Articles | Volume 15, issue 2
https://doi.org/10.5194/bg-15-649-2018
https://doi.org/10.5194/bg-15-649-2018
Research article
 | 
01 Feb 2018
Research article |  | 01 Feb 2018

Marine isoprene production and consumption in the mixed layer of the surface ocean – a field study over two oceanic regions

Dennis Booge, Cathleen Schlundt, Astrid Bracher, Sonja Endres, Birthe Zäncker, and Christa A. Marandino

Related authors

Natural marine bromoform emissions in the fully coupled ocean–atmosphere model NorESM2
Dennis Booge, Jerry F. Tjiputra, Dirk J. L. Olivié, Birgit Quack, and Kirstin Krüger
Earth Syst. Dynam., 15, 801–816, https://doi.org/10.5194/esd-15-801-2024,https://doi.org/10.5194/esd-15-801-2024, 2024
Short summary
Winter season Southern Ocean distributions of climate-relevant trace gases
Li Zhou, Dennis Booge, Miming Zhang, and Christa A. Marandino
Biogeosciences, 19, 5021–5040, https://doi.org/10.5194/bg-19-5021-2022,https://doi.org/10.5194/bg-19-5021-2022, 2022
Short summary
Seasonal study of the small-scale variability in dissolved methane in the western Kiel Bight (Baltic Sea) during the European heatwave in 2018
Sonja Gindorf, Hermann W. Bange, Dennis Booge, and Annette Kock
Biogeosciences, 19, 4993–5006, https://doi.org/10.5194/bg-19-4993-2022,https://doi.org/10.5194/bg-19-4993-2022, 2022
Short summary
Dimethylated sulfur compounds in the Peruvian upwelling system
Yanan Zhao, Dennis Booge, Christa A. Marandino, Cathleen Schlundt, Astrid Bracher, Elliot L. Atlas, Jonathan Williams, and Hermann W. Bange
Biogeosciences, 19, 701–714, https://doi.org/10.5194/bg-19-701-2022,https://doi.org/10.5194/bg-19-701-2022, 2022
Short summary
A decade of dimethyl sulfide (DMS), dimethylsulfoniopropionate (DMSP) and dimethyl sulfoxide (DMSO) measurements in the southwestern Baltic Sea
Yanan Zhao, Cathleen Schlundt, Dennis Booge, and Hermann W. Bange
Biogeosciences, 18, 2161–2179, https://doi.org/10.5194/bg-18-2161-2021,https://doi.org/10.5194/bg-18-2161-2021, 2021
Short summary

Related subject area

Biogeochemistry: Open Ocean
Assessing the tropical Atlantic biogeochemical processes in the Norwegian Earth System Model
Shunya Koseki, Lander R. Crespo, Jerry Tjiputra, Filippa Fransner, Noel S. Keenlyside, and David Rivas
Biogeosciences, 21, 4149–4168, https://doi.org/10.5194/bg-21-4149-2024,https://doi.org/10.5194/bg-21-4149-2024, 2024
Short summary
Evolution of oxygen and stratification and their relationship in the North Pacific Ocean in CMIP6 Earth system models
Lyuba Novi, Annalisa Bracco, Takamitsu Ito, and Yohei Takano
Biogeosciences, 21, 3985–4005, https://doi.org/10.5194/bg-21-3985-2024,https://doi.org/10.5194/bg-21-3985-2024, 2024
Short summary
Evaluation of CMIP6 model performance in simulating historical biogeochemistry across the southern South China Sea
Winfred Marshal, Jing Xiang Chung, Nur Hidayah Roseli, Roswati Md Amin, and Mohd Fadzil Bin Mohd Akhir
Biogeosciences, 21, 4007–4035, https://doi.org/10.5194/bg-21-4007-2024,https://doi.org/10.5194/bg-21-4007-2024, 2024
Short summary
Drivers of decadal trends in the ocean carbon sink in the past, present, and future in Earth system models
Jens Terhaar
Biogeosciences, 21, 3903–3926, https://doi.org/10.5194/bg-21-3903-2024,https://doi.org/10.5194/bg-21-3903-2024, 2024
Short summary
Anthropogenic carbon storage and its decadal changes in the Atlantic between 1990–2020
Reiner Steinfeldt, Monika Rhein, and Dagmar Kieke
Biogeosciences, 21, 3839–3867, https://doi.org/10.5194/bg-21-3839-2024,https://doi.org/10.5194/bg-21-3839-2024, 2024
Short summary

Cited articles

Acuña Alvarez, L., Exton, D. A., Timmis, K. N., Suggett, D. J., and McGenity, T. J.: Characterization of marine isoprene-degrading communities, Environ. Microbiol., 11, 3280–3291, https://doi.org/10.1111/j.1462-2920.2009.02069.x, 2009.
Aiken, J., Pradhan, Y., Barlow, R., Lavender, S., Poulton, A., Holligan, P., and Hardman-Mountford, N.: Phytoplankton pigments and functional types in the Atlantic Ocean: a decadal assessment, 1995–2005, Deep-Sea Res. Pt. II, 56, 899–917, https://doi.org/10.1016/j.dsr2.2008.09.017, 2009.
Anttila, T., Langmann, B., Varghese, S., and O'Dowd, C.: Contribution of isoprene oxidation products to marine aerosol over the North-East Atlantic, Adv. Meteorol., 482603, https://doi.org/10.1155/2010/482603, 2010.
Arneth, A., Monson, R. K., Schurgers, G., Niinemets, Ü., and Palmer, P. I.: Why are estimates of global terrestrial isoprene emissions so similar (and why is this not so for monoterpenes)?, Atmos. Chem. Phys., 8, 4605–4620, https://doi.org/10.5194/acp-8-4605-2008, 2008.
Arnold, S. R., Spracklen, D. V., Williams, J., Yassaa, N., Sciare, J., Bonsang, B., Gros, V., Peeken, I., Lewis, A. C., Alvain, S., and Moulin, C.: Evaluation of the global oceanic isoprene source and its impacts on marine organic carbon aerosol, Atmos. Chem. Phys., 9, 1253–1262, https://doi.org/10.5194/acp-9-1253-2009, 2009.
Download
Short summary
Our isoprene data from field measurements in the mixed layer from the Indian Ocean and the eastern Pacific Ocean show that the ability of different phytoplankton functional types to produce isoprene seems to be mainly influenced by light, ocean temperature, salinity, and nutrients. By calculating in-field isoprene production rates, we demonstrate that an additional loss is needed to explain the measured isoprene concentration, which is potentially due to degradation or consumption by bacteria.
Altmetrics
Final-revised paper
Preprint