
S.: Iron-induced changes in oceanic sulfur biogeochemistry, Geophys. Res.
Lett., 31, L14307, https://doi.org/10.1029/2004GL020296, 2004.
Twining, B. S., Baines, S. B., and Fisher, N. S.: Element stoichiometries of
individual plankton cells collected during the Southern Ocean Iron
Experiment (SOFeX), Limnol. Oceanogr., 49, 2115–2128,
https://doi.org/10.4319/lo.2004.49.6.2115, 2004.
Valdes, J. R. and Buesseler, K. O.: The neutrally buoyant sediment trap
(NBST), a new tool for “Twilight Zone” particle exploration, Eos Trans.
AGU Ocean Sci. Meeting Suppl., 87, Abstract OS26A-10, 2006.
Valdes, J. R. and Price, J. F.: A neutrally buoyant, upper ocean sediment
trap, J. Atmos. Oceanogr. Technol., 17, 62–68,
https://doi.org/10.1175/1520-0426(2000)017<0062:ANBUOS>2.0.CO;2,
2000.
Vaughan, N. E. and Lenton, T. M.: A review of climate geoengineering
proposals, Clim. Change, 109, 745–790, https://doi.org/10.1007/s10584-011-0027-7, 2011.
Veth, C., Peeken, I., and Scharek, R.: Physical anatomy of fronts and
surface waters in the ACC near 6∘ W meridian during austral spring 1992,
Deep-Sea Res. Pt. II, 44, 23–49, https://doi.org/10.1016/S0967-0645(96)00062-8, 1997.
Volk, T. and Hoffert, M. I.: Ocean Carbon Pumps: Analysis of Relative
Strengths and Efficiencies in Ocean-Driven Atmospheric CO2 Changes, in: The
Carbon Cycle and Atmospheric CO2: Natural Variations Archean to
Present, Geophys. Monogr. Ser., 32, 99–110, 1985.
Waite, A. M. and Nodder, S. D.: The effect of in situ iron addition on the
sinking rates and export flux of Southern Ocean diatoms, Deep-Sea Res. Pt.
II, 48, 2635–2654, https://doi.org/10.1016/S0967-0645(01)00012-1, 2001.
Walter, S., Peeken, I., Lochte, K., Webb, A., and Bange, H. W.: Nitrous
oxide measurements during EIFEX, the European Iron Fertilization Experiment
in the subpolar South Atlantic Ocean, Geophys. Res. Lett., 32, L23613,
https://doi.org/10.1029/2005GL024619, 2005.
Watson, A., Liss, P., and Duce, R.: Design of a small-scale in situ iron
fertilization experiment, Limnol. Oceanogr., 36, 1960–1965,
https://doi.org/10.4319/lo.1991.36.8.1960, 1991.
Wenzhofer, F., Lemburg, J., Hofbauer, M., Lehmenhecker, S., and Farber, P.:
TRAMPER - An autonomous crawler for long-term benthic oxygen flux studies in
remote deep sea ecosystems, OCEANS 2016 MTS/IEEE Monterey, 1–6,
https://doi.org/10.1109/OCEANS.2016.7761217, 2016.
Westberry, T. K., Behrenfeld, M. J., Milligan, A. J., and Doney, S. C.:
Retrospective satellite ocean color analysis of purposeful and natural ocean
iron fertilization, Deep-Sea Res. Pt. I, 73, 1–16,
https://doi.org/10.1016/j.dsr.2012.11.010, 2013.
Williamson, P., Wallace, D. W. R., Law, C. S., Boyd, P. W., Collos, Y.,
Croot, P., Denman, K., Riebesell, U., Takeda, S., and Vivian, C.: Ocean
fertilization for geoengineering: A review of effectiveness, environmental
impacts and emerging governance, Process Saf. Environ. Protect., 90,
475–488, https://doi.org/10.1016/j.psep.2012.10.007, 2012.
Wingenter, O. W., Haase, K. B., Strutton, P., Friederich, G., Meinardi, S.,
Blake, D. R., and Rowland, F. S.: Changing concentrations of CO, CH4,
C5H8, CH3Br, CH3I, and dimethyl sulfide during the
Southern Ocean Iron Enrichment Experiments, P. Natl. Acad. Sci. USA,
101, 8537–8541, https://doi.org/10.1073/pnas.0402744101, 2004.
Wingenter, O. W., Elliot, S. M., and Blake, D. R.: New Directions: Enhancing
the natural sulfur cycle to slow global warming, Atmos. Environ., 41,
7373–7375, https://doi.org/10.1016/j.atmosenv.2007.07.021, 2007.
Wong, C. S., Timothy, D. A., Law, C. S., Nojiri, Y., Xie, L., Wong, S.-K.
E., and Page, J. S.: Carbon distribution and fluxes during the SERIES iron
fertilization experiment with special reference to the fugacity of carbon
dioxide (fCO2), Deep-Sea Res. Pt. II, 53, 2053–2074,
https://doi.org/10.1016/j.dsr2.2006.05.036, 2006.
Xiu, P. and Chai, F.: Modeling the effects of size on patch dynamics of an
inert tracer, Ocean Sci., 6, 413–421, https://doi.org/10.5194/os-6-413-2010, 2010.
Zahariev, K., Christian, J. R., and Denman, K. L.: Preindustrial,
historical, and fertilization simulations using a global ocean carbon model
with new parameterizations of iron limitation, calcification, and N2
fixation, Prog. Oceanogr., 77, 56–82, https://doi.org/10.1016/j.pocean.2008.01.007,
2008.
Zeldis, J.: Mesozooplankton community composition, feeding, and export
production during SOIREE, Deep-Sea Res. Pt. II, 48, 2615–2634,
https://doi.org/10.1016/S0967-0645(01)00011-X, 2001.
Zhuang, G. and Duce, R. A.: The adsorption of dissolved iron on marine
aerosol particles in surface waters of the open ocean, Deep-Sea Res. Pt. I,
40, 1413–1429, https://doi.org/10.1016/0967-0637(93)90120-R, 1993.
Zhuang, G., Yi, Z., Duce, R. A., and Brown, P. R.: Link between iron and
sulphur cycles suggested by detection of Fe(II) in remote marine aerosols,
Nature, 355, 537–539, https://doi.org/10.1038/355537a0, 1992.
Short summary
Our paper provides an intensive overview of the artificial ocean iron fertilization (aOIF) experiments conducted over the last 25 years to test Martin’s hypothesis, discusses aOIF-related important unanswered open questions, suggests considerations for the design of future aOIF experiments to maximize their effectiveness, and introduces design guidelines for a future Korean Iron Fertilization Experiment in the Southern Ocean.
Our paper provides an intensive overview of the artificial ocean iron fertilization (aOIF)...
Altmetrics
Final-revised paper
Preprint