Articles | Volume 18, issue 6
https://doi.org/10.5194/bg-18-2075-2021
https://doi.org/10.5194/bg-18-2075-2021
Research article
 | 
23 Mar 2021
Research article |  | 23 Mar 2021

Subalpine grassland productivity increased with warmer and drier conditions, but not with higher N deposition, in an altitudinal transplantation experiment

Matthias Volk, Matthias Suter, Anne-Lena Wahl, and Seraina Bassin

Related authors

Massive warming-induced carbon loss from subalpine grassland soils in an altitudinal transplantation experiment
Matthias Volk, Matthias Suter, Anne-Lena Wahl, and Seraina Bassin
Biogeosciences, 19, 2921–2937, https://doi.org/10.5194/bg-19-2921-2022,https://doi.org/10.5194/bg-19-2921-2022, 2022
Short summary
Subalpine grassland carbon balance during 7 years of increased atmospheric N deposition
Matthias Volk, Jan Enderle, and Seraina Bassin
Biogeosciences, 13, 3807–3817, https://doi.org/10.5194/bg-13-3807-2016,https://doi.org/10.5194/bg-13-3807-2016, 2016
Short summary

Related subject area

Biogeochemistry: Land
Seasonal variation of mercury concentration of ancient olive groves of Lebanon
Nagham Tabaja, David Amouroux, Lamis Chalak, François Fourel, Emmanuel Tessier, Ihab Jomaa, Milad El Riachy, and Ilham Bentaleb
Biogeosciences, 20, 619–633, https://doi.org/10.5194/bg-20-619-2023,https://doi.org/10.5194/bg-20-619-2023, 2023
Short summary
Soil organic matter diagenetic state informs boreal forest ecosystem feedbacks to climate change
Allison N. Myers-Pigg, Karl Kaiser, Ronald Benner, and Susan E. Ziegler
Biogeosciences, 20, 489–503, https://doi.org/10.5194/bg-20-489-2023,https://doi.org/10.5194/bg-20-489-2023, 2023
Short summary
Upscaling dryland carbon and water fluxes with artificial neural networks of optical, thermal, and microwave satellite remote sensing
Matthew P. Dannenberg, Mallory L. Barnes, William K. Smith, Miriam R. Johnston, Susan K. Meerdink, Xian Wang, Russell L. Scott, and Joel A. Biederman
Biogeosciences, 20, 383–404, https://doi.org/10.5194/bg-20-383-2023,https://doi.org/10.5194/bg-20-383-2023, 2023
Short summary
Sun-induced fluorescence as a proxy for primary productivity across vegetation types and climates
Mark Pickering, Alessandro Cescatti, and Gregory Duveiller
Biogeosciences, 19, 4833–4864, https://doi.org/10.5194/bg-19-4833-2022,https://doi.org/10.5194/bg-19-4833-2022, 2022
Short summary
Technical note: A view from space on global flux towers by MODIS and Landsat: the FluxnetEO data set
Sophia Walther, Simon Besnard, Jacob Allen Nelson, Tarek Sebastian El-Madany, Mirco Migliavacca, Ulrich Weber, Nuno Carvalhais, Sofia Lorena Ermida, Christian Brümmer, Frederik Schrader, Anatoly Stanislavovich Prokushkin, Alexey Vasilevich Panov, and Martin Jung
Biogeosciences, 19, 2805–2840, https://doi.org/10.5194/bg-19-2805-2022,https://doi.org/10.5194/bg-19-2805-2022, 2022
Short summary

Cited articles

Bassin, S., Volk, M., Suter, M., Buchmann, N., and Fuhrer, J.: Nitrogen deposition but not ozone affects productivity and community composition of subalpine grassland after 3 yr of treatment, New Phytol., 175, 3, 523–534, 2007. 
Bassin, S., Werner, R. A., Sörgel, K., Volk, M., Buchmann, N., and Fuhrer, J.: Effects of combined ozone and nitrogen deposition on the in situ properties of eleven key plant species of a subalpine pasture, Oecologia 158, 747–756, 2009. 
Bassin, S., Volk, M., and Fuhrer, J.: Species composition of subalpine grassland is sensitive to nitrogen deposition, but not to ozone, after seven years of treatment, Ecosystems, 16, 1105–1117, 2013. 
Bates, D., Maechler, M., Bolker, B., and Walker, S.: lme4: Linear mixed-effects models using Eigen and S4, Version 1.1-10, available at: https://CRAN.R-project.org/package=lme4, 2015. 
Short summary
Grassland ecosystem services like forage production and greenhouse gas storage in the soil depend on plant growth. In an experiment in the mountains with warming treatments, we found that despite dwindling soil water content, the grassland growth increased with up to +1.3 °C warming (annual mean) compared to present temperatures. Even at +2.4 °C the growth was still larger than at the reference site. This suggests that plant growth will increase due to global warming in the near future.
Altmetrics
Final-revised paper
Preprint