Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.480
IF3.480
IF 5-year value: 4.194
IF 5-year
4.194
CiteScore value: 6.7
CiteScore
6.7
SNIP value: 1.143
SNIP1.143
IPP value: 3.65
IPP3.65
SJR value: 1.761
SJR1.761
Scimago H <br class='widget-line-break'>index value: 118
Scimago H
index
118
h5-index value: 60
h5-index60
BG | Articles | Volume 16, issue 7
Biogeosciences, 16, 1401–1410, 2019
https://doi.org/10.5194/bg-16-1401-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Biogeosciences, 16, 1401–1410, 2019
https://doi.org/10.5194/bg-16-1401-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 05 Apr 2019

Research article | 05 Apr 2019

Multidecadal persistence of organic matter in soils: multiscale investigations down to the submicron scale

Suzanne Lutfalla et al.

Related authors

A model based on Rock-Eval thermal analysis to quantify the size of the centennially persistent organic carbon pool in temperate soils
Lauric Cécillon, François Baudin, Claire Chenu, Sabine Houot, Romain Jolivet, Thomas Kätterer, Suzanne Lutfalla, Andy Macdonald, Folkert van Oort, Alain F. Plante, Florence Savignac, Laure N. Soucémarianadin, and Pierre Barré
Biogeosciences, 15, 2835–2849, https://doi.org/10.5194/bg-15-2835-2018,https://doi.org/10.5194/bg-15-2835-2018, 2018

Related subject area

Biogeochemistry: Soils
Reviews and syntheses: Soil responses to manipulated precipitation changes – an assessment of meta-analyses
Akane O. Abbasi, Alejandro Salazar, Youmi Oh, Sabine Reinsch, Maria del Rosario Uribe, Jianghanyang Li, Irfan Rashid, and Jeffrey S. Dukes
Biogeosciences, 17, 3859–3873, https://doi.org/10.5194/bg-17-3859-2020,https://doi.org/10.5194/bg-17-3859-2020, 2020
Short summary
From fibrous plant residues to mineral-associated organic carbon – the fate of organic matter in Arctic permafrost soils
Isabel Prater, Sebastian Zubrzycki, Franz Buegger, Lena C. Zoor-Füllgraff, Gerrit Angst, Michael Dannenmann, and Carsten W. Mueller
Biogeosciences, 17, 3367–3383, https://doi.org/10.5194/bg-17-3367-2020,https://doi.org/10.5194/bg-17-3367-2020, 2020
Short summary
Relevance of aboveground litter for soil organic matter formation – a soil profile perspective
Patrick Liebmann, Patrick Wordell-Dietrich, Karsten Kalbitz, Robert Mikutta, Fabian Kalks, Axel Don, Susanne K. Woche, Leena R. Dsilva, and Georg Guggenberger
Biogeosciences, 17, 3099–3113, https://doi.org/10.5194/bg-17-3099-2020,https://doi.org/10.5194/bg-17-3099-2020, 2020
Short summary
A revised pan-Arctic permafrost soil Hg pool based on Western Siberian peat Hg and carbon observations
Artem G. Lim, Martin Jiskra, Jeroen E. Sonke, Sergey V. Loiko, Natalia Kosykh, and Oleg S. Pokrovsky
Biogeosciences, 17, 3083–3097, https://doi.org/10.5194/bg-17-3083-2020,https://doi.org/10.5194/bg-17-3083-2020, 2020
Short summary
Using respiration quotients to track changing sources of soil respiration seasonally and with experimental warming
Caitlin Hicks Pries, Alon Angert, Cristina Castanha, Boaz Hilman, and Margaret S. Torn
Biogeosciences, 17, 3045–3055, https://doi.org/10.5194/bg-17-3045-2020,https://doi.org/10.5194/bg-17-3045-2020, 2020
Short summary

Cited articles

Baldock, J. A. and Skjemstad, J. O.: Role of the soil matrix and minerals in protecting natural organic materials against biological attack, Org. Geochem., 31, 697–710, 2000. 
Balesdent, J., Mariotti, A., and Guillet, B.: Natural 13C abundance as a tracer for studies of soil organic matter dynamics, Soil Biol. Biochem., 19, 25–30, https://doi.org/10.1016/0038-0717(87)90120-9, 1987. 
Balesdent, J., Petraud, J. P., and Feller, C.: Some effects of ultrasonic vibrations on size-distribution of soil organic matter, Sci. Sol, 29, 95–106, 1991. 
Balesdent, J., Besnard, E., Arrouays, D., and Chenu, C.: The dynamics of carbon in particle-size fractions of soil in a forest-cultivation sequence, Plant Soil, 201, 49–57, https://doi.org/10.1023/A:1004337314970, 1998. 
Balesdent, J., Chenu, C., and Balabane, M.: Relationship of soil organic matter dynamics to physical protection and tillage, Soil Till. Res., 53, 215–230, https://doi.org/10.1016/S0167-1987(99)00107-5, 2000. 
Publications Copernicus
Download
Short summary
Soils store large amounts of carbon in soil organic matter, which comes from plant debris and roots. The mechanisms protecting it from biodegradation are not fully understood. Here, we carry out a size-fractionation of soil sampled on different dates in a field experiment. Using carbon and nitrogen content and spectroscopy and microscopy we conclude that organic matter enriched in nitrogen is preferentially protected from biodegradation and that clay minerals have differing protective abilities.
Soils store large amounts of carbon in soil organic matter, which comes from plant debris and...
Citation
Altmetrics
Final-revised paper
Preprint