Research article
05 Apr 2019
Research article | 05 Apr 2019
Multidecadal persistence of organic matter in soils: multiscale investigations down to the submicron scale
Suzanne Lutfalla et al.
Related authors
A model based on Rock-Eval thermal analysis to quantify the size of the centennially persistent organic carbon pool in temperate soils
Lauric Cécillon, François Baudin, Claire Chenu, Sabine Houot, Romain Jolivet, Thomas Kätterer, Suzanne Lutfalla, Andy Macdonald, Folkert van Oort, Alain F. Plante, Florence Savignac, Laure N. Soucémarianadin, and Pierre Barré
Biogeosciences, 15, 2835–2849, https://doi.org/10.5194/bg-15-2835-2018,https://doi.org/10.5194/bg-15-2835-2018, 2018
A model based on Rock-Eval thermal analysis to quantify the size of the centennially persistent organic carbon pool in temperate soils
Lauric Cécillon, François Baudin, Claire Chenu, Sabine Houot, Romain Jolivet, Thomas Kätterer, Suzanne Lutfalla, Andy Macdonald, Folkert van Oort, Alain F. Plante, Florence Savignac, Laure N. Soucémarianadin, and Pierre Barré
Biogeosciences, 15, 2835–2849, https://doi.org/10.5194/bg-15-2835-2018,https://doi.org/10.5194/bg-15-2835-2018, 2018
High organic inputs explain shallow and deep SOC storage in a long-term agroforestry system – combining experimental and modeling approaches
Rémi Cardinael, Bertrand Guenet, Tiphaine Chevallier, Christian Dupraz, Thomas Cozzi, and Claire Chenu
Biogeosciences, 15, 297–317, https://doi.org/10.5194/bg-15-297-2018,https://doi.org/10.5194/bg-15-297-2018, 2018
Short summary
Ideas and perspectives: Can we use the soil carbon saturation deficit to quantitatively assess the soil carbon storage potential, or should we explore other strategies?
Pierre Barré, Denis A. Angers, Isabelle Basile-Doelsch, Antonio Bispo, Lauric Cécillon, Claire Chenu, Tiphaine Chevallier, Delphine Derrien, Thomas K. Eglin, and Sylvain Pellerin
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-395,https://doi.org/10.5194/bg-2017-395, 2017
Manuscript not accepted for further review
Short summary
Simulating microbial degradation of organic matter in a simple porous system using the 3-D diffusion-based model MOSAIC
O. Monga, P. Garnier, V. Pot, E. Coucheney, N. Nunan, W. Otten, and C. Chenu
Biogeosciences, 11, 2201–2209, https://doi.org/10.5194/bg-11-2201-2014,https://doi.org/10.5194/bg-11-2201-2014, 2014
The relative importance of decomposition and transport mechanisms in accounting for soil organic carbon profiles
B. Guenet, T. Eglin, N. Vasilyeva, P. Peylin, P. Ciais, and C. Chenu
Biogeosciences, 10, 2379–2392, https://doi.org/10.5194/bg-10-2379-2013,https://doi.org/10.5194/bg-10-2379-2013, 2013
Related subject area
Reviews and syntheses: Soil responses to manipulated precipitation changes – an assessment of meta-analyses
Akane O. Abbasi, Alejandro Salazar, Youmi Oh, Sabine Reinsch, Maria del Rosario Uribe, Jianghanyang Li, Irfan Rashid, and Jeffrey S. Dukes
Biogeosciences, 17, 3859–3873, https://doi.org/10.5194/bg-17-3859-2020,https://doi.org/10.5194/bg-17-3859-2020, 2020
Short summary
From fibrous plant residues to mineral-associated organic carbon – the fate of organic matter in Arctic permafrost soils
Isabel Prater, Sebastian Zubrzycki, Franz Buegger, Lena C. Zoor-Füllgraff, Gerrit Angst, Michael Dannenmann, and Carsten W. Mueller
Biogeosciences, 17, 3367–3383, https://doi.org/10.5194/bg-17-3367-2020,https://doi.org/10.5194/bg-17-3367-2020, 2020
Short summary
Relevance of aboveground litter for soil organic matter formation – a soil profile perspective
Patrick Liebmann, Patrick Wordell-Dietrich, Karsten Kalbitz, Robert Mikutta, Fabian Kalks, Axel Don, Susanne K. Woche, Leena R. Dsilva, and Georg Guggenberger
Biogeosciences, 17, 3099–3113, https://doi.org/10.5194/bg-17-3099-2020,https://doi.org/10.5194/bg-17-3099-2020, 2020
Short summary
A revised pan-Arctic permafrost soil Hg pool based on Western Siberian peat Hg and carbon observations
Artem G. Lim, Martin Jiskra, Jeroen E. Sonke, Sergey V. Loiko, Natalia Kosykh, and Oleg S. Pokrovsky
Biogeosciences, 17, 3083–3097, https://doi.org/10.5194/bg-17-3083-2020,https://doi.org/10.5194/bg-17-3083-2020, 2020
Short summary
The soil organic carbon stabilization potential of old and new wheat cultivars: a 13CO2-labeling study
Marijn Van de Broek, Shiva Ghiasi, Charlotte Decock, Andreas Hund, Samuel Abiven, Cordula Friedli, Roland A. Werner, and Johan Six
Biogeosciences, 17, 2971–2986, https://doi.org/10.5194/bg-17-2971-2020,https://doi.org/10.5194/bg-17-2971-2020, 2020
Short summary
Drivers and modelling of blue carbon stock variability in sediments of southeastern Australia
Carolyn J. Ewers Lewis, Mary A. Young, Daniel Ierodiaconou, Jeffrey A. Baldock, Bruce Hawke, Jonathan Sanderman, Paul E. Carnell, and Peter I. Macreadie
Biogeosciences, 17, 2041–2059, https://doi.org/10.5194/bg-17-2041-2020,https://doi.org/10.5194/bg-17-2041-2020, 2020
Short summary
A comparison of patterns of microbial C : N : P stoichiometry between topsoil and subsoil along an aridity gradient
Yuqing Liu, Wenhong Ma, Dan Kou, Xiaxia Niu, Tian Wang, Yongliang Chen, Dima Chen, Xiaoqin Zhu, Mengying Zhao, Baihui Hao, Jinbo Zhang, Yuanhe Yang, and Huifeng Hu
Biogeosciences, 17, 2009–2019, https://doi.org/10.5194/bg-17-2009-2020,https://doi.org/10.5194/bg-17-2009-2020, 2020
Short summary
Increasing soil carbon stocks in eight permanent forest plots in China
Jianxiao Zhu, Chuankuan Wang, Zhang Zhou, Guoyi Zhou, Xueyang Hu, Lai Jiang, Yide Li, Guohua Liu, Chengjun Ji, Shuqing Zhao, Peng Li, Jiangling Zhu, Zhiyao Tang, Chengyang Zheng, Richard A. Birdsey, Yude Pan, and Jingyun Fang
Biogeosciences, 17, 715–726, https://doi.org/10.5194/bg-17-715-2020,https://doi.org/10.5194/bg-17-715-2020, 2020
Short summary
Estimates of mean residence times of phosphorus in commonly considered inorganic soil phosphorus pools
Julian Helfenstein, Chiara Pistocchi, Astrid Oberson, Federica Tamburini, Daniel S. Goll, and Emmanuel Frossard
Biogeosciences, 17, 441–454, https://doi.org/10.5194/bg-17-441-2020,https://doi.org/10.5194/bg-17-441-2020, 2020
Short summary
Lability classification of soil organic matter in the northern permafrost region
Peter Kuhry, Jiří Bárta, Daan Blok, Bo Elberling, Samuel Faucherre, Gustaf Hugelius, Christian J. Jørgensen, Andreas Richter, Hana Šantrůčková, and Niels Weiss
Biogeosciences, 17, 361–379, https://doi.org/10.5194/bg-17-361-2020,https://doi.org/10.5194/bg-17-361-2020, 2020
Current, steady-state and historical weathering rates of base cations at two forest sites in northern and southern Sweden: a comparison of three methods
Sophie Casetou-Gustafson, Harald Grip, Stephen Hillier, Sune Linder, Bengt A. Olsson, Magnus Simonsson, and Johan Stendahl
Biogeosciences, 17, 281–304, https://doi.org/10.5194/bg-17-281-2020,https://doi.org/10.5194/bg-17-281-2020, 2020
Short summary
Weathering rates in Swedish forest soils
Cecilia Akselsson, Salim Belyazid, Johan Stendahl, Roger Finlay, Bengt A. Olsson, Martin Erlandsson Lampa, Håkan Wallander, Jon Petter Gustafsson, and Kevin Bishop
Biogeosciences, 16, 4429–4450, https://doi.org/10.5194/bg-16-4429-2019,https://doi.org/10.5194/bg-16-4429-2019, 2019
Short summary
Exogenous phosphorus compounds interact with nitrogen availability to regulate dynamics of soil inorganic phosphorus fractions in a meadow steppe
Heyong Liu, Ruzhen Wang, Hongyi Wang, Yanzhuo Cao, Feike A. Dijkstra, Zhan Shi, Jiangping Cai, Zhengwen Wang, Hongtao Zou, and Yong Jiang
Biogeosciences, 16, 4293–4306, https://doi.org/10.5194/bg-16-4293-2019,https://doi.org/10.5194/bg-16-4293-2019, 2019
Spatial gradients in the characteristics of soil-carbon fractions are associated with abiotic features but not microbial communities
Aditi Sengupta, Julia Indivero, Cailene Gunn, Malak M. Tfaily, Rosalie K. Chu, Jason Toyoda, Vanessa L. Bailey, Nicholas D. Ward, and James C. Stegen
Biogeosciences, 16, 3911–3928, https://doi.org/10.5194/bg-16-3911-2019,https://doi.org/10.5194/bg-16-3911-2019, 2019
Short summary
Biological enhancement of mineral weathering by Pinus sylvestris seedlings – effects of plants, ectomycorrhizal fungi, and elevated CO2
Nicholas P. Rosenstock, Patrick A. W. van Hees, Petra M. A. Fransson, Roger D. Finlay, and Anna Rosling
Biogeosciences, 16, 3637–3649, https://doi.org/10.5194/bg-16-3637-2019,https://doi.org/10.5194/bg-16-3637-2019, 2019
Short summary
Past aridity's effect on carbon mineralization potentials in grassland soils
Zhenjiao Cao, Yufu Jia, Yue Cai, Xin Wang, Huifeng Hu, Jinbo Zhang, Juan Jia, and Xiaojuan Feng
Biogeosciences, 16, 3605–3619, https://doi.org/10.5194/bg-16-3605-2019,https://doi.org/10.5194/bg-16-3605-2019, 2019
Short summary
Plant functional traits determine latitudinal variations in soil microbial function: evidence from forests in China
Zhiwei Xu, Guirui Yu, Qiufeng Wang, Xinyu Zhang, Ruili Wang, Ning Zhao, Nianpeng He, and Ziping Liu
Biogeosciences, 16, 3333–3349, https://doi.org/10.5194/bg-16-3333-2019,https://doi.org/10.5194/bg-16-3333-2019, 2019
Short summary
Dynamics of deep soil carbon – insights from 14C time series across a climatic gradient
Tessa Sophia van der Voort, Utsav Mannu, Frank Hagedorn, Cameron McIntyre, Lorenz Walthert, Patrick Schleppi, Negar Haghipour, and Timothy Ian Eglinton
Biogeosciences, 16, 3233–3246, https://doi.org/10.5194/bg-16-3233-2019,https://doi.org/10.5194/bg-16-3233-2019, 2019
Short summary
Frequency and intensity of nitrogen addition alter soil inorganic sulfur fractions, but the effects vary with mowing management in a temperate steppe
Tianpeng Li, Heyong Liu, Ruzhen Wang, Xiao-Tao Lü, Junjie Yang, Yunhai Zhang, Peng He, Zhirui Wang, Xingguo Han, and Yong Jiang
Biogeosciences, 16, 2891–2904, https://doi.org/10.5194/bg-16-2891-2019,https://doi.org/10.5194/bg-16-2891-2019, 2019
Shifting mineral and redox controls on carbon cycling in seasonally flooded mineral soils
Rachelle E. LaCroix, Malak M. Tfaily, Menli McCreight, Morris E. Jones, Lesley Spokas, and Marco Keiluweit
Biogeosciences, 16, 2573–2589, https://doi.org/10.5194/bg-16-2573-2019,https://doi.org/10.5194/bg-16-2573-2019, 2019
Short summary
Pedogenic and microbial interrelation in initial soils under semiarid climate on James Ross Island, Antarctic Peninsula region
Lars A. Meier, Patryk Krauze, Isabel Prater, Fabian Horn, Carlos E. G. R. Schaefer, Thomas Scholten, Dirk Wagner, Carsten W. Mueller, and Peter Kühn
Biogeosciences, 16, 2481–2499, https://doi.org/10.5194/bg-16-2481-2019,https://doi.org/10.5194/bg-16-2481-2019, 2019
Short summary
Global satellite-driven estimates of heterotrophic respiration
Alexandra G. Konings, A. Anthony Bloom, Junjie Liu, Nicholas C. Parazoo, David S. Schimel, and Kevin W. Bowman
Biogeosciences, 16, 2269–2284, https://doi.org/10.5194/bg-16-2269-2019,https://doi.org/10.5194/bg-16-2269-2019, 2019
Short summary
Microbial biobanking – cyanobacteria-rich topsoil facilitates mine rehabilitation
Wendy Williams, Angela Chilton, Mel Schneemilch, Stephen Williams, Brett Neilan, and Colin Driscoll
Biogeosciences, 16, 2189–2204, https://doi.org/10.5194/bg-16-2189-2019,https://doi.org/10.5194/bg-16-2189-2019, 2019
Short summary
Modeling soil organic carbon dynamics in temperate forests with Yasso07
Zhun Mao, Delphine Derrien, Markus Didion, Jari Liski, Thomas Eglin, Manuel Nicolas, Mathieu Jonard, and Laurent Saint-André
Biogeosciences, 16, 1955–1973, https://doi.org/10.5194/bg-16-1955-2019,https://doi.org/10.5194/bg-16-1955-2019, 2019
Short summary
Iron minerals inhibit the growth of Pseudomonas brassicacearum J12 via a free-radical mechanism: implications for soil carbon storage
Hai-Yan Du, Guang-Hui Yu, Fu-Sheng Sun, Muhammad Usman, Bernard A. Goodman, Wei Ran, and Qi-Rong Shen
Biogeosciences, 16, 1433–1445, https://doi.org/10.5194/bg-16-1433-2019,https://doi.org/10.5194/bg-16-1433-2019, 2019
Short summary
Fluvial sedimentary deposits as carbon sinks: organic carbon pools and stabilization mechanisms across a Mediterranean catchment
María Martínez-Mena, María Almagro, Noelia García-Franco, Joris de Vente, Eloisa García, and Carolina Boix-Fayos
Biogeosciences, 16, 1035–1051, https://doi.org/10.5194/bg-16-1035-2019,https://doi.org/10.5194/bg-16-1035-2019, 2019
Short summary
Large-scale predictions of salt-marsh carbon stock based on simple observations of plant community and soil type
Hilary Ford, Angus Garbutt, Mollie Duggan-Edwards, Jordi F. Pagès, Rachel Harvey, Cai Ladd, and Martin W. Skov
Biogeosciences, 16, 425–436, https://doi.org/10.5194/bg-16-425-2019,https://doi.org/10.5194/bg-16-425-2019, 2019
Short summary
Impacts of temperature and soil characteristics on methane production and oxidation in Arctic tundra
Jianqiu Zheng, Taniya RoyChowdhury, Ziming Yang, Baohua Gu, Stan D. Wullschleger, and David E. Graham
Biogeosciences, 15, 6621–6635, https://doi.org/10.5194/bg-15-6621-2018,https://doi.org/10.5194/bg-15-6621-2018, 2018
Short summary
Organic matter characteristics in yedoma and thermokarst deposits on Baldwin Peninsula, west Alaska
Loeka L. Jongejans, Jens Strauss, Josefine Lenz, Francien Peterse, Kai Mangelsdorf, Matthias Fuchs, and Guido Grosse
Biogeosciences, 15, 6033–6048, https://doi.org/10.5194/bg-15-6033-2018,https://doi.org/10.5194/bg-15-6033-2018, 2018
Short summary
Modeling rhizosphere carbon and nitrogen cycling in Eucalyptus plantation soil
Rafael Vasconcelos Valadares, Júlio César Lima Neves, Maurício Dutra Costa, Philip James Smethurst, Luiz Alexandre Peternelli, Guilherme Luiz Jesus, Reinaldo Bertola Cantarutti, and Ivo Ribeiro Silva
Biogeosciences, 15, 4943–4954, https://doi.org/10.5194/bg-15-4943-2018,https://doi.org/10.5194/bg-15-4943-2018, 2018
Short summary
Understory vegetation plays the key role in sustaining soil microbial biomass and extracellular enzyme activities
Yang Yang, Xinyu Zhang, Chuang Zhang, Huimin Wang, Xiaoli Fu, Fusheng Chen, Songze Wan, Xiaomin Sun, Xuefa Wen, and Jifu Wang
Biogeosciences, 15, 4481–4494, https://doi.org/10.5194/bg-15-4481-2018,https://doi.org/10.5194/bg-15-4481-2018, 2018
Short summary
Cited articles
Balesdent, J., Mariotti, A., and Guillet, B.: Natural
13C abundance as a
tracer for studies of soil organic matter dynamics, Soil Biol. Biochem.,
19, 25–30, https://doi.org/10.1016/0038-0717(87)90120-9, 1987.
Balesdent, J., Besnard, E., Arrouays, D., and Chenu, C.: The dynamics of
carbon in particle-size fractions of soil in a forest-cultivation sequence,
Plant Soil, 201, 49–57, https://doi.org/10.1023/A:1004337314970, 1998.
Balesdent, J., Chenu, C., and Balabane, M.: Relationship of soil organic
matter dynamics to physical protection and tillage, Soil Till. Res.,
53, 215–230, https://doi.org/10.1016/S0167-1987(99)00107-5, 2000.
Barré, P., Eglin, T., Christensen, B. T., Ciais, P., Houot, S., Kätterer,
T., van Oort, F., Peylin, P., Poulton, P. R., Romanenkov, V., and Chenu, C.:
Quantifying and isolating stable soil organic carbon using long-term bare
fallow experiments, Biogeosciences, 7, 3839–3850,
https://doi.org/10.5194/bg-7-3839-2010, 2010.
Barré, P., Fernandez-Ugalde, O., Virto, I., Velde, B., and Chenu, C.:
Impact of phyllosilicate mineralogy on organic carbon stabilization in
soils: incomplete knowledge and exciting prospects, Geoderma, 235–236,
382–395, https://doi.org/10.1016/j.geoderma.2014.07.029, 2014.
Batjes, N. H.: Total carbon and nitrogen in the soils of the world, Eur. J.
Soil Sci., 47, 151–163, 1996.
Bernard, S., Horsfield, B., Schulz, H.-M., Wirth, R., Schreiber, A., and
Sherwood, N.: Geochemical evolution of organic-rich shales with increasing
maturity: A STXM and TEM study of the Posidonia Shale (Lower Toarcian,
northern Germany), Mar. Pet. Geol., 31, 70–89,
https://doi.org/10.1016/j.marpetgeo.2011.05.010, 2012.
Bernard, S., Benzerara, K., Beyssac, O., Balan, E., and Brown Jr., G. E.:
Evolution of the macromolecular structure of sporopollenin during thermal
degradation, Heliyon, 1, e00034, https://doi.org/10.1016/j.heliyon.2015.e00034, 2015.
Burgevin, H. and Hénin, S.: Dix années d'expériences sur
l'action des engrais sur la composition et les propriétés d'un sol
de limon, Ann Agron, 9, 771–799, 1939.
Chen, C., Dynes, J. J., Wang, J., Karunakaran, C., and Sparks, D. L.: Soft
X-ray Spectromicroscopy Study of Mineral-Organic Matter Associations in
Pasture Soil Clay Fractions, Environ. Sci. Technol., 48, 6678–6686,
https://doi.org/10.1021/es405485a, 2014.
Chenu, C. and Plante, A. F.: Clay-sized organo-mineral complexes in a
cultivation chronosequence: revisiting the concept of the “primary
organo-mineral complex”, Eur. J. Soil Sci., 57, 596–607,
https://doi.org/10.1111/j.1365-2389.2006.00834.x, 2006.
Christensen, B. T.: Physical Fractionation of Soil and Organic Matter in
Primary Particle Size and Density Separates, in Advances in Soil Science,
1–90, Springer, New York, 1992.
Dungait, J. A. J., Hopkins, D. W., Gregory, A. S., and Whitmore, A. P.: Soil
organic matter turnover is governed by accessibility not recalcitrance, Glob.
Change Biol., 18, 1781–1796, https://doi.org/10.1111/j.1365-2486.2012.02665.x, 2012.
Fernández-Ugalde, O., Barré, P., Hubert, F., Virto, I., Girardin, C.,
Ferrage, E., Caner, L., and Chenu, C.: Clay mineralogy differs qualitatively
in aggregate-size classes: clay-mineral-based evidence for aggregate
hierarchy in temperate soils, Eur. J. Soil Sci., 64, 410–422,
https://doi.org/10.1111/ejss.12046, 2013.
Fernández-Ugalde, O., Barré, P., Virto, I., Hubert, F., Billiou, D.,
and Chenu, C.: Does phyllosilicate mineralogy explain organic matter
stabilization in different particle-size fractions in a 19-year
C3∕C4 chronosequence in a temperate Cambisol?, Geoderma, 264,
171–178, 2016.
Gillespie, A. W., Phillips, C. L., Dynes, J. J., Chevrier, D., Regier, T. Z.,
and Peak, D.: Chapter One – Advances in Using Soft X-Ray Spectroscopy for
Measurement of Soil Biogeochemical Processes, Adv. Agron., 133,
1–32, 2015.
Grasset, L., Martinod, J., Plante, A. F., Amblès, A., Chenu, C., and
Righi, D.: Nature and origin of lipids in clay size fraction of a cultivated
soil as revealed using preparative thermochemolysis, Org. Geochem., 40,
70–78, https://doi.org/10.1016/j.orggeochem.2008.09.004, 2009.
Hubert, F., Caner, L., Meunier, A., and Lanson, B.: Advances in
characterization of soil clay mineralogy using X-ray diffraction: from
decomposition to profile fitting, Eur. J. Soil Sci., 60, 1093–1105, 2009.
Hubert, F., Caner, L., Meunier, A., and Ferrage, E.: Unraveling
complex < 2
µm clay mineralogy from soils using X-ray
diffraction profile modeling on particle-size sub-fractions: Implications
for soil pedogenesis and reactivity, Am. Mineral., 97, 384–398, 2012.
Kaznatcheev, K. V., Karunakaran, C., Lanke, U. D., Urquhart, S. G., Obst, M.,
and Hitchcock, A. P.: Soft X-ray spectromicroscopy beamline at the CLS:
Commissioning results, Nucl. Instrum. Methods Phys. Res. Sect. Accel.
Spectrometers Detect. Assoc. Equip., 582, 96–99,
https://doi.org/10.1016/j.nima.2007.08.083, 2007.
Keiluweit, M., Nico, P. S., Johnson, M. G., and Kleber, M.: Dynamic Molecular
Structure of Plant Biomass-Derived Black Carbon (Biochar), Environ. Sci.
Technol., 44, 1247–1253, https://doi.org/10.1021/es9031419, 2010.
Keiluweit, M., Bougoure, J. J., Zeglin, L. H., Myrold, D. D., Weber, P. K.,
Pett-Ridge, J., Kleber, M., and Nico, P. S.: Nano-scale investigation of the
association of microbial nitrogen residues with iron (hydr)oxides in a
forest soil O-horizon, Geochim. Cosmochim. Ac., 95, 213–226,
https://doi.org/10.1016/j.gca.2012.07.001, 2012.
Kinyangi, J., Solomon, D., Liang, B., Lerotic, M., Wirick, S., and Lehmann,
J.: Nanoscale Biogeocomplexity of the Organomineral Assemblage in Soil, Soil
Sci. Soc. Am. J., 70, 1708, https://doi.org/10.2136/sssaj2005.0351, 2006.
Kleber, M., Sollins, P., and Sutton, R.: A conceptual model of organo-mineral
interactions in soils: self-assembly of organic molecular fragments into
zonal structures on mineral surfaces, Biogeochemistry, 85, 9–24,
https://doi.org/10.1007/s10533-007-9103-5, 2007.
Kleber, M., Nico, P. S., Plante, A., Filley, T., Kramer, M., Swanston, C., and Sollins, P.: Old and stable soil organic matter is not necessarily
chemically recalcitrant: implications for modeling concepts and temperature
sensitivity, Glob. Change Biol., 17, 1097–1107,
https://doi.org/10.1111/j.1365-2486.2010.02278.x, 2011.
Kögel-Knabner, I. and Amelung, W.: 12.7 – Dynamics, Chemistry, and
Preservation of Organic Matter in Soils, in: Treatise on Geochemistry, edited by: Holland, H. D. and Turekian, K. K., Second
Edition, 157–215,
Elsevier, Oxford, 2014.
Laird, D. A., Martens, D. A., and Kingery, W. L.: Nature of Clay-Humic
Complexes in an Agricultural Soil, Soil Sci. Soc. Am. J., 65, 1413–1418,
https://doi.org/10.2136/sssaj2001.6551413x, 2001.
Le Guillou, C., Bernard, S., Brearley, A. J., and Remusat, L.: Evolution of
organic matter in Orgueil, Murchison and Renazzo during parent body aqueous
alteration: In situ investigations, Geochim. Cosmochim. Ac., 131, 368–392,
https://doi.org/10.1016/j.gca.2013.11.020, 2014.
Le Guillou, C., Bernard, S., De la Pena, F., and Le Brech, Y.: XANES-Based
Quantification of Carbon Functional Group Concentrations, Anal. Chem.,
90, 8379–8386, https://doi.org/10.1021/acs.analchem.8b00689, 2018.
Lehmann, J. and Kleber, M.: The contentious nature of soil organic matter,
Nature, 528, 60–68, https://doi.org/10.1038/nature16069, 2015.
Lehmann, J., Liang, B., Solomon, D., Lerotic, M., Luizão, F., Kinyangi,
J., Schäfer, T., Wirick, S., and Jacobsen, C.: Near-edge X-ray absorption
fine structure (NEXAFS) spectroscopy for mapping nano-scale distribution of
organic carbon forms in soil: Application to black carbon particles, Glob.
Biogeochem. Cy., 19, GB1013, https://doi.org/10.1029/2004GB002435, 2005.
Lutfalla, S., Abiven, S., Barré, P., Wiedemeier, D. B., Christensen, B.
T., Houot, S., Kätterer, T., Macdonald, A. J., van Oort, F., and Chenu,
C.: Pyrogenic Carbon Lacks Long-Term Persistence in Temperate Arable Soils,
Front. Earth Sci., 5, 96, https://doi.org/10.3389/feart.2017.00096, 2017.
Lützow, M. V., Kögel-Knabner, I., Ekschmitt, K., Matzner, E.,
Guggenberger, G., Marschner, B., and Flessa, H.: Stabilization of organic
matter in temperate soils: mechanisms and their relevance under different
soil conditions – a review, Eur. J. Soil Sci., 57, 426–445,
https://doi.org/10.1111/j.1365-2389.2006.00809.x, 2006.
Mikutta, R., Mikutta, C., Kalbitz, K., Scheel, T., Kaiser, K., and Jahn, R.:
Biodegradation of forest floor organic matter bound to minerals via
different binding mechanisms, Geochim. Cosmochim. Ac., 71, 2569–2590,
https://doi.org/10.1016/j.gca.2007.03.002, 2007.
Paradelo, R., van Oort, F., and Chenu, C.: Water-dispersible clay in bare
fallow soils after 80 years of continuous fertilizer addition, Geoderma,
200–201, 40–44, https://doi.org/10.1016/j.geoderma.2013.01.014, 2013.
Pernes-Debuyser, A. and Tessier, D.: Influence du pH sur les
propriétés des sols?: l'essai de longue durée des 42 parcelles
à Versailles, Rev. Sci. Eau, 15, 27–39,
https://doi.org/10.7202/705484ar, 2002.
Regier, T., Krochak, J., Sham, T., Hu, Y., Thompson, J., and Blyth, R.:
Performance and capabilities of the Canadian Dragon: The SGM beamline at the
Canadian Light Source, Nucl. Instrum. Methods Phys. Res. Sect. Accel.
Spectrometers Detect. Assoc. Equip., 582, 93–95, 2007.
Rowley, M. C., Grand, S., and Verrecchia, É. P.: Calcium-mediated
stabilisation of soil organic carbon, Biogeochemistry, 137, 27–49,
https://doi.org/10.1007/s10533-017-0410-1, 2018.
Rühlmann, J.: A new approach to estimating the pool of stable organic
matter in soil using data from long-term field experiments, Plant Soil,
213, 149–160, https://doi.org/10.1023/A:1004552016182, 1999.
Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G.,
Janssens, I. A., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D.
A. C., Nannipieri, P., Rasse, D. P., Weiner, S., and Trumbore, S. E.:
Persistence of soil organic matter as an ecosystem property, Nature,
478, 49–56, https://doi.org/10.1038/nature10386, 2011.
Sollins, P., Swanston, C., Kleber, M., Filley, T., Kramer, M., Crow, S.,
Caldwell, B. A., Lajtha, K., and Bowden, R.: Organic C and N stabilization in
a forest soil: Evidence from sequential density fractionation, Soil Biol.
Biochem., 38, 3313–3324, https://doi.org/10.1016/j.soilbio.2006.04.014, 2006.
Solomon, D., Lehmann, J., Kinyangi, J., Liang, B., Heymann, K., Dathe, L.,
Hanley, K., Wirick, S., and Jacobsen, C.: Carbon (1s) NEXAFS spectroscopy of
biogeochemically relevant reference organic compounds, Soil Sci. Soc. Am.
J., 73, 1817–1830, 2009.
Solomon, D., Lehmann, J., Wang, J., Kinyangi, J., Heymann, K., Lu, Y.,
Wirick, S., and Jacobsen, C.: Micro- and nano-environments of C sequestration
in soil: A multi-elemental STXM–NEXAFS assessment of black C and
organomineral associations, Sci. Total Environ., 438, 372–388,
https://doi.org/10.1016/j.scitotenv.2012.08.071, 2012.
Soussana, J.-F., Lutfalla, S., Ehrhardt, F., Rosenstock, T., Lamanna, C.,
Havlík, P., Richards, M., Wollenberg, E., Chotte, J.-L.,
Torquebiau, E., Ciais, P., Smith, P., and Lal, R.: Matching policy and
science: Rationale for the “4 per 1000 – soils for food security and
climate” initiative, Soil Till. Res., 188, 3–15, https://doi.org/10.1016/j.still.2017.12.002,
2017.
Tiessen, H. and Stewart, J. W. B.: Particle-size Fractions and their Use in
Studies of Soil Organic Matter: II. Cultivation Effects on Organic Matter
Composition in Size Fractions1, Soil Sci. Soc. Am. J., 47, 509–514,
https://doi.org/10.2136/sssaj1983.03615995004700030023x, 1983.
Trumbore, S.: Age of Soil Organic Matter and Soil Respiration: Radiocarbon
Constraints on Belowground C Dynamics, Ecol. Appl., 10, 399–411,
https://doi.org/10.2307/2641102, 2000.
Wan, J., Tyliszczak, T., and Tokunaga, T. K.: Organic carbon distribution,
speciation, and elemental correlations within soil microaggregates:
Applications of STXM and NEXAFS spectroscopy, Geochim. Cosmochim. Ac.,
71, 5439–5449, https://doi.org/10.1016/j.gca.2007.07.030, 2007.
Wilson, M. J.: The origin and formation of clay minerals in soils: past,
present and future perspectivesd, Clay Miner., 34, 7–25,
https://doi.org/10.1180/000985599545957, 1999.