Articles | Volume 18, issue 10
https://doi.org/10.5194/bg-18-3243-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-3243-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The impact of wildfire on biogeochemical fluxes and water quality in boreal catchments
Department Ecology and Genetics, Uppsala University, Norbyvägen
18D, Uppsala, Sweden
Christopher D. Evans
UK Centre for Ecology and Hydrology, Bangor, LL57 2UW, UK
Department of Aquatic Sciences and Assessment, Swedish University of
Agricultural Sciences, P.O. Box 7050, 75007 Uppsala, Sweden
Joachim Strengbom
Department of Ecology, Swedish University of Agricultural Sciences,
P.O. Box 7044, 750 07 Uppsala, Sweden
Jens Fölster
Department of Aquatic Sciences and Assessment, Swedish University of
Agricultural Sciences, P.O. Box 7050, 75007 Uppsala, Sweden
Achim Grelle
Department of Ecology, Swedish University of Agricultural Sciences,
P.O. Box 7044, 750 07 Uppsala, Sweden
Johan Strömqvist
Swedish Meteorological and Hydrological Institute (SMHI), 601 76
Norrköping, Sweden
Stephan J. Köhler
Department of Aquatic Sciences and Assessment, Swedish University of
Agricultural Sciences, P.O. Box 7050, 75007 Uppsala, Sweden
Related authors
Andreas Lundgren, Joachim Strengbom, Johannes Edvardsson, and Gustaf Granath
EGUsphere, https://doi.org/10.5194/egusphere-2025-2361, https://doi.org/10.5194/egusphere-2025-2361, 2025
Short summary
Short summary
By studying tree-rings and climatic data throughout Sweden, we have found that tree-growth in warm areas is more negatively affected by increasing temperature than tree-growth in cold areas. We also found that soil moisture has a very small effect when it comes to mitigating the negative effect of increasing temperature. These findings suggest that tree-growth responses to a changing climate will likely vary with the local climate but not so much with differences in soil moisture.
Andreas Lundgren, Joachim Strengbom, Johannes Edvardsson, and Gustaf Granath
EGUsphere, https://doi.org/10.5194/egusphere-2025-2361, https://doi.org/10.5194/egusphere-2025-2361, 2025
Short summary
Short summary
By studying tree-rings and climatic data throughout Sweden, we have found that tree-growth in warm areas is more negatively affected by increasing temperature than tree-growth in cold areas. We also found that soil moisture has a very small effect when it comes to mitigating the negative effect of increasing temperature. These findings suggest that tree-growth responses to a changing climate will likely vary with the local climate but not so much with differences in soil moisture.
Thomas C. Parker, Chris Evans, Martin G. Evans, Miriam Glendell, Richard Grayson, Joseph Holden, Changjia Li, Pengfei Li, and Rebekka R. E. Artz
EGUsphere, https://doi.org/10.5194/egusphere-2025-287, https://doi.org/10.5194/egusphere-2025-287, 2025
Short summary
Short summary
Many peatlands around the world are eroding and causing carbon losses to the atmosphere and to freshwater systems. To accurately report emissions from peatlands we need to understand how much of the eroded peat is converted to CO2 once exposed to the atmosphere. We need more direct measurements of this process and a better understanding of the environmental conditions that peat is exposed to after it erodes. This information will help quantify the emissions savings from peatland restoration.
Jennifer Williamson, Chris Evans, Bryan Spears, Amy Pickard, Pippa J. Chapman, Heidrun Feuchtmayr, Fraser Leith, Susan Waldron, and Don Monteith
Biogeosciences, 20, 3751–3766, https://doi.org/10.5194/bg-20-3751-2023, https://doi.org/10.5194/bg-20-3751-2023, 2023
Short summary
Short summary
Managing drinking water catchments to minimise water colour could reduce costs for water companies and save their customers money. Brown-coloured water comes from peat soils, primarily around upland reservoirs. Management practices, including blocking drains, removing conifers, restoring peatland plants and reducing burning, have been used to try and reduce water colour. This work brings together published evidence of the effectiveness of these practices to aid water industry decision-making.
Anna-Maria Virkkala, Susan M. Natali, Brendan M. Rogers, Jennifer D. Watts, Kathleen Savage, Sara June Connon, Marguerite Mauritz, Edward A. G. Schuur, Darcy Peter, Christina Minions, Julia Nojeim, Roisin Commane, Craig A. Emmerton, Mathias Goeckede, Manuel Helbig, David Holl, Hiroki Iwata, Hideki Kobayashi, Pasi Kolari, Efrén López-Blanco, Maija E. Marushchak, Mikhail Mastepanov, Lutz Merbold, Frans-Jan W. Parmentier, Matthias Peichl, Torsten Sachs, Oliver Sonnentag, Masahito Ueyama, Carolina Voigt, Mika Aurela, Julia Boike, Gerardo Celis, Namyi Chae, Torben R. Christensen, M. Syndonia Bret-Harte, Sigrid Dengel, Han Dolman, Colin W. Edgar, Bo Elberling, Eugenie Euskirchen, Achim Grelle, Juha Hatakka, Elyn Humphreys, Järvi Järveoja, Ayumi Kotani, Lars Kutzbach, Tuomas Laurila, Annalea Lohila, Ivan Mammarella, Yojiro Matsuura, Gesa Meyer, Mats B. Nilsson, Steven F. Oberbauer, Sang-Jong Park, Roman Petrov, Anatoly S. Prokushkin, Christopher Schulze, Vincent L. St. Louis, Eeva-Stiina Tuittila, Juha-Pekka Tuovinen, William Quinton, Andrej Varlagin, Donatella Zona, and Viacheslav I. Zyryanov
Earth Syst. Sci. Data, 14, 179–208, https://doi.org/10.5194/essd-14-179-2022, https://doi.org/10.5194/essd-14-179-2022, 2022
Short summary
Short summary
The effects of climate warming on carbon cycling across the Arctic–boreal zone (ABZ) remain poorly understood due to the relatively limited distribution of ABZ flux sites. Fortunately, this flux network is constantly increasing, but new measurements are published in various platforms, making it challenging to understand the ABZ carbon cycle as a whole. Here, we compiled a new database of Arctic–boreal CO2 fluxes to help facilitate large-scale assessments of the ABZ carbon cycle.
Jennifer Williamson, Christopher Evans, Bryan Spears, Amy Pickard, Pippa J. Chapman, Heidrun Feuchtmayr, Fraser Leith, and Don Monteith
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-450, https://doi.org/10.5194/hess-2020-450, 2020
Manuscript not accepted for further review
Short summary
Short summary
Water companies in the UK have found that drinking water from upland reservoirs is becoming browner. This is costly to treat and if the dissolved organic matter that causes the colour isn't removed potentially harmful chemicals could be produced. Land management around reservoirs has been suggested as a way to reduce water colour. We reviewed the available literature to assess whether this would work. There is limited evidence available to date, although forestry appears to increase colour.
Cited articles
Ahlgren, I. F. and Ahlgren, C. E.: Ecological effects of forest fires, Bot.
Rev., 26, 483–533, https://doi.org/10.1007/BF02940573, 1960.
Amiro, B. D., Chen, J. M., and Liu, J.: Net primary productivity following
forest fire for Canadian ecoregions, Can. J. For. Res., 30, 939–947,
https://doi.org/10.1139/x00-025, 2000.
Amiro, B. D., MacPherson, J. I., Desjardins, R. L., Chen, J. M., and Liu, J.:
Post-fire carbon dioxide fluxes in the western Canadian boreal forest:
evidence from towers, aircraft and remote sensing, Agr. Forest Meteorol.,
115, 91–107, https://doi.org/10.1016/S0168-1923(02)00170-3, 2003.
Amiro, B. D., Barr, A. G., Barr, J. G., Black, T. A., Bracho, R., Brown, M.,
Chen, J., Clark, K. L., Davis, K. J., Desai, A. R., Dore, S., Engel, V.,
Fuentes, J. D., Goldstein, A. H., Goulden, M. L., Kolb, T. E., Lavigne, M.
B., Law, B. E., Margolis, H. A., Martin, T., McCaughey, J. H., Misson, L.,
Montes-Helu, M., Noormets, A., Randerson, J. T., Starr, G., and Xiao, J.:
Ecosystem carbon dioxide fluxes after disturbance in forests of North
America, J. Geophys. Res.-Biogeo., 115, G00K02,
https://doi.org/10.1029/2010JG001390, 2010.
Aubinet, M., Grelle, A., Ibrom, A., Rannik, Ü., Moncrieff, J., Foken,
T., Kowalski, A. S., Martin, P. H., Berbigier, P., Bernhofer, Ch., Clement,
R., Elbers, J., Granier, A., Grünwald, T., Morgenstern, K., Pilegaard,
K., Rebmann, C., Snijders, W., Valentini, R., and Vesala, T.: Estimates Of
The Annual Net Carbon And Water Exchange Of Forests: The EUROFLUX
methodology, in: Advances in Ecological Research, Vol. 30, edited by:
Fitter, A. H. and Raffaelli, D. G., 113–175, Academic Press, 1999.
Aulenbach, B. T., Burns, D. A., Shanley, J. B., Yanai, R. D., Bae, K., Wild,
A. D., Yang, Y., and Yi, D:. Approaches to stream solute load estimation for
solutes with varying dynamics from five diverse small watersheds, Ecosphere,
7, e01298, https://doi.org/10.1002/ecs2.1298, 2016.
Bastviken, D., Sandén, P., Svensson, T., Ståhlberg, A. C.,
Magounakis, M., and Oberg, G.: Chloride retention and release in a boreal
forest soil: effects of soil water residence time and nitrogen and chloride
loads, Environ. Sci. Technol., 40, 2977–2982, 2006.
Bayley, S. E., Schindler, D. W., Parker, B. R., Stainton, M. P., and Beaty,
K. G.: Effects of forest fire and drought on acidity of a base-poor boreal
forest stream: similarities between climatic warming and acidic
precipitation, Biogeochemistry, 17, 191–204, https://doi.org/10.1007/BF00004041,
1992.
Betts, E. F. and Jones, J. B.: Impact of wildfire on stream nutrient
chemistry and ecosystem metabolism in boreal forest catchments of interior
Alaska, Arct. Antarct. Alp. Res., 41, 407–417,
https://doi.org/10.1657/1938-4246-41.4.407, 2009.
Bladon, K. D., Silins, U., Wagner, M. J., Stone, M., Emelko, M. B., Mendoza,
C. A., Devito, K. J., and Boon, S.: Wildfire impacts on nitrogen
concentration and production from headwater streams in southern Alberta's
Rocky Mountains, Can. J. For. Res., 38, 2359–2371, https://doi.org/10.1139/X08-071,
2008.
Bladon, K. D., Emelko, M. B., Silins, U., and Stone, M.: Wildfire and the
future of water supply, Environ. Sci. Technol., 48, 8936–8943,
https://doi.org/10.1021/es500130g, 2014.
Bodí, M. B., Martin, D. A., Balfour, V. N., Santín, C., Doerr, S.
H., Pereira, P., Cerdà, A., and Mataix-Solera, J.: Wildland fire ash:
production, composition and eco-hydro-geomorphic effects, Earth-Sci. Rev.,
130, 103–127, https://doi.org/10.1016/j.earscirev.2013.12.007, 2014.
Bond-Lamberty, B., Peckham, S. D., Ahl, D. E., and Gower, S. T.: Fire as the
dominant driver of central Canadian boreal forest carbon balance, Nature,
450, 89–92, 2007.
Brais, S., David, P., and Ouimet, R.: Impacts of wild fire severity and
salvage harvesting on the nutrient balance of jack pine and black spruce
boreal stands, Forest Ecol. Manag., 137, 231–243,
https://doi.org/10.1016/S0378-1127(99)00331-X, 2000.
Buffam, I., Laudon, H., Temnerud, J., Mörth, C.-M., and Bishop, K.:
Landscape-scale variability of acidity and dissolved organic carbon during
spring flood in a boreal stream network, J. Geophys. Res.-Biogeo.,
112, G01022, https://doi.org/10.1029/2006JG000218, 2007.
Burd, K., Tank, S. E., Dion, N., Quinton, W. L., Spence, C., Tanentzap, A. J., and Olefeldt, D.: Seasonal shifts in export of DOC and nutrients from burned and unburned peatland-rich catchments, Northwest Territories, Canada, Hydrol. Earth Syst. Sci., 22, 4455–4472, https://doi.org/10.5194/hess-22-4455-2018, 2018.
Burke, J. M., Prepas, E. E., and Pinder, S.: Runoff and phosphorus export
patterns in large forested watersheds on the western Canadian Boreal Plain
before and for 4 years after wildfire, J. Environ. Eng. Sci., 4,
319–325, https://doi.org/10.1139/s04-072, 2005.
Bürkner, P.-C.: brms: An R Package for Bayesian Multilevel Models Using
Stan, J. Stat. Softw., 80, https://doi.org/10.18637/jss.v080.i01, 2017.
Carignan, R., D'Arcy, P., and Lamontagne, S.: Comparative impacts of fire and
forest harvesting on water quality in Boreal Shield lakes, Can. J. Fish.
Aquat. Sci., 57, 105–117, https://doi.org/10.1139/f00-125, 2000.
Carslaw, D. C. and Ropkins, K.: openair – An R package for air quality
data analysis, Environ. Model. Softw., 27/28, 52–61,
https://doi.org/10.1016/j.envsoft.2011.09.008, 2012.
Certini, G.: Effects of fire on properties of forest soils: a review,
Oecologia, 143, 1–10, https://doi.org/10.1007/s00442-004-1788-8, 2005.
Dannenmann, M., Díaz-Pinés, E., Kitzler, B., Karhu, K., Tejedor,
J., Ambus, P., Parra, A., Sánchez-Martin, L., Resco, V., Ramírez,
D. A., Povoas-Guimaraes, L., Willibald, G., Gasche, R.,
Zechmeister-Boltenstern, S., Kraus, D., Castaldi, S., Vallejo, A., Rubio,
A., Moreno, J. M., and Butterbach-Bahl, K.: Postfire nitrogen balance of
Mediterranean shrublands: Direct combustion losses versus gaseous and
leaching losses from the postfire soil mineral nitrogen flush, Glob. Change
Biol., 24, 4505–4520, https://doi.org/10.1111/gcb.14388, 2018.
Emelko, M. B., Silins, U., Bladon, K. D., and Stone, M.: Implications of land
disturbance on drinking water treatability in a changing climate:
Demonstrating the need for “source water supply and protection”
strategies, Water Res., 45, 461–472, https://doi.org/10.1016/j.watres.2010.08.051,
2011.
Evans, C. D., Malcolm, I. A., Shilland, E. M., Rose, N. L., Turner, S. D.,
Crilly, A., Norris, D., Granath, G., and Monteith, D. T.: Sustained
biogeochemical impacts of wildfire in a mountain lake catchment, Ecosystems,
20, 813–829, https://doi.org/10.1007/s10021-016-0064-1, 2017.
Flannigan, M., Stocks, B., Turetsky, M., and Wotton, M.: Impacts of climate
change on fire activity and fire management in the circumboreal forest,
Glob. Change Biol., 15, 549–560, https://doi.org/10.1111/j.1365-2486.2008.01660.x,
2009.
Fölster, J., Johnson, R. K., Futter, M. N., and Wilander, A.: The Swedish
monitoring of surface waters: 50 years of adaptive monitoring, AMBIO, 43,
3–18, https://doi.org/10.1007/s13280-014-0558-z, 2014.
González-Pérez, J. A., González-Vila, F. J., Almendros, G., and
Knicker, H.: The effect of fire on soil organic matter – a review, Environ.
Int., 30, 855–870, https://doi.org/10.1016/j.envint.2004.02.003, 2004.
Goulden, M. L., Mcmillan, A. M. S., Winston, G. C., Rocha, A. V., Manies, K.
L., Harden, J. W., and Bond-Lamberty, B. P.: Patterns of NPP, GPP,
respiration, and NEP during boreal forest succession, Glob. Change Biol.,
17, 855–871, https://doi.org/10.1111/j.1365-2486.2010.02274.x, 2011.
Granath, G., Moore, P. A., Lukenbach, M. C., and Waddington, J. M.:
Mitigating wildfire carbon loss in managed northern peatlands through
restoration, Sci. Rep., 6, 28498, https://doi.org/10.1038/srep28498, 2016.
Granath, G. , Evans, C. D., Strengbom, J., Fölster, J., Grelle, A., Strömqvist, J., and Köhler, S. J.: Data set: The impact of wildfire on biogeochemical fluxes and water quality on boreal catchments, Zenodo [Dataset], https://doi.org/10.5281/zenodo.4699632, 2021.
Grier, C. C.: Wildfire effects on nutrient distribution and leaching in a
coniferous ecosystem, Can. J. For. Res., 5, 599–607,
https://doi.org/10.1139/x75-087, 1975.
Grogan, P., Burns, T. D., and Iii, F. S. C.: Fire effects on ecosystem
nitrogen cycling in a Californian bishop pine forest, Oecologia, 122,
537–544, https://doi.org/10.1007/s004420050977, 2000.
Gustafsson, L., Berglind, M., Granström, A., Grelle, A., Isacsson, G.,
Kjellander, P., Larsson, S., Lindh, M., Pettersson, L. B., Strengbom, J.,
Stridh, B., Sävström, T., Thor, G., Wikars, L.-O., and Mikusiński,
G.: Rapid ecological response and intensified knowledge accumulation
following a north European mega-fire, Scand. J. Forest Res., 34, 234–253,
https://doi.org/10.1080/02827581.2019.1603323, 2019.
Hadden, D. and Grelle, A.: Net CO2 emissions from a primary
boreo-nemoral forest over a 10year period, Forest Ecol. Manag., 398, 164–173,
https://doi.org/10.1016/j.foreco.2017.05.008, 2017.
Hauer, F. and Spencer, C.: Phosphorus and nitrogen dynamics in streams
associated with wildfire: a study of immediate and longterm effects, Int. J.
Wildland Fire, 8, 183–198, 1998.
Hijmans, R. J., Etten, J. van, Sumner, M., Cheng, J., Bevan, A., Bivand, R.,
Busetto, L., Canty, M., Forrest, D., Ghosh, A., Golicher, D., Gray, J.,
Greenberg, J. A., Hiemstra, P., Karney, C.,
Mattiuzzi, M., Mosher, S., Nowosad, J., Pebesma, E., Lamigueiro, O. P.,
Racine, E. B., Rowlingson, B., Shortridge, A., Venables, B., and Wueest, R.:
raster: Geographic Data Analysis and Modeling, available at:
https://CRAN.R-project.org/package=raster, last access: 15 April 2019.
Humborg, C., Smedberg, Erik, Blomqvist, S., Mörth, C.-M., Brink, J.,
Rahm, L., Danielsson, Å., and Sahlberg, J.: Nutrient variations in boreal
and subarctic Swedish rivers: Landscape control of land- sea fluxes, Limnol.
Oceanogr., 49, 1871–1883, https://doi.org/10.4319/lo.2004.49.5.1871, 2004.
Johnson, D., Murphy, J. D., Walker, R. F., Glass, D. W., and Miller, W. W.:
Wildfire effects on forest carbon and nutrient budgets, Ecol. Eng., 31,
183–192, https://doi.org/10.1016/j.ecoleng.2007.03.003, 2007.
Jones, M. W., Santín, C., van der Werf, G. R., and Doerr, S. H.: Global
fire emissions buffered by the production of pyrogenic carbon, Nat. Geosci.,
12, 742–747, https://doi.org/10.1038/s41561-019-0403-x, 2019.
Jonsson, B. G., Ekström, M., Esseen, P. A., Grafström, A.,
Ståhl, G., and Westerlund, B.: Dead wood availability in managed
Swedish forests–Policy outcomes and implications for biodiversity, Forest
Ecol. Manag., 376, 174–182, https://doi.org/10.1016/j.foreco.2016.06.017, 2016.
Kashian, D. M., Romme, W. H., Tinker, D. B., Turner, M. G., and Ryan, M. G.:
Postfire changes in forest carbon storage over a 300-year chronosequence of
Pinus contorta-dominated forests, Ecol. Monogr., 83, 49–66,
https://doi.org/10.1890/11-1454.1, 2013.
Kelly, R., Genet, H., McGuire, A. D., and Hu, F. S.: Palaeodata-informed
modelling of large carbon losses from recent burning of boreal forests, Nat.
Clim. Change, 6, 79–82, https://doi.org/10.1038/nclimate2832, 2016.
Kishchuk, B. E., Morris, D. M., Lorente, M., Keddy, T., Sidders, D.,
Quideau, S., Thiffault, E., Kwiaton, M., and Maynard, D.: Disturbance
intensity and dominant cover type influence rate of boreal soil carbon
change: A Canadian multi-regional analysis, Forest Ecol. Manag., 381, 48–62,
https://doi.org/10.1016/j.foreco.2016.09.002, 2016.
Knicker, H.: How does fire affect the nature and stability of soil organic
nitrogen and carbon? A review, Biogeochemistry, 85, 91–118,
https://doi.org/10.1007/s10533-007-9104-4, 2007.
Köhler, S.: Estimating organic acid dissociation in natural surface
waters using total alkalinity and TOC, Water Res., 34, 1425–1434,
https://doi.org/10.1016/S0043-1354(99)00315-2, 2000.
Kopáček, J., Evans, C. D., Hejzlar, J., Kaňa, J., Porcal, P., and
Šantrůčková, H.: Factors affecting the leaching of dissolved
organic carbon after tree dieback in an unmanaged european mountain forest,
Environ. Sci. Technol., 52, 6291–6299, https://doi.org/10.1021/acs.est.8b00478,
2018.
Kristensen, T., Ohlson, M., Bolstad, P., and Nagy, Z.: Spatial variability of
organic layer thickness and carbon stocks in mature boreal forest
stands – implications and suggestions for sampling designs, Environ. Monit.
Assess., 187, 521, https://doi.org/10.1007/s10661-015-4741-x, 2015.
Lamontagne, S., Carignan, R., D'Arcy, P., Prairie, Y. T., and Paré, D.:
Element export in runoff from eastern Canadian Boreal Shield drainage basins
following forest harvesting and wildfires, Can. J. Fish. Aquat. Sci.,
57, 118–128, https://doi.org/10.1139/f00-108, 2000.
Lantmäteriet: Produktbeskrivning, GSD-Höjddata, grid 2+, version 1.7, 2014.
Laudon, H., Köhler, S., and Buffam, I.: Seasonal TOC export from seven
boreal catchments in northern Sweden, Aquat. Sci., 66, 223–230,
https://doi.org/10.1007/s00027-004-0700-2, 2004.
Ledesma, J. L. J., Grabs, T., Bishop, K. H., Schiff, S. L., and Köhler,
S. J.: Potential for long-term transfer of dissolved organic carbon from
riparian zones to streams in boreal catchments, Glob. Change Biol., 21,
2963–2979, https://doi.org/10.1111/gcb.12872, 2015.
Lee, X., Massman, W., and Law, B. (Eds.): Handbook of micrometeorology: a
guide for surface flux measurement and analysis, Kluwer Acad. Publication,
Dordrecht, the Netherlands, 2004.
Likens, G. E., Bormann, F. H., Johnson, N. M., Fisher, D. W., and Pierce, R.
S.: Effects of forest cutting and herbicide treatment on nutrient budgets in
the hubbard brook watershed ecosystem, Ecol. Monogr., 40, 23–47,
https://doi.org/10.2307/1942440, 1970.
Lindström, G., Pers, C., Rosberg, J., Strömqvist, J., and Arheimer,
B.: Development and testing of the HYPE (Hydrological Predictions for the
Environment) water quality model for different spatial scales, Hydrol. Res.,
41, 295–319, https://doi.org/10.2166/nh.2010.007, 2010.
Lydersen, E., Høgberget, R., Moreno, C. E., Garmo, Ø. A., and Hagen, P.
C.: The effects of wildfire on the water chemistry of dilute, acidic lakes
in southern Norway, Biogeochemistry, 119, 109–124,
https://doi.org/10.1007/s10533-014-9951-8, 2014.
Marklund, L. G.: Biomass Functions for Pine, Spruce and Birch in Sweden,
Department of Forest Survey, SLU, Report 54, 1988.
Mast, M. A. and Clow, D. W.: Effects of 2003 wildfires on stream chemistry
in Glacier National Park, Montana, Hydrol. Process., 22, 5013–5023,
https://doi.org/10.1002/hyp.7121, 2008.
Mast, M. A., Murphy, S. F., Clow, D. W., Penn, C. A., and Sexstone, G. A.:
Water-quality response to a high-elevation wildfire in the Colorado Front
Range, Hydrol. Process., 30, 1811–1823, https://doi.org/10.1002/hyp.10755, 2016.
McEachern, P., Prepas, E. E., Gibson, J. J., and Dinsmore, W. P.: Forest fire
induced impacts on phosphorus, nitrogen, and chlorophyll a concentrations in
boreal subarctic lakes of northern Alberta, Can. J. Fish. Aquat. Sci.,
57, 73–81, https://doi.org/10.1139/f00-124, 2000.
Miljödata-MVM.: National data host lakes and watercourses, and national
data host agricultural land, Swedish University of Agricultural Sciences
(SLU), available at: http://miljodata.slu.se/mvm/, last access: 1 March 2020.
Minderman, G.: Addition, decomposition and accumulation of organic matter in
forest, J. Ecol., 56, 355–362, https://doi.org/10.2307/2258238, 1968.
Minkkinen, K. and Laine, J.: Effects of forest drainage on the peat bulk
density of pine mires in Finland, Can. J. For. Res., 28, 178–186, 1998.
Minshall, G. W., Brock, J. T., Andrews, D. A., and Robinson, C. T.: Water
quality, substratum and biotic responses of five central Idaho (USA) streams
during the first year following the Mortar Creek fire, Int. J. Wildland
Fire, 10, 185–199, https://doi.org/10.1071/wf01017, 2001.
Mitchell, G. and McDonald, A. T.: Catchment characterization as a tool for
upland water quality management, J. Environ. Manage., 44, 83–95,
https://doi.org/10.1006/jema.1995.0032, 1995.
Mroz, G. D., Jurgensen, M. F., Harvey, A. E., and Larsen, M. J.: Effects of
fire on nitrogen in forest floor horizons 1, Soil Sci. Soc. Am. J., 44,
395–400, https://doi.org/10.2136/sssaj1980.03615995004400020038x, 1980.
Myneni, R., Knyazikhin, Y., and Park, T.: MCD15A2H MODIS/Terra+Aqua Leaf
Area Index/FPAR 8-day L4 Global 500 m SIN Grid V006, NASA EOSDIS Land
Processes DAAC,
https://doi.org/10.5067/MODIS/MCD15A2H.006, 2015.
Olefeldt, D., Devito, K. J., and Turetsky, M. R.: Sources and fate of
terrestrial dissolved organic carbon in lakes of a Boreal Plains region
recently affected by wildfire, Biogeosciences, 10, 6247–6265,
https://doi.org/10.5194/bg-10-6247-2013, 2013.
Parro, K., Köster, K., Jõgiste, K., Seglinš, K., Sims, A.,
Stanturf, J. A., and Metslaid, M.: Impact of post-fire management on soil
respiration, carbon and nitrogen content in a managed hemiboreal forest, J.
Environ. Manag., 233, 371–377, https://doi.org/10.1016/j.jenvman.2018.12.050, 2019.
Pérez-Izquierdo, L., Clemmensen, K. E., Strengbom, J., Granath, G.,
Wardle, D. A., Nilsson, M. C., and Lindahl, B. D.: Crown-fire severity is
more important than ground-fire severity in determining soil fungal
community development in the boreal forest, J. Ecol., 109, 504–518,
https://doi.org/10.1111/1365-2745.13529, 2021.
R Development Core Team: R: a language and environment for statistical
computing, R Foundation for Statistical Computing, Vienna Austria,
available at: https://www.R-project.org (last access: 25 May 2021), 2016.
Repola, J.: Models for vertical wood density of Scots pine, Norway spruce
and birch stems, and their application to determine average wood density,
Silva Fenn., 40, 673–685, 2006.
Rhoades, C. C., Chow, A. T., Covino, T. P., Fegel, T. S., Pierson, D. N., and
Rhea, A. E.: The legacy of a severe wildfire on stream nitrogen and carbon
in headwater catchments, Ecosystems, 22, 643–657, https://doi.org/10.1007/s10021-018-0293-6, 2019.
Rodríguez-Cardona, B. M., Coble, A. A., Wymore, A. S., Kolosov, R.,
Podgorski, D. C., Zito, P., Spencer, R. G. M., Prokushkin, A. S., and
McDowell, W. H.: Wildfires lead to decreased carbon and increased nitrogen
concentrations in upland arctic streams, Sci. Rep., 10, 1–9,
https://doi.org/10.1038/s41598-020-65520-0, 2020.
Santos, F., Wymore, A. S., Jackson, B. K., Sullivan, S. M. P., McDowell, W.
H., and Berhe, A. A.: Fire severity, time since fire, and site-level
characteristics influence streamwater chemistry at baseflow conditions in
catchments of the Sierra Nevada, California, USA, Fire Ecol., 15, 3,
https://doi.org/10.1186/s42408-018-0022-8, 2019.
Schiff, S. L., Spoelstra, J., Semkin, R. G., and Jeffries, D. S.: Drought
induced pulses of SO from a Canadian shield wetland: use of
δ34S and δ18O in SO to determine sources of
sulfur, Appl. Geochem., 20, 691–700,
https://doi.org/10.1016/j.apgeochem.2004.11.011, 2005.
Silins, U., Bladon, K. D., Kelly, E. N., Esch, E., Spence, J. R., Stone, M.,
Emelko, M. B., Boon, S., Wagner, M. J., Williams, C. H. S., and Tichkowsky,
I.: Five-year legacy of wildfire and salvage logging impacts on nutrient
runoff and aquatic plant, invertebrate, and fish productivity: wildfire and
salvage logging effects on stream ecohydrology, Ecohydrology, 7,
1508–1523, https://doi.org/10.1002/eco.1474, 2014.
Smith, H. G., Sheridan, G. J., Lane, P. N. J., Nyman, P., and Haydon, S.:
Wildfire effects on water quality in forest catchments: A review with
implications for water supply, J. Hydrol., 396, 170–192,
https://doi.org/10.1016/j.jhydrol.2010.10.043, 2011.
Smithwick, E. A. H., Turner, M. G., Mack, M. C., and Iii, F. S. C.: Postfire
soil n cycling in northern conifer forests affected by severe,
stand-replacing wildfires, Ecosystems, 8, 163–181,
https://doi.org/10.1007/s10021-004-0097-8, 2005.
Smithwick, E. A. H., Kashian, D. M., Ryan, M. G., and Turner, M. G.:
Long-term nitrogen storage and soil nitrogen availability in post-fire
lodgepole pine ecosystems, Ecosystems, 12, 792–806,
https://doi.org/10.1007/s10021-009-9257-1, 2009.
Sponseller, R. A., Temnerud, J., Bishop, K., and Laudon, H.: Patterns and
drivers of riverine nitrogen (N) across alpine, subarctic, and boreal
Sweden, Biogeochemistry, 120, 105–120, https://doi.org/10.1007/s10533-014-9984-z,
2014.
Strömqvist, J., Arheimer, B., Dahné, J., Donnelly, C., and
Lindström, G.: Water and nutrient predictions in ungauged basins: set-up
and evaluation of a model at the national scale, Hydrol. Sci. J., 57,
229–247, https://doi.org/10.1080/02626667.2011.637497, 2012.
Tamm, C. O.: Nitrogen in terrestrial ecosystems questions of productivity,
vegetational changes, and ecosystem stability, Springer Berlin Heidelberg,
Berlin, Heidelberg,
https://doi.org/10.1007/978-3-642-75168-4 (last access: 12 March 2016), 1991.
Tuck, S. L., Phillips, H. R. P., Hintzen, R. E., Scharlemann, J. P. W.,
Purvis, A., and Hudson, L. N.: MODISTools – downloading and processing MODIS
remotely sensed data in R, Ecol. Evol., 4, 4658–4668,
https://doi.org/10.1002/ece3.1273, 2014.
Turetsky, M. R., Kane, E. S., Harden, J. W., Ottmar, R. D., Manies, K. L.,
Hoy, E., and Kasischke, E. S.: Recent acceleration of biomass burning and
carbon losses in Alaskan forests and peatlands, Nat. Geosci, 4, 27–31,
2011.
Turner, M. G., Smithwick, E. A. H., Metzger, K. L., Tinker, D. B., and Romme,
W. H.: Inorganic nitrogen availability after severe stand-replacing fire in
the Greater Yellowstone ecosystem, P. Natl. Acad. Sci. USA, 104,
4782–4789, https://doi.org/10.1073/pnas.0700180104, 2007.
Turner, M. G., Whitby, T. G., and Romme, W. H.: Feast not famine: Nitrogen
pools recover rapidly in 25-yr-old postfire lodgepole pine, Ecology, 100,
e02626, https://doi.org/10.1002/ecy.2626, 2019.
Walker, X. J., Rogers, B. M., Baltzer, J. L., Cumming, S. G., Day, N. J.,
Goetz, S. J., Johnstone, J. F., Schuur, E. A. G., Turetsky, M. R., and Mack,
M. C.: Cross-scale controls on carbon emissions from boreal forest
megafires, Glob. Change Biol., 24, 4251–4265, https://doi.org/10.1111/gcb.14287,
2018.
Wan, S., Hui, D., and Luo, Y.: Fire effects on nitrogen pools and dynamics in
terrestrial ecosystems: A Meta-Analysis, Ecol. Appl., 11, 1349–1365,
https://doi.org/10.1890/1051-0761(2001)011[1349:FEONPA]2.0.CO;2, 2001.
Yallop, A. R., Clutterbuck, B., and Thacker, J.: Increases in humic dissolved
organic carbon export from upland peat catchments: the role of temperature,
declining sulphur deposition and changes in land management, Clim. Res., 45,
43–56, https://doi.org/10.3354/cr00884, 2010.
Zackrisson, O., DeLuca, T. H., Nilsson, M.-C., Sellstedt, A., and Berglund,
L. M.: Nitrogen fixation increases with successional age in boreal forests,
Ecology, 85, 3327–3334, https://doi.org/10.1890/04-0461, 2004.
Short summary
We measured element losses and impacts on water quality following a wildfire in Sweden. We observed the largest carbon and nitrogen losses during the fire and a strong pulse of elements 1–3 months after the fire that showed a fast (weeks) and a slow (months) release from the catchments. Total carbon export through water did not increase post-fire. Overall, we observed a rapid recovery of the biogeochemical cycling of elements within 3 years but still an annual net release of carbon dioxide.
We measured element losses and impacts on water quality following a wildfire in Sweden. We...
Altmetrics
Final-revised paper
Preprint