Articles | Volume 17, issue 20
https://doi.org/10.5194/bg-17-5057-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-17-5057-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Organic matter and sediment properties determine in-lake variability of sediment CO2 and CH4 production and emissions of a small and shallow lake
Leandra Stephanie Emilia Praetzel
CORRESPONDING AUTHOR
Biogeochemistry and Ecohydrology Research Group, Institute of Landscape Ecology, University of Münster, Heisenbergstr. 2, 48149 Münster, Germany
Nora Plenter
Agroecology and Soil Research Group, Institute of Geography, University of Osnabrück, Seminarstraße 19a/b, 49074 Osnabrück, Germany
Faculty of Agricultural Sciences and Landscape Architecture, University of Applied Sciences Osnabrück, Am Krümpel 31, 49090 Osnabrück, Germany
Sabrina Schilling
Biogeochemistry and Ecohydrology Research Group, Institute of Landscape Ecology, University of Münster, Heisenbergstr. 2, 48149 Münster, Germany
Marcel Schmiedeskamp
Biogeochemistry and Ecohydrology Research Group, Institute of Landscape Ecology, University of Münster, Heisenbergstr. 2, 48149 Münster, Germany
Gabriele Broll
Agroecology and Soil Research Group, Institute of Geography, University of Osnabrück, Seminarstraße 19a/b, 49074 Osnabrück, Germany
Klaus-Holger Knorr
CORRESPONDING AUTHOR
Biogeochemistry and Ecohydrology Research Group, Institute of Landscape Ecology, University of Münster, Heisenbergstr. 2, 48149 Münster, Germany
Related authors
Sina Berger, Leandra S. E. Praetzel, Marie Goebel, Christian Blodau, and Klaus-Holger Knorr
Biogeosciences, 15, 885–903, https://doi.org/10.5194/bg-15-885-2018, https://doi.org/10.5194/bg-15-885-2018, 2018
Henning Teickner, Edzer Pebesma, and Klaus-Holger Knorr
EGUsphere, https://doi.org/10.5194/egusphere-2024-1739, https://doi.org/10.5194/egusphere-2024-1739, 2024
Short summary
Short summary
The Holocene Peatland Model (HPM) is a widely used peatland model to understand and predict long-term peatland dynamics. Here, we test whether the HPM can predict Sphagnum litterbag decomposition rates from oxic to anoxic conditions. Our results indicate that decomposition rates change more gradually from oxic to anoxic conditions and may be underestimated under anoxic conditions, possibly because the effect of water table fluctuations on decomposition rates is not considered.
Henning Teickner, Edzer Pebesma, and Klaus-Holger Knorr
EGUsphere, https://doi.org/10.5194/egusphere-2024-1686, https://doi.org/10.5194/egusphere-2024-1686, 2024
Short summary
Short summary
Decomposition rates for Sphagnum mosses, the main peat forming plants in northern peatlands, are often derived from litterbag experiments. Here, we estimate initial leaching losses from available Sphagnum litterbag experiments and analyze how decomposition rates are biased when initial leaching losses are ignored. Our analyses indicate that initial leaching losses range between 3 to 18 mass-% and that this may result in overestimated mass losses when extrapolated to several decades.
Carrie L. Thomas, Boris Jansen, Sambor Czerwiński, Mariusz Gałka, Klaus-Holger Knorr, E. Emiel van Loon, Markus Egli, and Guido L. B. Wiesenberg
Biogeosciences, 20, 4893–4914, https://doi.org/10.5194/bg-20-4893-2023, https://doi.org/10.5194/bg-20-4893-2023, 2023
Short summary
Short summary
Peatlands are vital terrestrial ecosystems that can serve as archives, preserving records of past vegetation and climate. We reconstructed the vegetation history over the last 2600 years of the Beerberg peatland and surrounding area in the Thuringian Forest in Germany using multiple analyses. We found that, although the forest composition transitioned and human influence increased, the peatland remained relatively stable until more recent times, when drainage and dust deposition had an impact.
Laura Clark, Ian B. Strachan, Maria Strack, Nigel T. Roulet, Klaus-Holger Knorr, and Henning Teickner
Biogeosciences, 20, 737–751, https://doi.org/10.5194/bg-20-737-2023, https://doi.org/10.5194/bg-20-737-2023, 2023
Short summary
Short summary
We determine the effect that duration of extraction has on CO2 and CH4 emissions from an actively extracted peatland. Peat fields had high net C emissions in the first years after opening, and these then declined to half the initial value for several decades. Findings contribute to knowledge on the atmospheric burden that results from these activities and are of use to industry in their life cycle reporting and government agencies responsible for greenhouse gas accounting and policy.
Matthias Koschorreck, Klaus Holger Knorr, and Lelaina Teichert
Biogeosciences, 19, 5221–5236, https://doi.org/10.5194/bg-19-5221-2022, https://doi.org/10.5194/bg-19-5221-2022, 2022
Short summary
Short summary
At low water levels, parts of the bottom of rivers fall dry. These beaches or mudflats emit the greenhouse gas carbon dioxide (CO2) to the atmosphere. We found that those emissions are caused by microbial reactions in the sediment and that they change with time. Emissions were influenced by many factors like temperature, water level, rain, plants, and light.
Henning Teickner and Klaus-Holger Knorr
SOIL, 8, 699–715, https://doi.org/10.5194/soil-8-699-2022, https://doi.org/10.5194/soil-8-699-2022, 2022
Short summary
Short summary
The chemical quality of biomass can be described with holocellulose (relatively easily decomposable by microorganisms) and Klason lignin (relatively recalcitrant) contents. Measuring both is laborious. In a recent study, models have been proposed which can predict both quicker from mid-infrared spectra. However, it has not been analyzed if these models make correct predictions for biomass in soils and how to improve them. We provide such a validation and a strategy for their improvement.
Cordula Nina Gutekunst, Susanne Liebner, Anna-Kathrina Jenner, Klaus-Holger Knorr, Viktoria Unger, Franziska Koebsch, Erwin Don Racasa, Sizhong Yang, Michael Ernst Böttcher, Manon Janssen, Jens Kallmeyer, Denise Otto, Iris Schmiedinger, Lucas Winski, and Gerald Jurasinski
Biogeosciences, 19, 3625–3648, https://doi.org/10.5194/bg-19-3625-2022, https://doi.org/10.5194/bg-19-3625-2022, 2022
Short summary
Short summary
Methane emissions decreased after a seawater inflow and a preceding drought in freshwater rewetted coastal peatland. However, our microbial and greenhouse gas measurements did not indicate that methane consumers increased. Rather, methane producers co-existed in high numbers with their usual competitors, the sulfate-cycling bacteria. We studied the peat soil and aimed to cover the soil–atmosphere continuum to better understand the sources of methane production and consumption.
Liam Heffernan, Maria A. Cavaco, Maya P. Bhatia, Cristian Estop-Aragonés, Klaus-Holger Knorr, and David Olefeldt
Biogeosciences, 19, 3051–3071, https://doi.org/10.5194/bg-19-3051-2022, https://doi.org/10.5194/bg-19-3051-2022, 2022
Short summary
Short summary
Permafrost thaw in peatlands leads to waterlogged conditions, a favourable environment for microbes producing methane (CH4) and high CH4 emissions. High CH4 emissions in the initial decades following thaw are due to a vegetation community that produces suitable organic matter to fuel CH4-producing microbes, along with warm and wet conditions. High CH4 emissions after thaw persist for up to 100 years, after which environmental conditions are less favourable for microbes and high CH4 emissions.
Ramona J. Heim, Andrey Yurtaev, Anna Bucharova, Wieland Heim, Valeriya Kutskir, Klaus-Holger Knorr, Christian Lampei, Alexandr Pechkin, Dora Schilling, Farid Sulkarnaev, and Norbert Hölzel
Biogeosciences, 19, 2729–2740, https://doi.org/10.5194/bg-19-2729-2022, https://doi.org/10.5194/bg-19-2729-2022, 2022
Short summary
Short summary
Fires will probably increase in Arctic regions due to climate change. Yet, the long-term effects of tundra fires on carbon (C) and nitrogen (N) stocks and cycling are still unclear. We investigated the long-term fire effects on C and N stocks and cycling in soil and aboveground living biomass.
We found that tundra fires did not affect total C and N stocks because a major part of the stocks was located belowground in soils which were largely unaltered by fire.
Wolfgang Knierzinger, Ruth Drescher-Schneider, Klaus-Holger Knorr, Simon Drollinger, Andreas Limbeck, Lukas Brunnbauer, Felix Horak, Daniela Festi, and Michael Wagreich
E&G Quaternary Sci. J., 69, 121–137, https://doi.org/10.5194/egqsj-69-121-2020, https://doi.org/10.5194/egqsj-69-121-2020, 2020
Short summary
Short summary
We present multi-proxy analyses of a 14C-dated peat core covering the past ⁓5000 years from the ombrotrophic Pürgschachen Moor. Pronounced increases in cultural indicators suggest significant human activity in the Bronze Age and in the period of the late La Tène culture. We found strong, climate-controlled interrelations between the pollen record, the humification degree and the ash content. Human activity is reflected in the pollen record and by heavy metals.
Wiebke Münchberger, Klaus-Holger Knorr, Christian Blodau, Verónica A. Pancotto, and Till Kleinebecker
Biogeosciences, 16, 541–559, https://doi.org/10.5194/bg-16-541-2019, https://doi.org/10.5194/bg-16-541-2019, 2019
Short summary
Short summary
Processes governing CH4 dynamics have been scarcely studied in southern hemispheric bogs. These can be dominated by cushion-forming plants with deep and dense roots suppressing emissions. Here we demonstrate how the spatial distribution of root activity drives a pronounced pattern of CH4 emissions, likewise also possible in densely rooted northern bogs. We conclude that presence of cushion vegetation as a proxy for negligible CH4 emissions from cushion bogs needs to be interpreted with caution.
Xi Wen, Viktoria Unger, Gerald Jurasinski, Franziska Koebsch, Fabian Horn, Gregor Rehder, Torsten Sachs, Dominik Zak, Gunnar Lischeid, Klaus-Holger Knorr, Michael E. Böttcher, Matthias Winkel, Paul L. E. Bodelier, and Susanne Liebner
Biogeosciences, 15, 6519–6536, https://doi.org/10.5194/bg-15-6519-2018, https://doi.org/10.5194/bg-15-6519-2018, 2018
Short summary
Short summary
Rewetting drained peatlands may lead to prolonged emission of the greenhouse gas methane, but the underlying factors are not well described. In this study, we found two rewetted fens with known high methane fluxes had a high ratio of microbial methane producers to methane consumers and a low abundance of methane consumers compared to pristine wetlands. We therefore suggest abundances of methane-cycling microbes as potential indicators for prolonged high methane emissions in rewetted peatlands.
Sina Berger, Leandra S. E. Praetzel, Marie Goebel, Christian Blodau, and Klaus-Holger Knorr
Biogeosciences, 15, 885–903, https://doi.org/10.5194/bg-15-885-2018, https://doi.org/10.5194/bg-15-885-2018, 2018
Tanja Broder, Klaus-Holger Knorr, and Harald Biester
Hydrol. Earth Syst. Sci., 21, 2035–2051, https://doi.org/10.5194/hess-21-2035-2017, https://doi.org/10.5194/hess-21-2035-2017, 2017
Short summary
Short summary
This study elucidates controls on temporal variability in DOM concentration and quality in stream water draining a bog and a forested peaty riparian zone, particularly considering drought and storm flow events. DOM quality was monitored using spectrofluorometric indices (SUVA254, SR and FI) and PARAFAC modeling of EEMs. DOM quality depended clearly on hydrologic preconditions and season. Moreover, the forested peaty riparian zone generated most variability in headwater DOM quantity and quality.
H. Biester, K.-H. Knorr, J. Schellekens, A. Basler, and Y.-M. Hermanns
Biogeosciences, 11, 2691–2707, https://doi.org/10.5194/bg-11-2691-2014, https://doi.org/10.5194/bg-11-2691-2014, 2014
S. Strohmeier, K.-H. Knorr, M. Reichert, S. Frei, J. H. Fleckenstein, S. Peiffer, and E. Matzner
Biogeosciences, 10, 905–916, https://doi.org/10.5194/bg-10-905-2013, https://doi.org/10.5194/bg-10-905-2013, 2013
K.-H. Knorr
Biogeosciences, 10, 891–904, https://doi.org/10.5194/bg-10-891-2013, https://doi.org/10.5194/bg-10-891-2013, 2013
C. Estop-Aragonés, K.-H. Knorr, and C. Blodau
Biogeosciences, 10, 421–436, https://doi.org/10.5194/bg-10-421-2013, https://doi.org/10.5194/bg-10-421-2013, 2013
G. Hugelius, C. Tarnocai, G. Broll, J. G. Canadell, P. Kuhry, and D. K. Swanson
Earth Syst. Sci. Data, 5, 3–13, https://doi.org/10.5194/essd-5-3-2013, https://doi.org/10.5194/essd-5-3-2013, 2013
Related subject area
Biogeochemistry: Greenhouse Gases
Drought conditions disrupt atmospheric carbon uptake in a Mediterranean saline lake
Physicochemical perturbation increases nitrous oxide production from denitrification in soils and sediments
Carbon degradation and mobilisation potentials of thawing permafrost peatlands in northern Norway inferred from laboratory incubations
Seasonal dynamics and regional distribution patterns of CO2 and CH4 in the north-eastern Baltic Sea
Interannual and seasonal variability of the air–sea CO2 exchange at Utö in the coastal region of the Baltic Sea
CO2 emissions of drained coastal peatlands in the Netherlands and potential emission reduction by water infiltration systems
Influence of wind strength and direction on diffusive methane fluxes and atmospheric methane concentrations above the North Sea
Using eddy covariance observations to determine the carbon sequestration characteristics of subalpine forests in the Qinghai–Tibet Plateau
Dynamics of CO2 and CH4 fluxes in Red Sea mangrove soils
Isotopomer labeling and oxygen dependence of hybrid nitrous oxide production
The emission of CO from tropical rainforest soils
Nitrous oxide (N2O) in Macquarie Harbour, Tasmania
Technical note: A low-cost, automatic soil-plant-atmosphere enclosure system to investigate CO2 and ET flux dynamics
Modelling CO2 and N2O emissions from soils in silvopastoral systems of the West African Sahelian band
Ensemble estimates of global wetland methane emissions over 2000–2020
A case study on topsoil removal and rewetting for paludiculture: effect on biogeochemistry and greenhouse gas emissions from Typha latifolia, Typha angustifolia, and Azolla filiculoides
Seasonal carbon fluxes from vegetation and soil in a Mediterranean non-tidal salt marsh
Assessing improvements in global ocean pCO2 machine learning reconstructions with Southern Ocean autonomous sampling
Timescale dependence of airborne fraction and underlying climate–carbon-cycle feedbacks for weak perturbations in CMIP5 models
Technical note: Preventing CO2 overestimation from mercuric or copper(II) chloride preservation of dissolved greenhouse gases in freshwater samples
Exploring temporal and spatial variation of nitrous oxide flux using several years of peatland forest automatic chamber data
Diurnal versus spatial variability of greenhouse gas emissions from an anthropogenically modified lowland river in Germany
Regional assessment and uncertainty analysis of carbon and nitrogen balances at cropland scale using the ecosystem model LandscapeDNDC
Resolving heterogeneous fluxes from tundra halves the growing season carbon budget
Tidal influence on carbon dioxide and methane fluxes from tree stems and soils in mangrove forests
Lawns and meadows in urban green space – a comparison from perspectives of greenhouse gases, drought resilience and plant functional types
Large contribution of soil N2O emission to the global warming potential of a large-scale oil palm plantation despite changing from conventional to reduced management practices
Air temperature and precipitation constraining the modelled wetland methane emissions in a boreal region in Northern Europe
Identifying landscape hot and cold spots of soil greenhouse gas fluxes by combining field measurements and remote sensing data
Explainable machine learning for modelling of net ecosystem exchange in boreal forest
Enhanced Southern Ocean CO2 outgassing as a result of stronger and poleward shifted southern hemispheric westerlies
Spatial and temporal variability of methane emissions and environmental conditions in a hyper-eutrophic fishpond
Optical and radar Earth observation data for upscaling methane emissions linked to permafrost degradation in sub-Arctic peatlands in northern Sweden
Herbivore–shrub interactions influence ecosystem respiration and biogenic volatile organic compound composition in the subarctic
Methane emissions due to reservoir flushing: a significant emission pathway?
Carbon dioxide and methane fluxes from mounds of African fungus-growing termites
Diel and seasonal methane dynamics in the shallow and turbulent Wadden Sea
Technical note: Skirt chamber – an open dynamic method for the rapid and minimally intrusive measurement of greenhouse gas emissions from peatlands
Seasonal variability of nitrous oxide concentrations and emissions in a temperate estuary
Reviews and syntheses: Recent advances in microwave remote sensing in support of terrestrial carbon cycle science in Arctic–boreal regions
Simulated methane emissions from Arctic ponds are highly sensitive to warming
Water-table-driven greenhouse gas emission estimates guide peatland restoration at national scale
Relationships between greenhouse gas production and landscape position during short-term permafrost thaw under anaerobic conditions in the Lena Delta
Carbon emissions and radiative forcings from tundra wildfires in the Yukon–Kuskokwim River Delta, Alaska
Carbon monoxide (CO) cycling in the Fram Strait, Arctic Ocean
Post-flooding disturbance recovery promotes carbon capture in riparian zones
Meteorological responses of carbon dioxide and methane fluxes in the terrestrial and aquatic ecosystems of a subarctic landscape
Carbon emission and export from the Ket River, western Siberia
Evaluation of wetland CH4 in the Joint UK Land Environment Simulator (JULES) land surface model using satellite observations
Greenhouse gas fluxes in mangrove forest soil in an Amazon estuary
Ihab Alfadhel, Ignacio Peralta-Maraver, Isabel Reche, Enrique P. Sánchez-Cañete, Sergio Aranda-Barranco, Eva Rodríguez-Velasco, Andrew S. Kowalski, and Penélope Serrano-Ortiz
Biogeosciences, 21, 5117–5129, https://doi.org/10.5194/bg-21-5117-2024, https://doi.org/10.5194/bg-21-5117-2024, 2024
Short summary
Short summary
Inland saline lakes are crucial in the global carbon cycle, but increased droughts may alter their carbon exchange capacity. We measured CO2 and CH4 fluxes in a Mediterranean saline lake using the eddy covariance method under dry and wet conditions. We found the lake acts as a carbon sink during wet periods but not during droughts. These results highlight the importance of saline lakes in carbon sequestration and their vulnerability to climate-change-induced droughts.
Nathaniel B. Weston, Cynthia Troy, Patrick J. Kearns, Jennifer L. Bowen, William Porubsky, Christelle Hyacinthe, Christof Meile, Philippe Van Cappellen, and Samantha B. Joye
Biogeosciences, 21, 4837–4851, https://doi.org/10.5194/bg-21-4837-2024, https://doi.org/10.5194/bg-21-4837-2024, 2024
Short summary
Short summary
Nitrous oxide (N2O) is a potent greenhouse and ozone-depleting gas produced largely from microbial nitrogen cycling processes, and human activities have resulted in increases in atmospheric N2O. We investigate the role of physical and chemical disturbances to soils and sediments in N2O production. We demonstrate that physicochemical perturbation increases N2O production, microbial community adapts over time, and initial perturbation appears to confer resilience to subsequent disturbance.
Sigrid Trier Kjær, Sebastian Westermann, Nora Nedkvitne, and Peter Dörsch
Biogeosciences, 21, 4723–4737, https://doi.org/10.5194/bg-21-4723-2024, https://doi.org/10.5194/bg-21-4723-2024, 2024
Short summary
Short summary
Permafrost peatlands are thawing due to climate change, releasing large quantities of carbon that degrades upon thawing and is released as CO2, CH4 or dissolved organic carbon (DOC). We incubated thawed Norwegian permafrost peat plateaus and thermokarst pond sediment found next to permafrost for up to 350 d to measure carbon loss. CO2 production was initially the highest, whereas CH4 production increased over time. The largest carbon loss was measured at the top of the peat plateau core as DOC.
Silvie Lainela, Erik Jacobs, Stella-Theresa Luik, Gregor Rehder, and Urmas Lips
Biogeosciences, 21, 4495–4519, https://doi.org/10.5194/bg-21-4495-2024, https://doi.org/10.5194/bg-21-4495-2024, 2024
Short summary
Short summary
We evaluate the variability of carbon dioxide and methane in the surface layer of the north-eastern basins of the Baltic Sea in 2018. We show that the shallower coastal areas have considerably higher spatial variability and seasonal amplitude of surface layer pCO2 and cCH4 than measured in the offshore areas of the Baltic Sea. Despite this high variability, caused mostly by coastal physical processes, the average annual air–sea CO2 fluxes differed only marginally between the sub-basins.
Martti Honkanen, Mika Aurela, Juha Hatakka, Lumi Haraguchi, Sami Kielosto, Timo Mäkelä, Jukka Seppälä, Simo-Matti Siiriä, Ken Stenbäck, Juha-Pekka Tuovinen, Pasi Ylöstalo, and Lauri Laakso
Biogeosciences, 21, 4341–4359, https://doi.org/10.5194/bg-21-4341-2024, https://doi.org/10.5194/bg-21-4341-2024, 2024
Short summary
Short summary
The exchange of CO2 between the sea and the atmosphere was studied in the Archipelago Sea, Baltic Sea, in 2017–2021, using an eddy covariance technique. The sea acted as a net source of CO2 with an average yearly emission of 27.1 gC m-2 yr-1, indicating that the marine ecosystem respired carbon that originated elsewhere. The yearly CO2 emission varied between 18.2–39.2 gC m-2 yr-1, mostly due to the yearly variation of ecosystem carbon uptake.
Ralf C. H. Aben, Daniël van de Craats, Jim Boonman, Stijn H. Peeters, Bart Vriend, Coline C. F. Boonman, Ype van der Velde, Gilles Erkens, and Merit van den Berg
Biogeosciences, 21, 4099–4118, https://doi.org/10.5194/bg-21-4099-2024, https://doi.org/10.5194/bg-21-4099-2024, 2024
Short summary
Short summary
Drained peatlands cause high CO2 emissions. We assessed the effectiveness of subsurface water infiltration systems (WISs) in reducing CO2 emissions related to increases in water table depth (WTD) on 12 sites for up to 4 years. Results show WISs markedly reduced emissions by 2.1 t CO2-C ha-1 yr-1. The relationship between the amount of carbon above the WTD and CO2 emission was stronger than the relationship between WTD and emission. Long-term monitoring is crucial for accurate emission estimates.
Ingeborg Bussmann, Eric P. Achterberg, Holger Brix, Nicolas Brüggemann, Götz Flöser, Claudia Schütze, and Philipp Fischer
Biogeosciences, 21, 3819–3838, https://doi.org/10.5194/bg-21-3819-2024, https://doi.org/10.5194/bg-21-3819-2024, 2024
Short summary
Short summary
Methane (CH4) is an important greenhouse gas and contributes to climate warming. However, the input of CH4 from coastal areas to the atmosphere is not well defined. Dissolved and atmospheric CH4 was determined at high spatial resolution in or above the North Sea. The atmospheric CH4 concentration was mainly influenced by wind direction. With our detailed study on the spatial distribution of CH4 fluxes we were able to provide a detailed and more realistic estimation of coastal CH4 fluxes.
Niu Zhu, Jinniu Wang, Dongliang Luo, Xufeng Wang, Cheng Shen, and Ning Wu
Biogeosciences, 21, 3509–3522, https://doi.org/10.5194/bg-21-3509-2024, https://doi.org/10.5194/bg-21-3509-2024, 2024
Short summary
Short summary
Our study delves into the vital role of subalpine forests in the Qinghai–Tibet Plateau as carbon sinks in the context of climate change. Utilizing advanced eddy covariance systems, we uncover their significant carbon sequestration potential, observing distinct seasonal patterns influenced by temperature, humidity, and radiation. Notably, these forests exhibit robust carbon absorption, with potential implications for global carbon balance.
Jessica Ashley Valerie Breavington, Alexandra Steckbauer, Chuancheng Fu, Mongi Ennasri, and Carlos Manuel Duarte
EGUsphere, https://doi.org/10.5194/egusphere-2024-1831, https://doi.org/10.5194/egusphere-2024-1831, 2024
Short summary
Short summary
Mangroves are known for storing large amounts of carbon in their soils, but this is lower in the Red Sea due to challenging growth conditions. We collected soil cores over multiple seasons to measure soil properties, and the greenhouse gasses (GHG) of carbon dioxide and methane. We found that GHG emissions are generally a small offset to carbon storage but punctuated by periods of very high GHG emission and this variability is linked to multiple environmental and soil properties.
Colette L. Kelly, Nicole M. Travis, Pascale Anabelle Baya, Claudia Frey, Xin Sun, Bess B. Ward, and Karen L. Casciotti
Biogeosciences, 21, 3215–3238, https://doi.org/10.5194/bg-21-3215-2024, https://doi.org/10.5194/bg-21-3215-2024, 2024
Short summary
Short summary
Nitrous oxide, a potent greenhouse gas, accumulates in regions of the ocean that are low in dissolved oxygen. We used a novel combination of chemical tracers to determine how nitrous oxide is produced in one of these regions, the eastern tropical North Pacific Ocean. Our experiments showed that the two most important sources of nitrous oxide under low-oxygen conditions are denitrification, an anaerobic process, and a novel “hybrid” process performed by ammonia-oxidizing archaea.
Hella van Asperen, Thorsten Warneke, Alessandro Carioca de Araújo, Bruce Forsberg, Sávio José Filgueiras Ferreira, Thomas Röckmann, Carina van der Veen, Sipko Bulthuis, Leonardo Ramos de Oliveira, Thiago de Lima Xavier, Jailson da Mata, Marta de Oliveira Sá, Paulo Ricardo Teixeira, Julie Andrews de França e Silva, Susan Trumbore, and Justus Notholt
Biogeosciences, 21, 3183–3199, https://doi.org/10.5194/bg-21-3183-2024, https://doi.org/10.5194/bg-21-3183-2024, 2024
Short summary
Short summary
Carbon monoxide (CO) is regarded as an important indirect greenhouse gas. Soils can emit and take up CO, but, until now, uncertainty remains as to which process dominates in tropical rainforests. We present the first soil CO flux measurements from a tropical rainforest. Based on our observations, we report that tropical rainforest soils are a net source of CO. In addition, we show that valley streams and inundated areas are likely additional hot spots of CO in the ecosystem.
Johnathan D. Maxey, Neil D. Hartstein, Hermann W. Bange, and Mortiz Müller
EGUsphere, https://doi.org/10.5194/egusphere-2024-1731, https://doi.org/10.5194/egusphere-2024-1731, 2024
Short summary
Short summary
The distribution of N2O in fjord-like estuaries is poorly described in the southern hemisphere. Our study describes N2O distribution and its drivers in one such system Macquarie Harbour, Tasmania. Water samples were collected seasonally from 2022/2023. Results show the system is a sink for atmospheric N2O when river flow is high; and the system emits N2O when the river flow is low. N2O generated in basins is intercepted by the surface water and exported to the ocean during high river flow.
Wael Al Hamwi, Maren Dubbert, Joerg Schaller, Matthias Lueck, Marten Schmidt, and Mathias Hoffmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-1806, https://doi.org/10.5194/egusphere-2024-1806, 2024
Short summary
Short summary
We present a fully automatic, low-cost soil-plant enclosure system to monitor CO2 and ET fluxes within greenhouse experiments. It operates in two modes: independent, using low-cost sensors, and dependent, connecting multiple chambers to a single gas analyzer via a low-cost multiplexer. This system offers precise and accurate measurements, cost and labor efficiency, and high temporal resolution, enabling comprehensive monitoring of plant-soil responses to various treatments and conditions.
Yélognissè Agbohessou, Claire Delon, Manuela Grippa, Eric Mougin, Daouda Ngom, Espoir Koudjo Gaglo, Ousmane Ndiaye, Paulo Salgado, and Olivier Roupsard
Biogeosciences, 21, 2811–2837, https://doi.org/10.5194/bg-21-2811-2024, https://doi.org/10.5194/bg-21-2811-2024, 2024
Short summary
Short summary
Emissions of greenhouse gases in the Sahel are not well represented because they are considered weak compared to the rest of the world. However, natural areas in the Sahel emit carbon dioxide and nitrous oxides, which need to be assessed because of extended surfaces. We propose an assessment of such emissions in Sahelian silvopastoral systems and of how they are influenced by environmental characteristics. These results are essential to inform climate change strategies in the region.
Zhen Zhang, Benjamin Poulter, Joe R. Melton, William J. Riley, George H. Allen, David J. Beerling, Philippe Bousquet, Josep G. Canadell, Etienne Fluet-Chouinard, Philippe Ciais, Nicola Gedney, Peter O. Hopcroft, Akihiko Ito, Robert B. Jackson, Atul K. Jain, Katherine Jensen, Fortunat Joos, Thomas Kleinen, Sara Knox, Tingting Li, Xin Li, Xiangyu Liu, Kyle McDonald, Gavin McNicol, Paul A. Miller, Jurek Müller, Prabir K. Patra, Changhui Peng, Shushi Peng, Zhangcai Qin, Ryan M. Riggs, Marielle Saunois, Qing Sun, Hanqin Tian, Xiaoming Xu, Yuanzhi Yao, Xi Yi, Wenxin Zhang, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1584, https://doi.org/10.5194/egusphere-2024-1584, 2024
Short summary
Short summary
This study assesses global methane emissions from wetlands between 2000 and 2020 using multiple models. We found that wetland emissions increased by 6–7 Tg CH4 per year in the 2010s compared to the 2000s. Rising temperatures primarily drove this increase, while changes in precipitation and CO2 levels also played roles. Our findings highlight the importance of wetlands in the global methane budget and the need for continuous monitoring to understand their impact on climate change.
Merit van den Berg, Thomas M. Gremmen, Renske J. E. Vroom, Jacobus van Huissteden, Jim Boonman, Corine J. A. van Huissteden, Ype van der Velde, Alfons J. P. Smolders, and Bas P. van de Riet
Biogeosciences, 21, 2669–2690, https://doi.org/10.5194/bg-21-2669-2024, https://doi.org/10.5194/bg-21-2669-2024, 2024
Short summary
Short summary
Drained peatlands emit 3 % of the global greenhouse gas emissions. Paludiculture is a way to reduce CO2 emissions while at the same time generating an income for landowners. The side effect is the potentially high methane emissions. We found very high methane emissions for broadleaf cattail compared with narrowleaf cattail and water fern. The rewetting was, however, effective to stop CO2 emissions for all species. The highest potential to reduce greenhouse gas emissions had narrowleaf cattail.
Lorena Carrasco-Barea, Dolors Verdaguer, Maria Gispert, Xavier D. Quintana, Hélène Bourhis, and Laura Llorens
EGUsphere, https://doi.org/10.5194/egusphere-2024-1320, https://doi.org/10.5194/egusphere-2024-1320, 2024
Short summary
Short summary
Carbon dioxide fluxes have been measured seasonally in four plant species in a Mediterranean non-tidal salt marsh highlighting the high carbon removal potential that these species have. Carbon dioxide and methane emissions from soil showed high variability among the habitats studied and they were generally higher than those observed in tidal salt marshes. Our results are important to make more accurate predictions regarding carbon emissions from these ecosystems.
Thea H. Heimdal, Galen A. McKinley, Adrienne J. Sutton, Amanda R. Fay, and Lucas Gloege
Biogeosciences, 21, 2159–2176, https://doi.org/10.5194/bg-21-2159-2024, https://doi.org/10.5194/bg-21-2159-2024, 2024
Short summary
Short summary
Measurements of ocean carbon are limited in time and space. Machine learning algorithms are therefore used to reconstruct ocean carbon where observations do not exist. Improving these reconstructions is important in order to accurately estimate how much carbon the ocean absorbs from the atmosphere. In this study, we find that a small addition of observations from the Southern Ocean, obtained by autonomous sampling platforms, could significantly improve the reconstructions.
Guilherme L. Torres Mendonça, Julia Pongratz, and Christian H. Reick
Biogeosciences, 21, 1923–1960, https://doi.org/10.5194/bg-21-1923-2024, https://doi.org/10.5194/bg-21-1923-2024, 2024
Short summary
Short summary
We study the timescale dependence of airborne fraction and underlying feedbacks by a theory of the climate–carbon system. Using simulations we show the predictive power of this theory and find that (1) this fraction generally decreases for increasing timescales and (2) at all timescales the total feedback is negative and the model spread in a single feedback causes the spread in the airborne fraction. Our study indicates that those are properties of the system, independently of the scenario.
François Clayer, Jan Erik Thrane, Kuria Ndungu, Andrew King, Peter Dörsch, and Thomas Rohrlack
Biogeosciences, 21, 1903–1921, https://doi.org/10.5194/bg-21-1903-2024, https://doi.org/10.5194/bg-21-1903-2024, 2024
Short summary
Short summary
Determination of dissolved greenhouse gas (GHG) in freshwater allows us to estimate GHG fluxes. Mercuric chloride (HgCl2) is used to preserve water samples prior to GHG analysis despite its environmental and health impacts and interferences with water chemistry in freshwater. Here, we tested the effects of HgCl2, two substitutes and storage time on GHG in water from two boreal lakes. Preservation with HgCl2 caused overestimation of CO2 concentration with consequences for GHG flux estimation.
Helena Rautakoski, Mika Korkiakoski, Jarmo Mäkelä, Markku Koskinen, Kari Minkkinen, Mika Aurela, Paavo Ojanen, and Annalea Lohila
Biogeosciences, 21, 1867–1886, https://doi.org/10.5194/bg-21-1867-2024, https://doi.org/10.5194/bg-21-1867-2024, 2024
Short summary
Short summary
Current and future nitrous oxide (N2O) emissions are difficult to estimate due to their high variability in space and time. Several years of N2O fluxes from drained boreal peatland forest indicate high importance of summer precipitation, winter temperature, and snow conditions in controlling annual N2O emissions. The results indicate increasing year-to-year variation in N2O emissions in changing climate with more extreme seasonal weather conditions.
Matthias Koschorreck, Norbert Kamjunke, Uta Koedel, Michael Rode, Claudia Schuetze, and Ingeborg Bussmann
Biogeosciences, 21, 1613–1628, https://doi.org/10.5194/bg-21-1613-2024, https://doi.org/10.5194/bg-21-1613-2024, 2024
Short summary
Short summary
We measured the emission of carbon dioxide (CO2) and methane (CH4) from different sites at the river Elbe in Germany over 3 days to find out what is more important for quantification: small-scale spatial variability or diurnal temporal variability. We found that CO2 emissions were very different between day and night, while CH4 emissions were more different between sites. Dried out river sediments contributed to CO2 emissions, while the side areas of the river were important CH4 sources.
Odysseas Sifounakis, Edwin Haas, Klaus Butterbach-Bahl, and Maria P. Papadopoulou
Biogeosciences, 21, 1563–1581, https://doi.org/10.5194/bg-21-1563-2024, https://doi.org/10.5194/bg-21-1563-2024, 2024
Short summary
Short summary
We performed a full assessment of the carbon and nitrogen cycles of a cropland ecosystem. An uncertainty analysis and quantification of all carbon and nitrogen fluxes were deployed. The inventory simulations include greenhouse gas emissions of N2O, NH3 volatilization and NO3 leaching from arable land cultivation in Greece. The inventory also reports changes in soil organic carbon and nitrogen stocks in arable soils.
Sarah M. Ludwig, Luke Schiferl, Jacqueline Hung, Susan M. Natali, and Roisin Commane
Biogeosciences, 21, 1301–1321, https://doi.org/10.5194/bg-21-1301-2024, https://doi.org/10.5194/bg-21-1301-2024, 2024
Short summary
Short summary
Landscapes are often assumed to be homogeneous when using eddy covariance fluxes, which can lead to biases when calculating carbon budgets. In this study we report eddy covariance carbon fluxes from heterogeneous tundra. We used the footprints of each flux observation to unmix the fluxes coming from components of the landscape. We identified and quantified hot spots of carbon emissions in the landscape. Accurately scaling with landscape heterogeneity yielded half as much regional carbon uptake.
Zhao-Jun Yong, Wei‐Jen Lin, Chiao-Wen Lin, and Hsing-Juh Lin Lin
EGUsphere, https://doi.org/10.5194/egusphere-2024-533, https://doi.org/10.5194/egusphere-2024-533, 2024
Short summary
Short summary
This study is the first to simultaneously measure mangrove CH4 emissions from both stems and soils throughout tidal cycles. The stems served as both net CO2 and CH4 sources. Compared to those of the soils, the stems exhibited markedly lower CH4 emissions, but no difference in CO2 emissions. Sampling only during low tides might overestimate the stem CO2 and CH4 emissions on a diurnal scale. This study also highlights species distinctness (with pneumatophores) in the emissions.
Justine Trémeau, Beñat Olascoaga, Leif Backman, Esko Karvinen, Henriikka Vekuri, and Liisa Kulmala
Biogeosciences, 21, 949–972, https://doi.org/10.5194/bg-21-949-2024, https://doi.org/10.5194/bg-21-949-2024, 2024
Short summary
Short summary
We studied urban lawns and meadows in the Helsinki metropolitan area, Finland. We found that meadows are more resistant to drought events but that they do not increase carbon sequestration compared with lawns. Moreover, the transformation from lawns to meadows did not demonstrate any negative climate effects in terms of greenhouse gas emissions. Even though social and economic aspects also steer urban development, these results can guide planning to consider carbon-smart options.
Guantao Chen, Edzo Veldkamp, Muhammad Damris, Bambang Irawan, Aiyen Tjoa, and Marife D. Corre
Biogeosciences, 21, 513–529, https://doi.org/10.5194/bg-21-513-2024, https://doi.org/10.5194/bg-21-513-2024, 2024
Short summary
Short summary
We established an oil palm management experiment in a large-scale oil palm plantation in Jambi, Indonesia. We recorded oil palm fruit yield and measured soil CO2, N2O, and CH4 fluxes. After 4 years of treatment, compared with conventional fertilization with herbicide weeding, reduced fertilization with mechanical weeding did not reduce yield and soil greenhouse gas emissions, which highlights the legacy effects of over a decade of conventional management prior to the start of the experiment.
Tuula Aalto, Aki Tsuruta, Jarmo Mäkelä, Jurek Mueller, Maria Tenkanen, Eleanor Burke, Sarah Chadburn, Yao Gao, Vilma Mannisenaho, Thomas Kleinen, Hanna Lee, Antti Leppänen, Tiina Markkanen, Stefano Materia, Paul Miller, Daniele Peano, Olli Peltola, Benjamin Poulter, Maarit Raivonen, Marielle Saunois, David Wårlind, and Sönke Zaehle
EGUsphere, https://doi.org/10.5194/egusphere-2023-2873, https://doi.org/10.5194/egusphere-2023-2873, 2024
Short summary
Short summary
Wetland methane responses to temperature and precipitation were studied in a boreal wetland-rich region in Northern Europe using ecosystem models, atmospheric inversions and up-scaled flux observations. The ecosystem models differed in their responses to temperature and precipitation and in their seasonality. However, multi-model means, inversions and up-scaled fluxes had similar seasonality, and they suggested co-limitation by temperature and precipitation.
Elizabeth Gachibu Wangari, Ricky Mwangada Mwanake, Tobias Houska, David Kraus, Gretchen Maria Gettel, Ralf Kiese, Lutz Breuer, and Klaus Butterbach-Bahl
Biogeosciences, 20, 5029–5067, https://doi.org/10.5194/bg-20-5029-2023, https://doi.org/10.5194/bg-20-5029-2023, 2023
Short summary
Short summary
Agricultural landscapes act as sinks or sources of the greenhouse gases (GHGs) CO2, CH4, or N2O. Various physicochemical and biological processes control the fluxes of these GHGs between ecosystems and the atmosphere. Therefore, fluxes depend on environmental conditions such as soil moisture, soil temperature, or soil parameters, which result in large spatial and temporal variations of GHG fluxes. Here, we describe an example of how this variation may be studied and analyzed.
Ekaterina Ezhova, Topi Laanti, Anna Lintunen, Pasi Kolari, Tuomo Nieminen, Ivan Mammarella, Keijo Heljanko, and Markku Kulmala
EGUsphere, https://doi.org/10.5194/egusphere-2023-2559, https://doi.org/10.5194/egusphere-2023-2559, 2023
Short summary
Short summary
ML models are gaining popularity in biogeosciences. They are applied as gapfilling methods and used to upscale carbon fluxes to larger areas based on local measurements. In this study, we use Explainable ML methods to elucidate performance of machine learning models for carbon dioxide fluxes in boreal forest. We show that statistically equal models treat input variables differently. Explainable ML can help scientists to make informed solutions when applying ML models in their research.
Laurie C. Menviel, Paul Spence, Andrew E. Kiss, Matthew A. Chamberlain, Hakase Hayashida, Matthew H. England, and Darryn Waugh
Biogeosciences, 20, 4413–4431, https://doi.org/10.5194/bg-20-4413-2023, https://doi.org/10.5194/bg-20-4413-2023, 2023
Short summary
Short summary
As the ocean absorbs 25% of the anthropogenic emissions of carbon, it is important to understand the impact of climate change on the flux of carbon between the ocean and the atmosphere. Here, we use a very high-resolution ocean, sea-ice, carbon cycle model to show that the capability of the Southern Ocean to uptake CO2 has decreased over the last 40 years due to a strengthening and poleward shift of the southern hemispheric westerlies. This trend is expected to continue over the coming century.
Petr Znachor, Jiří Nedoma, Vojtech Kolar, and Anna Matoušů
Biogeosciences, 20, 4273–4288, https://doi.org/10.5194/bg-20-4273-2023, https://doi.org/10.5194/bg-20-4273-2023, 2023
Short summary
Short summary
We conducted intensive spatial sampling of the hypertrophic fishpond to better understand the spatial dynamics of methane fluxes and environmental heterogeneity in fishponds. The diffusive fluxes of methane accounted for only a minor fraction of the total fluxes and both varied pronouncedly within the pond and over the studied summer season. This could be explained only by the water depth. Wind substantially affected temperature, oxygen and chlorophyll a distribution in the pond.
Sofie Sjögersten, Martha Ledger, Matthias Siewert, Betsabé de la Barreda-Bautista, Andrew Sowter, David Gee, Giles Foody, and Doreen S. Boyd
Biogeosciences, 20, 4221–4239, https://doi.org/10.5194/bg-20-4221-2023, https://doi.org/10.5194/bg-20-4221-2023, 2023
Short summary
Short summary
Permafrost thaw in Arctic regions is increasing methane emissions, but quantification is difficult given the large and remote areas impacted. We show that UAV data together with satellite data can be used to extrapolate emissions across the wider landscape as well as detect areas at risk of higher emissions. A transition of currently degrading areas to fen type vegetation can increase emission by several orders of magnitude, highlighting the importance of quantifying areas at risk.
Cole G. Brachmann, Tage Vowles, Riikka Rinnan, Mats P. Björkman, Anna Ekberg, and Robert G. Björk
Biogeosciences, 20, 4069–4086, https://doi.org/10.5194/bg-20-4069-2023, https://doi.org/10.5194/bg-20-4069-2023, 2023
Short summary
Short summary
Herbivores change plant communities through grazing, altering the amount of CO2 and plant-specific chemicals (termed VOCs) emitted. We tested this effect by excluding herbivores and studying the CO2 and VOC emissions. Herbivores reduced CO2 emissions from a meadow community and altered VOC composition; however, community type had the strongest effect on the amount of CO2 and VOCs released. Herbivores can mediate greenhouse gas emissions, but the effect is marginal and community dependent.
Ole Lessmann, Jorge Encinas Fernández, Karla Martínez-Cruz, and Frank Peeters
Biogeosciences, 20, 4057–4068, https://doi.org/10.5194/bg-20-4057-2023, https://doi.org/10.5194/bg-20-4057-2023, 2023
Short summary
Short summary
Based on a large dataset of seasonally resolved methane (CH4) pore water concentrations in a reservoir's sediment, we assess the significance of CH4 emissions due to reservoir flushing. In the studied reservoir, CH4 emissions caused by one flushing operation can represent 7 %–14 % of the annual CH4 emissions and depend on the timing of the flushing operation. In reservoirs with high sediment loadings, regular flushing may substantially contribute to the overall CH4 emissions.
Matti Räsänen, Risto Vesala, Petri Rönnholm, Laura Arppe, Petra Manninen, Markus Jylhä, Jouko Rikkinen, Petri Pellikka, and Janne Rinne
Biogeosciences, 20, 4029–4042, https://doi.org/10.5194/bg-20-4029-2023, https://doi.org/10.5194/bg-20-4029-2023, 2023
Short summary
Short summary
Fungus-growing termites recycle large parts of dead plant material in African savannas and are significant sources of greenhouse gases. We measured CO2 and CH4 fluxes from their mounds and surrounding soils in open and closed habitats. The fluxes scale with mound volume. The results show that emissions from mounds of fungus-growing termites are more stable than those from other termites. The soil fluxes around the mound are affected by the termite colonies at up to 2 m distance from the mound.
Tim René de Groot, Anne Margriet Mol, Katherine Mesdag, Pierre Ramond, Rachel Ndhlovu, Julia Catherine Engelmann, Thomas Röckmann, and Helge Niemann
Biogeosciences, 20, 3857–3872, https://doi.org/10.5194/bg-20-3857-2023, https://doi.org/10.5194/bg-20-3857-2023, 2023
Short summary
Short summary
This study investigates methane dynamics in the Wadden Sea. Our measurements revealed distinct variations triggered by seasonality and tidal forcing. The methane budget was higher in warmer seasons but surprisingly high in colder seasons. Methane dynamics were amplified during low tides, flushing the majority of methane into the North Sea or releasing it to the atmosphere. Methanotrophic activity was also elevated during low tide but mitigated only a small fraction of the methane efflux.
Frederic Thalasso, Brenda Riquelme, Andrés Gómez, Roy Mackenzie, Francisco Javier Aguirre, Jorge Hoyos-Santillan, Ricardo Rozzi, and Armando Sepulveda-Jauregui
Biogeosciences, 20, 3737–3749, https://doi.org/10.5194/bg-20-3737-2023, https://doi.org/10.5194/bg-20-3737-2023, 2023
Short summary
Short summary
A robust skirt-chamber design to capture and quantify greenhouse gas emissions from peatlands is presented. Compared to standard methods, this design improves the spatial resolution of field studies in remote locations while minimizing intrusion.
Gesa Schulz, Tina Sanders, Yoana G. Voynova, Hermann W. Bange, and Kirstin Dähnke
Biogeosciences, 20, 3229–3247, https://doi.org/10.5194/bg-20-3229-2023, https://doi.org/10.5194/bg-20-3229-2023, 2023
Short summary
Short summary
Nitrous oxide (N2O) is an important greenhouse gas. However, N2O emissions from estuaries underlie significant uncertainties due to limited data availability and high spatiotemporal variability. We found the Elbe Estuary (Germany) to be a year-round source of N2O, with the highest emissions in winter along with high nitrogen loads. However, in spring and summer, N2O emissions did not decrease alongside lower nitrogen loads because organic matter fueled in situ N2O production along the estuary.
Alex Mavrovic, Oliver Sonnentag, Juha Lemmetyinen, Jennifer L. Baltzer, Christophe Kinnard, and Alexandre Roy
Biogeosciences, 20, 2941–2970, https://doi.org/10.5194/bg-20-2941-2023, https://doi.org/10.5194/bg-20-2941-2023, 2023
Short summary
Short summary
This review supports the integration of microwave spaceborne information into carbon cycle science for Arctic–boreal regions. The microwave data record spans multiple decades with frequent global observations of soil moisture and temperature, surface freeze–thaw cycles, vegetation water storage, snowpack properties, and land cover. This record holds substantial unexploited potential to better understand carbon cycle processes.
Zoé Rehder, Thomas Kleinen, Lars Kutzbach, Victor Stepanenko, Moritz Langer, and Victor Brovkin
Biogeosciences, 20, 2837–2855, https://doi.org/10.5194/bg-20-2837-2023, https://doi.org/10.5194/bg-20-2837-2023, 2023
Short summary
Short summary
We use a new model to investigate how methane emissions from Arctic ponds change with warming. We find that emissions increase substantially. Under annual temperatures 5 °C above present temperatures, pond methane emissions are more than 3 times higher than now. Most of this increase is caused by an increase in plant productivity as plants provide the substrate microbes used to produce methane. We conclude that vegetation changes need to be included in predictions of pond methane emissions.
Julian Koch, Lars Elsgaard, Mogens H. Greve, Steen Gyldenkærne, Cecilie Hermansen, Gregor Levin, Shubiao Wu, and Simon Stisen
Biogeosciences, 20, 2387–2403, https://doi.org/10.5194/bg-20-2387-2023, https://doi.org/10.5194/bg-20-2387-2023, 2023
Short summary
Short summary
Utilizing peatlands for agriculture leads to large emissions of greenhouse gases worldwide. The emissions are triggered by lowering the water table, which is a necessary step in order to make peatlands arable. Many countries aim at reducing their emissions by restoring peatlands, which can be achieved by stopping agricultural activities and thereby raising the water table. We estimate a total emission of 2.6 Mt CO2-eq for organic-rich peatlands in Denmark and a potential reduction of 77 %.
Mélissa Laurent, Matthias Fuchs, Tanja Herbst, Alexandra Runge, Susanne Liebner, and Claire C. Treat
Biogeosciences, 20, 2049–2064, https://doi.org/10.5194/bg-20-2049-2023, https://doi.org/10.5194/bg-20-2049-2023, 2023
Short summary
Short summary
In this study we investigated the effect of different parameters (temperature, landscape position) on the production of greenhouse gases during a 1-year permafrost thaw experiment. For very similar carbon and nitrogen contents, our results show a strong heterogeneity in CH4 production, as well as in microbial abundance. According to our study, these differences are mainly due to the landscape position and the hydrological conditions established as a result of the topography.
Michael Moubarak, Seeta Sistla, Stefano Potter, Susan M. Natali, and Brendan M. Rogers
Biogeosciences, 20, 1537–1557, https://doi.org/10.5194/bg-20-1537-2023, https://doi.org/10.5194/bg-20-1537-2023, 2023
Short summary
Short summary
Tundra wildfires are increasing in frequency and severity with climate change. We show using a combination of field measurements and computational modeling that tundra wildfires result in a positive feedback to climate change by emitting significant amounts of long-lived greenhouse gasses. With these effects, attention to tundra fires is necessary for mitigating climate change.
Hanna I. Campen, Damian L. Arévalo-Martínez, and Hermann W. Bange
Biogeosciences, 20, 1371–1379, https://doi.org/10.5194/bg-20-1371-2023, https://doi.org/10.5194/bg-20-1371-2023, 2023
Short summary
Short summary
Carbon monoxide (CO) is a climate-relevant trace gas emitted from the ocean. However, oceanic CO cycling is understudied. Results from incubation experiments conducted in the Fram Strait (Arctic Ocean) indicated that (i) pH did not affect CO cycling and (ii) enhanced CO production and consumption were positively correlated with coloured dissolved organic matter and nitrate concentrations. This suggests microbial CO uptake to be the driving factor for CO cycling in the Arctic Ocean.
Yihong Zhu, Ruihua Liu, Huai Zhang, Shaoda Liu, Zhengfeng Zhang, Fei-Hai Yu, and Timothy G. Gregoire
Biogeosciences, 20, 1357–1370, https://doi.org/10.5194/bg-20-1357-2023, https://doi.org/10.5194/bg-20-1357-2023, 2023
Short summary
Short summary
With global warming, the risk of flooding is rising, but the response of the carbon cycle of aquatic and associated riparian systems
to flooding is still unclear. Based on the data collected in the Lijiang, we found that flooding would lead to significant carbon emissions of fluvial areas and riparian areas during flooding, but carbon capture may happen after flooding. In the riparian areas, the surviving vegetation, especially clonal plants, played a vital role in this transformation.
Lauri Heiskanen, Juha-Pekka Tuovinen, Henriikka Vekuri, Aleksi Räsänen, Tarmo Virtanen, Sari Juutinen, Annalea Lohila, Juha Mikola, and Mika Aurela
Biogeosciences, 20, 545–572, https://doi.org/10.5194/bg-20-545-2023, https://doi.org/10.5194/bg-20-545-2023, 2023
Short summary
Short summary
We measured and modelled the CO2 and CH4 fluxes of the terrestrial and aquatic ecosystems of the subarctic landscape for 2 years. The landscape was an annual CO2 sink and a CH4 source. The forest had the largest contribution to the landscape-level CO2 sink and the peatland to the CH4 emissions. The lakes released 24 % of the annual net C uptake of the landscape back to the atmosphere. The C fluxes were affected most by the rainy peak growing season of 2017 and the drought event in July 2018.
Artem G. Lim, Ivan V. Krickov, Sergey N. Vorobyev, Mikhail A. Korets, Sergey Kopysov, Liudmila S. Shirokova, Jan Karlsson, and Oleg S. Pokrovsky
Biogeosciences, 19, 5859–5877, https://doi.org/10.5194/bg-19-5859-2022, https://doi.org/10.5194/bg-19-5859-2022, 2022
Short summary
Short summary
In order to quantify C transport and emission and main environmental factors controlling the C cycle in Siberian rivers, we investigated the largest tributary of the Ob River, the Ket River basin, by measuring spatial and seasonal variations in carbon CO2 and CH4 concentrations and emissions together with hydrochemical analyses. The obtained results are useful for large-scale modeling of C emission and export fluxes from permafrost-free boreal rivers of an underrepresented region of the world.
Robert J. Parker, Chris Wilson, Edward Comyn-Platt, Garry Hayman, Toby R. Marthews, A. Anthony Bloom, Mark F. Lunt, Nicola Gedney, Simon J. Dadson, Joe McNorton, Neil Humpage, Hartmut Boesch, Martyn P. Chipperfield, Paul I. Palmer, and Dai Yamazaki
Biogeosciences, 19, 5779–5805, https://doi.org/10.5194/bg-19-5779-2022, https://doi.org/10.5194/bg-19-5779-2022, 2022
Short summary
Short summary
Wetlands are the largest natural source of methane, one of the most important climate gases. The JULES land surface model simulates these emissions. We use satellite data to evaluate how well JULES reproduces the methane seasonal cycle over different tropical wetlands. It performs well for most regions; however, it struggles for some African wetlands influenced heavily by river flooding. We explain the reasons for these deficiencies and highlight how future development will improve these areas.
Saúl Edgardo Martínez Castellón, José Henrique Cattanio, José Francisco Berrêdo, Marcelo Rollnic, Maria de Lourdes Ruivo, and Carlos Noriega
Biogeosciences, 19, 5483–5497, https://doi.org/10.5194/bg-19-5483-2022, https://doi.org/10.5194/bg-19-5483-2022, 2022
Short summary
Short summary
We seek to understand the influence of climatic seasonality and microtopography on CO2 and CH4 fluxes in an Amazonian mangrove. Topography and seasonality had a contrasting influence when comparing the two gas fluxes: CO2 fluxes were greater in high topography in the dry period, and CH4 fluxes were greater in the rainy season in low topography. Only CO2 fluxes were correlated with soil organic matter, the proportion of carbon and nitrogen, and redox potential.
Cited articles
Achtnich, C., Bak, F., and Conrad, R.: Competition for electron donors among
nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in
anoxic paddy soil, Biol. Fert. Soils, 19, 65–72,
https://doi.org/10.1007/BF00336349, 1995.
Aeschbacher, M., Sander, M., and Schwarzenbach, R. P.: Novel electrochemical
approach to assess the redox properties of humic substances, Environ. Sci. Technol., 44, 87–93, https://doi.org/10.1021/es902627p,
2010.
Aeschbacher, M., Vergari, D., Schwarzenbach, R. P., and Sander, M.:
Electrochemical analysis of proton and electron transfer equilibria of the
reducible moieties in humic acids, Environ. Sci. Technol., 45, 8385–8394,
https://doi.org/10.1021/es201981g, 2011.
Agethen, S. and Knorr, K.-H.: Juncus effusus mono-stands in restored cutover
peat bogs – Analysis of litter quality, controls of anaerobic
decomposition, and the risk of secondary carbon loss, Soil Biol. Biochem., 117, 139–152, https://doi.org/10.1016/j.soilbio.2017.11.020,
2018.
Agethen, S., Sander, M., Waldemer, C., and Knorr, K.-H.: Plant rhizosphere
oxidation reduces methane production and emission in rewetted peatlands,
Soil Biol. Biochem., 125, 125–135,
https://doi.org/10.1016/j.soilbio.2018.07.006, 2018.
Artz, R. R. E., Chapman, S. J., Jean Robertson, A. H., Potts, J. M.,
Laggoun-Défarge, F., Gogo, S., Comont, L., Disnar, J.-R., and Francez,
A.-J.: FTIR spectroscopy can be used as a screening tool for organic matter
quality in regenerating cutover peatlands, Soil Biol. Biochem.,
40, 515–527, https://doi.org/10.1016/j.soilbio.2007.09.019, 2008.
Avnimelech, Y., McHenry, J. R., and Ross, J. D.: Decomposition of organic
matter in lake sediments, Environ. Sci. Technol., 18, 5–11,
https://doi.org/10.1021/es00119a004, 1984.
Bastviken, D., Ejlertsson, J., and Tranvik, L.: Measurement of methane
oxidation in lakes: a comparison of methods, Environ. Sci. Technol., 36,
3354–3361, https://doi.org/10.1021/es010311p, 2002.
Bastviken, D., Cole, J., Pace, M., and Tranvik, L.: Methane emissions from
lakes: dependence of lake characteristics, two regional assessments, and a
global estimate, Global Biogeochem. Cy., 18, GB4009,
https://doi.org/10.1029/2004GB002238, 2004.
Bastviken, D., Cole, J. J., Pace, M. L., and van de Bogert, M. C.: Fates of
methane from different lake habitats: connecting whole-lake budgets and CH 4
emissions, J. Geophys. Res.-Biogeo., 113, G02024,
https://doi.org/10.1029/2007JG000608, 2008.
Bastviken, D., Tranvik, L. J., Downing, J. A., Crill, P. M., and
Enrich-Prast, A.: Freshwater methane emissions offset the continental carbon
sink, Science (New York, N.Y.), 331, 50 pp.,
https://doi.org/10.1126/science.1196808, 2011.
Bastviken, D., Sundgren, I., Natchimuthu, S., Reyier, H., and Gålfalk, M.: Technical Note: Cost-efficient approaches to measure carbon dioxide (CO2) fluxes and concentrations in terrestrial and aquatic environments using mini loggers, Biogeosciences, 12, 3849–3859, https://doi.org/10.5194/bg-12-3849-2015, 2015.
Battin, T. J., Luyssaert, S., Kaplan, L. A., Aufdenkampe, A. K., Richter,
A., and Tranvik, L. J.: The boundless carbon cycle, Nat. Geosci., 2,
598–600, https://doi.org/10.1038/ngeo618, 2009.
Beer, J. and Blodau, C.: Transport and thermodynamics constrain belowground
carbon turnover in a northern peatland, Geochim. Cosmochim. Ac., 71,
2989–3002, https://doi.org/10.1016/j.gca.2007.03.010, 2007.
Berberich, M., Beaulieu, J. J., Hamilton, T. L., Waldo, S., and Buffam, I.:
Spatial variability of sediment methane production and methanogen
communities within a eutrophic reservoir: importance of organic matter
source and quantity, Limnol. Oceanogr., 65, 1336–1358,
https://doi.org/10.1002/lno.11392, 2019.
Bergström, I., Kortelainen, P., Sarvala, J., and Salonen, K.: Effects of
temperature and sediment properties on benthic CO2 production in an
oligotrophic boreal lake, Freshwater Biol., 55, 1747–1757,
https://doi.org/10.1111/j.1365-2427.2010.02408.x, 2010.
Biester, H., Knorr, K.-H., Schellekens, J., Basler, A., and Hermanns, Y.-M.: Comparison of different methods to determine the degree of peat decomposition in peat bogs, Biogeosciences, 11, 2691–2707, https://doi.org/10.5194/bg-11-2691-2014, 2014.
Blodau, C.: Thermodynamic control on terminal electron transfer and
methanogenesis, in: Aquatic Redox Chemistry, edited by: Tratnyek, P. G.,
Grundl, T. J., and Haderlein, S. B., American Chemical Society, Washington,
DC, 65–83, https://doi.org/10.1021/bk-2011-1071.ch004, 2011.
Blodau, C., Siems, M., and Beer, J.: Experimental burial inhibits
methanogenesis and anaerobic decomposition in water-saturated peats,
Environ. Sci. Technol., 45, 9984–9989,
https://doi.org/10.1021/es201777u, 2011.
Bonaiuti, S., Blodau, C., and Knorr, K.-H.: Transport, anoxia and
end-product accumulation control carbon dioxide and methane production and
release in peat soils, Biogeochemistry, 133, 219–239,
https://doi.org/10.1007/s10533-017-0328-7, 2017.
Boudreau, B. P., Algar, C., Johnson, B. D., Croudace, I., Reed, A.,
Furukawa, Y., Dorgan, K. M., Jumars, P. A., Grader, A. S., and Gardiner, B.
S.: Bubble growth and rise in soft sediments, Geology, 33, 517–520,
https://doi.org/10.1130/G21259.1, 2005.
Broder, T., Blodau, C., Biester, H., and Knorr, K. H.: Peat decomposition records in three pristine ombrotrophic bogs in southern Patagonia, Biogeosciences, 9, 1479–1491, https://doi.org/10.5194/bg-9-1479-2012, 2012.
Burdige, D. J.: Preservation of organic matter in marine sediments:
controls, mechanisms, and an imbalance in sediment organic carbon budgets?,
Chem. Rev., 107, 467–485, https://doi.org/10.1021/cr050347q, 2007.
Cocozza, C., D'Orazio, V., Miano, T. M., and Shotyk, W.: Characterization of
solid and aqueous phases of a peat bog profile using molecular fluorescence
spectroscopy, ESR and FT-IR, and comparison with physical properties,
Org. Geochem., 34, 49–60,
https://doi.org/10.1016/S0146-6380(02)00208-5, 2003.
Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J.,
Striegl, R. G., Duarte, C. M., Kortelainen, P., Downing, J. A., Middelburg,
J. J., and Melack, J.: Plumbing the global carbon cycle: integrating inland
waters into the terrestrial carbon budget, Ecosystems, 10, 172–185,
https://doi.org/10.1007/s10021-006-9013-8, 2007.
Conrad, R.: Contribution of hydrogen to methane production and control of
hydrogen concentrations in methanogenic soils and sediments, FEMS
Microbiol. Ecol., 28, 193–202,
https://doi.org/10.1016/S0168-6496(98)00086-5, 1999.
Conrad, R., Noll, M., Claus, P., Klose, M., Bastos, W. R., and Enrich-Prast, A.: Stable carbon isotope discrimination and microbiology of methane formation in tropical anoxic lake sediments, Biogeosciences, 8, 795–814, https://doi.org/10.5194/bg-8-795-2011, 2011.
den Heyer, C. and Kalff, J.: Organic matter mineralization rates in
sediments: a within- and among-lake study, Limnol. Oceanogr., 43, 695–705,
https://doi.org/10.4319/lo.1998.43.4.0695, 1998.
Deutscher Wetterdienst (DWD): Observations Germany – Climate – Multi-annual
mean 1981–2010, https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/multi_annual/mean_81-10/, last
access: 12 October 2020, 2020.
Dinno, A.: dunn.test version 1.3.5: Dunn's test of multiple comparisons using rank sums, available at: https://CRAN.R-project.org/package=dunn.test (last access: 12 October 2020), 2017.
Downing, J. A.: Emerging global role of small lakes and ponds: little things
mean a lot, Limnetica, 29, 9–23, https://doi.org/10.23818/limn.29.02, 2010.
Downing, J. A., Prairie, Y. T., Cole, J. J., Duarte, C. M., Tranvik, L. J.,
Striegl, R. G., McDowell, W. H., Kortelainen, P., Caraco, N. F., Melack, J.
M., and Middelburg, J. J.: The global abundance and size distribution of
lakes, ponds, and impoundments, Limnol. Oceanogr., 51, 2388–2397,
https://doi.org/10.4319/lo.2006.51.5.2388, 2006.
Duc, N. T., Crill, P., and Bastviken, D.: Implications of temperature and
sediment characteristics on methane formation and oxidation in lake
sediments, Biogeochemistry, 100, 185–196,
https://doi.org/10.1007/s10533-010-9415-8, 2010.
Ellenberg, H., Weber, H. E., Düll, R., Wirth, V., and Werner, W.:
Zeigerwerte von Pflanzen in Mitteleuropa, 3rd edn., durchgesehene Auflage, Scripta
geobotanica, Volume 18, Verlag Erich Goltze GmbH & Co KG, Göttingen, Germany, 262 pp., 2001.
Falz, K. Z., Holliger, C., Großkopf, R., Liesack, W., Nozhevnikova, A.
N., Müller, B., Wehrli, B., and Hahn, D.: Vertical distribution of
methanogens in the anoxic sediment of Rotsee (Switzerland), Appl. Environ. Microb., 65, 2402–2408, https://doi.org/10.1128/AEM.65.6.2402-2408.1999, 1999.
Fenchel, T., King, G. M., and Blackburn, T. H.: Bacterial biogeochemistry:
The ecophysiology of mineral cycling, 3rd edn., Academic Press/Elsevier,
Boston, Mass., 2012.
Fox, J. and Weisberg, S.: An {R} companion to
applied regression, Sage, Thousand Oaks, CA, 2011.
Fuchs, A., Lyautey, E., Montuelle, B., and Casper, P.: Effects of increasing
temperatures on methane concentrations and methanogenesis during
experimental incubation of sediments from oligotrophic and mesotrophic
lakes, J. Geophys. Res.-Biogeo., 121, 1394–1406,
https://doi.org/10.1002/2016JG003328, 2016.
Gao, C., Sander, M., Agethen, S., and Knorr, K.-H.: Electron accepting
capacity of dissolved and particulate organic matter control CO2 and CH4
formation in peat soils, Geochim. Cosmochim. Ac., 245, 266–277,
https://doi.org/10.1016/j.gca.2018.11.004, 2019.
Gilboa-Garber, N.: Direct spectrophotometric determination of inorganic
sulfide in biological materials and in other complex mixtures, Anal. Biochem., 43, 129–133, https://doi.org/10.1016/0003-2697(71)90116-3,
1971.
Grasset, C., Mendonça, R., Villamor Saucedo, G., Bastviken, D., Roland,
F., and Sobek, S.: Large but variable methane production in anoxic
freshwater sediment upon addition of allochthonous and autochthonous organic
matter, Limnol. Oceanogr., 63, 1488–1501,
https://doi.org/10.1002/lno.10786, 2018.
Gudasz, C., Bastviken, D., Steger, K., Premke, K., Sobek, S., and Tranvik,
L. J.: Temperature-controlled organic carbon mineralization in lake
sediments, Nature, 466, 478–481, https://doi.org/10.1038/nature09186, 2010.
Gudasz, C., Sobek, S., Bastviken, D., Koehler, B., and Tranvik, L. J.:
Temperature sensitivity of organic carbon mineralization in contrasting lake
sediments, J. Geophys. Res.-Biogeo., 120, 1215–1225,
https://doi.org/10.1002/2015JG002928, 2015.
Hoehler, T. M., Alperin, M. J., Albert, D. B., and Martens, C. S.: Apparent
minimum free energy requirements for methanogenic Archaea and
sulfate-reducing bacteria in an anoxic marine sediment, FEMS Microbiol. Ecol., 38, 33–41, https://doi.org/10.1111/j.1574-6941.2001.tb00879.x,
2001.
Holgerson, M. A. and Raymond, P. A.: Large contribution to inland water CO2
and CH4 emissions from very small ponds, Nat. Geosci., 9, 222–226,
https://doi.org/10.1038/NGEO2654, 2016.
Hornibrook, E. R. C., Longstaffe, F. J., and Fyfe, W. S.: Spatial
distribution of microbial methane production pathways in temperate zone
wetland soils: stable carbon and hydrogen isotope evidence, Geochim. Cosmochim. Ac., 61, 745–753,
https://doi.org/10.1016/S0016-7037(96)00368-7, 1997.
Jankowski, T., Livingstone, D. M., Bührer, H., Forster, R., and
Niederhauser, P.: Consequences of the 2003 European heat wave for lake
temperature profiles, thermal stability, and hypolimnetic oxygen depletion:
Implications for a warmer world, Limnol. Oceanogr., 51, 815–819,
https://doi.org/10.4319/lo.2006.51.2.0815, 2006.
Kammann, C., Grünhage, L., and Jäger, H.-J.: A new sampling
technique to monitor concentrations of CH4, N2O and CO2 in air at
well-defined depths in soils with varied water potential, Eur. J. Soil Sci., 52, 297–303,
https://doi.org/10.1046/j.1365-2389.2001.00380.x, 2001.
Kampf, J.: Grundwasserlandschaften: Hydrologischer Atlas Rheinland-Pfalz,
Landesamt für Umwelt, Wasserwirtschaft und Gewerbeaufsicht
Rheinland-Pfalz, Mainz, Landesamt für Umwelt Rheinland-Pfalz, available at: https://lfu.rlp.de/fileadmin/lfu/Wasserwirtschaft/Hydrologischer_Atlas/19_grundwasserlandschaften.pdf (last access: 12 October 2020), 2005.
Kappes, H. and Sinsch, U.: Tolerance of Ceriodaphnia quadrangula and
Diaphanosoma brachyurum (Crustacea: Cladocera) to experimental soft water
acidification, Hydrobiologia, 534, 109–115, https://doi.org/10.1007/s10750-004-1416-y, 2005.
Kappes, H., Mechenich, C., and Sinsch, U.: Long-term dynamics of Asplanchna
priodonta in Lake Windsborn with comments on the diet, Hydrobiologia, 432,
91–100, https://doi.org/10.1023/A:1004022020346, 2000.
Kling, G. W., Kipphut, G. W., and Miller, M. C.: The flux of CO2 and CH4
from lakes and rivers in arctic Alaska, Hydrobiologia, 240, 23–36,
https://doi.org/10.1007/BF00013449, 1992.
Klüpfel, L., Piepenbrock, A., Kappler, A., and Sander, M.: Humic
substances as fully regenerable electron acceptors in recurrently anoxic
environments, Nat. Geosci., 7, 195–200, https://doi.org/10.1038/NGEO2084,
2014.
Konhauser, K.: Introduction to geomicrobiology, John Wiley & Sons Ltd,
Hoboken, New Jersey, 425 pp., 2009.
Kuhry, P. and Vitt, D. H.: Fossil carbon/nitrogen ratios as a measure of
peat decomposition, Ecology, 77, 271–275, https://doi.org/10.2307/2265676,
1996.
Landesamt für Umwelt (LfU): Seenatlas: Windsborn Kratersee,
https://geodaten-wasser.rlp-umwelt.de/
(last access 17 July 2019), 2013.
Lau, M. P., Sander, M., Gelbrecht, J., and Hupfer, M.: Solid phases as
important electron acceptors in freshwater organic sediments,
Biogeochemistry, 123, 49–61, https://doi.org/10.1007/s10533-014-0052-5,
2015.
Lau, M. P., Sander, M., Gelbrecht, J., and Hupfer, M.: Spatiotemporal redox
dynamics in a freshwater lake sediment under alternating oxygen
availabilities: combined analyses of dissolved and particulate electron
acceptors, Environ. Chem., 13, 826–837, https://doi.org/10.1071/EN15217, 2016.
Li, Y., Zhang, H., Tu, C., Fu, C., Xue, Y., and Luo, Y.: Sources and fate of
organic carbon and nitrogen from land to ocean: identified by coupling
stable isotopes with C∕N ratio, Estuar. Coast. Shelf S., 181,
114–122, https://doi.org/10.1016/j.ecss.2016.08.024, 2016.
Liikanen, A., Murtoniemi, T., Tanskanen, H., Väisänen, T., and
Martikainen, P. J.: Effects of temperature and oxygen availability on
greenhouse gas and nutrient dynamics in sediment of a eutrophic and
mid-boreal lake, Biogeochemistry, 59, 269–286,
https://doi.org/10.1023/A:1016015526712, 2002.
Liu, L., Wilkinson, J., Koca, K., Buchmann, C., and Lorke, A.: The role of
sediment structure in gas bubble storage and release, J. Geophys. Res.-Biogeo., 121, 1992–2005, https://doi.org/10.1002/2016JG003456, 2016.
Liu, Y., Conrad, R., Yao, T., Gleixner, G., and Claus, P.: Change of methane
production pathway with sediment depth in a lake on the Tibetan plateau,
Palaeogeogr. Palaeocl., 474, 279–286,
https://doi.org/10.1016/j.palaeo.2016.06.021, 2017.
Liu, L., de Kock, T., Wilkinson, J., Cnudde, V., Xiao, S., Buchmann, C.,
Uteau, D., Peth, S., and Lorke, A.: Methane bubble growth and migration in
aquatic sediments observed by X-ray μCT, Environ. Sci. Technol., 52,
2007–2015, https://doi.org/10.1021/acs.est.7b06061, 2018.
Lojen, S., Ogrinc, N., and Dolenec, T.: Decomposition of sedimentary organic
matter and methane formation in the recent sediment of Lake Bled (Slovenia),
Chem. Geol., 159, 223–240,
https://doi.org/10.1016/S0009-2541(99)00032-7, 1999.
Lovley, D. R., Coates, J. D., Blunt-Harris, E. L., Phillips, E. J. P., and
Woodward, J. C.: Humic substances as electron acceptors for microbial
respiration, Nature, 382, 445–448, https://doi.org/10.1038/382445a0, 1996.
Mackay, E. B., Jones, I. D., Folkard, A. M., and Barker, P.: Contribution of
sediment focussing to heterogeneity of organic carbon and phosphorus burial
in small lakes, Freshwater Biol., 57, 290–304,
https://doi.org/10.1111/j.1365-2427.2011.02616.x, 2011.
Malmer, N. and Holm, E.: Variation in the C∕N-quotient of peat in relation
to decomposition rate and age determination with 210 Pb, Oikos, 43, 171–182,
https://doi.org/10.2307/3544766, 1984.
McLatchey, G. P. and Reddy, K. R.: Regulation of organic matter
decomposition and nutrient release in a wetland soil, J. Environ. Qual., 27, 1268–1274, https://doi.org/10.2134/jeq1998.00472425002700050036x,
1998.
Megonigal, J. P., Hines, M. E., and Visscher, P. T.: Anaerobic metabolism:
linkages to trace gases and aerobic processes, in: Treatise on Geochemistry, edited by: Holland, H. D. and Turekian, K. K., Elsevier, Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo, 317–424, https://doi.org/10.1016/B0-08-043751-6/08132-9, 2003.
Meyer, W.: Geologie der Eifel, 4th edn., Schweizerbart'sche
Verlagsbuchhandlung, Stuttgart, Germany, 2013.
Meyers, P. A.: Preservation of elemental and isotopic source identification
of sedimentary organic matter, Chem. Geol., 114, 289–302,
https://doi.org/10.1016/0009-2541(94)90059-0, 1994.
Miyajima, T., Wada, E., Hanba, Y. T., and Vijarnsorn, P.: Anaerobic
mineralization of indigenous organic matters and methanogenesis in tropical
wetland soils, Geochim. Cosmochim. Ac., 61, 3739–3751,
https://doi.org/10.1016/S0016-7037(97)00189-0, 1997.
Muri, G. and Wakeham, S. G.: Organic matter and lipids in sediments of Lake
Bled (NW Slovenia): Source and effect of anoxic and oxic depositional
regimes, Org. Geochem., 37, 1664–1679,
https://doi.org/10.1016/j.orggeochem.2006.07.016, 2006.
Natchimuthu, S., Sundgren, I., Gålfalk, M., Klemedtsson, L., Crill, P.,
Danielsson, Å., and Bastviken, D.: Spatio-temporal variability of lake
CH4 fluxes and its influence on annual whole lake emission estimates,
Limnol. Oceanogr., 61, S13–S26, https://doi.org/10.1002/lno.10222, 2016.
Natchimuthu, S., Sundgren, I., Gålfalk, M., Klemedtsson, L., and
Bastviken, D.: Spatiotemporal variability of lake pCO2 and CO2 fluxes in a
hemiboreal catchment, J. Geophys. Res.-Biogeo., 122, 30–49,
https://doi.org/10.1002/2016JG003449, 2017.
Niemeyer, J., Chen, Y., and Bollag, J.-M.: Characterization of humic acids,
composts, and peat by diffuse reflectance Fourier-Transform infrared
spectroscopy, Soil Sci. Soc. Am. J., 56, 135–140,
https://doi.org/10.2136/sssaj1992.03615995005600010021x, 1992.
Nordstrom, D. K., and Munoz, J. L.: Geochemical thermodynamics, 2nd edn.,
Blackwell Scientific, Boston, Mass, 1994.
OENorm B 4412: 1974 07 01, Erd- und
Grundbau, Untersuchung von Bodenproben, Korngrößenverteilung, Austrian Standards International, 1974.
OENorm L 1050: 2016 03 15, Boden als Pflanzenstandort – Begriffe und
Untersuchungsverfahren, Austrian Standards International, 2016.
OENorm L 1061-2: 2019 03 01, Physikalische Bodenuntersuchungen – Bestimmung
der Korngrößenverteilung des Mineralbodens in land- und
forstwirtschaftlich genutzten Böden – Teil 2: Feinboden, Austrian Standards International, 2019.
Ostrovsky, I. and Tęgowski, J.: Hydroacoustic analysis of spatial and
temporal variability of bottom sediment characteristics in Lake Kinneret in
relation to water level fluctuation, Geo.-Mar. Lett., 30, 261–269,
https://doi.org/10.1007/s00367-009-0180-4, 2010.
R Core Team: R: A language and environment for statistical computing, R
Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/, 2018.
Raymond, P. A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C.,
Hoover, M., Butman, D., Striegl, R., Mayorga, E., Humborg, C., Kortelainen,
P., Dürr, H., Meybeck, M., Ciais, P., and Guth, P.: Global carbon
dioxide emissions from inland waters, Nature, 503, 355–359,
https://doi.org/10.1038/nature12760, 2013.
Regnier, P., Friedlingstein, P., Ciais, P., Mackenzie, F. T., Gruber, N.,
Janssens, I. A., Laruelle, G. G., Lauerwald, R., Luyssaert, S., Andersson,
A. J., Arndt, S., Arnosti, C., Borges, A. V., Dale, A. W., Gallego-Sala, A.,
Goddéris, Y., Goossens, N., Hartmann, J., Heinze, C., Ilyina, T., Joos,
F., LaRowe, D. E., Leifeld, J., Meysman, F. J. R., Munhoven, G., Raymond, P. A., Spahni, R., Suntharalingam, P., and Thullner, M.: Anthropogenic
perturbation of the carbon fluxes from land to ocean, Nat. Geosci., 6,
597–607, https://doi.org/10.1038/NGEO1830, 2013.
Romeijn, P., Comer-Warner, S. A., Ullah, S., Hannah, D. M., and Krause, S.:
Streambed organic matter controls on carbon dioxide and methane emissions
from streams, Environ. Sci. Technol., 53, 2364–2374,
https://doi.org/10.1021/acs.est.8b04243, 2019.
Sander, R.: Compilation of Henry's law constants (version 4.0) for water as solvent, Atmos. Chem. Phys., 15, 4399–4981, https://doi.org/10.5194/acp-15-4399-2015, 2015.
Schilder, J., Bastviken, D., van Hardenbroek, M., Kankaala, P., Rinta, P.,
Stötter, T., and Heiri, O.: Spatial heterogeneity and lake morphology
affect diffusive greenhouse gas emission estimates of lakes, Geophys. Res.
Lett., 40, 5752–5756, https://doi.org/10.1002/2013GL057669, 2013.
Schink, B.: Energetics of syntrophic cooperation in methanogenic
degradation, Microbiol. Mol. Biol. R., 61, 262–280, http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-27009, 1997.
Schoell, M.: Multiple origins of methane in the Earth, Chem. Geol., 71,
1–10, https://doi.org/10.1016/0009-2541(88)90101-5, 1988.
Schwarz, J. I. K., Eckert, W., and Conrad, R.: Response of the methanogenic
microbial community of a profundal lake sediment (Lake Kinneret, Israel) to
algal deposition, Limnol. Oceanogr., 53, 113–121,
https://doi.org/10.4319/lo.2008.53.1.0113, 2008.
Seeberg-Elverfeldt, J., Schlüter, M., Feseker, T., and Kölling, M.:
Rhizon sampling of porewaters near the sediment-water interface of aquatic
systems, Limnol. Oceanogr. Methods, 3, 361–371,
https://doi.org/10.4319/lom.2005.3.361, 2005.
Segers, R.: Methane production and methane consumption: a review of
processes underlying wetland methane fluxes, Biogeochemistry, 41, 23–51,
https://doi.org/10.1023/A:1005929032764, 1998.
Sobek, S., Durisch-Kaiser, E., Zurbrügg, R., Wongfun, N., Wessels, M.,
Pasche, N., and Wehrli, B.: Organic carbon burial efficiency in lake
sediments controlled by oxygen exposure time and sediment source, Limnol.
Oceanogr., 54, 2243–2254, https://doi.org/10.4319/lo.2009.54.6.2243, 2009.
Spafford, L. and Risk, D.: Spatiotemporal variability in lake-atmosphere net
CO2 exchange in the littoral zone of an oligotrophic lake, J. Geophys. Res.-Biogeo., 123, 1260–1276, https://doi.org/10.1002/2017JG004115, 2018.
Stumm, W. and Morgan, J. J.: Aquatic chemistry: Chemical equilibria and
rates in natural waters, 3rd edn., John Wiley & Sons Inc, New York,
Chichester, Brisbane, Toronto, Singapore, 1995.
Tamura, H., Goto, K., Yotsuyanagi, T., and Nagayama, M.: Spectrophotometric
determination of iron(II) with 1,10-phenanthroline in the presence of large
amounts of iron(III), Talanta, 21, 314–318, https://doi.org/10.1016/0039-9140(74)80012-3, 1974.
Tfaily, M. M., Cooper, W. T., Kostka, J. E., Chanton, P. R., Schadt, C. W.,
Hanson, P. J., Iversen, C. M., and Chanton, J. P.: Organic matter
transformation in the peat column at Marcell Experimental Forest:
Humification and vertical stratification, J. Geophys. Res.-Biogeo., 119,
661–675, https://doi.org/10.1002/2013JG002492, 2014.
Tolu, J., Rydberg, J., Meyer-Jacob, C., Gerber, L., and Bindler, R.: Spatial variability of organic matter molecular composition and elemental geochemistry in surface sediments of a small boreal Swedish lake, Biogeosciences, 14, 1773–1792, https://doi.org/10.5194/bg-14-1773-2017, 2017.
Torres, I. C., Inglett, K. S., and Reddy, K. R.: Heterotrophic microbial
activity in lake sediments: effects of organic electron donors,
Biogeochemistry, 104, 165–181, https://doi.org/10.1007/s10533-010-9494-6,
2011.
Updegraff, K., Pastor, J., Bridgham, S. D., and Johnston, C. A.:
Environmental and substrate controls over carbon and nitrogen mineralization
in northern wetlands, Ecol. Appl., 5, 151–163,
https://doi.org/10.2307/1942060, 1995.
Verpoorter, C., Kutser, T., Seekell, D. A., and Tranvik, L. J.: A global
inventory of lakes based on high-resolution satellite imagery, Geophys. Res.
Lett., 41, 6396–6402, https://doi.org/10.1002/2014GL060641, 2014.
Walpen, N., Schroth, M. H., and Sander, M.: Quantification of phenolic
antioxidant moieties in dissolved organic matter by flow-injection analysis
with electrochemical detection, Environ. Sci. Technol., 50, 6423–6432,
https://doi.org/10.1021/acs.est.6b01120, 2016.
Walpen, N., Getzinger, G. J., Schroth, M. H., and Sander, M.:
Electron-donating phenolic and electron-accepting quinone moieties in peat
dissolved organic matter: quantities and redox transformations in the
context of peat biogeochemistry, Environ. Sci. Technol., 52, 5236–5245,
https://doi.org/10.1021/acs.est.8b00594, 2018.
West, W. E., Coloso, J. J., and Jones, S. E.: Effects of algal and
terrestrial carbon on methane production rates and methanogen community
structure in a temperate lake sediment, Freshwater Biol., 57, 949–955,
https://doi.org/10.1111/j.1365-2427.2012.02755.x, 2012.
Wetzel, R. G.: Gradient-dominated ecosystems: sources and regulatory
functions of dissolved organic matter in freshwater ecosystems, in:
Dissolved Organic Matter in Lacustrine Ecosystems: Energy Source and System
Regulator, edited by: Salonen, K., Kairesalo, T., and Jones, R. I., Springer
Netherlands, Dordrecht, 181–198,
https://doi.org/10.1007/978-94-011-2474-4_14, 1992.
Whiticar, M. J.: Carbon and hydrogen isotope systematics of bacterial
formation and oxidation of methane, Chem. Geol., 161, 291–314,
https://doi.org/10.1016/S0009-2541(99)00092-3, 1999.
Wik, M., Crill, P. M., Varner, R. K., and Bastviken, D.: Multiyear
measurements of ebullitive methane flux from three subarctic lakes, J. Geophys. Res.-Biogeo., 118, 1307–1321,
https://doi.org/10.1002/jgrg.20103, 2013.
Wilkinson, J., Maeck, A., Alshboul, Z., and Lorke, A.: Continuous seasonal
river ebullition measurements linked to sediment methane formation, Environ.
Sci. Technol., 49, 13121–13129, https://doi.org/10.1021/acs.est.5b01525,
2015.
Yao, H., Conrad, R., Wassmann, R., and Neue, H. U.: Effect of soil
characteristics on sequential reduction and methane production in sixteen
rice paddy soils from China, the Philippines, and Italy, Biogeochemistry,
47, 269–295, https://doi.org/10.1007/BF00992910, 1999.
Short summary
Small lakes are important but variable sources of greenhouse gas emissions. We performed lab experiments to determine spatial patterns and drivers of CO2 and CH4 emission and sediment gas production within a lake. The observed high spatial variability of emissions and production could be explained by the degradability of the sediment organic matter. We did not see correlations between production and emissions and suggest on-site flux measurements as the most accurate way for determing emissions.
Small lakes are important but variable sources of greenhouse gas emissions. We performed lab...
Altmetrics
Final-revised paper
Preprint