Articles | Volume 16, issue 24
https://doi.org/10.5194/bg-16-4829-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/bg-16-4829-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Small-scale heterogeneity of trace metals including rare earth elements and yttrium in deep-sea sediments and porewaters of the Peru Basin, southeastern equatorial Pacific
Sophie A. L. Paul
CORRESPONDING AUTHOR
Department of Physics and Earth Sciences, Jacobs University Bremen,
28759 Bremen, Germany
Matthias Haeckel
GEOMAR Helmholtz Centre for Ocean Research Kiel, 24148 Kiel, Germany
Michael Bau
Department of Physics and Earth Sciences, Jacobs University Bremen,
28759 Bremen, Germany
Rajina Bajracharya
Department of Physics and Earth Sciences, Jacobs University Bremen,
28759 Bremen, Germany
Andrea Koschinsky
Department of Physics and Earth Sciences, Jacobs University Bremen,
28759 Bremen, Germany
Related authors
No articles found.
Kaveh Purkiani, Matthias Haeckel, Sabine Haalboom, Katja Schmidt, Peter Urban, Iason-Zois Gazis, Henko de Stigter, André Paul, Maren Walter, and Annemiek Vink
Ocean Sci., 18, 1163–1181, https://doi.org/10.5194/os-18-1163-2022, https://doi.org/10.5194/os-18-1163-2022, 2022
Short summary
Short summary
Based on altimetry data and in situ hydrographic observations, the impacts of an anticyclone mesoscale eddy (large rotating body of water) on the seawater characteristics were investigated during a research campaign. The particular eddy presents significant anomalies on the seawater properties at 1500 m. The potential role of eddies in the seafloor and its consequential effect on the altered dispersion of mining-related sediment plumes are important to assess future mining operations.
Gerard J. M. Versteegh, Andrea Koschinsky, Thomas Kuhn, Inken Preuss, and Sabine Kasten
Biogeosciences, 18, 4965–4984, https://doi.org/10.5194/bg-18-4965-2021, https://doi.org/10.5194/bg-18-4965-2021, 2021
Short summary
Short summary
Oxygen penetrates sediments not only from the ocean bottom waters but also from the basement. The impact of the latter is poorly understood. We show that this basement oxygen has a clear impact on the nitrogen cycle, the redox state, and the distribution of manganese, nickel cobalt and organic matter in the sediments. This is important for (1) global biogeochemical cycles, (2) understanding sedimentary life and (3) the interpretation of the sediment record to reconstruct the past.
Kaveh Purkiani, André Paul, Annemiek Vink, Maren Walter, Michael Schulz, and Matthias Haeckel
Biogeosciences, 17, 6527–6544, https://doi.org/10.5194/bg-17-6527-2020, https://doi.org/10.5194/bg-17-6527-2020, 2020
Short summary
Short summary
There has been a steady increase in interest in mining of deep-sea minerals in the eastern Pacific Ocean recently. The ocean state in this region is known to be highly influenced by rotating bodies of water (eddies), some of which can travel long distances in the ocean and impact the deeper layers of the ocean. Better insight into the variability of eddy activity in this region is of great help to mitigate the impact of the benthic ecosystem from future potential deep-sea mining activity.
Laura Haffert, Matthias Haeckel, Henko de Stigter, and Felix Janssen
Biogeosciences, 17, 2767–2789, https://doi.org/10.5194/bg-17-2767-2020, https://doi.org/10.5194/bg-17-2767-2020, 2020
Short summary
Short summary
Deep-sea mining for polymetallic nodules is expected to have severe environmental impacts. Through prognostic modelling, this study aims to provide a holistic assessment of the biogeochemical recovery after a disturbance event. It was found that the recovery strongly depends on the impact type; e.g. complete removal of the surface sediment reduces seafloor nutrient fluxes over centuries.
Jessica B. Volz, Laura Haffert, Matthias Haeckel, Andrea Koschinsky, and Sabine Kasten
Biogeosciences, 17, 1113–1131, https://doi.org/10.5194/bg-17-1113-2020, https://doi.org/10.5194/bg-17-1113-2020, 2020
Short summary
Short summary
Potential future deep-sea mining of polymetallic nodules at the seafloor is expected to severely harm the marine environment. However, the consequences on deep-sea ecosystems are still poorly understood. This study on surface sediments from man-made disturbance tracks in the Pacific Ocean shows that due to the removal of the uppermost sediment layer and thereby the loss of organic matter, the geochemical system in the sediments is disturbed for millennia before reaching a new equilibrium.
A. Ponnurangam, M. Bau, M. Brenner, and A. Koschinsky
Biogeosciences, 13, 751–760, https://doi.org/10.5194/bg-13-751-2016, https://doi.org/10.5194/bg-13-751-2016, 2016
Short summary
Short summary
Our study demonstrates that rare earth elements and yttrium (REY) accumulating in mussel shells emerge as potential proxies for environmental changes. Focusing on pH and temperature variation effects on the distribution of REY in seawater, we show that shells incorporate the free REY3+ species and that decreasing pH leads to increased REY concentrations, while rising temperatures impact the REY distribution pattern with minor effects on the absolute REY concentrations in shells.
D. de Beer, M. Haeckel, J. Neumann, G. Wegener, F. Inagaki, and A. Boetius
Biogeosciences, 10, 5639–5649, https://doi.org/10.5194/bg-10-5639-2013, https://doi.org/10.5194/bg-10-5639-2013, 2013
Related subject area
Biogeochemistry: Sediment
The fate of fixed nitrogen in Santa Barbara Basin sediments during seasonal anoxia
How is particulate organic carbon transported through the river-fed Congo Submarine Canyon to the deep-sea?
Distinct oxygenation modes of the Gulf of Oman over the past 43 000 years – a multi-proxy approach
Potential impacts of cable bacteria activity on hard-shelled benthic foraminifera: implications for their interpretation as bioindicators or paleoproxies
Seafloor sediment characterization to improve estimate of organic carbon standing stocks in continental shelves
Evidence of cryptic methane cycling and non-methanogenic methylamine consumption in the sulfate-reducing zone of sediment in the Santa Barbara Basin, California
Assessing global-scale organic matter reactivity patterns in marine sediments using a lognormal reactive continuum model
Deposit-feeding of Nonionellina labradorica (foraminifera) from an Arctic methane seep site and possible association with a methanotroph
Benthic silicon cycling in the Arctic Barents Sea: a reaction–transport model study
Long-term incubations provide insight into the mechanisms of anaerobic oxidation of methane in methanogenic lake sediments
Ideas and perspectives: Sea-level change, anaerobic methane oxidation, and the glacial–interglacial phosphorus cycle
Estimation of the natural background of phosphate in a lowland river using tidal marsh sediment cores
Geochemical consequences of oxygen diffusion from the oceanic crust into overlying sediments and its significance for biogeochemical cycles based on sediments of the northeast Pacific
Carbon sources of benthic fauna in temperate lakes across multiple trophic states
Deep-water inflow event increases sedimentary phosphorus release on a multi-year scale
Bioturbation has a limited effect on phosphorus burial in salt marsh sediments
Biogeochemical impact of cable bacteria on coastal Black Sea sediment
Organic carbon characteristics in ice-rich permafrost in alas and Yedoma deposits, central Yakutia, Siberia
The control of hydrogen sulfide on benthic iron and cadmium fluxes in the oxygen minimum zone off Peru
Quantity and distribution of methane entrapped in sediments of calcareous, Alpine glacier forefields
Assessing the potential for non-turbulent methane escape from the East Siberian Arctic Shelf
Vertical transport of sediment-associated metals and cyanobacteria by ebullition in a stratified lake
Evidence of changes in sedimentation rate and sediment fabric in a low-oxygen setting: Santa Monica Basin, CA
Authigenic formation of Ca–Mg carbonates in the shallow alkaline Lake Neusiedl, Austria
Vivianite formation in ferruginous sediments from Lake Towuti, Indonesia
Impact of ambient conditions on the Si isotope fractionation in marine pore fluids during early diagenesis
Impact of small-scale disturbances on geochemical conditions, biogeochemical processes and element fluxes in surface sediments of the eastern Clarion–Clipperton Zone, Pacific Ocean
Acetate turnover and methanogenic pathways in Amazonian lake sediments
Benthic alkalinity and dissolved inorganic carbon fluxes in the Rhône River prodelta generated by decoupled aerobic and anaerobic processes
Organic matter contents and degradation in a highly trawled area during fresh particle inputs (Gulf of Castellammare, southwestern Mediterranean)
Identifying the core bacterial microbiome of hydrocarbon degradation and a shift of dominant methanogenesis pathways in the oil and aqueous phases of petroleum reservoirs of different temperatures from China
Effects of eutrophication on sedimentary organic carbon cycling in five temperate lakes
Evidence for microbial iron reduction in the methanic sediments of the oligotrophic southeastern Mediterranean continental shelf
Fracture-controlled fluid transport supports microbial methane-oxidizing communities at Vestnesa Ridge
Hydrothermal alteration of aragonitic biocarbonates: assessment of micro- and nanostructural dissolution–reprecipitation and constraints of diagenetic overprint from quantitative statistical grain-area analysis
Large variations in iron input to an oligotrophic Baltic Sea estuary: impact on sedimentary phosphorus burial
Vivianite formation in methane-rich deep-sea sediments from the South China Sea
Benthic archaea as potential sources of tetraether membrane lipids in sediments across an oxygen minimum zone
Carbon amendment stimulates benthic nitrogen cycling during the bioremediation of particulate aquaculture waste
Modelling biogeochemical processes in sediments from the north-western Adriatic Sea: response to enhanced particulate organic carbon fluxes
Carbon mineralization in Laptev and East Siberian sea shelf and slope sediment
Reviews and syntheses: to the bottom of carbon processing at the seafloor
Scotland's forgotten carbon: a national assessment of mid-latitude fjord sedimentary carbon stocks
Does denitrification occur within porous carbonate sand grains?
Sediment phosphorus speciation and mobility under dynamic redox conditions
Pore water geochemistry along continental slopes north of the East Siberian Sea: inference of low methane concentrations
Experimental diagenesis: insights into aragonite to calcite transformation of Arctica islandica shells by hydrothermal treatment
Manganese and iron reduction dominate organic carbon oxidation in surface sediments of the deep Ulleung Basin, East Sea
Carbonate chemistry in sediment porewaters of the Rhône River delta driven by early diagenesis (northwestern Mediterranean)
Anaerobic oxidation of methane alters sediment records of sulfur, iron and phosphorus in the Black Sea
Xuefeng Peng, David J. Yousavich, Annie Bourbonnais, Frank Wenzhöfer, Felix Janssen, Tina Treude, and David L. Valentine
Biogeosciences, 21, 3041–3052, https://doi.org/10.5194/bg-21-3041-2024, https://doi.org/10.5194/bg-21-3041-2024, 2024
Short summary
Short summary
Biologically available (fixed) nitrogen (N) is a limiting nutrient for life in the ocean. Under low-oxygen conditions, fixed N is either removed via denitrification or retained via dissimilatory nitrate reduction to ammonia (DNRA). Using in situ incubations in the Santa Barbara Basin, which undergoes seasonal anoxia, we found that benthic denitrification was the dominant nitrate reduction process, while nitrate availability and organic carbon content control the relative importance of DNRA.
Sophie Hage, Megan L. Baker, Nathalie Babonneau, Guillaume Soulet, Bernard Dennielou, Ricardo Silva Jacinto, Robert G. Hilton, Valier Galy, François Baudin, Christophe Rabouille, Clément Vic, Sefa Sahin, Sanem Açikalin, and Peter J. Talling
EGUsphere, https://doi.org/10.5194/egusphere-2024-900, https://doi.org/10.5194/egusphere-2024-900, 2024
Short summary
Short summary
Climate projections require to quantify the exchange of carbon between the atmosphere, land and oceans, yet the land-to-ocean flux of carbon is difficult to measure. Here, we quantify the carbon flux between the second largest river on Earth and the ocean. Carbon in the form of vegetation and soil is transported by episodic submarine avalanches in a 1000 km-long canyon at up to 5 km of water depth. The carbon flux induced by avalanches is at least ten times greater than that induced by tides.
Nicole Burdanowitz, Gerhard Schmiedl, Birgit Gaye, Philipp M. Munz, and Hartmut Schulz
Biogeosciences, 21, 1477–1499, https://doi.org/10.5194/bg-21-1477-2024, https://doi.org/10.5194/bg-21-1477-2024, 2024
Short summary
Short summary
We analyse benthic foraminifera, nitrogen isotopes and lipids in a sediment core from the Gulf of Oman to investigate how the oxygen minimum zone (OMZ) and bottom water (BW) oxygenation have reacted to climatic changes since 43 ka. The OMZ and BW deoxygenation was strong during the Holocene, but the OMZ was well ventilated during the LGM period. We found an unstable mode of oscillating oxygenation states, from moderately oxygenated in cold stadials to deoxygenated in warm interstadials in MIS 3.
Maxime Daviray, Emmanuelle Geslin, Nils Risgaard-Petersen, Vincent V. Scholz, Marie Fouet, and Edouard Metzger
Biogeosciences, 21, 911–928, https://doi.org/10.5194/bg-21-911-2024, https://doi.org/10.5194/bg-21-911-2024, 2024
Short summary
Short summary
Coastal marine sediments are subject to major acidification processes because of climate change and human activities, but these processes can also result from biotic activity. We studied the sediment acidifcation effect on benthic calcareous foraminifera in intertidal mudflats. The strong pH decrease in sediments probably caused by cable bacteria led to calcareous test dissolution of living and dead foraminifera, threatening the test preservation and their robustness as environmental proxies.
Catherine Brenan, Markus Kienast, Vittorio Maselli, Christopher Algar, Benjamin Misiuk, and Craig J. Brown
EGUsphere, https://doi.org/10.5194/egusphere-2024-5, https://doi.org/10.5194/egusphere-2024-5, 2024
Short summary
Short summary
Quantifying how much organic carbon is stored in seafloor sediments is key to assessing how human activities can accelerate the process of carbon storage at the seabed, an important consideration for climate change. This study uses seafloor sediment maps to model organic carbon content. Carbon estimates were six time higher when assuming the absence of detailed sediment maps, demonstrating that high-resolution seafloor mapping is critically important for improved estimates of organic carbon.
Sebastian J. E. Krause, Jiarui Liu, David J. Yousavich, DeMarcus Robinson, David W. Hoyt, Qianhui Qin, Frank Wenzhöfer, Felix Janssen, David L. Valentine, and Tina Treude
Biogeosciences, 20, 4377–4390, https://doi.org/10.5194/bg-20-4377-2023, https://doi.org/10.5194/bg-20-4377-2023, 2023
Short summary
Short summary
Methane is a potent greenhouse gas, and hence it is important to understand its sources and sinks in the environment. Here we present new data from organic-rich surface sediments below an oxygen minimum zone off the coast of California (Santa Barbara Basin) demonstrating the simultaneous microbial production and consumption of methane, which appears to be an important process preventing the build-up of methane in these sediments and the emission into the water column and atmosphere.
Sinan Xu, Bo Liu, Sandra Arndt, Sabine Kasten, and Zijun Wu
Biogeosciences, 20, 2251–2263, https://doi.org/10.5194/bg-20-2251-2023, https://doi.org/10.5194/bg-20-2251-2023, 2023
Short summary
Short summary
We use a reactive continuum model based on a lognormal distribution (l-RCM) to inversely determine model parameters μ and σ at 123 sites across the global ocean. Our results show organic matter (OM) reactivity is more than 3 orders of magnitude higher in shelf than in abyssal regions. In addition, OM reactivity is higher than predicted in some specific regions, yet the l-RCM can still capture OM reactivity features in these regions.
Christiane Schmidt, Emmanuelle Geslin, Joan M. Bernhard, Charlotte LeKieffre, Mette Marianne Svenning, Helene Roberge, Magali Schweizer, and Giuliana Panieri
Biogeosciences, 19, 3897–3909, https://doi.org/10.5194/bg-19-3897-2022, https://doi.org/10.5194/bg-19-3897-2022, 2022
Short summary
Short summary
This study is the first to show non-selective deposit feeding in the foraminifera Nonionella labradorica and the possible uptake of methanotrophic bacteria. We carried out a feeding experiment with a marine methanotroph to examine the ultrastructure of the cell and degradation vacuoles using transmission electron microscopy (TEM). The results revealed three putative methanotrophs at the outside of the cell/test, which could be taken up via non-targeted grazing in seeps or our experiment.
James P. J. Ward, Katharine R. Hendry, Sandra Arndt, Johan C. Faust, Felipe S. Freitas, Sian F. Henley, Jeffrey W. Krause, Christian März, Allyson C. Tessin, and Ruth L. Airs
Biogeosciences, 19, 3445–3467, https://doi.org/10.5194/bg-19-3445-2022, https://doi.org/10.5194/bg-19-3445-2022, 2022
Short summary
Short summary
The seafloor plays an important role in the cycling of silicon (Si), a key nutrient that promotes marine primary productivity. In our model study, we disentangle major controls on the seafloor Si cycle to better anticipate the impacts of continued warming and sea ice melt in the Barents Sea. We uncover a coupling of the iron redox and Si cycles, dissolution of lithogenic silicates, and authigenic clay formation, comprising a Si sink that could have implications for the Arctic Ocean Si budget.
Hanni Vigderovich, Werner Eckert, Michal Elul, Maxim Rubin-Blum, Marcus Elvert, and Orit Sivan
Biogeosciences, 19, 2313–2331, https://doi.org/10.5194/bg-19-2313-2022, https://doi.org/10.5194/bg-19-2313-2022, 2022
Short summary
Short summary
Anaerobic oxidation of methane (AOM) is one of the major processes limiting the release of the greenhouse gas methane from natural environments. Here we show that significant AOM exists in the methane zone of lake sediments in natural conditions and even after long-term (ca. 18 months) anaerobic slurry incubations with two stages. Methanogens were most likely responsible for oxidizing the methane, and humic substances and iron oxides are likely electron acceptors to support this oxidation.
Bjorn Sundby, Pierre Anschutz, Pascal Lecroart, and Alfonso Mucci
Biogeosciences, 19, 1421–1434, https://doi.org/10.5194/bg-19-1421-2022, https://doi.org/10.5194/bg-19-1421-2022, 2022
Short summary
Short summary
A glacial–interglacial methane-fuelled redistribution of reactive phosphorus between the oceanic and sedimentary phosphorus reservoirs can occur in the ocean when falling sea level lowers the pressure on the seafloor, destabilizes methane hydrates, and triggers the dissolution of P-bearing iron oxides. The mass of phosphate potentially mobilizable from the sediment is similar to the size of the current oceanic reservoir. Hence, this process may play a major role in the marine phosphorus cycle.
Florian Lauryssen, Philippe Crombé, Tom Maris, Elliot Van Maldegem, Marijn Van de Broek, Stijn Temmerman, and Erik Smolders
Biogeosciences, 19, 763–776, https://doi.org/10.5194/bg-19-763-2022, https://doi.org/10.5194/bg-19-763-2022, 2022
Short summary
Short summary
Surface waters in lowland regions have a poor surface water quality, mainly due to excess nutrients like phosphate. Therefore, we wanted to know the phosphate levels without humans, also called the pre-industrial background. Phosphate binds strongly to sediment particles, suspended in the river water. In this research we used sediments deposited by a river as an archive for surface water phosphate back to 1800 CE. Pre-industrial phosphate levels were estimated at one-third of the modern levels.
Gerard J. M. Versteegh, Andrea Koschinsky, Thomas Kuhn, Inken Preuss, and Sabine Kasten
Biogeosciences, 18, 4965–4984, https://doi.org/10.5194/bg-18-4965-2021, https://doi.org/10.5194/bg-18-4965-2021, 2021
Short summary
Short summary
Oxygen penetrates sediments not only from the ocean bottom waters but also from the basement. The impact of the latter is poorly understood. We show that this basement oxygen has a clear impact on the nitrogen cycle, the redox state, and the distribution of manganese, nickel cobalt and organic matter in the sediments. This is important for (1) global biogeochemical cycles, (2) understanding sedimentary life and (3) the interpretation of the sediment record to reconstruct the past.
Annika Fiskal, Eva Anthamatten, Longhui Deng, Xingguo Han, Lorenzo Lagostina, Anja Michel, Rong Zhu, Nathalie Dubois, Carsten J. Schubert, Stefano M. Bernasconi, and Mark A. Lever
Biogeosciences, 18, 4369–4388, https://doi.org/10.5194/bg-18-4369-2021, https://doi.org/10.5194/bg-18-4369-2021, 2021
Short summary
Short summary
Microbially produced methane can serve as a carbon source for freshwater macrofauna most likely through grazing on methane-oxidizing bacteria. This study investigates the contributions of different carbon sources to macrofaunal biomass. Our data suggest that the average contribution of methane-derived carbon is similar between different fauna but overall remains low. This is further supported by the low abundance of methane-cycling microorganisms.
Astrid Hylén, Sebastiaan J. van de Velde, Mikhail Kononets, Mingyue Luo, Elin Almroth-Rosell, and Per O. J. Hall
Biogeosciences, 18, 2981–3004, https://doi.org/10.5194/bg-18-2981-2021, https://doi.org/10.5194/bg-18-2981-2021, 2021
Short summary
Short summary
Sediments in oxygen-depleted ocean areas release high amounts of phosphorus, feeding algae that consume oxygen upon degradation, leading to further phosphorus release. Oxygenation is thought to trap phosphorus in the sediment and break this feedback. We studied the sediment phosphorus cycle in a previously anoxic area after an inflow of oxic water. Surprisingly, the sediment phosphorus release increased, showing that feedbacks between phosphorus release and oxygen depletion can be hard to break.
Sebastiaan J. van de Velde, Rebecca K. James, Ine Callebaut, Silvia Hidalgo-Martinez, and Filip J. R. Meysman
Biogeosciences, 18, 1451–1461, https://doi.org/10.5194/bg-18-1451-2021, https://doi.org/10.5194/bg-18-1451-2021, 2021
Short summary
Short summary
Some 540 Myr ago, animal life evolved in the ocean. Previous research suggested that when these early animals started inhabiting the seafloor, they retained phosphorus in the seafloor, thereby limiting photosynthesis in the ocean. We studied salt marsh sediments with and without animals and found that their impact on phosphorus retention is limited, which implies that their impact on the global environment might have been less drastic than previously assumed.
Martijn Hermans, Nils Risgaard-Petersen, Filip J. R. Meysman, and Caroline P. Slomp
Biogeosciences, 17, 5919–5938, https://doi.org/10.5194/bg-17-5919-2020, https://doi.org/10.5194/bg-17-5919-2020, 2020
Short summary
Short summary
This paper demonstrates that the recently discovered cable bacteria are capable of using a mineral, known as siderite, as a source for the formation of iron oxides. This work also demonstrates that the activity of cable bacteria can lead to a distinct subsurface layer in the sediment that can be used as a marker for their activity.
Torben Windirsch, Guido Grosse, Mathias Ulrich, Lutz Schirrmeister, Alexander N. Fedorov, Pavel Y. Konstantinov, Matthias Fuchs, Loeka L. Jongejans, Juliane Wolter, Thomas Opel, and Jens Strauss
Biogeosciences, 17, 3797–3814, https://doi.org/10.5194/bg-17-3797-2020, https://doi.org/10.5194/bg-17-3797-2020, 2020
Short summary
Short summary
To extend the knowledge on circumpolar deep permafrost carbon storage, we examined two deep permafrost deposit types (Yedoma and alas) in central Yakutia. We found little but partially undecomposed organic carbon as a result of largely changing sedimentation processes. The carbon stock of the examined Yedoma deposits is about 50 % lower than the general Yedoma domain mean, implying a very hetererogeneous Yedoma composition, while the alas is approximately 80 % below the thermokarst deposit mean.
Anna Plass, Christian Schlosser, Stefan Sommer, Andrew W. Dale, Eric P. Achterberg, and Florian Scholz
Biogeosciences, 17, 3685–3704, https://doi.org/10.5194/bg-17-3685-2020, https://doi.org/10.5194/bg-17-3685-2020, 2020
Short summary
Short summary
We compare the cycling of Fe and Cd in sulfidic sediments of the Peruvian oxygen minimum zone. Due to the contrasting solubility of their sulfide minerals, the sedimentary Fe release and Cd burial fluxes covary with spatial and temporal distributions of H2S. Depending on the solubility of their sulfide minerals, sedimentary trace metal fluxes will respond differently to ocean deoxygenation/expansion of H2S concentrations, which may change trace metal stoichiometry of upwelling water masses.
Biqing Zhu, Manuel Kübler, Melanie Ridoli, Daniel Breitenstein, and Martin H. Schroth
Biogeosciences, 17, 3613–3630, https://doi.org/10.5194/bg-17-3613-2020, https://doi.org/10.5194/bg-17-3613-2020, 2020
Short summary
Short summary
We provide evidence that the greenhouse gas methane (CH4) is enclosed in calcareous glacier-forefield sediments across Switzerland. Geochemical analyses confirmed that this ancient CH4 has its origin in the calcareous parent bedrock. Our estimate of the total quantity of CH4 enclosed in sediments across Switzerland indicates a large CH4 mass (~105 t CH4). We produced evidence that CH4 is stable in its enclosed state, but additional experiments are needed to elucidate its long-term fate.
Matteo Puglini, Victor Brovkin, Pierre Regnier, and Sandra Arndt
Biogeosciences, 17, 3247–3275, https://doi.org/10.5194/bg-17-3247-2020, https://doi.org/10.5194/bg-17-3247-2020, 2020
Short summary
Short summary
A reaction-transport model to assess the potential non-turbulent methane flux from the East Siberian Arctic sediments to water columns is applied here. We show that anaerobic oxidation of methane (AOM) is an efficient filter except for high values of sedimentation rate and advective flow, which enable considerable non-turbulent steady-state methane fluxes. Significant transient methane fluxes can also occur during the building-up phase of the AOM-performing biomass microbial community.
Kyle Delwiche, Junyao Gu, Harold Hemond, and Sarah P. Preheim
Biogeosciences, 17, 3135–3147, https://doi.org/10.5194/bg-17-3135-2020, https://doi.org/10.5194/bg-17-3135-2020, 2020
Short summary
Short summary
In this study, we investigate whether bubbles transport sediments containing arsenic and cyanobacteria from the bottom to the top of a polluted lake. We measured arsenic and cyanobacteria from bubble traps in the lake and from an experimental bubble column in the laboratory. We found that bubble transport was not an important source of arsenic in the surface waters but that bubbles could transport enough cyanobacteria to the surface to exacerbate harmful algal blooms.
Nathaniel Kemnitz, William M. Berelson, Douglas E. Hammond, Laura Morine, Maria Figueroa, Timothy W. Lyons, Simon Scharf, Nick Rollins, Elizabeth Petsios, Sydnie Lemieux, and Tina Treude
Biogeosciences, 17, 2381–2396, https://doi.org/10.5194/bg-17-2381-2020, https://doi.org/10.5194/bg-17-2381-2020, 2020
Short summary
Short summary
Our paper shows how sedimentation in a very low oxygen setting provides a unique record of environmental change. We look at the past 250 years through the filter of sediment accumulation via radioisotope dating and other physical and chemical analyses of these sediments. We conclude, remarkably, that there has been very little change in net sediment mass accumulation through the past 100–150 years, yet just prior to 1900 CE, sediments were accumulating at 50 %–70 % of today's rate.
Dario Fussmann, Avril Jean Elisabeth von Hoyningen-Huene, Andreas Reimer, Dominik Schneider, Hana Babková, Robert Peticzka, Andreas Maier, Gernot Arp, Rolf Daniel, and Patrick Meister
Biogeosciences, 17, 2085–2106, https://doi.org/10.5194/bg-17-2085-2020, https://doi.org/10.5194/bg-17-2085-2020, 2020
Short summary
Short summary
Dolomite (CaMg(CO3)2) is supersaturated in many aquatic settings (e.g., seawater) on modern Earth but does not precipitate directly from the fluid, a fact known as the dolomite problem. The widely acknowledged concept of dolomite precipitation involves microbial extracellular polymeric substances (EPSs) and anoxic conditions as important drivers. In contrast, results from Lake Neusiedl support an alternative concept of Ca–Mg carbonate precipitation under aerobic and alkaline conditions.
Aurèle Vuillemin, André Friese, Richard Wirth, Jan A. Schuessler, Anja M. Schleicher, Helga Kemnitz, Andreas Lücke, Kohen W. Bauer, Sulung Nomosatryo, Friedhelm von Blanckenburg, Rachel Simister, Luis G. Ordoñez, Daniel Ariztegui, Cynthia Henny, James M. Russell, Satria Bijaksana, Hendrik Vogel, Sean A. Crowe, Jens Kallmeyer, and the Towuti Drilling Project
Science team
Biogeosciences, 17, 1955–1973, https://doi.org/10.5194/bg-17-1955-2020, https://doi.org/10.5194/bg-17-1955-2020, 2020
Short summary
Short summary
Ferruginous lakes experience restricted primary production due to phosphorus trapping by ferric iron oxides under oxic conditions. We report the presence of large crystals of vivianite, a ferrous iron phosphate, in sediments from Lake Towuti, Indonesia. We address processes of P retention linked to diagenesis of iron phases. Vivianite crystals had light Fe2+ isotope signatures and contained mineral inclusions consistent with antecedent processes of microbial sulfate and iron reduction.
Sonja Geilert, Patricia Grasse, Kristin Doering, Klaus Wallmann, Claudia Ehlert, Florian Scholz, Martin Frank, Mark Schmidt, and Christian Hensen
Biogeosciences, 17, 1745–1763, https://doi.org/10.5194/bg-17-1745-2020, https://doi.org/10.5194/bg-17-1745-2020, 2020
Short summary
Short summary
Marine silicate weathering is a key process of the marine silica cycle; however, its controlling processes are not well understood. In the Guaymas Basin, silicate weathering has been studied under markedly differing ambient conditions. Environmental settings like redox conditions or terrigenous input of reactive silicates appear to be major factors controlling marine silicate weathering. These factors need to be taken into account in future oceanic mass balances of Si and in modeling studies.
Jessica B. Volz, Laura Haffert, Matthias Haeckel, Andrea Koschinsky, and Sabine Kasten
Biogeosciences, 17, 1113–1131, https://doi.org/10.5194/bg-17-1113-2020, https://doi.org/10.5194/bg-17-1113-2020, 2020
Short summary
Short summary
Potential future deep-sea mining of polymetallic nodules at the seafloor is expected to severely harm the marine environment. However, the consequences on deep-sea ecosystems are still poorly understood. This study on surface sediments from man-made disturbance tracks in the Pacific Ocean shows that due to the removal of the uppermost sediment layer and thereby the loss of organic matter, the geochemical system in the sediments is disturbed for millennia before reaching a new equilibrium.
Ralf Conrad, Melanie Klose, and Alex Enrich-Prast
Biogeosciences, 17, 1063–1069, https://doi.org/10.5194/bg-17-1063-2020, https://doi.org/10.5194/bg-17-1063-2020, 2020
Short summary
Short summary
Lake sediments release the greenhouse gas CH4. Acetate is an important precursor. Although Amazonian lake sediments all contained acetate-consuming methanogens, measurement of the turnover of labeled acetate showed that some sediments converted acetate not to CH4 plus CO2, as expected, but only to CO2. Our results indicate the operation of acetate-oxidizing microorganisms couples the oxidation process to syntrophic methanogenic partners and/or to the reduction of organic compounds.
Jens Rassmann, Eryn M. Eitel, Bruno Lansard, Cécile Cathalot, Christophe Brandily, Martial Taillefert, and Christophe Rabouille
Biogeosciences, 17, 13–33, https://doi.org/10.5194/bg-17-13-2020, https://doi.org/10.5194/bg-17-13-2020, 2020
Short summary
Short summary
In this paper, we use a large set of measurements made using in situ and lab techniques to elucidate the cause of dissolved inorganic carbon fluxes in sediments from the Rhône delta and its companion compound alkalinity, which carries the absorption capacity of coastal waters with respect to atmospheric CO2. We show that sediment processes (sulfate reduction, FeS precipitation and accumulation) are crucial in generating the alkalinity fluxes observed in this study by in situ incubation chambers.
Sarah Paradis, Antonio Pusceddu, Pere Masqué, Pere Puig, Davide Moccia, Tommaso Russo, and Claudio Lo Iacono
Biogeosciences, 16, 4307–4320, https://doi.org/10.5194/bg-16-4307-2019, https://doi.org/10.5194/bg-16-4307-2019, 2019
Short summary
Short summary
Chronic deep bottom trawling in the Gulf of Castellammare (SW Mediterranean) erodes large volumes of sediment, exposing over-century-old sediment depleted in organic matter. Nevertheless, the arrival of fresh and nutritious sediment recovers superficial organic matter in trawling grounds and leads to high turnover rates, partially and temporarily mitigating the impacts of bottom trawling. However, this deposition is ephemeral and it will be swiftly eroded by the passage of the next trawler.
Zhichao Zhou, Bo Liang, Li-Ying Wang, Jin-Feng Liu, Bo-Zhong Mu, Hojae Shim, and Ji-Dong Gu
Biogeosciences, 16, 4229–4241, https://doi.org/10.5194/bg-16-4229-2019, https://doi.org/10.5194/bg-16-4229-2019, 2019
Short summary
Short summary
This study shows a core bacterial microbiome with a small proportion of shared operational taxonomic units of common sequences among all oil reservoirs. Dominant methanogenesis shifts from the hydrogenotrophic pathway in water phase to the acetoclastic pathway in the oil phase at high temperatures, but the opposite is true at low temperatures. There are also major functional metabolism differences between the two phases for amino acids, hydrocarbons, and carbohydrates.
Annika Fiskal, Longhui Deng, Anja Michel, Philip Eickenbusch, Xingguo Han, Lorenzo Lagostina, Rong Zhu, Michael Sander, Martin H. Schroth, Stefano M. Bernasconi, Nathalie Dubois, and Mark A. Lever
Biogeosciences, 16, 3725–3746, https://doi.org/10.5194/bg-16-3725-2019, https://doi.org/10.5194/bg-16-3725-2019, 2019
Hanni Vigderovich, Lewen Liang, Barak Herut, Fengping Wang, Eyal Wurgaft, Maxim Rubin-Blum, and Orit Sivan
Biogeosciences, 16, 3165–3181, https://doi.org/10.5194/bg-16-3165-2019, https://doi.org/10.5194/bg-16-3165-2019, 2019
Short summary
Short summary
Microbial iron reduction participates in important biogeochemical cycles. In the last decade iron reduction has been observed in many aquatic sediments below its classical zone, in the methane production zone, suggesting a link between the two cycles. Here we present evidence for microbial iron reduction in the methanogenic depth of the oligotrophic SE Mediterranean continental shelf using mainly geochemical and microbial sedimentary profiles and suggest possible mechanisms for this process.
Haoyi Yao, Wei-Li Hong, Giuliana Panieri, Simone Sauer, Marta E. Torres, Moritz F. Lehmann, Friederike Gründger, and Helge Niemann
Biogeosciences, 16, 2221–2232, https://doi.org/10.5194/bg-16-2221-2019, https://doi.org/10.5194/bg-16-2221-2019, 2019
Short summary
Short summary
How methane is transported in the sediment is important for the microbial community living on methane. Here we report an observation of a mini-fracture that facilitates the advective gas transport of methane in the sediment, compared to the diffusive fluid transport without a fracture. We found contrasting bio-geochemical signals in these different transport modes. This finding can help to fill the gap in the fracture network system in modulating methane dynamics in surface sediments.
Laura A. Casella, Sixin He, Erika Griesshaber, Lourdes Fernández-Díaz, Martina Greiner, Elizabeth M. Harper, Daniel J. Jackson, Andreas Ziegler, Vasileios Mavromatis, Martin Dietzel, Anton Eisenhauer, Sabino Veintemillas-Verdaguer, Uwe Brand, and Wolfgang W. Schmahl
Biogeosciences, 15, 7451–7484, https://doi.org/10.5194/bg-15-7451-2018, https://doi.org/10.5194/bg-15-7451-2018, 2018
Short summary
Short summary
Biogenic carbonates record past environmental conditions. Fossil shell chemistry and microstructure change as metastable biogenic carbonates are replaced by inorganic calcite. Simulated diagenetic alteration at 175 °C of different shell microstructures showed that (nacreous) shell aragonite and calcite were partially replaced by coarse inorganic calcite crystals due to dissolution–reprecipitation reactions. EBSD maps allowed for qualitative assessment of the degree of diagenetic overprint.
Wytze K. Lenstra, Matthias Egger, Niels A. G. M. van Helmond, Emma Kritzberg, Daniel J. Conley, and Caroline P. Slomp
Biogeosciences, 15, 6979–6996, https://doi.org/10.5194/bg-15-6979-2018, https://doi.org/10.5194/bg-15-6979-2018, 2018
Short summary
Short summary
We show that burial rates of phosphorus (P) in an estuary in the northern Baltic Sea are very high. We demonstrate that at high sedimentation rates, P retention in the sediment is related to the formation of vivianite. With a reactive transport model, we assess the sensitivity of sedimentary vivianite formation. We suggest that enrichments of iron and P in the sediment are linked to periods of enhanced riverine input of Fe, which subsequently strongly enhances P burial in coastal sediments.
Jiarui Liu, Gareth Izon, Jiasheng Wang, Gilad Antler, Zhou Wang, Jie Zhao, and Matthias Egger
Biogeosciences, 15, 6329–6348, https://doi.org/10.5194/bg-15-6329-2018, https://doi.org/10.5194/bg-15-6329-2018, 2018
Short summary
Short summary
Our work provides new insights into the biogeochemical cycling of iron, methane and phosphorus. We found that vivianite, an iron-phosphate mineral, is pervasive in methane-rich sediments, suggesting that iron reduction at depth is coupled to phosphorus and methane cycling on a much greater spatial scale than previously assumed. Acting as an important burial mechanism for iron and phosphorus, vivianite authigenesis may be an under-considered process in both modern and ancient settings alike.
Marc A. Besseling, Ellen C. Hopmans, R. Christine Boschman, Jaap S. Sinninghe Damsté, and Laura Villanueva
Biogeosciences, 15, 4047–4064, https://doi.org/10.5194/bg-15-4047-2018, https://doi.org/10.5194/bg-15-4047-2018, 2018
Short summary
Short summary
Benthic archaea comprise a significant part of the total prokaryotic biomass in marine sediments. Here, we compared the archaeal diversity and intact polar lipid (IPL) composition in both surface and subsurface sediments with different oxygen regimes in the Arabian Sea oxygen minimum zone. The oxygenated sediments were dominated by Thaumarchaeota and IPL-GDGT-0. The anoxic sediment contained highly diverse archaeal communities and high relative abundances of IPL-GDGT-1 to -4.
Georgina Robinson, Thomas MacTavish, Candida Savage, Gary S. Caldwell, Clifford L. W. Jones, Trevor Probyn, Bradley D. Eyre, and Selina M. Stead
Biogeosciences, 15, 1863–1878, https://doi.org/10.5194/bg-15-1863-2018, https://doi.org/10.5194/bg-15-1863-2018, 2018
Short summary
Short summary
This study examined the effect of adding carbon to a sediment-based effluent treatment system to treat nitrogen-rich aquaculture waste. The research was conducted in incubation chambers to measure the exchange of gases and nutrients across the sediment–water interface and examine changes in the sediment microbial community. Adding carbon increased the amount of nitrogen retained in the treatment system, thereby reducing the levels of nitrogen needing to be discharged to the environment.
Daniele Brigolin, Christophe Rabouille, Bruno Bombled, Silvia Colla, Salvatrice Vizzini, Roberto Pastres, and Fabio Pranovi
Biogeosciences, 15, 1347–1366, https://doi.org/10.5194/bg-15-1347-2018, https://doi.org/10.5194/bg-15-1347-2018, 2018
Short summary
Short summary
We present the result of a study carried out in the north-western Adriatic Sea by combining two different types of models with field sampling. A mussel farm was taken as a local source of perturbation to the natural flux of particulate organic carbon to the sediment. Differences in fluxes were primarily associated with mussel physiological conditions. Although restricted, these changes in particulate organic carbon fluxes induced visible effects on sediment biogeochemistry.
Volker Brüchert, Lisa Bröder, Joanna E. Sawicka, Tommaso Tesi, Samantha P. Joye, Xiaole Sun, Igor P. Semiletov, and Vladimir A. Samarkin
Biogeosciences, 15, 471–490, https://doi.org/10.5194/bg-15-471-2018, https://doi.org/10.5194/bg-15-471-2018, 2018
Short summary
Short summary
We determined the aerobic and anaerobic degradation rates of land- and marine-derived organic material in East Siberian shelf sediment. Marine plankton-derived organic carbon was the main source for the oxic dissolved carbon dioxide production, whereas terrestrial organic material significantly contributed to the production of carbon dioxide under anoxic conditions. Our direct degradation rate measurements provide new constraints for the present-day Arctic marine carbon budget.
Jack J. Middelburg
Biogeosciences, 15, 413–427, https://doi.org/10.5194/bg-15-413-2018, https://doi.org/10.5194/bg-15-413-2018, 2018
Short summary
Short summary
Organic carbon processing at the seafloor is studied by geologists to better understand the sedimentary record, by biogeochemists to quantify burial and respiration, by organic geochemists to elucidate compositional changes, and by ecologists to follow carbon transfers within food webs. These disciplinary approaches have their strengths and weaknesses. This award talk provides a synthesis, highlights the role of animals in sediment carbon processing and presents some new concepts.
Craig Smeaton, William E. N. Austin, Althea L. Davies, Agnes Baltzer, John A. Howe, and John M. Baxter
Biogeosciences, 14, 5663–5674, https://doi.org/10.5194/bg-14-5663-2017, https://doi.org/10.5194/bg-14-5663-2017, 2017
Short summary
Short summary
Fjord sediments are recognised as hotspots for the burial and long-term storage of carbon. In this study, we use the Scottish fjords as a natural laboratory. Using geophysical and geochemical analysis in combination with upscaling techniques, we have generated the first full national sedimentary C inventory for a fjordic system. The results indicate that the Scottish fjords on a like-for-like basis are more effective as C stores than their terrestrial counterparts, including Scottish peatlands.
Perran Louis Miall Cook, Adam John Kessler, and Bradley David Eyre
Biogeosciences, 14, 4061–4069, https://doi.org/10.5194/bg-14-4061-2017, https://doi.org/10.5194/bg-14-4061-2017, 2017
Short summary
Short summary
Nitrogen is the key nutrient that typically limits productivity in coastal waters. One of the key controls on the amount of bioavailable nitrogen is the process of denitrification, which converts nitrate (bioavailable) into nitrogen gas. Previous studies suggest high rates of denitrification may take place within carbonate sediments, and one explanation for this is that this process may take place within the sand grains. Here we show evidence to support this hypothesis.
Chris T. Parsons, Fereidoun Rezanezhad, David W. O'Connell, and Philippe Van Cappellen
Biogeosciences, 14, 3585–3602, https://doi.org/10.5194/bg-14-3585-2017, https://doi.org/10.5194/bg-14-3585-2017, 2017
Short summary
Short summary
Phosphorus (P) has accumulated in sediments due to past human activities. The re-release of this P to water contributes to the growth of harmful algal blooms. Our research improves our mechanistic understanding of how P is partitioned between different chemical forms and between sediment and water under dynamic conditions. We demonstrate that P trapped within iron minerals may be less mobile during anoxic conditions than previously thought due to reversible changes to P forms within sediment.
Clint M. Miller, Gerald R. Dickens, Martin Jakobsson, Carina Johansson, Andrey Koshurnikov, Matt O'Regan, Francesco Muschitiello, Christian Stranne, and Carl-Magnus Mörth
Biogeosciences, 14, 2929–2953, https://doi.org/10.5194/bg-14-2929-2017, https://doi.org/10.5194/bg-14-2929-2017, 2017
Short summary
Short summary
Continental slopes north of the East Siberian Sea are assumed to hold large amounts of methane. We present pore water chemistry from the 2014 SWERUS-C3 expedition. These are among the first results generated from this vast climatically sensitive region, and they imply that abundant methane, including gas hydrates, do not characterize the East Siberian Sea slope or rise. This contradicts previous modeling and discussions, which due to the lack of data are almost entirely based assumption.
Laura A. Casella, Erika Griesshaber, Xiaofei Yin, Andreas Ziegler, Vasileios Mavromatis, Dirk Müller, Ann-Christine Ritter, Dorothee Hippler, Elizabeth M. Harper, Martin Dietzel, Adrian Immenhauser, Bernd R. Schöne, Lucia Angiolini, and Wolfgang W. Schmahl
Biogeosciences, 14, 1461–1492, https://doi.org/10.5194/bg-14-1461-2017, https://doi.org/10.5194/bg-14-1461-2017, 2017
Short summary
Short summary
Mollusc shells record past environments. Fossil shell chemistry and microstructure change as metastable biogenic aragonite transforms to stable geogenic calcite. We simulated this alteration of Arctica islandica shells by hydrothermal treatments. Below 175 °C the shell aragonite survived for weeks. At 175 °C the replacement of the original material starts after 4 days and yields submillimetre-sized calcites preserving the macroscopic morphology as well as the original internal micromorphology.
Jung-Ho Hyun, Sung-Han Kim, Jin-Sook Mok, Hyeyoun Cho, Tongsup Lee, Verona Vandieken, and Bo Thamdrup
Biogeosciences, 14, 941–958, https://doi.org/10.5194/bg-14-941-2017, https://doi.org/10.5194/bg-14-941-2017, 2017
Short summary
Short summary
The surface sediments of the Ulleung Basin (UB) in the East Sea are characterized by high organic carbon contents (> 2.5 %, dry wt.) and very high concentrations of Mn oxides (> 200 μmol cm−3) and Fe oxides (up to 100 μmol cm−3). For the first time in deep offshore sediments on the Asian margin with water depth over 2000 m, we report that Mn reduction and Fe reduction were the dominant organic carbon (Corg) oxidation pathways, comprising 45 % and 20 % of total Corg oxidation, respectively.
Jens Rassmann, Bruno Lansard, Lara Pozzato, and Christophe Rabouille
Biogeosciences, 13, 5379–5394, https://doi.org/10.5194/bg-13-5379-2016, https://doi.org/10.5194/bg-13-5379-2016, 2016
Short summary
Short summary
In situ O2 and pH measurements as well as determination of porewater concentrations of dissolved inorganic carbon, total alkalinity, sulfate and calcium have been measured in the sediments of the Rhône prodelta. Biogeochemical activity decreased with distance from the river mouth. Oxic processes decreased the carbonate saturation state (Ω) by lowering pH, whereas anaerobic organic matter degradation, dominated by sulfate reduction, was accompanied by increasing Ω and carbonate precipitation.
Matthias Egger, Peter Kraal, Tom Jilbert, Fatimah Sulu-Gambari, Célia J. Sapart, Thomas Röckmann, and Caroline P. Slomp
Biogeosciences, 13, 5333–5355, https://doi.org/10.5194/bg-13-5333-2016, https://doi.org/10.5194/bg-13-5333-2016, 2016
Short summary
Short summary
By combining detailed geochemical analyses with diagenetic modeling, we provide new insights into how methane dynamics may strongly overprint burial records of iron, sulfur and phosphorus in marine systems subject to changes in organic matter loading or water column salinity. A better understanding of these processes will improve our ability to read ancient sediment records and thus to predict the potential consequences of global warming and human-enhanced inputs of nutrients to the ocean.
Cited articles
Abbott, A. N., Löhr, S., and Trethewy, M.: Are Clay Minerals the Primary
Control on the Oceanic Rare Earth Element Budget?, Front. Mar. Sci., 6, 504,
https://doi.org/10.3389/fmars.2019.00504, 2019.
Alt, J. C.: Hydrothermal oxide and nontronite deposits on seamounts in the
eastern Pacific, Mar. Geol., 81, 227–239,
https://doi.org/10.1016/0025-3227(88)90029-1, 1988.
Baldermann, A., Warr, L. N., Letofsky-Papst, I., and Mavromatis, V.:
Substantial iron sequestration during green-clay authigenesis in modern
deep-sea sediments, Nat. Geosci., 8, 885–889, https://doi.org/10.1038/ngeo2542,
2015.
Barrett, T. J. and Jarvis, I.: Rare-earth element geochemistry of
metalliferous sediments from DSDP Leg 92: The East Pacific Rise transect,
Chem. Geol., 67, 243–259, https://doi.org/10.1016/0009-2541(88)90131-3, 1988.
Bau, M.: Rare-earth element mobility during hydrothermal and metamorphic
fluid-rock interaction and the significance of the oxidation state of
europium, Chem. Geol., 93, 219–230, https://doi.org/10.1016/0009-2541(91)90115-8,
1991.
Bau, M.: Scavenging of dissolved yttrium and rare earths by precipitating
iron oxyhydroxide: Experimental evidence for Ce oxidation, Y-Ho
fractionation, and lanthanide tetrad effect, Geochim. Cosmochim. Ac.,
63, 67–77, 1999.
Bau, M. and Dulski, P.: Comparing yttrium and rare earths in hydrothermal
fluids from the Mid-Atlantic Ridge: implications for Y and REE behaviour
during near-vent mixing and for the Y∕Ho ratio of Proterozoic seawater,
Chem. Geol., 155, 70–90, 1999.
Bau, M., Möller, P., and Dulski, P.: Yttrium and lanthanides in eastern
Mediterranean seawater and their fractionation during redox-cycling, Mar.
Chem., 56, 123–131, https://doi.org/10.1016/S0304-4203(96)00091-6, 1997.
Bau, M., Usui, A., Pracejus, B., Mita, N., Kanai, Y., Irber, W., and Dulski,
P.: Geochemistry of low-temperature water-rock interaction: Evidence from
natural waters, andesite, and iron-oxyhydroxide precipitates at Nishiki-numa
iron-spring, Hokkaido, Japan, Chem. Geol., 151, 293–307,
https://doi.org/10.1016/S0009-2541(98)00086-2, 1998.
Bau, M., Schmidt, K., Pack, A., Bendel, V., and Kraemer, D.: The European
Shale: An improved data set for normalisation of rare earth element and
yttrium concentrations in environmental and biological samples from Europe,
Appl. Geochem., 90, 142–149,
https://doi.org/10.1016/j.apgeochem.2018.01.008, 2018.
Beck, M., Dellwig, O., Schnetger, B., and Brumsack, H. J.: Cycling of trace
metals (Mn, Fe, Mo, U, V, Cr) in deep pore waters of intertidal flat
sediments, Geochim. Cosmochim. Ac., 72, 2822–2840,
https://doi.org/10.1016/j.gca.2008.04.013, 2008.
Bischoff, J. L., Heath, G. R., and Leinen, M.: Geochemistry of Deep-Sea
Sediments from the Pacific Manganese Nodule Province: DOMES Sites A, B, and
C, in: Marine Geology and Oceanography of the Pacific Manganese Nodule
Province, edited by: Bischoff, J. L. and Piper, D. Z., Springer
US, Boston, MA, 397–436, 1979.
Bright, C. A., Cruse, A. M., Lyons, T. W., MacLeod, K. G., Glascock, M. D.,
and Ethington, R. L.: Seawater rare-earth element patterns preserved in
apatite of Pennsylvanian conodonts?, Geochim. Cosmochim. Ac., 73,
1609–1624, https://doi.org/10.1016/j.gca.2008.12.014, 2009.
Cantrell, K. J. and Byrne, R. H.: Rare earth element complexation by
carbonate and oxalate ions, Geochim. Cosmochim. Ac., 51, 597–605,
https://doi.org/10.1016/0016-7037(87)90072-X, 1987.
Cole, T. G.: Composition, oxygen isotope geochemistry and origin of smectite
in the metalliferous sediments of the Bauer Deep, southeast Pacific,
Geochim. Cosmochim. Ac., 49, 221–235, https://doi.org/10.1016/0016-7037(85)90206-6,
1985.
Cole, T. G. and Shaw, H. F.: The nature and origin of authigenic smectites
in some recent marine sediments, Clay Miner., 18, 239–252,
https://doi.org/10.1180/claymin.1983.018.3.02, 1983.
Colley, S. and Thomson, J.: Recurrent uranium relocations in distal
turbidites emplaced in pelagic conditions, Geochim. Cosmochim. Ac., 49,
2339–2348, https://doi.org/10.1016/0016-7037(85)90234-0, 1985.
Colley, S., Thomson, J., Wilson, T. R. S., and Higgs, N. C.:
Post-depositional migration of elements during diagenesis in brown clay and
turbidite sequences in the North East Atlantic, Geochim. Cosmochim. Ac.,
48, 1223–1235, https://doi.org/10.1016/0016-7037(84)90057-7, 1984.
Cullers, R. L., Chaudhuri, S., Arnold, B., Lee, M., and Wolf, C. W.: Rare
earth distributions in clay minerals and in the clay-sized fraction of the
Lower Permian Havensville and Eskridge shales of Kansas and Oklahoma,
Geochim. Cosmochim. Ac., 39, 1691–1703,
https://doi.org/10.1016/0016-7037(75)90090-3, 1975.
Deng, Y., Ren, J., Guo, Q., Cao, J., Wang, H., and Liu, C.: Rare earth
element geochemistry characteristics of seawater and porewater from deep sea
in western Pacific, Sci. Rep., 7, 1–13,
https://doi.org/10.1038/s41598-017-16379-1, 2017.
de Stigter, H.: Gravity core descriptions, in: RV SONNE Fahrtbericht/Cruise
Report SO242-1 JPI OCEANS Ecological Aspects of Deep-Sea Mining: DISCOL
Revisited, edited by: Greinert, J., GEOMAR Helmholtz Centre for Ocean Research
Kiel, 2015.
Dong, H., Jaisi, D. P., Kim, J., and Zhang, G.: Microbe-clay mineral
interactions, Am. Mineral., 94, 1505–1519, https://doi.org/10.2138/am.2009.3246, 2009.
Drodt, M., Trautwein, A. X., König, I., Suess, E., and Bender Koch, C.:
Mössbauer spectroscopic studies on the iron forms of deep-sea sediments,
Phys. Chem. Miner., 24, 281–293, https://doi.org/10.1007/s002690050040, 1997.
Dymond, J., Suess, E., and Lyle, M.: Barium in Deep-Sea Sediment: A
Geochemical Proxy for Paleoproductivity, Paleoceanography, 7, 163–181,
https://doi.org/10.1029/92PA00181, 1992.
Elbaz-Poulichet, F., Nagy, A., and Cserny, T.: The distribution of redox
sensitive elements (U, As, Sb, V and Mo) along a river-wetland-lake system
(Balaton Region, Hungary), Aquat. Geochem., 3, 267–282,
https://doi.org/10.1023/A:1009616214030, 1997.
Elderfield, H.: The Oceanic Chemistry of the Rare-Earth Elements, Philos.
T. R. Soc. A, 325, 105–126,
https://doi.org/10.1098/rsta.1988.0046, 1988.
Elderfield, H., Hawkesworth, C. J., Greaves, M. J., and Calvert, S. E.: Rare
earth element geochemistry of oceanic ferromanganese nodules and associated
sediments, Geochim. Cosmochim. Ac., 45, 513–528,
https://doi.org/10.1016/0016-7037(81)90184-8, 1981.
Fritsche, U., Koschinsky, A., and Winkler, A.: The different diffusive
transport behaviours of some metals in layers of Peru Basin surface
sediment, Deep-Sea Res. Pt. II, 48, 3653–3681,
https://doi.org/10.1016/S0967-0645(01)00061-3, 2001.
Froelich, P. N., Klinkhammer, G. P., Bender, M. L., Luedtke, N. a., Heath,
G. R., Cullen, D., Dauphin, P., Hammond, D., Hartman, B., and Maynard, V.:
Early oxidation of organic matter in pelagic sediments of the eastern
equatorial Atlantic: suboxic diagenesis, Geochim. Cosmochim. Ac., 43,
1075–1090, https://doi.org/10.1016/0016-7037(79)90095-4, 1979.
German, C. R., Klinkhammer, G. P., Edmond, J. M., Mitra, A., and Elderfield,
H.: Hydrothermal scavenging of rare-earth elements in the ocean, Nature,
345, 516–518, https://doi.org/10.1038/345516a0, 1990.
Gingele, F. X., Zabel, M., Kasten, S., Bonn, W. J., and Nürnberg, C. C.:
Biogenic Barium as a Proxy for Paleoproductivity: Methods and Limitations of
Application, in: Use of Proxies in Palaeoceanography: Examples from the South
Atlantic, edited by: Fischer, G. and Wefer, G., Springer-Verlag,
Berlin, Heidelberg, 345–364, 1999.
Glover, A. G. and Smith, C. R.: The deep-sea floor ecosystem: current status
and prospects of anthropogenic change by the year 2025, Environ. Conserv.,
30, 219–241, https://doi.org/10.1017/S0376892903000225, 2003.
Grasshoff, K., Kremling, K., and Ehrhardt, M.: Methods of Seawater Analysis,
Wiley-VCH, Weinheim, 632 pp., 1999.
Greinert, J.: RV SONNE Fahrtbericht/Cruise Report SO242-1 JPI OCEANS
Ecological Aspects of Deep-Sea Mining: DISCOL Revisited, 213 pp., 2015.
Haeckel, M., König, I., Riech, V., Weber, M. E., and Suess, E.: Pore
water profiles and numerical modelling of biogeochemical processes in Peru
Basin deep-sea sediments, Deep-Sea Res. Pt. II, 48,
3713–3736, https://doi.org/10.1016/S0967-0645(01)00064-9, 2001.
Haeckel, M.: GEOMAR – Helmholtz Centre for Ocean Research Kiel, PANGAEA, Particulate geochemistry of sediment core SO242/1_100-1_GC 5: https://doi.org/10.1594/PANGAEA.884974, Particulate geochemistry of sediment core SO242/1_123-1_GC 6: https://doi.org/10.1594/PANGAEA.884977; Particulate geochemistry of sediment core SO242/1_132-1_GC 7: https://doi.org/10.1594/PANGAEA.884979, Particulate geochemistry of sediment core SO242/1_38-1_GC 1: https://doi.org/10.1594/PANGAEA.884981, Particulate geochemistry of sediment core SO242/1_51-1_GC 2: https://doi.org/10.1594/PANGAEA.884982, Particulate geochemistry of sediment core SO242/1_84-1_GC 3: https://doi.org/10.1594/PANGAEA.884988, Particulate geochemistry of sediment core SO242/1_89-1_GC 4: https://doi.org/10.1594/PANGAEA.884989, Porewater geochemistry of sediment core SO242/1_100-1_GC 5: https://doi.org/10.1594/PANGAEA.884946, Porewater geochemistry of sediment core SO242/1_123-1_GC 6: https://doi.org/10.1594/PANGAEA.884949, Porewater geochemistry of sediment core SO242/1_132-1_GC 7: https://doi.org/10.1594/PANGAEA.884951, Porewater geochemistry of sediment core SO242/1_38-1_GC 1: https://doi.org/10.1594/PANGAEA.884953, Porewater geochemistry of sediment core SO242/1_51-1_GC 2: https://doi.org/10.1594/PANGAEA.884954, Porewater geochemistry of sediment core SO242/1_84-1_GC 3: https://doi.org/10.1594/PANGAEA.884960, Porewater geochemistry of sediment core SO242/1_89-1_GC 4: https://doi.org/10.1594/PANGAEA.884961, 2018.
Haffert, L., Haeckel, M., de Stigter, H., and Janßen, F.: DISCOL experiment revisited: Assessing the temporal scale of deep-sea mining impacts on sediment biogeochemistry, Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-361, in review, 2020.
Haley, B. A., Klinkhammer, G. P., and McManus, J.: Rare earth elements in
pore waters of marine sediments, Geochim. Cosmochim. Ac., 68,
1265–1279, https://doi.org/10.1016/j.gca.2003.09.012, 2004.
Heggie, D. and Lewis, T.: Cobalt in pore waters of marine sediments, Nature,
311, 453–455, https://doi.org/10.1038/311453a0, 1984.
Hein, J. R. and Koschinsky, A.: Deep-Ocean Ferromanganese Crusts and
Nodules, in: Treatise on Geochemistry, Vol. 13, Elsevier,
273–291, 2014.
Hein, J. R., Yeh, H.-W., and Alexander, E.: Origin of Iron-Rich
Montmorillonite from the Manganese Nodule Belt of the North Equatorial
Pacific, Clays Clay Miner., 27, 185–194, https://doi.org/10.1346/CCMN.1979.0270303,
1979.
JPI Oceans – Ecological Aspects of
Deep-Sea Mining, available at:
https://jpio-miningimpact.geomar.de/, last access: 15 September 2017.
Jarvis, I.: Geochemistry and origin of Eocene-Oligocene metalliferous
sediments from the central equatorial Pacific: Deep Sea Drilling Project
Sites 573 and 574, in: Initial Reports of the Deep Sea Drilling Project, 85,
edited by:
Mayer, L. A.,
Theyer, F.,
Barron, J. A.,
Dunn, D. A., and
Handyside, T., Chapt. 24, 781–804, 1985.
Jarvis, I., Burnett, W. C., Nathan, Y., Almbaydin, F. S. M., Attia, A. K.
M., Castro, L. N., Flicoteaux, R., Hilmy, M. E., Husain, V., Qutawnah, A.
A., Serjani, A., and Zanin, Y. N.: Phosphorite geochemistry: State-of-the-art
and environmental concerns, Eclogae Geol. Helv., 87, 643–700, 1994.
Kashiwabara, T., Toda, R., Nakamura, K., Yasukawa, K., Fujinaga, K., Kubo,
S., Nozaki, T., Takahashi, Y., Suzuki, K., and Kato, Y.: Synchrotron X-ray
spectroscopic perspective on the formation mechanism of REY-rich muds in the
Pacific Ocean, Geochim. Cosmochim. Ac., 240, 274–292,
https://doi.org/10.1016/j.gca.2018.08.013, 2018.
Kim, J.-H., Torres, M. E., Haley, B. A., Kastner, M., Pohlman, J. W.,
Riedel, M., and Lee, Y.-J.: The effect of diagenesis and fluid migration on
rare earth element distribution in pore fluids of the northern Cascadia
accretionary margin, Chem. Geol., 291, 152–165,
https://doi.org/10.1016/j.chemgeo.2011.10.010, 2012.
Klinkhammer, G. P.: Early diagenesis in sediments from the eastern
equatorial Pacific, II. Pore water metal results, Earth Planet. Sc. Lett.,
49, 81–101, https://doi.org/10.1016/0012-821X(80)90151-X, 1980.
Kon, Y., Hoshino, M., Sanematsu, K., Morita, S., Tsunematsu, M., Okamoto,
N., Yano, N., Tanaka, M., and Takagi, T.: Geochemical characteristics of
apatite in heavy REE-rich Deep-Sea Mud from Minami-Torishima Area,
Southeastern Japan, Resour. Geol., 64, 47–57, https://doi.org/10.1111/rge.12026,
2014.
König, I., Drodt, M., Suess, E., and Trautwein, A. X.: Iron reduction
through the tan-green color transition in deep-sea sediments, Geochim.
Cosmochim. Ac., 61, 1679–1683, https://doi.org/10.1016/S0016-7037(97)00007-0, 1997.
König, I., Haeckel, M., Drodt, M., Suess, E., and Trautwein, A. X.:
Reactive Fe(II) layers in deep-sea sediments, Geochim. Cosmochim. Ac.,
63, 1517–1526, https://doi.org/10.1016/S0016-7037(99)00104-0, 1999.
König, I., Haeckel, M., Lougear, A., Suess, E., and Trautwein, A. X.: A
geochemical model of the Peru Basin deep-sea floor – and the response of the
system to technical impacts, Deep-Sea Res. Pt. II,
48, 3737–3756, https://doi.org/10.1016/S0967-0645(01)00065-0, 2001.
Koschinsky, A.: Heavy metal distributions in Peru Basin surface sediments in
relation to historic, present and disturbed redox environments, Deep-Sea Res.
Pt. II, 48, 3757–3777,
https://doi.org/10.1016/S0967-0645(01)00066-2, 2001.
Koschinsky, A., Gaye-Haake, B., Arndt, C., Maue, G., Spitzy, A., Winkler, A.,
and Halbach, P.: Experiments on the influence of sediment disturbances on
the biogeochemistry of the deep-sea environment, Deep-Sea Res. Pt. II, 48, 3629–3651, https://doi.org/10.1016/S0967-0645(01)00060-1,
2001a.
Koschinsky, A., Fritsche, U., and Winkler, A.: Sequential leaching of Peru
Basin surface sediment for the assessment of aged and fresh heavy metal
associations and mobility, Deep-Sea Res. Pt. II,
48, 3683–3699, https://doi.org/10.1016/S0967-0645(01)00062-5, 2001b.
Liao, J., Sun, X., Li, D., Sa, R., Lu, Y., Lin, Z., Xu, L., Zhan, R., Pan,
Y., and Xu, H.: New insights into nanostructure and geochemistry of
bioapatite in REE-rich deep-sea sediments: LA-ICP-MS, TEM, and Z-contrast
imaging studies, Chem. Geol., 512, 58–68,
https://doi.org/10.1016/j.chemgeo.2019.02.039, 2019.
Lyle, M.: The brown-green color transition in marine sediments: A marker of
the Fe(III)-Fe(II) redox boundary, Limnol. Oceanogr., 28, 1026–1033,
https://doi.org/10.4319/lo.1983.28.5.1026, 1983.
Lyons, T. W., Werne, J. P., Hollander, D. J., and Murray, R. .: Contrasting
sulfur geochemistry and Fe∕Al and Mo/Al ratios across the last
oxic-to-anoxic transition in the Cariaco Basin, Venezuela, Chem. Geol., 195,
131–157, https://doi.org/10.1016/S0009-2541(02)00392-3, 2003.
Marchig, V., von Stackelberg, U., Wiedicke, M., Durn, G., and Milovanovic,
D.: Hydrothermal activity associated with off-axis volcanism in the Peru
Basin, Mar. Geol., 159, 179–203, 1999.
Marchig, V., Von Stackelberg, U., Hufnagel, H., and Durn, G.: Compositional
changes of surface sediments and variability of manganese nodules in the
Peru Basin, Deep-Sea Res. Pt. II, 48, 3523–3547,
https://doi.org/10.1016/S0967-0645(01)00055-8, 2001.
Mascarenhas-Pereira, M. B. L. and Nath, B. N.: Selective leaching studies of
sediments from a seamount flank in the Central Indian Basin: Resolving
hydrothermal, volcanogenic and terrigenous sources using major, trace and
rare-earth elements, Mar. Chem., 121, 49–66,
https://doi.org/10.1016/j.marchem.2010.03.004, 2010.
McLennan, S. M.: Rare Earth Elements in Sedimentary Rocks: Influence of
Provenance and Sedimentary Processes, in: Geochemistry and Mineralogy of Rare
Earth Elements, MSA Reviews in Mineralogy, Vol. 21, edited by: Lipin, B. R.
and McKay, G. A., 169–200, 1989.
McManus, J., Berelson, W. M., Klinkhammer, G. P., Johnson, K. S., Coale, K.
H., Anderson, R. F., Kumar, N., Burdige, D. J., Hammond, D. E., Brumsack, H.
J., McCorkle, D. C., and Rushdi, A.: Geochemistry of barium in marine
sediments: implications for its use as a paleoproxy, Geochim. Cosmochim.
Ac., 62, 3453–3473, https://doi.org/10.1016/S0016-7037(98)00248-8, 1998.
Mengerink, K. J., Van Dover, C. L., Ardron, J., Baker, M., Escobar-Briones,
E., Gjerde, K., Koslow, J. A., Ramirez-Llodra, E., Lara-Lopez, A., Squires,
D., Sutton, T., Sweetman, A. K., and Levin, L. A.: A Call for Deep-Ocean
Stewardship, Science, 344, 696–698, https://doi.org/10.1126/science.1251458,
2014.
Mewes, K., Mogollón, J. M., Picard, a., Rühlemann, C., Kuhn, T.,
Nöthen, K., and Kasten, S.: Impact of depositional and biogeochemical
processes on small scale variations in nodule abundance in the
Clarion-Clipperton Fracture Zone, Deep-Sea Res. Pt. I, 91,
125–141, https://doi.org/10.1016/j.dsr.2014.06.001, 2014.
Michard, A.: Rare earth element systematics in hydrothermal fluids, Geochim.
Cosmochim. Ac., 53, 745–750, https://doi.org/10.1016/0016-7037(89)90017-3, 1989.
Murnane, R. and Clague, D. A.: Nontronite from a low-temperature
hydrothermal system on the Juan de Fuca Ridge, Earth Planet. Sc. Lett., 65,
343–352, https://doi.org/10.1016/0012-821X(83)90172-3, 1983.
Paul, S. A. L. and Koschinsky, A.: Trace metal geochemistry from gravity corers of SONNE cruise SO242/1 at the DISCOL area, Peru Basin, PANGAEA, https://doi.org/10.1594/PANGAEA.903019, 2019.
Paul, S. A. L., Gaye, B., Haeckel, M., Kasten, S., and Koschinsky, A.:
Biogeochemical Regeneration of a Nodule Mining Disturbance Site: Trace
Metals, DOC and Amino Acids in Deep-Sea Sediments and Pore Waters, Front.
Mar. Sci., 5, 1–17, https://doi.org/10.3389/fmars.2018.00117, 2018.
Paul, S. A. L., Volz, J. B., Bau, M., Köster, M., Kasten, S., and
Koschinsky, A.: Calcium phosphate control of REY patterns of
siliceous-ooze-rich deep-sea sediments from the central equatorial Pacific,
Geochim. Cosmochim. Ac., 251, 56–72, https://doi.org/10.1016/j.gca.2019.02.019, 2019.
Pedro, G., Carmouze, J. P., and Velde, B.: Peloidal nontronite formation in
recent sediments of Lake Chad, Chem. Geol., 23, 139–149,
https://doi.org/10.1016/0009-2541(78)90071-2, 1978.
Piper, D. Z., Baedecker, P. A., Crock, J. G., Burnett, W. C., and Loebner, B.
J.: Rare earth elements in the phosphatic-enriched sediment of the Peru
Shelf, Mar. Geol., 80, 269–285, https://doi.org/10.1016/0025-3227(88)90093-X,
1988.
Prudêncio, M. I., Figueiredo, M. O., and Cabral, J. M. P.: Rare earth
distribution and its correlation with clay mineralogy in the clay-sized
fraction of Cretaceous and Pliocene sediments (central Portugal), Clay
Miner., 24, 67–74, https://doi.org/10.1180/claymin.1989.024.1.06, 1989.
Ramirez-Llodra, E., Brandt, A., Danovaro, R., De Mol, B., Escobar, E.,
German, C. R., Levin, L. A., Martinez Arbizu, P., Menot, L., Buhl-Mortensen,
P., Narayanaswamy, B. E., Smith, C. R., Tittensor, D. P., Tyler, P. A.,
Vanreusel, A., and Vecchione, M.: Deep, diverse and definitely different:
Unique attributes of the world's largest ecosystem, Biogeosciences, 7,
2851–2899, https://doi.org/10.5194/bg-7-2851-2010, 2010.
Reitz, A., Pfeifer, K., De Lange, G. J., and Klump, J.: Biogenic barium and
the detrital Ba∕Al ratio: A comparison of their direct and indirect
determination, Mar. Geol., 204, 289–300,
https://doi.org/10.1016/S0025-3227(04)00004-0, 2004.
Roje, V.: Multi-elemental analysis of marine sediment reference material
MESS-3: one-step microwave digestion and determination by high resolution
inductively coupled plasma-mass spectrometry (HR-ICP-MS), Chem. Pap., 64,
409–414, https://doi.org/10.2478/s11696-010-0022-x, 2010.
Rønsbo, J. G.: Coupled substitutions involving REEs and Na and Si in
apatites in alkaline rocks from Ilímaussaq intrusion, South Greenland,
and the petrological implications, Am. Mineral., 74, 896–901,
1989.
Ruhlin, D. E. and Owen, R. M.: The rare earth element geochemistry of
hydrothermal sediments from the East Pacific Rise: Examination of a seawater
scavenging mechanism, Geochim. Cosmochim. Ac., 50, 393–400,
https://doi.org/10.1016/0016-7037(86)90192-4, 1986.
Russell, J., Goodman, B., and Fraser, A.: Infrared and Mossbauer Studies of
Reduced Nontronites, Clays Clay Miner., 27, 63–71,
https://doi.org/10.1346/CCMN.1979.0270108, 1979.
Ryan, W. B. F., Carbotte, S. M., Coplan, J. O., O'Hara, S., Melkonian, A.,
Arko, R., Weissel, R. A., Ferrini, V., Goodwillie, A., Nitsche, F.,
Bonczkowski, J., and Zemsky, R.: Global multi-resolution topography
synthesis, Geochem. Geophy. Geosy., 10, 9 pp.,
https://doi.org/10.1029/2008GC002332, 2009.
Schacht, U., Wallmann, K., and Kutterolf, S.: The influence of volcanic ash
alteration on the REE composition of marine pore waters, J. Geochem.
Explor., 106, 176–187, https://doi.org/10.1016/j.gexplo.2010.02.006, 2010.
Schindler, D. E. and Hilborn, R.: Prediction, precaution, and policy under
global change, Science, 347, 953–954,
https://doi.org/10.1126/science.1261824, 2015.
Schnetger, B. and Dellwig, O.: Dissolved reactive manganese at pelagic
redoxclines (part I): A method for determination based on field experiments,
J. Mar. Syst., 90, 23–30, https://doi.org/10.1016/j.jmarsys.2011.08.006, 2012.
Schriever, G., Koschinsky, A., and Bluhm, H.: Cruise Report ATESEPP Impacts
of potential technical interventions on the deep-sea ecosystem of the
southeast Pacific off Peru (SONNE Cruise 106), 195 pp., 1996.
Shaw, T. J., Gieskes, J. M., and Jahnke, R. A.: Early diagenesis in differing
depositional environments: The response of transition metals in pore water,
Geochim. Cosmochim. Ac., 54, 1233–1246,
https://doi.org/10.1016/0016-7037(90)90149-F, 1990.
Soyol-Erdene, T. O. and Huh, Y.: Rare earth element cycling in the pore
waters of the Bering Sea Slope (IODP Exp. 323), Chem. Geol., 358, 75–89,
https://doi.org/10.1016/j.chemgeo.2013.08.047, 2013.
Stummeyer, J. and Marchig, V.: Mobility of metals over the redox boundary in
Peru Basin sediments, Deep-Sea Res. Pt. II, 48,
3549–3567, https://doi.org/10.1016/S0967-0645(01)00056-X, 2001.
Telfeyan, K., Breaux, A., Kim, J., Cable, J. E., Kolker, A. S., Grimm, D. A.,
and Johannesson, K. H.: Arsenic, vanadium, iron, and manganese
biogeochemistry in a deltaic wetland, southern Louisiana, USA, Mar. Chem.,
192, 32–48, https://doi.org/10.1016/j.marchem.2017.03.010, 2017.
Thiel, H.: Use and protection of the deep sea – An introduction, Deep-Sea Res.
Pt. II, 48, 3427–3431,
https://doi.org/10.1016/S0967-0645(01)00050-9, 2001.
Thiel, H. and Schriever, G.: Deep-sea mining, environmental impact and the
DISCOL project, Ambio, 19, 245–250, 1990.
Tostevin, R., Shields, G. A., Tarbuck, G. M., He, T., Clarkson, M. O., and
Wood, R. A.: Effective use of cerium anomalies as a redox proxy in
carbonate-dominated marine settings, Chem. Geol., 438, 146–162,
https://doi.org/10.1016/j.chemgeo.2016.06.027, 2016.
Toyoda, K. and Masuda, A.: Chemical leaching of pelagic sediments:
Identification of the carrier of Ce anomaly, Geochem. J., 25, 95–119,
https://doi.org/10.2343/geochemj.25.95, 1991.
Toyoda, K. and Tokonami, M.: Diffusion of rare-earth elements in fish teeth
from deep-sea sediments, Nature, 345, 607–609, https://doi.org/10.1038/345607a0, 1990.
Toyoda, K., Nakamura, Y., and Masuda, A.: Rare earth elements of Pacific
pelagic sediments, Geochim. Cosmochim. Ac., 54, 1093–1103,
https://doi.org/10.1016/0016-7037(90)90441-M, 1990.
Van Dover, C. L., Aronson, J., Pendleton, L., Smith, S., Arnaud-Haond, S.,
Moreno-Mateos, D., Barbier, E., Billett, D., Bowers, K., Danovaro, R.,
Edwards, A., Kellert, S., Morato, T., Pollard, E., Rogers, A., and Warner,
R.: Ecological restoration in the deep sea: Desiderata, Mar. Policy, 44,
98–106, https://doi.org/10.1016/j.marpol.2013.07.006, 2014.
Volz, J. B., Mogollón, J. M., Geibert, W., Martínez Arbizu, P.,
Koschinsky, A., and Kasten, S.: Natural spatial variability of depositional
conditions, biogeochemical processes and element fluxes in sediments of the
eastern Clarion-Clipperton Zone, Pacific Ocean, Deep-Sea Res. Pt. I, 140, 159–172, https://doi.org/10.1016/j.dsr.2018.08.006, 2018.
Wang, D.: Redox chemistry of molybdenum in natural waters and its
involvement in biological evolution, Front. Microbiol., 3, 1–7,
https://doi.org/10.3389/fmicb.2012.00427, 2012.
Weber, M. E. and Pisias, N. G.: Spatial and temporal distribution of
biogenic carbonate and opal in deep-sea sediments from the eastern
equatorial Pacific: implications for ocean history since 1.3 Ma, Earth
Planet. Sc. Lett., 174, 59–73, https://doi.org/10.1016/S0012-821X(99)00248-4, 1999.
Weber, M. E., Wiedicke, M., Riech, V., and Erlenkeuser, H.: Carbonate
preservation history in the Peru Basin: Paleoceanographic implications,
Paleoceanography, 10, 775–800, https://doi.org/10.1029/95PA01566, 1995.
Weber, M. E., Von Stackelberg, U., Marchig, V., Wiedicke, M., and Grupe, B.:
Variability of surface sediments in the Peru basin: Dependence on water
depth, productivity, bottom water flow, and seafloor topography, Mar. Geol.,
163, 169–184, https://doi.org/10.1016/S0025-3227(99)00103-6, 2000.
Zhang, L., Algeo, T. J., Cao, L., Zhao, L., Chen, Z. Q., and Li, Z.:
Diagenetic uptake of rare earth elements by conodont apatite, Palaeogeogr.
Palaeocl., 458, 176–197,
https://doi.org/10.1016/j.palaeo.2015.10.049, 2016.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(7823 KB) - Full-text XML
- Corrigendum
-
Supplement
(93 KB) - BibTeX
- EndNote
Short summary
We studied the upper 10 m of deep-sea sediments, including pore water, in the Peru Basin to understand small-scale variability of trace metals. Our results show high spatial variability related to topographical variations, which in turn impact organic matter contents, degradation processes, and trace metal cycling. Another interesting finding was the influence of dissolving buried nodules on the surrounding sediment and trace metal cycling.
We studied the upper 10 m of deep-sea sediments, including pore water, in the Peru Basin to...
Special issue
Altmetrics
Final-revised paper
Preprint