Articles | Volume 18, issue 15
https://doi.org/10.5194/bg-18-4511-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-4511-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Patterns in recent and Holocene pollen accumulation rates across Europe – the Pollen Monitoring Programme Database as a tool for vegetation reconstruction
Vojtěch Abraham
CORRESPONDING AUTHOR
Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01 Prague, Czech Republic
Sheila Hicks
formerly at: University of Oulu, P.O. Box 8000, 90014 University of Oulu, Oulu, Finland
retired
Helena Svobodová-Svitavská
Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01 Prague, Czech Republic
Department of Paleoecology, Institute of Botany v.v.i., Czech Academy of Sciences, Zámek 1, 252 43 Průhonice, Czech Republic
Elissaveta Bozilova
Laboratory of Palynology, Department of Botany, Faculty of Biology, Sofia University, 8 Dragan Tsankov blvd., Sofia 1164, Bulgaria
Sampson Panajiotidis
Lab. of Forest Botany, Faculty of Forestry and Natural Environment, Aristotle University of Thessaloniki, P.O. Box 270, 54124 Thessaloniki, Greece
Mariana Filipova-Marinova
Museum of Natural History Varna, 41 Maria Louisa Blvd. 9000 Varna, Bulgaria
Christin Eldegard Jensen
University of Stavanger, Museum of Archaeology, Peder Klows gate 31A, PB 8600 Forus, 4036 Stavanger, Norway
Spassimir Tonkov
Laboratory of Palynology, Department of Botany, Faculty of Biology, Sofia University, 8 Dragan Tsankov blvd., Sofia 1164, Bulgaria
Irena Agnieszka Pidek
Institute of Earth and Environmental Sciences, Maria Curie-Skłodowska University, al. Krasnicka 2d, 20-718 Lublin, Poland
Joanna Święta-Musznicka
Faculty of Biology, Department of Plant Ecology, Laboratory of Palaeoecology and Archaeobotany, University of Gdańsk, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland
Marcelina Zimny
Białowieża Geobotanical Station, Faculty of Biology, University of Warsaw, Sportowa 19, 17-230 Białowieża, Poland
Eliso Kvavadze
Georgian National Museum, Purtseladze Str.3, Tbilisi 5, 0105, Georgia
Anna Filbrandt-Czaja
Faculty of Biological and Veterinary Sciences, Geobotany and Landscape Planning, Nicolaus Copernicus University in Toruń, ul. Lwowska 1, 87-100 Toruń, Poland
Martina Hättestrand
Department of Physical Geography, Stockholm University, 106 91 Stockholm, Sweden
Nurgül Karlıoğlu Kılıç
Department of Forest Botany, Faculty of Forestry, Istanbul University-Cerrahpaşa, Bahçeköy, 34473, Istanbul, Turkey
Jana Kosenko
Department of Higher Plants, Moscow State University, Leninskie Gory, 1, 12, Moscow, 119234, Russia
Maria Nosova
Main Botanical Garden RAS, Botanicheskaya, 4, Moscow, 127276, Russia
Elena Severova
Department of Higher Plants, Moscow State University, Leninskie Gory, 1, 12, Moscow, 119234, Russia
Olga Volkova
Department of Higher Plants, Moscow State University, Leninskie Gory, 1, 12, Moscow, 119234, Russia
Margrét Hallsdóttir
Laugarnesvegi 87 íbúð 105, 105 Reykjavík, Iceland
Laimdota Kalniņa
Faculty of Geography and Earth Sciences, University of Latvia, Jelgavas Street 1, 1004, Riga, Latvia
Agnieszka M. Noryśkiewicz
Institute of Archeology, Faculty of History, Nicolaus Copernicus University in Toruń, Szosa Bydgoska 44/48, 87-100 Toruń, Poland
Bożena Noryśkiewicz
Faculty of Earth Sciences and Spatial Management, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
Heather Pardoe
Department of Natural Sciences, National Museum Wales, Cathays Park, Cardiff, CF10 3NP, UK
Areti Christodoulou
Department of Forests, Ministry of Agriculture, Rural Development and Environment, P.O. Box 24136, 1701 Nicosia, Cyprus
Tiiu Koff
Tallinn University, School of Natural Sciences and Health, Institute of Ecology, Uus Sadama 5, 10120 Tallinn, Estonia
Sonia L. Fontana
Cátedra de Palinilogía, Facultad de Ciencias Naturales y Museo, UNLP, Calle 64 no. 3, 1900 La Plata, Argentina
Faculty of Resource Management, HAWK University of Applied Sciences and Arts, Büsgenweg 1a, 37077 Göttingen, Germany
Teija Alenius
Turku Institute for Advanced Studies (Department of Archaeology), University of Turku, 20014 Turku, Finland
Elisabeth Isaksson
Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway
Heikki Seppä
Department of Geosciences and Geography, University of Helsinki, Gustav Hällströmin katu 2, 00014, Helsinki, Finland
Siim Veski
Department of Geology, Tallinn University of Technology, TalTech, Ehitajate tee 5, 19086 Tallinn, Estonia
Anna Pędziszewska
Faculty of Biology, Department of Plant Ecology, Laboratory of Palaeoecology and Archaeobotany, University of Gdańsk, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland
Martin Weiser
Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01 Prague, Czech Republic
Thomas Giesecke
Palaeoecology, Department of Physical Geography, Faculty of Geosciences, Utrecht University, P.O. Box 80115, 3508 TC Utrecht, the Netherlands
Related authors
No articles found.
Jianpu Bian, Jouni Räisänen, and Heikki Seppä
EGUsphere, https://doi.org/10.5194/egusphere-2024-3673, https://doi.org/10.5194/egusphere-2024-3673, 2024
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
This research examines the impact of the global ITCZ northward migration on Hadley cell dynamics and terrestrial hydroclimate during the mid-Holocene. Our results reveal that the ITCZ shift caused a contraction and weakening of the northern Hadley cell and an expansion and intensification of the southern cell. These changes led to increased precipitation in the Northern Hemisphere and decreased precipitation in the Southern Hemisphere, altering regional aridity patterns.
Yurui Zhang, Hans Renssen, Heikki Seppä, Zhen Li, and Xingrui Li
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-46, https://doi.org/10.5194/cp-2024-46, 2024
Revised manuscript accepted for CP
Short summary
Short summary
The upper and lower atmosphere are interacted. The polar regions, with a high-speed and cyclonically rotating winds, provide a window that the upper air flow affects the mid-latitudes' weather which results in intra-seasonal climate variability. To explore their impacts on glacial-interglacial cycles, we analysed climate model results, and found that the stretched upper air flow increases glacial climate variability via more cold air outbreaks, highlighting their connections on multi-timescales.
Andrea Spolaor, Federico Scoto, Catherine Larose, Elena Barbaro, Francois Burgay, Mats P. Bjorkman, David Cappelletti, Federico Dallo, Fabrizio de Blasi, Dmitry Divine, Giuliano Dreossi, Jacopo Gabrieli, Elisabeth Isaksson, Jack Kohler, Tonu Martma, Louise S. Schmidt, Thomas V. Schuler, Barbara Stenni, Clara Turetta, Bartłomiej Luks, Mathieu Casado, and Jean-Charles Gallet
The Cryosphere, 18, 307–320, https://doi.org/10.5194/tc-18-307-2024, https://doi.org/10.5194/tc-18-307-2024, 2024
Short summary
Short summary
We evaluate the impact of the increased snowmelt on the preservation of the oxygen isotope (δ18O) signal in firn records recovered from the top of the Holtedahlfonna ice field located in the Svalbard archipelago. Thanks to a multidisciplinary approach we demonstrate a progressive deterioration of the isotope signal in the firn core. We link the degradation of the δ18O signal to the increased occurrence and intensity of melt events associated with the rapid warming occurring in the archipelago.
Emma Nilsson, Carmen Paulina Vega, Dmitry Divine, Anja Eichler, Tonu Martma, Robert Mulvaney, Elisabeth Schlosser, Margit Schwikowski, and Elisabeth Isaksson
EGUsphere, https://doi.org/10.5194/egusphere-2023-3156, https://doi.org/10.5194/egusphere-2023-3156, 2024
Preprint withdrawn
Short summary
Short summary
To project future climate change it is necessary to understand paleoclimate including past sea ice conditions. We have investigated methane sulphonic acid (MSA) in Antarctic firn and ice cores to reconstruct sea ice extent (SIE) and found that the MSA – SIE as well as the MSA – phytoplankton biomass relationship varies across the different firn and ice cores. These inconsistencies in correlations across records suggest that MSA in Fimbul Ice Shelf cores does not reliably indicate regional SIE.
Leeli Amon, Friederike Wagner-Cremer, Jüri Vassiljev, and Siim Veski
Clim. Past, 18, 2143–2153, https://doi.org/10.5194/cp-18-2143-2022, https://doi.org/10.5194/cp-18-2143-2022, 2022
Short summary
Short summary
The spring onset and growing season dynamics during the Late Glacial period in the Baltic region were reconstructed using the micro-phenology based on dwarf birch subfossil leaf cuticles. The comparison of pollen- and chironomid-inferred past temperature estimations with spring onset, growth degree day, and plant macrofossil data shows coherent patterns during the cooler Older Dryas and warmer Bølling–Allerød periods but more complicated climate dynamics during the Younger Dryas cold reversal.
Angelica Feurdean, Andrei-Cosmin Diaconu, Mirjam Pfeiffer, Mariusz Gałka, Simon M. Hutchinson, Geanina Butiseaca, Natalia Gorina, Spassimir Tonkov, Aidin Niamir, Ioan Tantau, Hui Zhang, and Sergey Kirpotin
Clim. Past, 18, 1255–1274, https://doi.org/10.5194/cp-18-1255-2022, https://doi.org/10.5194/cp-18-1255-2022, 2022
Short summary
Short summary
We used palaeoecological records from peatlands in southern Siberia. We showed that warmer climate conditions have lowered the water level and increased the fuel amount and flammability, consequently also increasing the frequency and severity of fires as well as the composition of tree types.
Esther Githumbi, Ralph Fyfe, Marie-Jose Gaillard, Anna-Kari Trondman, Florence Mazier, Anne-Birgitte Nielsen, Anneli Poska, Shinya Sugita, Jessie Woodbridge, Julien Azuara, Angelica Feurdean, Roxana Grindean, Vincent Lebreton, Laurent Marquer, Nathalie Nebout-Combourieu, Miglė Stančikaitė, Ioan Tanţău, Spassimir Tonkov, Lyudmila Shumilovskikh, and LandClimII data contributors
Earth Syst. Sci. Data, 14, 1581–1619, https://doi.org/10.5194/essd-14-1581-2022, https://doi.org/10.5194/essd-14-1581-2022, 2022
Short summary
Short summary
Reconstruction of past land cover is necessary for the study of past climate–land cover interactions and the evaluation of climate models and land-use scenarios. We used 1128 available pollen records from across Europe covering the last 11 700 years in the REVEALS model to calculate percentage cover and associated standard errors for 31 taxa, 12 plant functional types and 3 land-cover types. REVEALS results are reliant on the quality of the input datasets.
Sandy P. Harrison, Roberto Villegas-Diaz, Esmeralda Cruz-Silva, Daniel Gallagher, David Kesner, Paul Lincoln, Yicheng Shen, Luke Sweeney, Daniele Colombaroli, Adam Ali, Chéïma Barhoumi, Yves Bergeron, Tatiana Blyakharchuk, Přemysl Bobek, Richard Bradshaw, Jennifer L. Clear, Sambor Czerwiński, Anne-Laure Daniau, John Dodson, Kevin J. Edwards, Mary E. Edwards, Angelica Feurdean, David Foster, Konrad Gajewski, Mariusz Gałka, Michelle Garneau, Thomas Giesecke, Graciela Gil Romera, Martin P. Girardin, Dana Hoefer, Kangyou Huang, Jun Inoue, Eva Jamrichová, Nauris Jasiunas, Wenying Jiang, Gonzalo Jiménez-Moreno, Monika Karpińska-Kołaczek, Piotr Kołaczek, Niina Kuosmanen, Mariusz Lamentowicz, Martin Lavoie, Fang Li, Jianyong Li, Olga Lisitsyna, José Antonio López-Sáez, Reyes Luelmo-Lautenschlaeger, Gabriel Magnan, Eniko Katalin Magyari, Alekss Maksims, Katarzyna Marcisz, Elena Marinova, Jenn Marlon, Scott Mensing, Joanna Miroslaw-Grabowska, Wyatt Oswald, Sebastián Pérez-Díaz, Ramón Pérez-Obiol, Sanna Piilo, Anneli Poska, Xiaoguang Qin, Cécile C. Remy, Pierre J. H. Richard, Sakari Salonen, Naoko Sasaki, Hieke Schneider, William Shotyk, Migle Stancikaite, Dace Šteinberga, Normunds Stivrins, Hikaru Takahara, Zhihai Tan, Liva Trasune, Charles E. Umbanhowar, Minna Väliranta, Jüri Vassiljev, Xiayun Xiao, Qinghai Xu, Xin Xu, Edyta Zawisza, Yan Zhao, Zheng Zhou, and Jordan Paillard
Earth Syst. Sci. Data, 14, 1109–1124, https://doi.org/10.5194/essd-14-1109-2022, https://doi.org/10.5194/essd-14-1109-2022, 2022
Short summary
Short summary
We provide a new global data set of charcoal preserved in sediments that can be used to examine how fire regimes have changed during past millennia and to investigate what caused these changes. The individual records have been standardised, and new age models have been constructed to allow better comparison across sites. The data set contains 1681 records from 1477 sites worldwide.
Basil A. S. Davis, Manuel Chevalier, Philipp Sommer, Vachel A. Carter, Walter Finsinger, Achille Mauri, Leanne N. Phelps, Marco Zanon, Roman Abegglen, Christine M. Åkesson, Francisca Alba-Sánchez, R. Scott Anderson, Tatiana G. Antipina, Juliana R. Atanassova, Ruth Beer, Nina I. Belyanina, Tatiana A. Blyakharchuk, Olga K. Borisova, Elissaveta Bozilova, Galina Bukreeva, M. Jane Bunting, Eleonora Clò, Daniele Colombaroli, Nathalie Combourieu-Nebout, Stéphanie Desprat, Federico Di Rita, Morteza Djamali, Kevin J. Edwards, Patricia L. Fall, Angelica Feurdean, William Fletcher, Assunta Florenzano, Giulia Furlanetto, Emna Gaceur, Arsenii T. Galimov, Mariusz Gałka, Iria García-Moreiras, Thomas Giesecke, Roxana Grindean, Maria A. Guido, Irina G. Gvozdeva, Ulrike Herzschuh, Kari L. Hjelle, Sergey Ivanov, Susanne Jahns, Vlasta Jankovska, Gonzalo Jiménez-Moreno, Monika Karpińska-Kołaczek, Ikuko Kitaba, Piotr Kołaczek, Elena G. Lapteva, Małgorzata Latałowa, Vincent Lebreton, Suzanne Leroy, Michelle Leydet, Darya A. Lopatina, José Antonio López-Sáez, André F. Lotter, Donatella Magri, Elena Marinova, Isabelle Matthias, Anastasia Mavridou, Anna Maria Mercuri, Jose Manuel Mesa-Fernández, Yuri A. Mikishin, Krystyna Milecka, Carlo Montanari, César Morales-Molino, Almut Mrotzek, Castor Muñoz Sobrino, Olga D. Naidina, Takeshi Nakagawa, Anne Birgitte Nielsen, Elena Y. Novenko, Sampson Panajiotidis, Nata K. Panova, Maria Papadopoulou, Heather S. Pardoe, Anna Pędziszewska, Tatiana I. Petrenko, María J. Ramos-Román, Cesare Ravazzi, Manfred Rösch, Natalia Ryabogina, Silvia Sabariego Ruiz, J. Sakari Salonen, Tatyana V. Sapelko, James E. Schofield, Heikki Seppä, Lyudmila Shumilovskikh, Normunds Stivrins, Philipp Stojakowits, Helena Svobodova Svitavska, Joanna Święta-Musznicka, Ioan Tantau, Willy Tinner, Kazimierz Tobolski, Spassimir Tonkov, Margarita Tsakiridou, Verushka Valsecchi, Oksana G. Zanina, and Marcelina Zimny
Earth Syst. Sci. Data, 12, 2423–2445, https://doi.org/10.5194/essd-12-2423-2020, https://doi.org/10.5194/essd-12-2423-2020, 2020
Short summary
Short summary
The Eurasian Modern Pollen Database (EMPD) contains pollen counts and associated metadata for 8134 modern pollen samples from across the Eurasian region. The EMPD is part of, and complementary to, the European Pollen Database (EPD) which contains data on fossil pollen found in Late Quaternary sedimentary archives. The purpose of the EMPD is to provide calibration datasets and other data to support palaeoecological research on past climates and vegetation cover over the Quaternary period.
Lisa Claire Orme, Xavier Crosta, Arto Miettinen, Dmitry V. Divine, Katrine Husum, Elisabeth Isaksson, Lukas Wacker, Rahul Mohan, Olivier Ther, and Minoru Ikehara
Clim. Past, 16, 1451–1467, https://doi.org/10.5194/cp-16-1451-2020, https://doi.org/10.5194/cp-16-1451-2020, 2020
Short summary
Short summary
A record of past sea temperature in the Indian sector of the Southern Ocean, spanning the last 14 200 years, has been developed by analysis of fossil diatoms in marine sediment. During the late deglaciation the reconstructed temperature changes were highly similar to those over Antarctica, most likely due to a reorganisation of global ocean and atmospheric circulation. During the last 11 600 years temperatures gradually cooled and became increasingly variable.
Angelica Feurdean, Boris Vannière, Walter Finsinger, Dan Warren, Simon C. Connor, Matthew Forrest, Johan Liakka, Andrei Panait, Christian Werner, Maja Andrič, Premysl Bobek, Vachel A. Carter, Basil Davis, Andrei-Cosmin Diaconu, Elisabeth Dietze, Ingo Feeser, Gabriela Florescu, Mariusz Gałka, Thomas Giesecke, Susanne Jahns, Eva Jamrichová, Katarzyna Kajukało, Jed Kaplan, Monika Karpińska-Kołaczek, Piotr Kołaczek, Petr Kuneš, Dimitry Kupriyanov, Mariusz Lamentowicz, Carsten Lemmen, Enikö K. Magyari, Katarzyna Marcisz, Elena Marinova, Aidin Niamir, Elena Novenko, Milena Obremska, Anna Pędziszewska, Mirjam Pfeiffer, Anneli Poska, Manfred Rösch, Michal Słowiński, Miglė Stančikaitė, Marta Szal, Joanna Święta-Musznicka, Ioan Tanţău, Martin Theuerkauf, Spassimir Tonkov, Orsolya Valkó, Jüri Vassiljev, Siim Veski, Ildiko Vincze, Agnieszka Wacnik, Julian Wiethold, and Thomas Hickler
Biogeosciences, 17, 1213–1230, https://doi.org/10.5194/bg-17-1213-2020, https://doi.org/10.5194/bg-17-1213-2020, 2020
Short summary
Short summary
Our study covers the full Holocene (the past 11 500 years) climate variability and vegetation composition and provides a test on how vegetation and climate interact to determine fire hazard. An important implication of this test is that percentage of tree cover can be used as a predictor of the probability of fire occurrence. Biomass burned is highest at ~ 45 % tree cover in temperate forests and at ~ 60–65 % tree cover in needleleaf-dominated forests.
Alexander Kurganskiy, Carsten Ambelas Skjøth, Alexander Baklanov, Mikhail Sofiev, Annika Saarto, Elena Severova, Sergei Smyshlyaev, and Eigil Kaas
Atmos. Chem. Phys., 20, 2099–2121, https://doi.org/10.5194/acp-20-2099-2020, https://doi.org/10.5194/acp-20-2099-2020, 2020
Short summary
Short summary
The aim of the study was to evaluate three birch pollen source maps using a state-of-the-art atmospheric model Enviro-HIRLAM. Enviro-HIRLAM is a so-called online model where both weather and air pollution are calculated at all time steps.
The evaluation has been performed for 12 pollen observation sites located in Denmark, Finland, and Russia.
Liisa Ilvonen, José Antonio López-Sáez, Lasse Holmström, Francisca Alba-Sánchez, Sebastián Pérez-Díaz, José S. Carrión, and Heikki Seppä
Clim. Past Discuss., https://doi.org/10.5194/cp-2019-33, https://doi.org/10.5194/cp-2019-33, 2019
Revised manuscript not accepted
Short summary
Short summary
In the Iberian Peninsula, precipitation is a key driver of vegetation changes. Here, we use a pollen-climate calibration set and fossil pollen data from seven sites in Spain to reconstruct annual precipitation values for the last 15 000 years using two different quantitative methods. The results suggest that the precipitation changes have occurred in pace with the temperature changes in northern Europe, with warm periods in the North corresponding with humid periods in the Iberian Peninsula.
Michael Boy, Erik S. Thomson, Juan-C. Acosta Navarro, Olafur Arnalds, Ekaterina Batchvarova, Jaana Bäck, Frank Berninger, Merete Bilde, Zoé Brasseur, Pavla Dagsson-Waldhauserova, Dimitri Castarède, Maryam Dalirian, Gerrit de Leeuw, Monika Dragosics, Ella-Maria Duplissy, Jonathan Duplissy, Annica M. L. Ekman, Keyan Fang, Jean-Charles Gallet, Marianne Glasius, Sven-Erik Gryning, Henrik Grythe, Hans-Christen Hansson, Margareta Hansson, Elisabeth Isaksson, Trond Iversen, Ingibjorg Jonsdottir, Ville Kasurinen, Alf Kirkevåg, Atte Korhola, Radovan Krejci, Jon Egill Kristjansson, Hanna K. Lappalainen, Antti Lauri, Matti Leppäranta, Heikki Lihavainen, Risto Makkonen, Andreas Massling, Outi Meinander, E. Douglas Nilsson, Haraldur Olafsson, Jan B. C. Pettersson, Nønne L. Prisle, Ilona Riipinen, Pontus Roldin, Meri Ruppel, Matthew Salter, Maria Sand, Øyvind Seland, Heikki Seppä, Henrik Skov, Joana Soares, Andreas Stohl, Johan Ström, Jonas Svensson, Erik Swietlicki, Ksenia Tabakova, Throstur Thorsteinsson, Aki Virkkula, Gesa A. Weyhenmeyer, Yusheng Wu, Paul Zieger, and Markku Kulmala
Atmos. Chem. Phys., 19, 2015–2061, https://doi.org/10.5194/acp-19-2015-2019, https://doi.org/10.5194/acp-19-2015-2019, 2019
Short summary
Short summary
The Nordic Centre of Excellence CRAICC (Cryosphere–Atmosphere Interactions in a Changing Arctic Climate), funded by NordForsk in the years 2011–2016, is the largest joint Nordic research and innovation initiative to date and aimed to strengthen research and innovation regarding climate change issues in the Nordic region. The paper presents an overview of the main scientific topics investigated and provides a state-of-the-art comprehensive summary of what has been achieved in CRAICC.
Bernhard Aichner, Florian Ott, Michał Słowiński, Agnieszka M. Noryśkiewicz, Achim Brauer, and Dirk Sachse
Clim. Past, 14, 1607–1624, https://doi.org/10.5194/cp-14-1607-2018, https://doi.org/10.5194/cp-14-1607-2018, 2018
Short summary
Short summary
Abundances of plant biomarkers are compared with pollen data in a 3000-year climate archive covering the Late Glacial to Holocene transition in northern Poland. Both parameters synchronously show the rapid onset (12680–12600 yr BP) and termination
(11580–11490 yr BP) of the Younger Dryas cold interval in the study area. This demonstrates the suitability of such proxies to record pronounced changes in vegetation cover without significant delay.
Dimitri Osmont, Isabel A. Wendl, Loïc Schmidely, Michael Sigl, Carmen P. Vega, Elisabeth Isaksson, and Margit Schwikowski
Atmos. Chem. Phys., 18, 12777–12795, https://doi.org/10.5194/acp-18-12777-2018, https://doi.org/10.5194/acp-18-12777-2018, 2018
Short summary
Short summary
This study presents the first long-term and high-resolution refractory black carbon (rBC) ice core record from Svalbard, spanning the last 800 years. Our results show that rBC has had a predominant anthropogenic origin since the beginning of the Industrial Revolution in Europe and that rBC concentrations have been declining in the last 40 years. We discuss the impact of 20th century snowmelt on our record. We reconstruct biomass burning trends prior to 1800 by using a multi-proxy approach.
Mackenzie M. Grieman, Murat Aydin, Elisabeth Isaksson, Margit Schwikowski, and Eric S. Saltzman
Clim. Past, 14, 637–651, https://doi.org/10.5194/cp-14-637-2018, https://doi.org/10.5194/cp-14-637-2018, 2018
Short summary
Short summary
This study presents organic acid levels in an ice core from Svalbard over the past 800 years. These acids are produced from wildfire emissions and transported as aerosol. Organic acid levels are high early in the record and decline until the 20th century. Siberia and Europe are likely the primary source regions of the fire emissions. The data are similar to those from a Siberian ice core prior to 1400 CE. The timing of the divergence after 1400 CE is similar to a shift in North Atlantic climate.
Carmen Paulina Vega, Elisabeth Isaksson, Elisabeth Schlosser, Dmitry Divine, Tõnu Martma, Robert Mulvaney, Anja Eichler, and Margit Schwikowski-Gigar
The Cryosphere, 12, 1681–1697, https://doi.org/10.5194/tc-12-1681-2018, https://doi.org/10.5194/tc-12-1681-2018, 2018
Short summary
Short summary
Ions were measured in firn and ice cores from Fimbul Ice Shelf, Antarctica, to evaluate sea-salt loads. A significant sixfold increase in sea salts was found in the S100 core after 1950s which suggests that it contains a more local sea-salt signal, dominated by processes during sea-ice formation in the neighbouring waters. In contrast, firn cores from three ice rises register the larger-scale signal of atmospheric flow conditions and transport of sea-salt aerosols produced over open water.
Barbara Stenni, Mark A. J. Curran, Nerilie J. Abram, Anais Orsi, Sentia Goursaud, Valerie Masson-Delmotte, Raphael Neukom, Hugues Goosse, Dmitry Divine, Tas van Ommen, Eric J. Steig, Daniel A. Dixon, Elizabeth R. Thomas, Nancy A. N. Bertler, Elisabeth Isaksson, Alexey Ekaykin, Martin Werner, and Massimo Frezzotti
Clim. Past, 13, 1609–1634, https://doi.org/10.5194/cp-13-1609-2017, https://doi.org/10.5194/cp-13-1609-2017, 2017
Short summary
Short summary
Within PAGES Antarctica2k, we build an enlarged database of ice core water stable isotope records. We produce isotopic composites and temperature reconstructions since 0 CE for seven distinct Antarctic regions. We find a significant cooling trend from 0 to 1900 CE across all regions. Since 1900 CE, significant warming trends are identified for three regions. Only for the Antarctic Peninsula is this most recent century-scale trend unusual in the context of last-2000-year natural variability.
Elizabeth R. Thomas, J. Melchior van Wessem, Jason Roberts, Elisabeth Isaksson, Elisabeth Schlosser, Tyler J. Fudge, Paul Vallelonga, Brooke Medley, Jan Lenaerts, Nancy Bertler, Michiel R. van den Broeke, Daniel A. Dixon, Massimo Frezzotti, Barbara Stenni, Mark Curran, and Alexey A. Ekaykin
Clim. Past, 13, 1491–1513, https://doi.org/10.5194/cp-13-1491-2017, https://doi.org/10.5194/cp-13-1491-2017, 2017
Short summary
Short summary
Regional Antarctic snow accumulation derived from 79 ice core records is evaluated as part of the PAGES Antarctica 2k working group. Our results show that surface mass balance for the total Antarctic ice sheet has increased at a rate of 7 ± 0.13 Gt dec-1 since 1800 AD, representing a net reduction in sea level of ~ 0.02 mm dec-1 since 1800 and ~ 0.04 mm dec-1 since 1900 AD. The largest contribution is from the Antarctic Peninsula.
Meri M. Ruppel, Joana Soares, Jean-Charles Gallet, Elisabeth Isaksson, Tõnu Martma, Jonas Svensson, Jack Kohler, Christina A. Pedersen, Sirkku Manninen, Atte Korhola, and Johan Ström
Atmos. Chem. Phys., 17, 12779–12795, https://doi.org/10.5194/acp-17-12779-2017, https://doi.org/10.5194/acp-17-12779-2017, 2017
Short summary
Short summary
Black carbon (BC) deposition enhances Arctic warming and melting. We present Svalbard ice core BC data from 2005 to 2015, comparing the results with chemical transport model data. The ice core and modelled BC deposition trends clearly deviate from measured and observed atmospheric concentration trends, and thus meteorological processes such as precipitation and scavenging efficiency seem to have a stronger influence on the BC deposition trend than BC emission or atmospheric concentration trends.
Carmen P. Vega, Elisabeth Schlosser, Dmitry V. Divine, Jack Kohler, Tõnu Martma, Anja Eichler, Margit Schwikowski, and Elisabeth Isaksson
The Cryosphere, 10, 2763–2777, https://doi.org/10.5194/tc-10-2763-2016, https://doi.org/10.5194/tc-10-2763-2016, 2016
Short summary
Short summary
Surface mass balance and water stable isotopes from firn cores on three ice rises at Fimbul Ice Shelf are reported. The results suggest that the ice rises are suitable sites for the retrieval of longer firn and ice cores. The first deuterium excess data for the area suggests a possible role of seasonal moisture transport changes on the annual isotopic signal. Large-scale atmospheric circulation patterns most likely provide the dominant influence on water stable isotope ratios at the sites.
Carmen P. Vega, Veijo A. Pohjola, Emilie Beaudon, Björn Claremar, Ward J. J. van Pelt, Rickard Pettersson, Elisabeth Isaksson, Tõnu Martma, Margit Schwikowski, and Carl E. Bøggild
The Cryosphere, 10, 961–976, https://doi.org/10.5194/tc-10-961-2016, https://doi.org/10.5194/tc-10-961-2016, 2016
Short summary
Short summary
To quantify post-depositional relocation of major ions by meltwater in snow and firn at Lomonosovfonna, Svalbard, consecutive ice cores drilled at this site were used to construct a synthetic core. The relocation length of most of the ions was on the order of 1 m between 2007 and 2010. Considering the ionic relocation lengths and annual melt percentages, we estimate that the atmospheric ionic signal remains preserved in recently drilled Lomonosovfonna ice cores at an annual or bi-annual resolution.
Yurui Zhang, Hans Renssen, and Heikki Seppä
Clim. Past, 12, 1119–1135, https://doi.org/10.5194/cp-12-1119-2016, https://doi.org/10.5194/cp-12-1119-2016, 2016
Short summary
Short summary
We explore how forcings contributed to climate change during the early Holocene that marked the final transition to the warm and stable stage. Our results indicate that 1) temperature at the Holocene onset was lower than in the preindustrial over the northern extratropics with the exception in Alaska, and the magnitude of this cooling varies regionally as a response to varying climate forcings and diverse mechanisms, and 2) the rate of the early Holocene warming was also spatially heterogeneous.
M. Sofiev, U. Berger, M. Prank, J. Vira, J. Arteta, J. Belmonte, K.-C. Bergmann, F. Chéroux, H. Elbern, E. Friese, C. Galan, R. Gehrig, D. Khvorostyanov, R. Kranenburg, U. Kumar, V. Marécal, F. Meleux, L. Menut, A.-M. Pessi, L. Robertson, O. Ritenberga, V. Rodinkova, A. Saarto, A. Segers, E. Severova, I. Sauliene, P. Siljamo, B. M. Steensen, E. Teinemaa, M. Thibaudon, and V.-H. Peuch
Atmos. Chem. Phys., 15, 8115–8130, https://doi.org/10.5194/acp-15-8115-2015, https://doi.org/10.5194/acp-15-8115-2015, 2015
Short summary
Short summary
The paper presents the first ensemble modelling experiment for forecasting the atmospheric dispersion of birch pollen in Europe. The study included 7 models of MACC-ENS tested over the season of 2010 and applied for 2013 in forecasting and reanalysis modes. The results were compared with observations in 11 countries, members of European Aeroallergen Network. The models successfully reproduced the timing of the unusually late season of 2013 but had more difficulties with absolute concentration.
I. A. Wendl, A. Eichler, E. Isaksson, T. Martma, and M. Schwikowski
Atmos. Chem. Phys., 15, 7287–7300, https://doi.org/10.5194/acp-15-7287-2015, https://doi.org/10.5194/acp-15-7287-2015, 2015
Short summary
Short summary
Nitrate and ammonium ice core records from Lomonosovfonna, Svalbard, indicated anthropogenic pollution from Eurasia as major source during the 20th century. In pre-industrial times nitrate is correlated with methane sulfonate, which we explain with a fertilising effect, presumably triggered by enhanced atmospheric nitrogen input to the ocean. Eurasia was likely the main source area also of pre-industrial nitrate, but for ammonium, biogenic emissions from Siberian boreal forests were dominant.
S. Altnau, E. Schlosser, E. Isaksson, and D. Divine
The Cryosphere, 9, 925–944, https://doi.org/10.5194/tc-9-925-2015, https://doi.org/10.5194/tc-9-925-2015, 2015
Short summary
Short summary
The first comprehensive study of a set of 76 firn cores in Dronning Maud Land was carried out. The δ18O of both the plateau and the ice shelf cores exhibit a slight positive trend over the second half of the 20th century. The SMB has a negative trend in the ice shelf cores, but increases on the plateau. Comparison with meteorological data revealed that for the ice shelf regions, atmospheric dynamic effects are more important, while on the plateau, thermodynamic effects predominate.
M. M. Ruppel, E. Isaksson, J. Ström, E. Beaudon, J. Svensson, C. A. Pedersen, and A. Korhola
Atmos. Chem. Phys., 14, 11447–11460, https://doi.org/10.5194/acp-14-11447-2014, https://doi.org/10.5194/acp-14-11447-2014, 2014
A. Spolaor, P. Vallelonga, J. Gabrieli, T. Martma, M. P. Björkman, E. Isaksson, G. Cozzi, C. Turetta, H. A. Kjær, M. A. J. Curran, A. D. Moy, A. Schönhardt, A.-M. Blechschmidt, J. P. Burrows, J. M. C. Plane, and C. Barbante
Atmos. Chem. Phys., 14, 9613–9622, https://doi.org/10.5194/acp-14-9613-2014, https://doi.org/10.5194/acp-14-9613-2014, 2014
H. S. Sundqvist, D. S. Kaufman, N. P. McKay, N. L. Balascio, J. P. Briner, L. C. Cwynar, H. P. Sejrup, H. Seppä, D. A. Subetto, J. T. Andrews, Y. Axford, J. Bakke, H. J. B. Birks, S. J. Brooks, A. de Vernal, A. E. Jennings, F. C. Ljungqvist, K. M. Rühland, C. Saenger, J. P. Smol, and A. E. Viau
Clim. Past, 10, 1605–1631, https://doi.org/10.5194/cp-10-1605-2014, https://doi.org/10.5194/cp-10-1605-2014, 2014
N. Korhonen, A. Venäläinen, H. Seppä, and H. Järvinen
Clim. Past, 10, 1489–1500, https://doi.org/10.5194/cp-10-1489-2014, https://doi.org/10.5194/cp-10-1489-2014, 2014
G. Strandberg, E. Kjellström, A. Poska, S. Wagner, M.-J. Gaillard, A.-K. Trondman, A. Mauri, B. A. S. Davis, J. O. Kaplan, H. J. B. Birks, A. E. Bjune, R. Fyfe, T. Giesecke, L. Kalnina, M. Kangur, W. O. van der Knaap, U. Kokfelt, P. Kuneš, M. Lata\l owa, L. Marquer, F. Mazier, A. B. Nielsen, B. Smith, H. Seppä, and S. Sugita
Clim. Past, 10, 661–680, https://doi.org/10.5194/cp-10-661-2014, https://doi.org/10.5194/cp-10-661-2014, 2014
A. Spolaor, J. Gabrieli, T. Martma, J. Kohler, M. B. Björkman, E. Isaksson, C. Varin, P. Vallelonga, J. M. C. Plane, and C. Barbante
The Cryosphere, 7, 1645–1658, https://doi.org/10.5194/tc-7-1645-2013, https://doi.org/10.5194/tc-7-1645-2013, 2013
W. J. J. van Pelt, J. Oerlemans, C. H. Reijmer, R. Pettersson, V. A. Pohjola, E. Isaksson, and D. Divine
The Cryosphere, 7, 987–1006, https://doi.org/10.5194/tc-7-987-2013, https://doi.org/10.5194/tc-7-987-2013, 2013
Related subject area
Biodiversity and Ecosystem Function: Terrestrial
On the predictability of turbulent fluxes from land: PLUMBER2 MIP experimental description and preliminary results
Crowd-sourced trait data can be used to delimit global biomes
Biomass yield potential, feedstock quality, and nutrient removal of perennial buffer strips under continuous zero fertilizer application
Leaf habit drives leaf nutrient resorption globally alongside nutrient availability and climate
Linking geomorphological processes and wildlife microhabitat selection: nesting birds select refuges generated by permafrost degradation in the Arctic
Distinguishing mature and immature trees allows estimating forest carbon uptake from stand structure
Enhancing environmental models with a new downscaling method for global radiation in complex terrain
“Blooming” of litter-mixing effects: the role of flower and leaf litter interactions on decomposition in terrestrial and aquatic ecosystems
Combined effects of topography, soil moisture and snow cover regimes on growth responses of grasslands in a low mountain range (Vosges, France)
From simple labels to semantic image segmentation: leveraging citizen science plant photographs for tree species mapping in drone imagery
Plant functional traits modulate the effects of soil acidification on above- and belowground biomass
Regional effects and local climate jointly shape the global distribution of sexual systems in woody flowering plants
Ideas and perspectives: Sensing energy and matter fluxes in a biota-dominated Patagonian landscape through environmental seismology – introducing the Pumalín Critical Zone Observatory
Comparison of carbon and water fluxes and the drivers of ecosystem water use efficiency in a temperate rainforest and a peatland in southern South America
Kilometre-scale simulations over Fennoscandia reveal a large loss of tundra due to climate warming
Microclimate mapping using novel radiative transfer modelling
Root distributions predict shrub–steppe responses to precipitation intensity
Thermophilisation of Afromontane forest stands demonstrated in an elevation gradient experiment
Soil smoldering in temperate forests: A neglected contributor to fire carbon emissions revealed by atmospheric mixing ratios
Above-treeline ecosystems facing drought: lessons from the 2022 European summer heat wave
Canopy gaps and associated losses of biomass – combining UAV imagery and field data in a central Amazon forest
Ideas and perspectives: Beyond model evaluation – combining experiments and models to advance terrestrial ecosystem science
Primary succession and its driving variables – a sphere-spanning approach applied in proglacial areas in the upper Martell Valley (Eastern Italian Alps)
Contemporary biodiversity pattern is affected by climate change at multiple temporal scales in steppes on the Mongolian Plateau
Quantifying vegetation indices using terrestrial laser scanning: methodological complexities and ecological insights from a Mediterranean forest
Revisiting and attributing the global controls over terrestrial ecosystem functions of climate and plant traits at FLUXNET sites via causal graphical models
Dynamics of short-term ecosystem carbon fluxes induced by precipitation events in a semiarid grassland
Throughfall exclusion and fertilization effects on tropical dry forest tree plantations, a large-scale experiment
Tectonic controls on the ecosystem of the Mara River basin, East Africa, from geomorphological and spectral index analysis
Spruce bark beetles (Ips typographus) cause up to 700 times higher bark BVOC emission rates compared to healthy Norway spruce (Picea abies)
Technical note: Novel estimates of the leaf relative uptake rate of carbonyl sulfide from optimality theory
Observed water and light limitation across global ecosystems
A question of scale: modeling biomass, gain and mortality distributions of a tropical forest
Seed traits and phylogeny explain plants' geographic distribution
Effect of the presence of plateau pikas on the ecosystem services of alpine meadows
Allometric equations and wood density parameters for estimating aboveground and woody debris biomass in Cajander larch (Larix cajanderi) forests of northeast Siberia
Strong influence of trees outside forest in regulating microclimate of intensively modified Afromontane landscapes
Excess radiation exacerbates drought stress impacts on canopy conductance along aridity gradients
Dispersal of bacteria and stimulation of permafrost decomposition by Collembola
Modeling the effects of alternative crop–livestock management scenarios on important ecosystem services for smallholder farming from a landscape perspective
Contrasting strategies of nutrient demand and use between savanna and forest ecosystems in a neotropical transition zone
Monitoring post-fire recovery of various vegetation biomes using multi-wavelength satellite remote sensing
Updated estimation of forest biomass carbon pools in China, 1977–2018
Estimating dry biomass and plant nitrogen concentration in pre-Alpine grasslands with low-cost UAS-borne multispectral data – a comparison of sensors, algorithms, and predictor sets
Fire in lichen-rich subarctic tundra changes carbon and nitrogen cycling between ecosystem compartments but has minor effects on stocks
Mass concentration measurements of autumn bioaerosol using low-cost sensors in a mature temperate woodland free-air carbon dioxide enrichment (FACE) experiment: investigating the role of meteorology and carbon dioxide levels
Phosphorus stress strongly reduced plant physiological activity, but only temporarily, in a mesocosm experiment with Zea mays colonized by arbuscular mycorrhizal fungi
Main drivers of plant diversity patterns of rubber plantations in the Greater Mekong Subregion
Importance of the forest state in estimating biomass losses from tropical forests: combining dynamic forest models and remote sensing
Examining the role of environmental memory in the predictability of carbon and water fluxes across Australian ecosystems
Gab Abramowitz, Anna Ukkola, Sanaa Hobeichi, Jon Cranko Page, Mathew Lipson, Martin G. De Kauwe, Samuel Green, Claire Brenner, Jonathan Frame, Grey Nearing, Martyn Clark, Martin Best, Peter Anthoni, Gabriele Arduini, Souhail Boussetta, Silvia Caldararu, Kyeungwoo Cho, Matthias Cuntz, David Fairbairn, Craig R. Ferguson, Hyungjun Kim, Yeonjoo Kim, Jürgen Knauer, David Lawrence, Xiangzhong Luo, Sergey Malyshev, Tomoko Nitta, Jerome Ogee, Keith Oleson, Catherine Ottlé, Phillipe Peylin, Patricia de Rosnay, Heather Rumbold, Bob Su, Nicolas Vuichard, Anthony P. Walker, Xiaoni Wang-Faivre, Yunfei Wang, and Yijian Zeng
Biogeosciences, 21, 5517–5538, https://doi.org/10.5194/bg-21-5517-2024, https://doi.org/10.5194/bg-21-5517-2024, 2024
Short summary
Short summary
This paper evaluates land models – computer-based models that simulate ecosystem dynamics; land carbon, water, and energy cycles; and the role of land in the climate system. It uses machine learning and AI approaches to show that, despite the complexity of land models, they do not perform nearly as well as they could given the amount of information they are provided with about the prediction problem.
Simon Scheiter, Sophie Wolf, and Teja Kattenborn
Biogeosciences, 21, 4909–4926, https://doi.org/10.5194/bg-21-4909-2024, https://doi.org/10.5194/bg-21-4909-2024, 2024
Short summary
Short summary
Biomes are widely used to map vegetation patterns at large spatial scales and to assess impacts of climate change, yet there is no consensus on a generally valid biome classification scheme. We used crowd-sourced species distribution data and trait data to assess whether trait information is suitable for delimiting biomes. Although the trait data were heterogeneous and had large gaps with respect to the spatial distribution, we found that a global trait-based biome classification was possible.
Cheng-Hsien Lin, Colleen Zumpf, Chunhwa Jang, Thomas Voigt, Guanglong Tian, Olawale Oladeji, Albert Cox, Rehnuma Mehzabin, and DoKyoung Lee
Biogeosciences, 21, 4765–4784, https://doi.org/10.5194/bg-21-4765-2024, https://doi.org/10.5194/bg-21-4765-2024, 2024
Short summary
Short summary
Riparian areas are subject to environmental issues (nutrient leaching) associated with low productivity. Perennial grasses can improve ecosystem services from riparian zones while producing forage/bioenergy feedstock biomass as potential income for farmers. The forage-type buffer can be an ideal short-term candidate due to its great efficiency of nutrient scavenging; the bioenergy-type buffer showed better sustainability than the forage buffer and a continuous yield supply potential.
Gabriela Sophia, Silvia Caldararu, Benjamin David Stocker, and Sönke Zaehle
Biogeosciences, 21, 4169–4193, https://doi.org/10.5194/bg-21-4169-2024, https://doi.org/10.5194/bg-21-4169-2024, 2024
Short summary
Short summary
Through an extensive global dataset of leaf nutrient resorption and a multifactorial analysis, we show that the majority of spatial variation in nutrient resorption may be driven by leaf habit and type, with thicker, longer-lived leaves having lower resorption efficiencies. Climate, soil fertility and soil-related factors emerge as strong drivers with an additional effect on its role. These results are essential for comprehending plant nutrient status, plant productivity and nutrient cycling.
Madeleine-Zoé Corbeil-Robitaille, Éliane Duchesne, Daniel Fortier, Christophe Kinnard, and Joël Bêty
Biogeosciences, 21, 3401–3423, https://doi.org/10.5194/bg-21-3401-2024, https://doi.org/10.5194/bg-21-3401-2024, 2024
Short summary
Short summary
In the Arctic tundra, climate change is transforming the landscape, and this may impact wildlife. We focus on three nesting bird species and the islets they select as refuges from their main predator, the Arctic fox. A geomorphological process, ice-wedge polygon degradation, was found to play a key role in creating these refuges. This process is likely to affect predator–prey dynamics in the Arctic tundra, highlighting the connections between nature's physical and ecological systems.
Samuel M. Fischer, Xugao Wang, and Andreas Huth
Biogeosciences, 21, 3305–3319, https://doi.org/10.5194/bg-21-3305-2024, https://doi.org/10.5194/bg-21-3305-2024, 2024
Short summary
Short summary
Understanding the drivers of forest productivity is key for accurately assessing forests’ role in the global carbon cycle. Yet, despite significant research effort, it is not fully understood how the productivity of a forest can be deduced from its stand structure. We suggest tackling this problem by identifying the share and structure of immature trees within forests and show that this approach could significantly improve estimates of forests’ net productivity and carbon uptake.
Arsène Druel, Julien Ruffault, Hendrik Davi, André Chanzy, Olivier Marloie, Miquel De Cáceres, Florent Mouillot, Christophe François, Kamel Soudani, and Nicolas K. Martin-StPaul
EGUsphere, https://doi.org/10.5194/egusphere-2024-1800, https://doi.org/10.5194/egusphere-2024-1800, 2024
Short summary
Short summary
Accurate radiation data are essential for understanding ecosystem growth. Traditional large-scale data lack the precision needed for complex terrains, e.g. mountainous regions. This study introduces a new model to enhance radiation data resolution using elevation maps, which accounts for sub-daily direct and diffuse radiation effects caused by terrain features. Tested on Mont Ventoux, this method significantly improves radiation estimates, benefiting forest growth and climate risk models.
Mery Ingrid Guimarães de Alencar, Rafael D. Guariento, Bertrand Guenet, Luciana S. Carneiro, Eduardo L. Voigt, and Adriano Caliman
Biogeosciences, 21, 3165–3182, https://doi.org/10.5194/bg-21-3165-2024, https://doi.org/10.5194/bg-21-3165-2024, 2024
Short summary
Short summary
Flowers are ephemeral organs for reproduction, and their litter is functionally different from leaf litter. Flowers can affect decomposition and interact with leaf litter, influencing decomposition non-additively. We show that mixing flower and leaf litter from the Tabebuia aurea tree creates reciprocal synergistic effects on decomposition in both terrestrial and aquatic environments. We highlight that flower litter input can generate biogeochemical hotspots in terrestrial ecosystems.
Pierre-Alexis Herrault, Albin Ullmann, and Damien Ertlen
EGUsphere, https://doi.org/10.5194/egusphere-2024-1935, https://doi.org/10.5194/egusphere-2024-1935, 2024
Short summary
Short summary
Mountain grasslands are impacted by Climate Change and need to adapt. Low mountain grasslands are poorly understood compared to High Mountains massif. Thanks to satellite archives, we found that grasslands occurring in the Vosges Mountains (France) exhibited stable productivity or tended to decrease in specific regions of the massif, a reverse signal observed in High Mountains massif. We also noted a high responsiveness in their growth strategy to soil moisture, snow regimes and topography.
Salim Soltani, Olga Ferlian, Nico Eisenhauer, Hannes Feilhauer, and Teja Kattenborn
Biogeosciences, 21, 2909–2935, https://doi.org/10.5194/bg-21-2909-2024, https://doi.org/10.5194/bg-21-2909-2024, 2024
Short summary
Short summary
In this research, we developed a novel method using citizen science data as alternative training data for computer vision models to map plant species in unoccupied aerial vehicle (UAV) images. We use citizen science plant photographs to train models and apply them to UAV images. We tested our approach on UAV images of a test site with 10 different tree species, yielding accurate results. This research shows the potential of citizen science data to advance our ability to monitor plant species.
Xue Feng, Ruzhen Wang, Tianpeng Li, Jiangping Cai, Heyong Liu, Hui Li, and Yong Jiang
Biogeosciences, 21, 2641–2653, https://doi.org/10.5194/bg-21-2641-2024, https://doi.org/10.5194/bg-21-2641-2024, 2024
Short summary
Short summary
Plant functional traits have been considered as reflecting adaptations to environmental variations, indirectly affecting ecosystem productivity. How soil acidification affects above- and belowground biomass by altering leaf and root traits remains poorly understood. We found divergent trait responses driven by soil environmental conditions in two dominant species, resulting in a decrease in aboveground biomass and an increase in belowground biomass.
Minhua Zhang, Xiaoqing Hu, and Fangliang He
Biogeosciences, 21, 2133–2142, https://doi.org/10.5194/bg-21-2133-2024, https://doi.org/10.5194/bg-21-2133-2024, 2024
Short summary
Short summary
Plant sexual systems are important to understanding the evolution and maintenance of plant diversity. We quantified region effects on their proportions while incorporating local climate factors and evolutionary history. We found regional processes and climate effects both play important roles in shaping the geographic distribution of sexual systems, providing a baseline for predicting future changes in forest communities in the context of global change.
Christian H. Mohr, Michael Dietze, Violeta Tolorza, Erwin Gonzalez, Benjamin Sotomayor, Andres Iroume, Sten Gilfert, and Frieder Tautz
Biogeosciences, 21, 1583–1599, https://doi.org/10.5194/bg-21-1583-2024, https://doi.org/10.5194/bg-21-1583-2024, 2024
Short summary
Short summary
Coastal temperate rainforests, among Earth’s carbon richest biomes, are systematically underrepresented in the global network of critical zone observatories (CZOs). Introducing here a first CZO in the heart of the Patagonian rainforest, Chile, we investigate carbon sink functioning, biota-driven landscape evolution, fluxes of matter and energy, and disturbance regimes. We invite the community to join us in cross-disciplinary collaboration to advance science in this particular environment.
Jorge F. Perez-Quezada, David Trejo, Javier Lopatin, David Aguilera, Bruce Osborne, Mauricio Galleguillos, Luca Zattera, Juan L. Celis-Diez, and Juan J. Armesto
Biogeosciences, 21, 1371–1389, https://doi.org/10.5194/bg-21-1371-2024, https://doi.org/10.5194/bg-21-1371-2024, 2024
Short summary
Short summary
For 8 years we sampled a temperate rainforest and a peatland in Chile to estimate their efficiency to capture carbon per unit of water lost. The efficiency is more related to the water lost than to the carbon captured and is mainly driven by evaporation instead of transpiration. This is the first report from southern South America and highlights that ecosystems might behave differently in this area, likely explained by the high annual precipitation (~ 2100 mm) and light-limited conditions.
Fredrik Lagergren, Robert G. Björk, Camilla Andersson, Danijel Belušić, Mats P. Björkman, Erik Kjellström, Petter Lind, David Lindstedt, Tinja Olenius, Håkan Pleijel, Gunhild Rosqvist, and Paul A. Miller
Biogeosciences, 21, 1093–1116, https://doi.org/10.5194/bg-21-1093-2024, https://doi.org/10.5194/bg-21-1093-2024, 2024
Short summary
Short summary
The Fennoscandian boreal and mountain regions harbour a wide range of ecosystems sensitive to climate change. A new, highly resolved high-emission climate scenario enabled modelling of the vegetation development in this region at high resolution for the 21st century. The results show dramatic south to north and low- to high-altitude shifts of vegetation zones, especially for the open tundra environments, which will have large implications for nature conservation, reindeer husbandry and forestry.
Florian Zellweger, Eric Sulmoni, Johanna T. Malle, Andri Baltensweiler, Tobias Jonas, Niklaus E. Zimmermann, Christian Ginzler, Dirk Nikolaus Karger, Pieter De Frenne, David Frey, and Clare Webster
Biogeosciences, 21, 605–623, https://doi.org/10.5194/bg-21-605-2024, https://doi.org/10.5194/bg-21-605-2024, 2024
Short summary
Short summary
The microclimatic conditions experienced by organisms living close to the ground are not well represented in currently used climate datasets derived from weather stations. Therefore, we measured and mapped ground microclimate temperatures at 10 m spatial resolution across Switzerland using a novel radiation model. Our results reveal a high variability in microclimates across different habitats and will help to better understand climate and land use impacts on biodiversity and ecosystems.
Andrew Kulmatiski, Martin C. Holdrege, Cristina Chirvasă, and Karen H. Beard
Biogeosciences, 21, 131–143, https://doi.org/10.5194/bg-21-131-2024, https://doi.org/10.5194/bg-21-131-2024, 2024
Short summary
Short summary
Warmer air and larger precipitation events are changing the way water moves through the soil and into plants. Here we show that detailed descriptions of root distributions can predict plant growth responses to changing precipitation patterns. Shrubs and forbs increased growth, while grasses showed no response to increased precipitation intensity, and these responses were predicted by plant rooting distributions.
Bonaventure Ntirugulirwa, Etienne Zibera, Nkuba Epaphrodite, Aloysie Manishimwe, Donat Nsabimana, Johan Uddling, and Göran Wallin
Biogeosciences, 20, 5125–5149, https://doi.org/10.5194/bg-20-5125-2023, https://doi.org/10.5194/bg-20-5125-2023, 2023
Short summary
Short summary
Twenty tropical tree species native to Africa were planted along an elevation gradient (1100 m, 5.4 °C difference). We found that early-successional (ES) species, especially from lower elevations, grew faster at warmer sites, while several of the late-successional (LS) species, especially from higher elevations, did not respond or grew slower. Moreover, a warmer climate increased tree mortality in LS species, but not much in ES species.
Lilian Vallet, Charbel Abdallah, Thomas Lauvaux, Lilian Joly, Michel Ramonet, Philippe Ciais, Morgan Lopez, Irène Xueref-Remy, and Florent Mouillot
EGUsphere, https://doi.org/10.5194/egusphere-2023-2421, https://doi.org/10.5194/egusphere-2023-2421, 2023
Short summary
Short summary
2022 fire season had a huge impact on European temperate forest, with several large fires exhibiting prolonged soil combustion reported. We analyzed CO and CO2 concentration recorded at nearby atmospheric towers, revealing intense smoldering combustion. We refined a fire emission model to incorporate this process. We estimated 7.95 MteqCO2 fire emission, twice the global estimate. Fires contributed to 1.97 % of the country's annual carbon footprint, reducing forest carbon sink by 30 % this year.
Philippe Choler
Biogeosciences, 20, 4259–4272, https://doi.org/10.5194/bg-20-4259-2023, https://doi.org/10.5194/bg-20-4259-2023, 2023
Short summary
Short summary
The year 2022 was unique in that the summer heat wave and drought led to a widespread reduction in vegetation growth at high elevation in the European Alps. This impact was unprecedented in the southwestern, warm, and dry part of the Alps. Over the last 2 decades, water has become a co-dominant control of vegetation activity in areas that were, so far, primarily controlled by temperature, and the growth of mountain grasslands has become increasingly sensitive to moisture availability.
Adriana Simonetti, Raquel Fernandes Araujo, Carlos Henrique Souza Celes, Flávia Ranara da Silva e Silva, Joaquim dos Santos, Niro Higuchi, Susan Trumbore, and Daniel Magnabosco Marra
Biogeosciences, 20, 3651–3666, https://doi.org/10.5194/bg-20-3651-2023, https://doi.org/10.5194/bg-20-3651-2023, 2023
Short summary
Short summary
We combined 2 years of monthly drone-acquired RGB (red–green–blue) imagery with field surveys in a central Amazon forest. Our results indicate that small gaps associated with branch fall were the most frequent. Biomass losses were partially controlled by gap area, with branch fall and snapping contributing the least and greatest relative values, respectively. Our study highlights the potential of drone images for monitoring canopy dynamics in dense tropical forests.
Silvia Caldararu, Victor Rolo, Benjamin D. Stocker, Teresa E. Gimeno, and Richard Nair
Biogeosciences, 20, 3637–3649, https://doi.org/10.5194/bg-20-3637-2023, https://doi.org/10.5194/bg-20-3637-2023, 2023
Short summary
Short summary
Ecosystem manipulative experiments are large experiments in real ecosystems. They include processes such as species interactions and weather that would be omitted in more controlled settings. They offer a high level of realism but are underused in combination with vegetation models used to predict the response of ecosystems to global change. We propose a workflow using models and ecosystem experiments together, taking advantage of the benefits of both tools for Earth system understanding.
Katharina Ramskogler, Bettina Knoflach, Bernhard Elsner, Brigitta Erschbamer, Florian Haas, Tobias Heckmann, Florentin Hofmeister, Livia Piermattei, Camillo Ressl, Svenja Trautmann, Michael H. Wimmer, Clemens Geitner, Johann Stötter, and Erich Tasser
Biogeosciences, 20, 2919–2939, https://doi.org/10.5194/bg-20-2919-2023, https://doi.org/10.5194/bg-20-2919-2023, 2023
Short summary
Short summary
Primary succession in proglacial areas depends on complex driving forces. To concretise the complex effects and interaction processes, 39 known explanatory variables assigned to seven spheres were analysed via principal component analysis and generalised additive models. Key results show that in addition to time- and elevation-dependent factors, also disturbances alter vegetation development. The results are useful for debates on vegetation development in a warming climate.
Zijing Li, Zhiyong Li, Xuze Tong, Lei Dong, Ying Zheng, Jinghui Zhang, Bailing Miao, Lixin Wang, Liqing Zhao, Lu Wen, Guodong Han, Frank Yonghong Li, and Cunzhu Liang
Biogeosciences, 20, 2869–2882, https://doi.org/10.5194/bg-20-2869-2023, https://doi.org/10.5194/bg-20-2869-2023, 2023
Short summary
Short summary
We used random forest models and structural equation models to assess the relative importance of the present climate and paleoclimate as determinants of diversity and aboveground biomass. Results showed that paleoclimate changes and modern climate jointly determined contemporary biodiversity patterns, while community biomass was mainly affected by modern climate. These findings suggest that contemporary biodiversity patterns may be affected by processes at divergent temporal scales.
William Rupert Moore Flynn, Harry Jon Foord Owen, Stuart William David Grieve, and Emily Rebecca Lines
Biogeosciences, 20, 2769–2784, https://doi.org/10.5194/bg-20-2769-2023, https://doi.org/10.5194/bg-20-2769-2023, 2023
Short summary
Short summary
Quantifying vegetation indices is crucial for ecosystem monitoring and modelling. Terrestrial laser scanning (TLS) has potential to accurately measure vegetation indices, but multiple methods exist, with little consensus on best practice. We compare three methods and extract wood-to-plant ratio, a metric used to correct for wood in leaf indices. We show corrective metrics vary with tree structure and variation among methods, highlighting the value of TLS data and importance of rigorous testing.
Haiyang Shi, Geping Luo, Olaf Hellwich, Alishir Kurban, Philippe De Maeyer, and Tim Van de Voorde
Biogeosciences, 20, 2727–2741, https://doi.org/10.5194/bg-20-2727-2023, https://doi.org/10.5194/bg-20-2727-2023, 2023
Short summary
Short summary
In studies on the relationship between ecosystem functions and climate and plant traits, previously used data-driven methods such as multiple regression and random forest may be inadequate for representing causality due to limitations such as covariance between variables. Based on FLUXNET site data, we used a causal graphical model to revisit the control of climate and vegetation traits over ecosystem functions.
Josué Delgado-Balbuena, Henry W. Loescher, Carlos A. Aguirre-Gutiérrez, Teresa Alfaro-Reyna, Luis F. Pineda-Martínez, Rodrigo Vargas, and Tulio Arredondo
Biogeosciences, 20, 2369–2385, https://doi.org/10.5194/bg-20-2369-2023, https://doi.org/10.5194/bg-20-2369-2023, 2023
Short summary
Short summary
In the semiarid grassland, an increase in soil moisture at shallow depths instantly enhances carbon release through respiration. In contrast, deeper soil water controls plant carbon uptake but with a delay of several days. Previous soil conditions, biological activity, and the size and timing of precipitation are factors that determine the amount of carbon released into the atmosphere. Thus, future changes in precipitation patterns could convert ecosystems from carbon sinks to carbon sources.
German Vargas Gutiérrez, Daniel Pérez-Aviles, Nanette Raczka, Damaris Pereira-Arias, Julián Tijerín-Triviño, L. David Pereira-Arias, David Medvigy, Bonnie G. Waring, Ember Morrisey, Edward Brzostek, and Jennifer S. Powers
Biogeosciences, 20, 2143–2160, https://doi.org/10.5194/bg-20-2143-2023, https://doi.org/10.5194/bg-20-2143-2023, 2023
Short summary
Short summary
To study whether nutrient availability controls tropical dry forest responses to reductions in soil moisture, we established the first troughfall exclusion experiment in a tropical dry forest plantation system crossed with a fertilization scheme. We found that the effects of fertilization on net primary productivity are larger than the effects of a ~15 % reduction in soil moisture, although in many cases we observed an interaction between drought and nutrient additions, suggesting colimitation.
Alina Lucia Ludat and Simon Kübler
Biogeosciences, 20, 1991–2012, https://doi.org/10.5194/bg-20-1991-2023, https://doi.org/10.5194/bg-20-1991-2023, 2023
Short summary
Short summary
Satellite-based analysis illustrates the impact of geological processes for the stability of the ecosystem in the Mara River basin (Kenya/Tanzania). Newly detected fault activity influences the course of river networks and modifies erosion–deposition patterns. Tectonic surface features and variations in rock chemistry lead to localized enhancement of clay and soil moisture values and seasonally stabilised vegetation growth patterns in this climatically vulnerable region.
Erica Jaakkola, Antje Gärtner, Anna Maria Jönsson, Karl Ljung, Per-Ola Olsson, and Thomas Holst
Biogeosciences, 20, 803–826, https://doi.org/10.5194/bg-20-803-2023, https://doi.org/10.5194/bg-20-803-2023, 2023
Short summary
Short summary
Increased spruce bark beetle outbreaks were recently seen in Sweden. When Norway spruce trees are attacked, they increase their production of VOCs, attempting to kill the beetles. We provide new insights into how the Norway spruce act when infested and found the emitted volatiles to increase up to 700 times and saw a change in compound blend. We estimate that the 2020 bark beetle outbreak in Sweden could have increased the total monoterpene emissions from the forest by more than 10 %.
Georg Wohlfahrt, Albin Hammerle, Felix M. Spielmann, Florian Kitz, and Chuixiang Yi
Biogeosciences, 20, 589–596, https://doi.org/10.5194/bg-20-589-2023, https://doi.org/10.5194/bg-20-589-2023, 2023
Short summary
Short summary
The trace gas carbonyl sulfide (COS), which is taken up by plant leaves in a process very similar to photosynthesis, is thought to be a promising proxy for the gross uptake of carbon dioxide by plants. Here we propose a new framework for estimating a key metric to that end, the so-called leaf relative uptake rate. The values we deduce by applying principles of plant optimality are considerably lower than published values and may help reduce the uncertainty of the global COS budget.
François Jonard, Andrew F. Feldman, Daniel J. Short Gianotti, and Dara Entekhabi
Biogeosciences, 19, 5575–5590, https://doi.org/10.5194/bg-19-5575-2022, https://doi.org/10.5194/bg-19-5575-2022, 2022
Short summary
Short summary
We investigate the spatial and temporal patterns of light and water limitation in plant function at the ecosystem scale. Using satellite observations, we characterize the nonlinear relationships between sun-induced chlorophyll fluorescence (SIF) and water and light availability. This study highlights that soil moisture limitations on SIF are found primarily in drier environments, while light limitations are found in intermediately wet regions.
Nikolai Knapp, Sabine Attinger, and Andreas Huth
Biogeosciences, 19, 4929–4944, https://doi.org/10.5194/bg-19-4929-2022, https://doi.org/10.5194/bg-19-4929-2022, 2022
Short summary
Short summary
The biomass of forests is determined by forest growth and mortality. These quantities can be estimated with different methods such as inventories, remote sensing and modeling. These methods are usually being applied at different spatial scales. The scales influence the obtained frequency distributions of biomass, growth and mortality. This study suggests how to transfer between scales, when using forest models of different complexity for a tropical forest.
Kai Chen, Kevin S. Burgess, Fangliang He, Xiang-Yun Yang, Lian-Ming Gao, and De-Zhu Li
Biogeosciences, 19, 4801–4810, https://doi.org/10.5194/bg-19-4801-2022, https://doi.org/10.5194/bg-19-4801-2022, 2022
Short summary
Short summary
Why does plants' distributional range size vary enormously? This study provides evidence that seed mass, intraspecific seed mass variation, seed dispersal mode and phylogeny contribute to explaining species distribution variation on a geographic scale. Our study clearly shows the importance of including seed life-history traits in modeling and predicting the impact of climate change on species distribution of seed plants.
Ying Ying Chen, Huan Yang, Gen Sheng Bao, Xiao Pan Pang, and Zheng Gang Guo
Biogeosciences, 19, 4521–4532, https://doi.org/10.5194/bg-19-4521-2022, https://doi.org/10.5194/bg-19-4521-2022, 2022
Short summary
Short summary
Investigating the effect of the presence of plateau pikas on ecosystem services of alpine meadows is helpful to understand the role of the presence of small mammalian herbivores in grasslands. The results of this study showed that the presence of plateau pikas led to higher biodiversity conservation, soil nitrogen and phosphorus maintenance, and carbon sequestration of alpine meadows, whereas it led to lower forage available to livestock and water conservation of alpine meadows.
Clement Jean Frédéric Delcourt and Sander Veraverbeke
Biogeosciences, 19, 4499–4520, https://doi.org/10.5194/bg-19-4499-2022, https://doi.org/10.5194/bg-19-4499-2022, 2022
Short summary
Short summary
This study provides new equations that can be used to estimate aboveground tree biomass in larch-dominated forests of northeast Siberia. Applying these equations to 53 forest stands in the Republic of Sakha (Russia) resulted in significantly larger biomass stocks than when using existing equations. The data presented in this work can help refine biomass estimates in Siberian boreal forests. This is essential to assess changes in boreal vegetation and carbon dynamics.
Iris Johanna Aalto, Eduardo Eiji Maeda, Janne Heiskanen, Eljas Kullervo Aalto, and Petri Kauko Emil Pellikka
Biogeosciences, 19, 4227–4247, https://doi.org/10.5194/bg-19-4227-2022, https://doi.org/10.5194/bg-19-4227-2022, 2022
Short summary
Short summary
Tree canopies are strong moderators of understory climatic conditions. In tropical areas, trees cool down the microclimates. Using remote sensing and field measurements we show how even intermediate canopy cover and agroforestry trees contributed to buffering the hottest temperatures in Kenya. The cooling effect was the greatest during hot days and in lowland areas, where the ambient temperatures were high. Adopting agroforestry practices in the area could assist in mitigating climate change.
Jing Wang and Xuefa Wen
Biogeosciences, 19, 4197–4208, https://doi.org/10.5194/bg-19-4197-2022, https://doi.org/10.5194/bg-19-4197-2022, 2022
Short summary
Short summary
Excess radiation and low temperatures exacerbate drought impacts on canopy conductance (Gs) among transects. The primary determinant of drought stress on Gs was soil moisture on the Loess Plateau (LP) and the Mongolian Plateau (MP), whereas it was the vapor pressure deficit on the Tibetan Plateau (TP). Radiation exhibited a negative effect on Gs via drought stress within transects, while temperature had negative effects on stomatal conductance on the TP but no effect on the LP and MP.
Sylvain Monteux, Janine Mariën, and Eveline J. Krab
Biogeosciences, 19, 4089–4105, https://doi.org/10.5194/bg-19-4089-2022, https://doi.org/10.5194/bg-19-4089-2022, 2022
Short summary
Short summary
Quantifying the feedback from the decomposition of thawing permafrost soils is crucial to establish adequate climate warming mitigation scenarios. Past efforts have focused on abiotic and to some extent microbial drivers of decomposition but not biotic drivers such as soil fauna. We added soil fauna (Collembola Folsomia candida) to permafrost, which introduced bacterial taxa without affecting bacterial communities as a whole but increased CO2 production (+12 %), presumably due to priming.
Mirjam Pfeiffer, Munir P. Hoffmann, Simon Scheiter, William Nelson, Johannes Isselstein, Kingsley Ayisi, Jude J. Odhiambo, and Reimund Rötter
Biogeosciences, 19, 3935–3958, https://doi.org/10.5194/bg-19-3935-2022, https://doi.org/10.5194/bg-19-3935-2022, 2022
Short summary
Short summary
Smallholder farmers face challenges due to poor land management and climate change. We linked the APSIM crop model and the aDGVM2 vegetation model to investigate integrated management options that enhance ecosystem functions and services. Sustainable intensification moderately increased yields. Crop residue grazing reduced feed gaps but not for dry-to-wet season transitions. Measures to improve soil water and nutrient status are recommended. Landscape-level ecosystem management is essential.
Marina Corrêa Scalon, Imma Oliveras Menor, Renata Freitag, Karine S. Peixoto, Sami W. Rifai, Beatriz Schwantes Marimon, Ben Hur Marimon Junior, and Yadvinder Malhi
Biogeosciences, 19, 3649–3661, https://doi.org/10.5194/bg-19-3649-2022, https://doi.org/10.5194/bg-19-3649-2022, 2022
Short summary
Short summary
We investigated dynamic nutrient flow and demand in a typical savanna and a transition forest to understand how similar soils and the same climate dominated by savanna vegetation can also support forest-like formations. Savanna relied on nutrient resorption from wood, and nutrient demand was equally partitioned between leaves, wood and fine roots. Transition forest relied on resorption from the canopy biomass and nutrient demand was predominantly driven by leaves.
Emma Bousquet, Arnaud Mialon, Nemesio Rodriguez-Fernandez, Stéphane Mermoz, and Yann Kerr
Biogeosciences, 19, 3317–3336, https://doi.org/10.5194/bg-19-3317-2022, https://doi.org/10.5194/bg-19-3317-2022, 2022
Short summary
Short summary
Pre- and post-fire values of four climate variables and four vegetation variables were analysed at the global scale, in order to observe (i) the general fire likelihood factors and (ii) the vegetation recovery trends over various biomes. The main result of this study is that L-band vegetation optical depth (L-VOD) is the most impacted vegetation variable and takes the longest to recover over dense forests. L-VOD could then be useful for post-fire vegetation recovery studies.
Chen Yang, Yue Shi, Wenjuan Sun, Jiangling Zhu, Chengjun Ji, Yuhao Feng, Suhui Ma, Zhaodi Guo, and Jingyun Fang
Biogeosciences, 19, 2989–2999, https://doi.org/10.5194/bg-19-2989-2022, https://doi.org/10.5194/bg-19-2989-2022, 2022
Short summary
Short summary
Quantifying China's forest biomass C pool is important in understanding C cycling in forests. However, most of studies on forest biomass C pool were limited to the period of 2004–2008. Here, we used a biomass expansion factor method to estimate C pool from 1977 to 2018. The results suggest that afforestation practices, forest growth, and environmental changes were the main drivers of increased C sink. Thus, this study provided an essential basis for achieving China's C neutrality target.
Anne Schucknecht, Bumsuk Seo, Alexander Krämer, Sarah Asam, Clement Atzberger, and Ralf Kiese
Biogeosciences, 19, 2699–2727, https://doi.org/10.5194/bg-19-2699-2022, https://doi.org/10.5194/bg-19-2699-2022, 2022
Short summary
Short summary
Actual maps of grassland traits could improve local farm management and support environmental assessments. We developed, assessed, and applied models to estimate dry biomass and plant nitrogen (N) concentration in pre-Alpine grasslands with drone-based multispectral data and canopy height information. Our results indicate that machine learning algorithms are able to estimate both parameters but reach a better level of performance for biomass.
Ramona J. Heim, Andrey Yurtaev, Anna Bucharova, Wieland Heim, Valeriya Kutskir, Klaus-Holger Knorr, Christian Lampei, Alexandr Pechkin, Dora Schilling, Farid Sulkarnaev, and Norbert Hölzel
Biogeosciences, 19, 2729–2740, https://doi.org/10.5194/bg-19-2729-2022, https://doi.org/10.5194/bg-19-2729-2022, 2022
Short summary
Short summary
Fires will probably increase in Arctic regions due to climate change. Yet, the long-term effects of tundra fires on carbon (C) and nitrogen (N) stocks and cycling are still unclear. We investigated the long-term fire effects on C and N stocks and cycling in soil and aboveground living biomass.
We found that tundra fires did not affect total C and N stocks because a major part of the stocks was located belowground in soils which were largely unaltered by fire.
Aileen B. Baird, Edward J. Bannister, A. Robert MacKenzie, and Francis D. Pope
Biogeosciences, 19, 2653–2669, https://doi.org/10.5194/bg-19-2653-2022, https://doi.org/10.5194/bg-19-2653-2022, 2022
Short summary
Short summary
Forest environments contain a wide variety of airborne biological particles (bioaerosols) important for plant and animal health and biosphere–atmosphere interactions. Using low-cost sensors and a free-air carbon dioxide enrichment (FACE) experiment, we monitor the impact of enhanced CO2 on airborne particles. No effect of the enhanced CO2 treatment on total particle concentrations was observed, but a potential suppression of high concentration bioaerosol events was detected under enhanced CO2.
Melanie S. Verlinden, Hamada AbdElgawad, Arne Ven, Lore T. Verryckt, Sebastian Wieneke, Ivan A. Janssens, and Sara Vicca
Biogeosciences, 19, 2353–2364, https://doi.org/10.5194/bg-19-2353-2022, https://doi.org/10.5194/bg-19-2353-2022, 2022
Short summary
Short summary
Zea mays grows in mesocosms with different soil nutrition levels. At low phosphorus (P) availability, leaf physiological activity initially decreased strongly. P stress decreased over the season. Arbuscular mycorrhizal fungi (AMF) symbiosis increased over the season. AMF symbiosis is most likely responsible for gradual reduction in P stress.
Guoyu Lan, Bangqian Chen, Chuan Yang, Rui Sun, Zhixiang Wu, and Xicai Zhang
Biogeosciences, 19, 1995–2005, https://doi.org/10.5194/bg-19-1995-2022, https://doi.org/10.5194/bg-19-1995-2022, 2022
Short summary
Short summary
Little is known about the impact of rubber plantations on diversity of the Great Mekong Subregion. In this study, we uncovered latitudinal gradients of plant diversity of rubber plantations. Exotic species with high dominance result in loss of plant diversity of rubber plantations. Not all exotic species would reduce plant diversity of rubber plantations. Much more effort should be made to balance agricultural production with conservation goals in this region.
Ulrike Hiltner, Andreas Huth, and Rico Fischer
Biogeosciences, 19, 1891–1911, https://doi.org/10.5194/bg-19-1891-2022, https://doi.org/10.5194/bg-19-1891-2022, 2022
Short summary
Short summary
Quantifying biomass loss rates due to stem mortality is important for estimating the role of tropical forests in the global carbon cycle. We analyse the consequences of long-term elevated stem mortality for tropical forest dynamics and biomass loss. Based on simulations, we developed a statistical model to estimate biomass loss rates of forests in different successional states from forest attributes. Assuming a doubling of tree mortality, biomass loss increased from 3.2 % yr-1 to 4.5 % yr-1.
Jon Cranko Page, Martin G. De Kauwe, Gab Abramowitz, Jamie Cleverly, Nina Hinko-Najera, Mark J. Hovenden, Yao Liu, Andy J. Pitman, and Kiona Ogle
Biogeosciences, 19, 1913–1932, https://doi.org/10.5194/bg-19-1913-2022, https://doi.org/10.5194/bg-19-1913-2022, 2022
Short summary
Short summary
Although vegetation responds to climate at a wide range of timescales, models of the land carbon sink often ignore responses that do not occur instantly. In this study, we explore the timescales at which Australian ecosystems respond to climate. We identified that carbon and water fluxes can be modelled more accurately if we include environmental drivers from up to a year in the past. The importance of antecedent conditions is related to ecosystem aridity but is also influenced by other factors.
Cited articles
Abraham, V., Kuneš, P., Petr, L., Svitavská-Svobodová, H., Kozáková, R., Jamrichová, E., Švarcová, M. G., and Pokorný, P.: A pollen-based quantitative reconstruction of the Holocene vegetation updates a perspective on the natural vegetation in the Czech Republic and Slovakia, Preslia, 88, 409–434, 2016. a, b
Andersen, S. T.: Influence of Climatic Variation on Pollen Season Severity in Wind-Pollinated Trees and Herbs, Grana, 19, 47–52, https://doi.org/10.1080/00173138009424986, 1980. a
Autio, J. and Hicks, S.: Annual variations in pollen deposition and meteorological conditions on the fell Aakenustunturi in northern Finland: Potential for using fossil pollen as a climate proxy, Grana, 43, 31–47, https://doi.org/10.1080/00173130310017409, 2004. a
Barnekow, L., Loader, N. J., Hicks, S., Froyd, C. A., and Goslar, T.: Strong correlation between summer temperature and pollen accumulation rates for Pinus sylvestris, Picea abies and Betula spp. in a high-resolution record from northern Sweden, J. Quaternary Sci., 22, 653–658, https://doi.org/10.1002/jqs.1096, 2007. a
Bennett, K. and Buck, C. E.: Interpretation of lake sediment accumulation rates, Holocene, 26, 1092–1102, https://doi.org/10.1177/0959683616632880, 2016. a, b
Bennett, K. D.: Devensian Late-Glacial and Flandrian Vegetational History at Hockham Mere, Norfolk, England, New Phytol., 95, 489–504, https://doi.org/10.1111/j.1469-8137.1983.tb03513.x, 1983. a, b, c
Bozilova, E. and Beug, H.-J.: On the Holocene history of vegetation in SE Bulgaria (Lake Arkutino, Ropotamo region), Veg. Hist. Archaebot., 1, 19–32, https://doi.org/10.1007/BF00190698, 1992. a
Carter, V. A., Chiverrell, R. C., Clear, J. L., Kuosmanen, N., Moravcová, A., Svoboda, M., Svobodová-Svitavská, H., van Leeuwen, J. F. N., van der Knaap, W. O., and Kuneš, P.: Quantitative Palynology Informing Conservation Ecology in the Bohemian/Bavarian Forests of Central Europe, Front. Plant Sci., 8, 2268, https://doi.org/10.3389/fpls.2017.02268, 2018. a, b
Davis, B. A. S., Zanon, M., Collins, P., Mauri, A., Bakker, J., Barboni, D., Barthelmes, A., Beaudouin, C., Bjune, A. E., Bozilova, E., Bradshaw, R. H. W., Brayshay, B. A., Brewer, S., Brugiapaglia, E., Bunting, J., Connor, S. E., de Beaulieu, J.-L., Edwards, K., Ejarque, A., Fall, P., Florenzano, A., Fyfe, R., Galop, D., Giardini, M., Giesecke, T., Grant, M. J., Guiot, J., Jahns, S., Jankovská, V., Juggins, S., Kahrmann, M., Karpińska-Kołaczek, M., Kołaczek, P., Kühl, N., Kuneš, P., Lapteva, E. G., Leroy, S. A. G., Leydet, M., Guiot, J., Jahns, S., López Sáez, J. A., Masi, A., Matthias, I., Mazier, F., Meltsov, V., Mercuri, A. M., Miras, Y., Mitchell, F. J. G., Morris, J. L., Naughton, F., Nielsen, A. B., Novenko, E., Odgaard, B., Ortu, E., Overballe-Petersen, M. V., Pardoe, H. S., Peglar, S. M., Pidek, I. A., Sadori, L., Seppä, H., Severova, E., Shaw, H., Święta-Musznicka, J., Theuerkauf, M., Tonkov, S., Veski, S., van der Knaap, W. O., van Leeuwen, J. F. N., Woodbridge, J., Zimny, M., and Kaplan, J. O.: The European Modern Pollen Database (EMPD) project, Veg. Hist. Archaebot., 22, 521–530, https://doi.org/10.1007/s00334-012-0388-5, 2013. a
Davis, M. B.: Palynology after Y2K–Understanding the Source Area of Pollen in Sediments, Annu. Rev. Earth Pl. Sc., 28, 1–18, https://doi.org/10.1146/annurev.earth.28.1.1, 2000. a
Davis, M. B. and Brubaker, L. B.: Differential Sedimentation of Pollen Grains in Lakes, Limnol. Oceanogr., 18, 635–646, https://doi.org/10.4319/lo.1973.18.4.0635, 1973. a, b
Davis, M. B. and Deevey, E. S.: Pollen Accumulation Rates: Estimates from Late-Glacial Sediment of Rogers Lake, Science, 145, 1293–1295, https://doi.org/10.1126/science.145.3638.1293, 1964. a
Davis, M. B., Moeller, R., and Ford, J.: Sediment focusing and pollen influx, in: Lake sediments and environmental history: studies in palaeolimnology and palaeoecology in honour of Winifred Tutin, edited by: Haworth, E. Y., Lund, J. W. G., and Tutin, W., Leicester University Press, Leicester, 261–293, ISBN: 978-0-7185-1220-0, 1984. a, b
EUFORGEN: http://www.euforgen.org/species, last access: 20 May 2018. a
Fick, S. E. and Hijmans, R. J.: WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas, Int. J. Climatol., 37, 4302–4315, https://doi.org/10.1002/joc.5086, 2017. a, b
Filipova-Marinova, M.: Palaeoecological investigations of lake Shabla-Ezeretz in NE Bulgaria, Ecologia Mediterranea, 11, 147–158, 1985. a
Finsinger, W., Schoning, K., Hicks, S., Lücke, A., Goslar, T., Wagner-cremer, F., and Hyyppä, H. : Climate change during the past 1000 years: a high-temporal-resolution multiproxy record from a mire in northern Finland, J. Quaternary Sci., 28, 152–164, https://doi.org/10.1002/jqs.2598, 2013. a
Frei, T. and Gassner, E.: Climate change and its impact on birch pollen quantities and the start of the pollen season an example from Switzerland for the period 1969–2006, Int. J. Biometeorol., 52, 667, https://doi.org/10.1007/s00484-008-0159-2, 2008. a
Froyd, C. A.: Fossil Stomata Reveal Early Pine Presence in Scotland: Implications for Postglacial Colonization Analyses, Ecology, 86, 579–586, https://doi.org/10.1890/04-0546, 2005. a
Gaillard, M.-J., Sugita, S., Bunting, M. J., Middleton, R., Broström, A., Caseldine, C., Giesecke, T., Hellman, S. E. V., Hicks, S., Hjelle, K., Langdon, C., Nielsen, A.-B., Poska, A., Stedingk, H., Veski, S., and members, P.: The use of modelling and simulation approach in reconstructing past landscapes from fossil pollen data: a review and results from the POLLANDCAL network, Veget Hist Archaeobot, 17, 419–443, https://doi.org/10.1007/s00334-008-0169-3, 2008. a
Gerasimidis, A., Panajiotidis, S., Hicks, S., and Athanasiadis, N.: An eight-year record of pollen deposition in the Pieria mountains (N. Greece) and its significance for interpreting fossil pollen assemblages, Rev. Palaeobot. Palyno., 141, 231–243, https://doi.org/10.1016/j.revpalbo.2006.04.004, 2006. a
Giesecke, T.: Holocene dynamics of the southern boreal forest in Sweden, Holocene, 15, 858–872, https://doi.org/10.1191/0959683605hl859ra, 2005a. a, b, c
Giesecke, T.: Moving front or population expansion: How did Picea abies (L.) Karst. become frequent in central Sweden?, Quaternary Sci. Rev., 24, 2495–2509, https://doi.org/10.1016/j.quascirev.2005.03.002, 2005b. a
Giesecke, T.: Holocene forest development in the central Scandes Mountains, Sweden, Veg. Hist. Archaebot., 14, 133–147, https://doi.org/10.1007/s00334-005-0070-2,
2005c. a
Giesecke, T., Fontana, S. L., Knaap, W. O., Pardoe, H. S., and Pidek, I. A.: From early pollen trapping experiments to the Pollen Monitoring Programme, Veg. Hist. Archaebot., 19, 247–258, https://doi.org/10.1007/s00334-010-0261-3, 2010. a
Giesecke, T., Brewer, S., Finsinger, W., Leydet, M., and Bradshaw, R. H. W.: Patterns and dynamics of European vegetation change over the last 15,000 years, J. Biogeogr., 44, 1441–1456, https://doi.org/10.1111/jbi.12974, 2017. a
Giesecke, T., Wolters, S., van Leeuwen, J. F. N., van der Knaap, P. W. O., Leydet, M., and Brewer, S.: Postglacial change of the floristic diversity gradient in Europe, Nat. Commun., 10, 1–7, https://doi.org/10.1038/s41467-019-13233-y, 2019. a
Gillman, L. N., Wright, S. D., Cusens, J., McBride, P. D., Malhi, Y., and Whittaker, R. J.: Latitude, productivity and species richness, Global Ecol. Biogeogr., 24, 107–117, https://doi.org/10.1111/geb.12245, 2015. a
GRASS Development Team: Geographic Resources Analysis Support System (GRASS GIS) Software, Version 7.2, Open Source Geospatial Foundation, https://grass.osgeo.org/ (last access: 18 July 2021), 2018. a
Haselhorst, D. S., Moreno, J. E., and Punyasena, S. W.: Assessing the influence of vegetation structure and phenological variability on pollen-vegetation relationships using a 15-year Neotropical pollen rain record, J. Veg. Sci., 31, 606–615, https://doi.org/10.1111/jvs.12897, 2020. a
Hättestrand, M., Jensen, C., Hallsdóttir, M., and Vorren, K.-D.: Modern pollen accumulation rates at the north-western fringe of the European boreal forest, Rev. Palaeobot. Palyno., 151, 90–109, https://doi.org/10.1016/j.revpalbo.2008.03.001, 2008. a
Hesselman, H.: Om pollenregn på hafvet och fjärrtransport af barrträdspollen, Geologiska Föreningens i Stockholm Förhandlingar, 41, 89–99, 1919. a
Hicks, S.: A method of using modern pollen rain values to provide a timescale for pollen diagrams from peat deposits, Memoranda Societas Fauna Flora Fennica, 49, 21–33, 1974. a
Hicks, S.: Present and past pollen records of Lapland forests, Rev. Palaeobot. Palyno., 82, 17–35, https://doi.org/10.1016/0034-6667(94)90017-5, 1994. a
Hicks, S.: The relationship between climate and annual pollen deposition at northern tree-lines, Chemosphere – Global Change Science, 1, 403–416, https://doi.org/10.1016/S1465-9972(99)00043-4, 00034, 1999. a
Hicks, S. and Hyvärinen, H.: Pollen influx values measured in different sedimentary environments and their palaeoecological implications, Grana, 38, 228–242, https://doi.org/10.1080/001731300750044618, 1999. a
Hicks, S., Ammann, B., Latałowa, M., Pardoe, H. S., and Tinsley, H.: European Pollen Monitoring Programme: Project Description and Guidelines, Oulu University Press, Oulu, 1996. a
Hicks, S., Tinsley, H., Pardoe, H. S., and Cundill, P. R.: European Pollen Monitoring Programme: Supplement to the Guidelines, Oulu University Press,
Oulu, 1999. a
Hicks, S., Tinsley, H., Huusko, A., Jensen, C., Hättestrand, M., Gerasimides, A., and Kvavadze, E.: Some comments on spatial variation in arboreal pollen deposition: first records from the Pollen Monitoring Programme (PMP), Rev. Palaeobot. Palyno., 117, 183–194, https://doi.org/10.1016/S0034-6667(01)00086-0, 2001. a, b, c
Jackson, S. T. and Williams, J. W.: Modern analogs in Quaternary paleoecology: Here Today, Gone Yesterday, Gone Tomorrow?, Annu. Rev. Earth Pl. Sc., 32, 495–537, https://doi.org/10.1146/annurev.earth.32.101802.120435, 2004. a
Jahns, S.: The Holocene history of vegetation and settlement at the coastal site of Lake Voulkaria in Acarnania, western Greece, Veg. Hist. Archaebot., 14, 55–66, https://doi.org/10.1007/s00334-004-0053-8, 2004. a
Jantz, N., Homeier, J., León-Yánez, S., Moscoso, A., and Behling, H.: Trapping pollen in the tropics – Comparing modern pollen rain spectra of different pollen traps and surface samples across Andean vegetation zones, Rev. Palaeobot. Palyno., 193, 57–69, https://doi.org/10.1016/j.revpalbo.2013.01.011, 2013. a
Jensen, C., Vorren, K.-D., and Mørkved, B.: Annual pollen accumulation rate (PAR) at the boreal and alpine forest-line of north-western Norway, with special emphasis on Pinus sylvestris and Betula pubescens, Rev. Palaeobot. Palyno., 144, 337–361, https://doi.org/10.1016/j.revpalbo.2006.08.006, 2007. a, b
Kempeneers, P., Sedano, F., Seebach, L. M., Strobl, P., and San-Miguel-Ayanz, J.: Data Fusion of Different Spatial Resolution Remote Sensing Images Applied to Forest-Type Mapping, IEEE T. Geosci. Remote, 49, 4977–4986, https://doi.org/10.1109/TGRS.2011.2158548, 2012. a, b
Koff, T.: Pollen influx into Tauber traps in Estonia in 1997–1998, Rev. Palaeobot. Palyno., 117, 53–62, https://doi.org/10.1016/S0034-6667(01)00076-8, 2001. a
Kozáková, R., Šamonil, P., Kuneš, P., Novák, J., Kočár, P., and Kočárová, R.: Contrasting local and regional Holocene histories of Abies alba in the Czech Republic in relation to human impact: Evidence from forestry, pollen and anthracological data, Holocene, 21, 431–444, https://doi.org/10.1177/0959683610385721, 2011. a
Kubitz, B.: Die holozäne Vegetations- und Siedlungsgeschichte in der Westeifel am Beispiel eines hochauflösenden Pollendiagrammes aus dem Meerfelder Maar [History of Holocene vegetation and settlement of the Western Eifel region (Germany) using a high resolution pollenprofile from the Meerfeld Maar], Dissertationes Botanicae, Band 339, ISBN: 978-3-443-64251-8, 2000 (in German). a
Kvavadze, E.: Annual modern pollen deposition in the foothills of the Lagodekhi Reservation (Caucasus, East Georgia), related to vegetation and climate, Acta Palaeobotanica, 41, 355–364, 2001. a
LaDeau, S. L. and Clark, J. S.: Rising CO2 Levels and the Fecundity of Forest Trees, Science, 292, 95–98, https://doi.org/10.1126/science.1057547, 2001. a
LaDeau, S. L. and Clark, J. S.: Pollen production by Pinus taeda growing in elevated atmospheric CO2, Funct. Ecol., 20, 541–547, https://doi.org/10.1111/j.1365-2435.2006.01133.x, 2006. a, b
Lisitsyna, O. V., Giesecke, T., and Hicks, S.: Exploring pollen percentage threshold values as an indication for the regional presence of major European trees, Rev. Palaeobot. Palyno., 166, 311–324, https://doi.org/10.1016/j.revpalbo.2011.06.004, 2011a. a
Lisitsyna, O. V., Hicks, S., and Huusko, A.: Do moss samples, pollen traps and modern lake sediments all collect pollen in the same way? A comparison from the forest limit area of northernmost Europe, Veg. Hist. Archaebot., 21, 187–199, https://doi.org/10.1007/s00334-011-0335-x, 2011b. a, b
Lotter, A. F.: Late-glacial and Holocene vegetation history and dynamics as shown by pollen and plant macrofossil analyses in annually laminated sediments from Soppensee, central Switzerland, Veg. Hist. Archaebot., 8, 165–184, https://doi.org/10.1007/BF02342718, 1999. a
Maher Jr., L. J.: Statistics for microfossil concentration measurements employing samples spiked with marker grains, Rev. Palaeobot. Palyno., 32, 153–191, https://doi.org/10.1016/0034-6667(81)90002-6, 1981. a
Malmström, C.: Degerö Stormyr–en botanisk, hydrologisk och utvecklingshistorisk undersökning över ett nordsvenskt myrkomplex, Meddelanden från Statens Skogsförsöksanstalt, 20, 1–2, 1923. a
Markgraf, V.: Pollen Dispersal in a Mountain Area, Grana, 19, 127–146, https://doi.org/10.1080/00173138009424995, 1980. a
Matthias, I., Nielsen, A. B., and Giesecke, T.: Evaluating the effect of flowering age and forest structure on pollen productivity estimates, Veg. Hist. Archaebot., 21, 471–484, https://doi.org/10.1007/s00334-012-0373-z, 2012. a
McCarroll, D., Jalkanen, R., Hicks, S., Tuovinen, M., Gagen, M., Pawellek, F., Eckstein, D., Schmitt, U., Autio, J., and Heikkinen, O.: Multiproxy dendroclimatology: a pilot study in northern Finland, Holocene, 13, 829–838, https://doi.org/10.1191/0959683603hl668rp, 2003. a
Nielsen, A. B., Möller, P. F., Giesecke, T., Stavngaard, B., Fontana, S. L., and Bradshaw, R. H. W.: The effect of climate conditions on inter-annual flowering variability monitored by pollen traps below the canopy in Draved Forest, Denmark, Veg. Hist. Archaebot., 19, 309–323, https://doi.org/10.1007/s00334-010-0253-3, 2010. a, b
Nosova, M. B., Novenko, E. Y., Severova, E. E., and Volkova, O. A.: Vegetation and climate changes within and around the Polistovo-Lovatskaya mire system (Pskov Oblast, north-western Russia) during the past 10,500 years, Veg. Hist. Archaebot., 28, 123–140, https://doi.org/10.1007/s00334-018-0693-8, 2019. a
Overpeck, J. T., Webb, T., and Prentice, I. C.: Quantitative interpretation of fossil pollen spectra: Dissimilarity coefficients and the method of modern analogs, Quaternary Res., 23, 87–108, https://doi.org/10.1016/0033-5894(85)90074-2, 1985. a
Pardoe, H. S., Giesecke, T., Knaap, W. O., Svitavská-Svobodová, H., Kvavadze, E. V., Panajiotidis, S., Gerasimidis, A., Pidek, I. A., Zimny, M., Święta-Musznicka, J., Latałowa, M., Noryśkiewicz, A. M., Bozilova, E., Tonkov, S., Filipova-Marinova, M. V., Leeuwen, J. F. N., and Kalniṇa, L.: Comparing pollen spectra from modified Tauber traps and moss samples: examples from a selection of woodlands across Europe, Veg. Hist. Archaebot., 19, 271–283, https://doi.org/10.1007/s00334-010-0258-y, 2010. a, b
Parshall, T.: Documenting forest stand invasion: fossil stomata and pollen in forest hollows, Can. J. Botany, 77, 1529–1538, https://doi.org/10.1139/b99-133, 1999. a
Pennington, W.: The Origin of Pollen in Lake Sediments: An Enclosed Lake Compared with One Receiving Inflow Streams, New Phytol., 83, 189–213, https://doi.org/10.1111/j.1469-8137.1979.tb00741.x, 1979. a
Pers-Kamczyc, E., Tyrała-Wierucka, Ż., Rabska, M., Wrońska-Pilarek, D., and Kamczyc, J.: The higher availability of nutrients increases the production but decreases the quality of pollen grains in Juniperus communis L., J. Plant Physiol., 248, 153156, https://doi.org/10.1016/j.jplph.2020.153156, 2020. a
Pidek, I. A.: Nine-year record of Alnus pollen deposition in the Roztocze
region (SE Poland) with relation to vegetation data, Acta Agrobot., 60,
57–64, 2007. a
Pidek, I. A., Svitavská-Svobodová, H., van der Knaap, W. O., Noryśkiewicz, A. M., Filbrandt-Czaja, A., Noryśkiewicz, B., Latałowa, M., Zimny, M., Święta-Musznicka, J., Bozilova, E., Tonkov, S., Filipova-Marinova, M., Poska, A., Giesecke, T., and Gikov, A.: Variation in annual pollen accumulation rates of Fagus along a N–S transect in Europe based on pollen traps, Veg. Hist. Archaebot., 19, 259–270, https://doi.org/10.1007/s00334-010-0248-0, 2010. a
Pędziszewska, A., Tylmann, W., Witak, M., Piotrowska, N., Maciejewska, E., and Latałowa, M.: Holocene environmental changes reflected by pollen, diatoms, and geochemistry of annually laminated sediments of Lake Suminko in the Kashubian Lake District (N Poland), Rev. Palaeobot. Palyno., 216, 55–75, https://doi.org/10.1016/j.revpalbo.2015.01.008, 2015. a
R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2019. a
Seppä, H. and Hicks, S.: Integration of modern and past pollen accumulation rate (PAR) records across the arctic tree-line: a method for more precise vegetation reconstructions, Quaternary Sci. Rev., 25, 1501–1516, https://doi.org/10.1016/j.quascirev.2005.12.002, 2006. a, b
Seppä, H. and Weckström, J.: Holocene vegetational and limnological changes in the Fennoscandian tree-line area as documented by pollen and diatom records from Lake Tsuolbmajavri, Finland, Écoscience, 6, 621–635, https://doi.org/10.1080/11956860.1999.11682562, 1999. a
Seppä, H., Nyman, M., Korhola, A., and Weckström, J.: Changes of treelines and alpine vegetation in relation to post-glacial climate dynamics in northern Fennoscandia based on pollen and chironomid records, J. Quaternary Sci., 17, 287–301, https://doi.org/10.1002/jqs.678, 2002. a
Seppä, H., Alenius, T., Muukkonen, P., Giesecke, T., Miller, P. A., and Ojala, A. E.: Calibrated pollen accumulation rates as a basis for quantitative tree biomass reconstructions, Holocene, 19, 209–220, https://doi.org/10.1177/0959683608100565, 2009. a, b
Shumilovskikh, L. S., Novenko, E., and Giesecke, T.: Long-term dynamics of the East European forest-steppe ecotone, J. Veg. Sci., 29, 416–426, https://doi.org/10.1111/jvs.12585, 2018. a
Stockmarr, J.: Tablets with spores used in absolute pollen analysis, Pollen et Spores, 13, 615–621, 1971. a
Sugita, S., Hicks, S., and Sormunen, H.: Absolute pollen productivity and pollen-vegetation relationships in northern Finland, J. Quaternary Sci., 25, 724–736, https://doi.org/10.1002/jqs.1349, 2009. a, b
Svobodová, H., Soukupová, L., and Reille, M.: Diversified development of mountain mires, Bohemian Forest, Central Europe, in the last 13,000 years, Quatern. Int., 91, 123–135, https://doi.org/10.1016/S1040-6182(01)00106-9, 2002. a
Tauber, H.: Investigations of the mode of pollen transfer in forested areas, Rev. Palaeobot. Palyno., 3, 277–286, https://doi.org/10.1016/0034-6667(67)90060-7, 1967. a, b
Tauber, H.: A Static Non-overload Pollen Collector, New Phytol., 73, 359–369, https://doi.org/10.1111/j.1469-8137.1974.tb04770.x, 1974. a
Theuerkauf, M., Bos, J. A. A., Jahns, S., Janke, W., Kuparinen, A., Stebich, M., and Joosten, H.: Corylus expansion and persistent openness in the early Holocene vegetation of northern central Europe, Quaternary Sci. Rev., 90, 183–198, https://doi.org/10.1016/j.quascirev.2014.03.002, 2014. a
Tinner, W., Colombaroli, D., Heiri, O., Henne, P. D., Steinacher, M., Untenecker, J., Vescovi, E., Allen, J. R. M., Carraro, G., Conedera, M., Joos, F., Lotter, A. F., Luterbacher, J., Samartin, S., and Valsecchi, V.: The past ecology of Abies alba provides new perspectives on future responses of silver fir forests to global warming, Ecol. Monogr., 83, 419–439, https://doi.org/10.1890/12-2231.1, 2013. a
Tinsley, H.: Modern pollen deposition in traps on a transect across an anthropogenic tree-line on Exmoor, southwest England: a note summarising the first three years of data, Rev. Palaeobot. Palyno., 117, 153–158, https://doi.org/10.1016/S0034-6667(01)00083-5, 2001. a
Tinsley, H. and Hicks, S.: Preface, Rev. Palaeobot. Palyno., 117, vii–x, https://doi.org/10.1016/S0034-6667(01)00073-2, 2001. a
Tonkov, S., Hicks, S., Bozilova, E., and Atanassova, J.: Pollen monitoring in the central Rila Mountains, Southwestern Bulgaria: comparisons between pollen traps and surface samples for the period 1993–1999, Rev. Palaeobot. Palyno., 117, 167–182, https://doi.org/10.1016/S0034-6667(01)00085-9, 2001. a
Tonkov, S., Bozilova, E., Pavlova, D., and Raev, I.: Long-term pollen monitoring experiments for the period 1994–2008 in the Rila Mountains, Bulgaria, Eurasian Journal of Forest Science, 4, 1–16, https://doi.org/10.31195/ejejfs.258621, 2016. a
van der Knaap, W. O., van Leeuwen, J. F. N., Fankhauser, A., and Ammann, B.: Palynostratigraphy of the last centuries in Switzerland based on 23 lake and mire deposits: chronostratigraphic pollen markers, regional patterns, and local histories, Rev. Palaeobot. Palyno., 108, 85–142, https://doi.org/10.1016/S0034-6667(99)00035-4, 2000. a, b
van der Knaap, W. O., van Leeuwen, J. F. N., and Ammann, B.: Seven years of annual pollen influx at the forest limit in the Swiss Alps studied by pollen traps: relations to vegetation and climate, Rev. Palaeobot. Palyno., 117, 31–52, https://doi.org/10.1016/S0034-6667(01)00075-6, 2001. a
van der Knaap, W. O., van Leeuwen, J. F. N., Svitavská-Svobodová, H., Pidek, I. A., Kvavadze, E., Chichinadze, M., Giesecke, T., Kaszewski, B. M., Oberli, F., Kalniṇa, L., Pardoe, H. S., Tinner, W., and Ammann, B.: Annual pollen traps reveal the complexity of climatic control on pollen productivity in Europe and the Caucasus, Veg. Hist. Archaebot., 19, 285–307, https://doi.org/10.1007/s00334-010-0250-6, 2010.
a, b, c, d
Veski, S., Amon, L., Heinsalu, A., Reitalu, T., Saarse, L., Stivrins, N., and Vassiljev, J.: Lateglacial vegetation dynamics in the eastern Baltic region between 14,500 and 11,400 cal yr BP: A complete record since the Bølling (GI-1e) to the Holocene, Quaternary Sci. Rev., 40, 39–53, https://doi.org/10.1016/j.quascirev.2012.02.013, 2012. a
Wang, H. and Song, M.: Ckmeans.1d.dp: Optimal k-means Clustering in One Dimension by Dynamic Programming, The R Journal, 3, 29–33, https://doi.org/10.32614/RJ-2011-015, 2011. a
Wayne, P., Foster, S., Connolly, J., Bazzaz, F., and Epstein, P.: Production of allergenic pollen by ragweed (Ambrosia artemisiifolia L.) is increased in CO2-enriched atmospheres, Ann. Allerg. Asthma Im., 88, 279–282, https://doi.org/10.1016/S1081-1206(10)62009-1, 2002. a
Welten, M.: Pollenanalytische, stratigraphische und geochronologische Untersuchungen aus dem Faulenseemoos bei Spiez, in: Veröffentlichungen des Geobotanischen Instituts Rübel in Zürich, H. Huber, Bern, vol. 21, 1944 (in German). a
Williams, J. W., Grimm, E. C., Blois, J. L., Charles, D. F., Davis, E. B., Goring, S. J., Graham, R. W., Smith, A. J., Anderson, M., Arroyo-Cabrales, J., Ashworth, A. C., Betancourt, J. L., Bills, B. W., Booth, R. K., Buckland, P. I., Curry, B. B., Giesecke, T., Jackson, S. T., Latorre, C., Nichols, J., Purdum, T., Roth, R. E., Stryker, M., and Takahara, H.: The Neotoma Paleoecology Database, a multiproxy, international, community-curated data resource, Quaternary Res., 89, 156–177, https://doi.org/10.1017/qua.2017.105, 2018. a
WorldClim: available at: http://worldclim.org/version2, last access: 20 January 2019. a
Short summary
We present a continental dataset of pollen accumulation rates (PARs) collected by pollen traps. This absolute measure of pollen rain (grains cm−2 yr−1) has a positive relationship to current vegetation and latitude. Trap and fossil PARs have similar values within one region, so it opens up possibilities for using fossil PARs to reconstruct past changes in plant biomass and primary productivity. The dataset is available in the Neotoma Paleoecology Database.
We present a continental dataset of pollen accumulation rates (PARs) collected by pollen traps....
Altmetrics
Final-revised paper
Preprint