Articles | Volume 18, issue 2
https://doi.org/10.5194/bg-18-509-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/bg-18-509-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assimilating synthetic Biogeochemical-Argo and ocean colour observations into a global ocean model to inform observing system design
David Ford
CORRESPONDING AUTHOR
Met Office, FitzRoy Road, Exeter, EX1 3PB, UK
Related authors
Jozef Skákala, David Ford, Keith Haines, Amos Lawless, Matthew J. Martin, Philip Browne, Marcin Chrust, Stefano Ciavatta, Alison Fowler, Daniel Lea, Matthew Palmer, Andrea Rochner, Jennifer Waters, Hao Zuo, Deep S. Banerjee, Mike Bell, Davi M. Carneiro, Yumeng Chen, Susan Kay, Dale Partridge, Martin Price, Richard Renshaw, Georgy Shapiro, and James While
Ocean Sci., 21, 1709–1734, https://doi.org/10.5194/os-21-1709-2025, https://doi.org/10.5194/os-21-1709-2025, 2025
Short summary
Short summary
UK marine data assimilation (MDA) involves a closely collaborating research community. In this paper, we offer both an overview of the state of the art and a vision for the future across all of the main areas of UK MDA, ranging from physics to biogeochemistry to coupled DA. We discuss the current UK MDA stakeholder applications, highlight theoretical developments needed to advance our systems, and reflect upon upcoming opportunities with respect to hardware and observational missions.
Dale Partridge, Deep Banerjee, David Ford, Ke Wang, Jozef Skakala, Juliane Wihsgott, Prathyush Menon, Susan Kay, Daniel Clewley, Andrea Rochner, Emma Sullivan, and Matthew Palmer
EGUsphere, https://doi.org/10.5194/egusphere-2025-3346, https://doi.org/10.5194/egusphere-2025-3346, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
This study outlines the development and testing of a Digital Twin Ocean (DTO) framework, aimed at improving coastal ocean forecasts through the use of autonomous underwater gliders. A fleet of gliders were deployed in the western English Channel during August–September 2024 to collect measurements of temperature, salinity, chlorophyll and oxygen, aiming to track the movement of the harmful algal bloom Karenia mikimotoi.
Davi Mignac, Jennifer Waters, Daniel J. Lea, Matthew J. Martin, James While, Anthony T. Weaver, Arthur Vidard, Catherine Guiavarc'h, Dave Storkey, David Ford, Edward W. Blockley, Jonathan Baker, Keith Haines, Martin R. Price, Michael J. Bell, and Richard Renshaw
Geosci. Model Dev., 18, 3405–3425, https://doi.org/10.5194/gmd-18-3405-2025, https://doi.org/10.5194/gmd-18-3405-2025, 2025
Short summary
Short summary
We describe major improvements of the Met Office's global ocean–sea ice forecasting system. The models and the way observations are used to improve the forecasts were changed, which led to a significant error reduction of 1 d forecasts. The new system performance in past conditions, where subsurface observations are scarce, was improved with more consistent ocean heat content estimates. The new system will be of better use for climate studies and will provide improved forecasts for end users.
Marion Mittermaier, Rachel North, Jan Maksymczuk, Christine Pequignet, and David Ford
Ocean Sci., 17, 1527–1543, https://doi.org/10.5194/os-17-1527-2021, https://doi.org/10.5194/os-17-1527-2021, 2021
Short summary
Short summary
Regions of enhanced chlorophyll-a concentrations can be identified by applying a threshold to the concentration value to a forecast and observed field (or analysis). These regions can then be treated and analysed as features using diagnostic techniques to consider of the evolution of the chlorophyll-a blooms in space and time. This allows us to understand whether the biogeochemistry in the model has any skill in predicting these blooms, their location, intensity, onset, duration and demise.
Jozef Skákala, David Ford, Keith Haines, Amos Lawless, Matthew J. Martin, Philip Browne, Marcin Chrust, Stefano Ciavatta, Alison Fowler, Daniel Lea, Matthew Palmer, Andrea Rochner, Jennifer Waters, Hao Zuo, Deep S. Banerjee, Mike Bell, Davi M. Carneiro, Yumeng Chen, Susan Kay, Dale Partridge, Martin Price, Richard Renshaw, Georgy Shapiro, and James While
Ocean Sci., 21, 1709–1734, https://doi.org/10.5194/os-21-1709-2025, https://doi.org/10.5194/os-21-1709-2025, 2025
Short summary
Short summary
UK marine data assimilation (MDA) involves a closely collaborating research community. In this paper, we offer both an overview of the state of the art and a vision for the future across all of the main areas of UK MDA, ranging from physics to biogeochemistry to coupled DA. We discuss the current UK MDA stakeholder applications, highlight theoretical developments needed to advance our systems, and reflect upon upcoming opportunities with respect to hardware and observational missions.
Dale Partridge, Deep Banerjee, David Ford, Ke Wang, Jozef Skakala, Juliane Wihsgott, Prathyush Menon, Susan Kay, Daniel Clewley, Andrea Rochner, Emma Sullivan, and Matthew Palmer
EGUsphere, https://doi.org/10.5194/egusphere-2025-3346, https://doi.org/10.5194/egusphere-2025-3346, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
This study outlines the development and testing of a Digital Twin Ocean (DTO) framework, aimed at improving coastal ocean forecasts through the use of autonomous underwater gliders. A fleet of gliders were deployed in the western English Channel during August–September 2024 to collect measurements of temperature, salinity, chlorophyll and oxygen, aiming to track the movement of the harmful algal bloom Karenia mikimotoi.
Davi Mignac, Jennifer Waters, Daniel J. Lea, Matthew J. Martin, James While, Anthony T. Weaver, Arthur Vidard, Catherine Guiavarc'h, Dave Storkey, David Ford, Edward W. Blockley, Jonathan Baker, Keith Haines, Martin R. Price, Michael J. Bell, and Richard Renshaw
Geosci. Model Dev., 18, 3405–3425, https://doi.org/10.5194/gmd-18-3405-2025, https://doi.org/10.5194/gmd-18-3405-2025, 2025
Short summary
Short summary
We describe major improvements of the Met Office's global ocean–sea ice forecasting system. The models and the way observations are used to improve the forecasts were changed, which led to a significant error reduction of 1 d forecasts. The new system performance in past conditions, where subsurface observations are scarce, was improved with more consistent ocean heat content estimates. The new system will be of better use for climate studies and will provide improved forecasts for end users.
Marion Mittermaier, Rachel North, Jan Maksymczuk, Christine Pequignet, and David Ford
Ocean Sci., 17, 1527–1543, https://doi.org/10.5194/os-17-1527-2021, https://doi.org/10.5194/os-17-1527-2021, 2021
Short summary
Short summary
Regions of enhanced chlorophyll-a concentrations can be identified by applying a threshold to the concentration value to a forecast and observed field (or analysis). These regions can then be treated and analysed as features using diagnostic techniques to consider of the evolution of the chlorophyll-a blooms in space and time. This allows us to understand whether the biogeochemistry in the model has any skill in predicting these blooms, their location, intensity, onset, duration and demise.
Cited articles
Altieri, A. H. and Gedan, K. B.: Climate change and dead zones, Glob. Change Biol., 21, 1395–1406, https://doi.org/10.1111/gcb.12754,
2015. a
Anderson, L. A., Robinson, A. R., and Lozano, C. J.: Physical and biological
modeling in the Gulf Stream region: I. Data assimilation methodology, Deep-Sea Res. Pt. I, 47, 1787–1827,
https://doi.org/10.1016/S0967-0637(00)00019-4,
2000. a
Argo: Argo float data and metadata from Global Data Assembly Centre (Argo
GDAC), https://doi.org/10.17882/42182, 2000. a
Arnold, C. P. and Dey, C. H.: Observing-Systems Simulation Experiments: Past,
Present, and Future, B. Am. Meteorol. Soc., 67,
687–695, https://doi.org/10.1175/1520-0477(1986)067<0687:OSSEPP>2.0.CO;2,
1986. a, b
Bannister, R. N.: A review of forecast error covariance statistics in
atmospheric variational data assimilation. I: Characteristics and
measurements of forecast error covariances, Q. J. Roy. Meteor. Soc., 134, 1951–1970, https://doi.org/10.1002/qj.339,
2008. a
Bates, N. R., Astor, Y. M., Church, M. J., Currie, K., Dore, J. E.,
González-Dávila, M., Lorenzoni, L., Muller-Karger, F., Olafsson, J.,
and Santana-Casiano, J. M.: A Time-Series View of Changing Surface Ocean
Chemistry Due to Ocean Uptake of Anthropogenic CO2 and Ocean
Acidification, Oceanography, 27, 126–141, 2014. a
Behrenfeld, M. J. and Boss, E. S.: Resurrecting the Ecological Underpinnings of
Ocean Plankton Blooms, Annu. Rev. Mar. Sci., 6, 167–194,
https://doi.org/10.1146/annurev-marine-052913-021325, 2014. a
Biogeochemical-Argo Planning Group: The scientific rationale, design and
Implementation Plan for a Biogeochemical-Argo float array, edited by: Johnson,
K. and Claustre, H., Ifremer, Brest, https://doi.org/10.13155/46601, 2016. a
Blockley, E. W., Martin, M. J., McLaren, A. J., Ryan, A. G., Waters, J., Lea, D. J., Mirouze, I., Peterson, K. A., Sellar, A., and Storkey, D.: Recent development of the Met Office operational ocean forecasting system: an overview and assessment of the new Global FOAM forecasts, Geosci. Model Dev., 7, 2613–2638, https://doi.org/10.5194/gmd-7-2613-2014, 2014. a
Bloom, S. C., Takacs, L. L., da Silva, A. M., and Ledvina, D.: Data
Assimilation Using Incremental Analysis Updates, Mon. Weather Rev., 124,
1256–1271, https://doi.org/10.1175/1520-0493(1996)124<1256:DAUIAU>2.0.CO;2,
1996. a
Boss, E., Swift, D., Taylor, L., Brickley, P., Zaneveld, R., Riser, S., Perry, M. J., and Strutton, P. G.: Observations of pigment and particle
distributions in the western North Atlantic from an autonomous float and
ocean color satellite, Limnol. Oceanogr., 53, 2112–2122,
https://doi.org/10.4319/lo.2008.53.5_part_2.2112,
2008. a
Calvert, D. and Siddorn, J.: Revised vertical mixing parameters for the UK
community standard configuration of the global NEMO ocean model, Met Office
Hadley Centre Technical Note, 95,
https://library.metoffice.gov.uk/Portal/Default/en-GB/RecordView/Index/207517 (last access: 29 April 2020),
2013. a
Campbell, J. W.: The lognormal distribution as a model for bio-optical
variability in the sea, J. Geophys. Res.-Oceans, 100,
13237–13254, https://doi.org/10.1029/95JC00458,
1995. a
Ciavatta, S., Torres, R., Saux-Picart, S., and Allen, J. I.: Can ocean color
assimilation improve biogeochemical hindcasts in shelf seas?, J. Geophys. Res.-Oceans, 116, C12043, https://doi.org/10.1029/2011JC007219,
2011. a
Ciavatta, S., Kay, S., Saux-Picart, S., Butenschön, M., and Allen, J. I.:
Decadal reanalysis of biogeochemical indicators and fluxes in the North West
European shelf-sea ecosystem, J. Geophys. Res.-Oceans, 121,
1824–1845, https://doi.org/10.1002/2015JC011496,
2016. a
Cossarini, G., Mariotti, L., Feudale, L., Mignot, A., Salon, S., Taillandier, V., Teruzzi, A., and D'Ortenzio, F.: Towards operational 3D-Var assimilation
of chlorophyll Biogeochemical-Argo float data into a biogeochemical model of
the Mediterranean Sea, Ocean Model., 133, 112–128,
https://doi.org/10.1016/j.ocemod.2018.11.005,
2019. a
Davidson, F., Alvera-Azcárate, A., Barth, A., Brassington, G. B.,
Chassignet, E. P., Clementi, E., De Mey-Frémaux, P., Divakaran, P.,
Harris, C., Hernandez, F., Hogan, P., Hole, L. R., Holt, J., Liu, G., Lu, Y.,
Lorente, P., Maksymczuk, J., Martin, M., Mehra, A., Melsom, A., Mo, H.,
Moore, A., Oddo, P., Pascual, A., Pequignet, A.-C., Kourafalou, V., Ryan, A.,
Siddorn, J., Smith, G., Spindler, D., Spindler, T., Stanev, E. V., Staneva, J., Storto, A., Tanajura, C., Vinayachandran, P. N., Wan, L., Wang, H.,
Zhang, Y., Zhu, X., and Zu, Z.: Synergies in Operational Oceanography: The
Intrinsic Need for Sustained Ocean Observations, Front. Mar. Sci.,
6, 450, https://doi.org/10.3389/fmars.2019.00450,
2019. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B.,
Hersbach, H., Hólm, E. V., Isaksen, L., Kâllberg, P., Köhler, M.,
Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data
assimilation system, Q. J. Roy. Meteor. Soc.,
137, 553–597, https://doi.org/10.1002/qj.828,
2011. a
Diaz, R. J. and Rosenberg, R.: Spreading Dead Zones and Consequences for Marine
Ecosystems, Science, 321, 926–929, https://doi.org/10.1126/science.1156401, 2008. a
Doney, S. C., Fabry, V. J., Feely, R. A., and Kleypas, J. A.: Ocean
Acidification: The Other CO2 Problem, Annu. Rev. Mar. Sci., 1, 169–192, https://doi.org/10.1146/annurev.marine.010908.163834, pMID:
21141034, 2009. a
Evensen, G.: The ensemble Kalman filter: Theoretical formulation and practical
implementation, Ocean Dynam., 53, 343–367,
https://doi.org/10.1007/s10236-003-0036-9, 2003. a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a
FAO: The State of World Fisheries and Aquaculture 2016. Contributing to food
security and nutrition for all, FAO, Rome, 2016. a
Fennel, K., Gehlen, M., Brasseur, P., Brown, C. W., Ciavatta, S., Cossarini, G., Crise, A., Edwards, C. A., Ford, D., Friedrichs, M. A. M., Gregoire, M.,
Jones, E., Kim, H.-C., Lamouroux, J., Murtugudde, R., Perruche, C., and the
GODAE OceanView Marine Ecosystem Analysis and Prediction Task Team:
Advancing Marine Biogeochemical and Ecosystem Reanalyses and Forecasts as
Tools for Monitoring and Managing Ecosystem Health, Front. Mar. Sci., 6, 89, https://doi.org/10.3389/fmars.2019.00089,
2019. a, b, c, d, e, f
Field, C. B., Behrenfeld, M. J., Randerson, J. T., and Falkowski, P.: Primary
Production of the Biosphere: Integrating Terrestrial and Oceanic Components,
Science, 281, 237–240, https://doi.org/10.1126/science.281.5374.237, 1998. a
Fontana, C., Brasseur, P., and Brankart, J.-M.: Toward a multivariate reanalysis of the North Atlantic Ocean biogeochemistry during 19982006 based on the assimilation of SeaWiFS chlorophyll data, Ocean Sci., 9, 37–56, https://doi.org/10.5194/os-9-37-2013, 2013. a, b
Ford, D. A., Edwards, K. P., Lea, D., Barciela, R. M., Martin, M. J., and Demaria, J.: Assimilating GlobColour ocean colour data into a pre-operational physical-biogeochemical model, Ocean Sci., 8, 751–771, https://doi.org/10.5194/os-8-751-2012, 2012. a, b, c
Fujii, Y., Rémy, E., Zuo, H., Oke, P., Halliwell, G., Gasparin, F.,
Benkiran, M., Loose, N., Cummings, J., Xie, J., Xue, Y., Masuda, S., Smith, G. C., Balmaseda, M., Germineaud, C., Lea, D. J., Larnicol, G., Bertino, L.,
Bonaduce, A., Brasseur, P., Donlon, C., Heimbach, P., Kim, Y., Kourafalou, V., Le Traon, P.-Y., Martin, M., Paturi, S., Tranchant, B., and Usui, N.:
Observing System Evaluation Based on Ocean Data Assimilation and Prediction
Systems: On-Going Challenges and a Future Vision for Designing and Supporting
Ocean Observational Networks, Front. Mar. Sci., 6, 417,
https://doi.org/10.3389/fmars.2019.00417,
2019. a
Garcia, H. E., Weathers, K., Paver, C. R., Smolyar, I., Boyer, T. P.,
Locarnini, R. A., Zweng, M. M., Mishonov, A. V., Baranova, O. K., Seidov, D.,
and Reagan, J. R.: World Ocean Atlas 2018, Volume 3: Dissolved Oxygen,
Apparent Oxygen Utilization, and Oxygen Saturation, edited by:
Mishonov, A., NOAA Atlas NESDIS 83, Maryland, 2018a. a
Garcia, H. E., Weathers, K., Paver, C. R., Smolyar, I., Boyer, T. P.,
Locarnini, R. A., Zweng, M. M., Mishonov, A. V., Baranova, O. K., Seidov, D.,
and Reagan, J. R.: World Ocean Atlas 2018, Volume 4: Dissolved Inorganic
Nutrients (phosphate, nitrate and nitrate+nitrite, silicate), edited by: Mishonov, A.; NOAA Atlas NESDIS 84, Maryland, 2018b. a
Gasparin, F., Guinehut, S., Mao, C., Mirouze, I., Rémy, E., King, R. R.,
Hamon, M., Reid, R., Storto, A., Le Traon, P.-Y., Martin, M. J., and Masina, S.: Requirements for an Integrated in situ Atlantic Ocean Observing System
From Coordinated Observing System Simulation Experiments, Front. Mar. Sci., 6, 83, https://doi.org/10.3389/fmars.2019.00083,
2019. a, b, c, d, e, f, g
Gehlen, M., Barciela, R., Bertino, L., Brasseur, P., Butenschön, M., Chai, F., Crise, A., Drillet, Y., Ford, D., Lavoie, D., Lehodey, P., Perruche, C.,
Samuelsen, A., and Simon, E.: Building the capacity for forecasting marine
biogeochemistry and ecosystems: recent advances and future developments,
J. Oper. Oceanogr., 8, s168–s187,
https://doi.org/10.1080/1755876X.2015.1022350, 2015. a, b
Germineaud, C., Brankart, J.-M., and Brasseur, P.: An Ensemble-Based
Probabilistic Score Approach to Compare Observation Scenarios: An Application
to Biogeochemical-Argo Deployments, J. Atmos. Ocean. Tech., 36, 2307–2326, https://doi.org/10.1175/JTECH-D-19-0002.1, 2019. a, b
Good, S. A., Martin, M. J., and Rayner, N. A.: EN4: Quality controlled ocean
temperature and salinity profiles and monthly objective analyses with
uncertainty estimates, J. Geophys. Res.-Oceans, 118,
6704–6716, https://doi.org/10.1002/2013JC009067,
2013. a
Gouretski, V. and Reseghetti, F.: On depth and temperature biases in
bathythermograph data: Development of a new correction scheme based on
analysis of a global ocean database, Deep-Sea Res. Pt. I, 57, 812–833, https://doi.org/10.1016/j.dsr.2010.03.011,
2010. a
Gregg, W. W.: Assimilation of SeaWiFS ocean chlorophyll data into a
three-dimensional global ocean model, J. Marine Syst., 69, 205–225, https://doi.org/10.1016/j.jmarsys.2006.02.015, 2008. a
Groom, S., Sathyendranath, S., Ban, Y., Bernard, S., Brewin, R., Brotas, V.,
Brockmann, C., Chauhan, P., Choi, J.-k., Chuprin, A., Ciavatta, S.,
Cipollini, P., Donlon, C., Franz, B., He, X., Hirata, T., Jackson, T.,
Kampel, M., Krasemann, H., Lavender, S., Pardo-Martinez, S., Mélin, F.,
Platt, T., Santoleri, R., Skákala, J., Schaeffer, B., Smith, M.,
Steinmetz, F., Valente, A., and Wang, M.: Satellite Ocean Colour: Current
Status and Future Perspective, Front. Mar. Sci., 6, 485,
https://doi.org/10.3389/fmars.2019.00485,
2019. a
Guiavarc'h, C., Roberts-Jones, J., Harris, C., Lea, D. J., Ryan, A., and Ascione, I.: Assessment of ocean analysis and forecast from an atmosphereocean coupled data assimilation operational system, Ocean Sci., 15, 1307–1326, https://doi.org/10.5194/os-15-1307-2019, 2019. a
Halliwell, G. R., Mehari, M. F., Hénaff, M. L., Kourafalou, V. H.,
Androulidakis, I. S., Kang, H. S., and Atlas, R.: North Atlantic Ocean OSSE
system: Evaluation of operational ocean observing system components and
supplemental seasonal observations for potentially improving tropical cyclone
prediction in coupled systems, J. Oper. Oceanogr., 10,
154–175, https://doi.org/10.1080/1755876X.2017.1322770, 2017. a
Hemmings, J. C. P., Barciela, R. M., and Bell, M. J.: Ocean color data
assimilation with material conservation for improving model estimates of
air-sea CO2 flux, J. Mar. Res., 66, 87–126,
https://doi.org/10.1357/002224008784815739,
2008. a
Hemmings, J. C. P., Challenor, P. G., and Yool, A.: Mechanistic site-based emulation of a global ocean biogeochemical model (MEDUSA 1.0) for parametric analysis and calibration: an application of the Marine Model Optimization Testbed (MarMOT 1.1), Geosci. Model Dev., 8, 697–731, https://doi.org/10.5194/gmd-8-697-2015, 2015. a
Hoffman, R. N. and Atlas, R.: Future Observing System Simulation Experiments,
B. Am. Meteorol. Soc., 97, 1601–1616,
https://doi.org/10.1175/BAMS-D-15-00200.1, 2016. a
Hovmöller, E.: The Trough-and-Ridge diagram, Tellus, 1, 62–66,
https://doi.org/10.3402/tellusa.v1i2.8498, 1949. a
Hunke, C., E., Lipscomb, H., W., Turner, K., A., Jeffery, N., and Elliott, S.:
CICE: the Los Alamos sea ice model documentation and software users' manual,
Version 5.1, LA-CC-06-012, Los Alamos National Laboratory, N.M., 2015. a
IPCC: Climate Change 2014: Synthesis Report. Contribution of Working Groups I,
II and III to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change, edited by: Core Writing Team, Pachauri, R. K. and Meyer, L. A.,
IPCC, Geneva, Switzerland, 2014. a
Jackson, D. R., Keil, M., and Devenish, B. J.: Use of Canadian Quick
covariances in the Met Office data assimilation system, Q. J. Roy. Meteor. Soc., 134, 1567–1582, https://doi.org/10.1002/qj.294,
2008. a
Janjić, T., Bormann, N., Bocquet, M., Carton, J. A., Cohn, S. E., Dance, S. L., Losa, S. N., Nichols, N. K., Potthast, R., Waller, J. A., and Weston, P.: On the representation error in data assimilation, Q. J. Roy. Meteor. Soc., 144, 1257–1278, https://doi.org/10.1002/qj.3130,
2018. a
Johnson, K. S., Plant, J. N., Coletti, L. J., Jannasch, H. W., Sakamoto, C. M.,
Riser, S. C., Swift, D. D., Williams, N. L., Boss, E., Haëntjens, N.,
Talley, L. D., and Sarmiento, J. L.: Biogeochemical sensor performance in the
SOCCOM profiling float array, J. Geophys. Res.-Oceans, 122,
6416–6436, https://doi.org/10.1002/2017JC012838,
2017. a
Kalnay, E.: Atmospheric modeling, data assimilation and predictability,
Cambridge University Press, Cambridge, 2003. a
Key, R. M., Olsen, A., van Heuven, S., Lauvset, S. K., Velo, A., Lin, X.,
Schirnick, C., Kozyr, A., Tanhua, T., Hoppema, M., Jutterström, S.,
Steinfeldt, R., Jeansson, E., Ishii, M., Perez, F. F., and Suzuki, T.: Global
ocean data analysis project, version 2 (GLODAPv2),
available at: https://www.glodap.info/wp-content/uploads/2017/08/NDP_093.pdf (last access: 18 January 2021), 2015. a
Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi, K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K., and Takahashi, K.:
The JRA-55 Reanalysis: General Specifications and Basic Characteristics,
J. Meteorol. Soc. Jpn., 93, 5–48,
https://doi.org/10.2151/jmsj.2015-001, 2015. a
Kwiatkowski, L., Yool, A., Allen, J. I., Anderson, T. R., Barciela, R., Buitenhuis, E. T., Butenschön, M., Enright, C., Halloran, P. R., Le Quéré, C., de Mora, L., Racault, M.-F., Sinha, B., Totterdell, I. J., and Cox, P. M.: iMarNet: an ocean biogeochemistry model intercomparison project within a common physical ocean modelling framework, Biogeosciences, 11, 7291–7304, https://doi.org/10.5194/bg-11-7291-2014, 2014. a
Landschützer, P., Gruber, N., and Bakker, D. C. E.: A 30 years
observation-based global monthly gridded sea surface pCO2
product from 1982 through 2011 (NCEI Accession 0160558),
https://doi.org/10.3334/cdiac/otg.spco2_1982_2011_eth_somffn, 2015a. a, b
Landschützer, P., Gruber, N., Haumann, F. A., Rödenbeck, C., Bakker, D. C. E., van Heuven, S., Hoppema, M., Metzl, N., Sweeney, C., Takahashi, T.,
Tilbrook, B., and Wanninkhof, R.: The reinvigoration of the Southern Ocean
carbon sink, Science, 349, 1221–1224, https://doi.org/10.1126/science.aab2620,
2015b. a, b
Lauvset, S. K., Key, R. M., Olsen, A., van Heuven, S., Velo, A., Lin, X., Schirnick, C., Kozyr, A., Tanhua, T., Hoppema, M., Jutterström, S., Steinfeldt, R., Jeansson, E., Ishii, M., Perez, F. F., Suzuki, T., and Watelet, S.: A new global interior ocean mapped climatology: the 1∘ × 1∘ GLODAP version 2, Earth Syst. Sci. Data, 8, 325–340, https://doi.org/10.5194/essd-8-325-2016, 2016. a
Lévy, M., Estublier, A., and Madec, G.: Choice of an advection scheme for
biogeochemical models, Geophys. Res. Lett., 28, 3725–3728,
https://doi.org/10.1029/2001GL012947,
2001. a
MacLachlan, C., Arribas, A., Peterson, K. A., Maidens, A., Fereday, D., Scaife, A. A., Gordon, M., Vellinga, M., Williams, A., Comer, R. E., Camp, J.,
Xavier, P., and Madec, G.: Global Seasonal forecast system version 5
(GloSea5): a high-resolution seasonal forecast system, Q. J. Roy. Meteor. Soc., 141, 1072–1084, https://doi.org/10.1002/qj.2396,
2015. a
Madec, G.: NEMO ocean engine, Note du Pole de modélisation, Institut
Pierre-Simon Laplace (IPSL), France, No. 27, 1288–1619, 2008. a
Mao, C., King, R. R., Reid, R., Martin, M. J., and Good, S. A.: Assessing the
Potential Impact of Changes to the Argo and Moored Buoy Arrays in an
Operational Ocean Analysis System, Front. Mar. Sci., 7, 905,
https://doi.org/10.3389/fmars.2020.588267,
2020. a
Martin, G. M., Milton, S. F., Senior, C. A., Brooks, M. E., Ineson, S.,
Reichler, T., and Kim, J.: Analysis and Reduction of Systematic Errors
through a Seamless Approach to Modeling Weather and Climate, J.
Climate, 23, 5933–5957, https://doi.org/10.1175/2010JCLI3541.1, 2010. a
Masutani, M., Schlatter, T. W., Errico, R. M., Stoffelen, A., Andersson, E.,
Lahoz, W., Woollen, J. S., Emmitt, G. D., Riishøjgaard, L.-P., and Lord, S. J.: Observing System Simulation Experiments, in: Data Assimilation: Making
Sense of Observations, edited by: Lahoz, W., Khattatov, B., and Menard, R.,
647–679, Springer Berlin Heidelberg, Berlin, Heidelberg,
https://doi.org/10.1007/978-3-540-74703-1_24,
2010. a, b, c, d
McKinley, G. A., Fay, A. R., Lovenduski, N. S., and Pilcher, D. J.: Natural
Variability and Anthropogenic Trends in the Ocean Carbon Sink, Annu. Rev. Mar. Sci., 9, 125–150, https://doi.org/10.1146/annurev-marine-010816-060529, pMID:
27620831, 2017. a
Mirouze, I. and Weaver, A. T.: Representation of correlation functions in
variational assimilation using an implicit diffusion operator, Q. J. Roy. Meteor. Soc., 136, 1421–1443,
https://doi.org/10.1002/qj.643,
2010. a
Mirouze, I., Blockley, E. W., Lea, D. J., Martin, M. J., and Bell, M. J.: A
multiple length scale correlation operator for ocean data assimilation,
Tellus A, 68, 29744,
https://doi.org/10.3402/tellusa.v68.29744, 2016. a, b
Mogensen, K. S., Balmaseda, M. A., Weaver, A., Martin, M., and Vidard, A.: NEMOVAR: a variational data assimilation system for the NEMO ocean model,
ECMWF Newsletter, 120, 17–21, https://doi.org/10.21957/3yj3mh16iq, 2009. a
Mogensen, K. S., Balmaseda, M. A., and Weaver, A.: The NEMOVAR ocean data
assimilation system as implemented in the ECMWF ocean analysis for System 4,
Tech. Rep. 668, ECMWF, https://doi.org/10.21957/x5y9yrtm, 2012. a, b
Munhoven, G.: Mathematics of the total alkalinitypH equation pathway to robust and universal solution algorithms: the SolveSAPHE package v1.0.1, Geosci. Model Dev., 6, 1367–1388, https://doi.org/10.5194/gmd-6-1367-2013, 2013. a, b
Orr, J. C. and Epitalon, J.-M.: Improved routines to model the ocean carbonate system: mocsy 2.0, Geosci. Model Dev., 8, 485–499, https://doi.org/10.5194/gmd-8-485-2015, 2015. a
Palmer, J. and Totterdell, I.: Production and export in a global ocean
ecosystem model, Deep-Sea Res. Pt. I, 48, 1169–1198, https://doi.org/10.1016/S0967-0637(00)00080-7,
2001. a, b
Park, J.-Y., Stock, C. A., Yang, X., Dunne, J. P., Rosati, A., John, J., and
Zhang, S.: Modeling Global Ocean Biogeochemistry With Physical Data
Assimilation: A Pragmatic Solution to the Equatorial Instability, J. Adv. Model. Earth Sy., 10, 891–906, https://doi.org/10.1002/2017MS001223,
2018. a
Polavarapu, S., Ren, S., Rochon, Y., Sankey, D., Ek, N., Koshyk, J., and
Tarasick, D.: Data assimilation with the Canadian middle atmosphere model,
Atmos. Ocean, 43, 77–100, https://doi.org/10.3137/ao.430105, 2005. a
Pradhan, H. K., Völker, C., Losa, S. N., Bracher, A., and Nerger, L.: Global
Assimilation of Ocean-Color Data of Phytoplankton Functional Types: Impact of
Different Data Sets, J. Geophys. Res.-Oceans, 125,
e2019JC015586, https://doi.org/10.1029/2019JC015586, 2020. a
Racault, M.-F., Sathyendranath, S., Brewin, R. J. W., Raitsos, D. E., Jackson, T., and Platt, T.: Impact of El Niño Variability on Oceanic
Phytoplankton, Front. Mar. Sci., 4, 133,
https://doi.org/10.3389/fmars.2017.00133,
2017. a
Raghukumar, K., Edwards, C. A., Goebel, N. L., Broquet, G., Veneziani, M.,
Moore, A. M., and Zehr, J. P.: Impact of assimilating physical oceanographic
data on modeled ecosystem dynamics in the California Current System, Prog. Oceanogr., 138, 546–558, https://doi.org/10.1016/j.pocean.2015.01.004, 2015. a
Ridley, J. K., Blockley, E. W., Keen, A. B., Rae, J. G. L., West, A. E., and Schroeder, D.: The sea ice model component of HadGEM3-GC3.1, Geosci. Model Dev., 11, 713–723, https://doi.org/10.5194/gmd-11-713-2018, 2018. a
Roemmich, D., Alford, M. H., Claustre, H., Johnson, K., King, B., Moum, J.,
Oke, P., Owens, W. B., Pouliquen, S., Purkey, S., Scanderbeg, M., Suga, T.,
Wijffels, S., Zilberman, N., Bakker, D., Baringer, M., Belbeoch, M., Bittig, H. C., Boss, E., Calil, P., Carse, F., Carval, T., Chai, F., Conchubhair, D. O., d'Ortenzio, F., Dall'Olmo, G., Desbruyeres, D., Fennel, K., Fer, I.,
Ferrari, R., Forget, G., Freeland, H., Fujiki, T., Gehlen, M., Greenan, B.,
Hallberg, R., Hibiya, T., Hosoda, S., Jayne, S., Jochum, M., Johnson, G. C.,
Kang, K., Kolodziejczyk, N., Körtzinger, A., Le Traon, P.-Y., Lenn, Y.-D., Maze, G., Mork, K. A., Morris, T., Nagai, T., Nash, J., Garabato, A. N., Olsen, A., Pattabhi, R. R., Prakash, S., Riser, S., Schmechtig, C.,
Schmid, C., Shroyer, E., Sterl, A., Sutton, P., Talley, L., Tanhua, T.,
Thierry, V., Thomalla, S., Toole, J., Troisi, A., Trull, T. W., Turton, J.,
Velez-Belchi, P. J., Walczowski, W., Wang, H., Wanninkhof, R., Waterhouse, A. F., Waterman, S., Watson, A., Wilson, C., Wong, A. P. S., Xu, J., and
Yasuda, I.: On the Future of Argo: A Global, Full-Depth, Multi-Disciplinary
Array, Front. Mar. Sci., 6, 439, https://doi.org/10.3389/fmars.2019.00439,
2019. a, b, c, d
Rousseaux, C. S. and Gregg, W. W.: Climate variability and phytoplankton
composition in the Pacific Ocean, J. Geophys. Res.-Oceans,
117, C10006, https://doi.org/10.1029/2012JC008083,
2012. a
Rousseaux, C. S. and Gregg, W. W.: Recent decadal trends in global
phytoplankton composition, Global Biogeochem. Cy., 29, 1674–1688,
https://doi.org/10.1002/2015GB005139,
2015. a
Sathyendranath, S., Grant, M., Brewin, R., Brockmann, C., Brotas, V., Chuprin, A., Doerffer, R., Dowell, M., Farman, A., Groom, S., Jackson, T., Krasemann, H., Lavender, S., Martinez Vicente, V., Mazeran, C., Mélin, F., Moore, T.,
Müller, D., Platt, T., Regner, P., Roy, S., Steinmetz, F., Swinton, J.,
Valente, A., Zühlke, M., Antoine, D., Arnone, R., Balch, W., Barker, K.,
Barlow, R., Bélanger, S., Berthon, J.-F., Beşiktepe, Ş., Brando, V., Canuti, E., Chavez, F., Claustre, H., Crout, R., Feldman, G., Franz, B.,
Frouin, R., García-Soto, C., Gibb, S., Gould, R., Hooker, S., Kahru, M.,
Klein, H., Kratzer, S., Loisel, H., McKee, D., Mitchell, B., Moisan, T.,
Muller-Karger, F., O'Dowd, L., Ondrusek, M., Poulton, A., Repecaud, M.,
Smyth, T., Sosik, H., Taberner, M., Twardowski, M., Voss, K., Werdell, J.,
Wernand, M., and Zibordi, G.: ESA Ocean Colour Climate Change Initiative
(Ocean_Colour_cci): Version 3.1 Data), Centre for Environmental Data Analysis, Didcot,
https://doi.org/10.5285/9c334fbe6d424a708cf3c4cf0c6a53f5, 2018. a, b
Sathyendranath, S., Brewin, R. J., Brockmann, C., Brotas, V., Calton, B.,
Chuprin, A., Cipollini, P., Couto, A. B., Dingle, J., Doerffer, R., Donlon, C., Dowell, M., Farman, A., Grant, M., Groom, S., Horseman, A., Jackson, T.,
Krasemann, H., Lavender, S., Martinez-Vicente, V., Mazeran, C., Mélin, F., Moore, T. S., Müller, D., Regner, P., Roy, S., Steele, C. J.,
Steinmetz, F., Swinton, J., Taberner, M., Thompson, A., Valente, A.,
Zühlke, M., Brando, V. E., Feng, H., Feldman, G., Franz, B. A., Frouin, R., Gould, R. W., Hooker, S. B., Kahru, M., Kratzer, S., Mitchell, B. G.,
Muller-Karger, F. E., Sosik, H. M., Voss, K. J., Werdell, J., and Platt, T.:
An Ocean-Colour Time Series for Use in Climate Studies: The Experience of the
Ocean-Colour Climate Change Initiative (OC-CCI), Sensors, 19, 4285, https://doi.org/10.3390/s19194285, 2019. a, b
Scaife, A. A., Arribas, A., Blockley, E., Brookshaw, A., Clark, R. T.,
Dunstone, N., Eade, R., Fereday, D., Folland, C. K., Gordon, M., Hermanson, L., Knight, J. R., Lea, D. J., MacLachlan, C., Maidens, A., Martin, M.,
Peterson, A. K., Smith, D., Vellinga, M., Wallace, E., Waters, J., and
Williams, A.: Skillful long-range prediction of European and North American
winters, Geophys. Res. Lett., 41, 2514–2519,
https://doi.org/10.1002/2014GL059637,
2014. a
Schartau, M., Wallhead, P., Hemmings, J., Löptien, U., Kriest, I., Krishna, S., Ward, B. A., Slawig, T., and Oschlies, A.: Reviews and syntheses: parameter identification in marine planktonic ecosystem modelling, Biogeosciences, 14, 1647–1701, https://doi.org/10.5194/bg-14-1647-2017, 2017. a
Sellar, A. A., Jones, C. G., Mulcahy, J. P., Tang, Y., Yool, A., Wiltshire, A.,
O'Connor, F. M., Stringer, M., Hill, R., Palmieri, J., Woodward, S., de Mora, L., Kuhlbrodt, T., Rumbold, S. T., Kelley, D. I., Ellis, R., Johnson, C. E.,
Walton, J., Abraham, N. L., Andrews, M. B., Andrews, T., Archibald, A. T.,
Berthou, S., Burke, E., Blockley, E., Carslaw, K., Dalvi, M., Edwards, J.,
Folberth, G. A., Gedney, N., Griffiths, P. T., Harper, A. B., Hendry, M. A.,
Hewitt, A. J., Johnson, B., Jones, A., Jones, C. D., Keeble, J., Liddicoat, S., Morgenstern, O., Parker, R. J., Predoi, V., Robertson, E., Siahaan, A.,
Smith, R. S., Swaminathan, R., Woodhouse, M. T., Zeng, G., and Zerroukat, M.:
UKESM1: Description and Evaluation of the U.K. Earth System Model, J. Adv. Model. Earth Sy., 11, 4513–4558,
https://doi.org/10.1029/2019MS001739,
2019. a
Skákala, J., Ford, D., Brewin, R. J., McEwan, R., Kay, S., Taylor, B.,
de Mora, L., and Ciavatta, S.: The Assimilation of Phytoplankton Functional
Types for Operational Forecasting in the Northwest European Shelf, J. Geophys. Res.-Oceans, 123, 5230–5247, https://doi.org/10.1029/2018JC014153,
2018. a, b, c, d, e
Skákala, J., Bruggeman, J., Brewin, R. J. W., Ford, D. A., and Ciavatta, S.: Improved Representation of Underwater Light Field and Its Impact on
Ecosystem Dynamics: A Study in the North Sea, J. Geophys. Res.-Oceans, 125, e2020JC016122, https://doi.org/10.1029/2020JC016122, 2020. a, b, c
Storkey, D., Blockley, E. W., Furner, R., Guiavarc'h, C., Lea, D., Martin, M. J., Barciela, R. M., Hines, A., Hyder, P., and Siddorn, J. R.: Forecasting
the ocean state using NEMO: The new FOAM system, J. Oper. Oceanogr., 3, 3–15, https://doi.org/10.1080/1755876X.2010.11020109, 2010. a
Storkey, D., Blaker, A. T., Mathiot, P., Megann, A., Aksenov, Y., Blockley, E. W., Calvert, D., Graham, T., Hewitt, H. T., Hyder, P., Kuhlbrodt, T., Rae, J. G. L., and Sinha, B.: UK Global Ocean GO6 and GO7: a traceable hierarchy of model resolutions, Geosci. Model Dev., 11, 3187–3213, https://doi.org/10.5194/gmd-11-3187-2018, 2018. a, b, c
Teruzzi, A., Dobricic, S., Solidoro, C., and Cossarini, G.: A 3-D variational
assimilation scheme in coupled transport-biogeochemical models: Forecast of
Mediterranean biogeochemical properties, J. Geophys. Res.-Oceans, 119, 200–217, https://doi.org/10.1002/2013JC009277,
2014. a, b, c
Torres, R., Allen, J., and Figueiras, F.: Sequential data assimilation in an
upwelling influenced estuary, J. Marine Syst., 60, 317–329,
https://doi.org/10.1016/j.jmarsys.2006.02.001,
2006. a
Valsala, V. and Maksyutov, S.: Simulation and assimilation of global ocean pCO2
and air-sea CO2 fluxes using ship observations of surface ocean pCO2 in
a simplified biogeochemical offline model, Tellus B, 62, 821–840, https://doi.org/10.1111/j.1600-0889.2010.00495.x, 2010. a
Van Leer, B.: Towards the ultimate conservative difference scheme. I V. A new
approach to numerical convection, J. Comput. Phys., 23,
276–299, 1977. a
Verdy, A. and Mazloff, M. R.: A data assimilating model for estimating Southern
Ocean biogeochemistry, J. Geophys. Res.-Oceans, 122,
6968–6988, https://doi.org/10.1002/2016JC012650,
2017. a
Weaver, A. T., Vialard, J., and Anderson, D. L. T.: Three- and Four-Dimensional
Variational Assimilation with a General Circulation Model of the Tropical
Pacific Ocean. Part I: Formulation, Internal Diagnostics, and Consistency
Checks, Mon. Weather Rev., 131, 1360–1378,
https://doi.org/10.1175/1520-0493(2003)131<1360:TAFVAW>2.0.CO;2,
2003. a
Weaver, A. T., Deltel, C., Machu, E., Ricci, S., and Daget, N.: A multivariate
balance operator for variational ocean data assimilation, Q. J. Roy. Meteor. Soc., 131, 3605–3625,
https://doi.org/10.1256/qj.05.119,
2005. a, b
Wijffels, S., Roemmich, D., Monselesan, D., Church, J., and Gilson, J.: Ocean
temperatures chronicle the ongoing warming of Earth, Nat. Clim. Change,
6, 116–118, https://doi.org/10.1038/nclimate2924, 2016. a
Williams, K. D., Copsey, D., Blockley, E. W., Bodas-Salcedo, A., Calvert, D.,
Comer, R., Davis, P., Graham, T., Hewitt, H. T., Hill, R., Hyder, P., Ineson, S., Johns, T. C., Keen, A. B., Lee, R. W., Megann, A., Milton, S. F., Rae, J. G. L., Roberts, M. J., Scaife, A. A., Schiemann, R., Storkey, D., Thorpe, L.,
Watterson, I. G., Walters, D. N., West, A., Wood, R. A., Woollings, T., and
Xavier, P. K.: The Met Office Global Coupled Model 3.0 and 3.1 (GC3.0 and
GC3.1) Configurations, J. Adv. Model. Earth Sy., 10,
357–380, https://doi.org/10.1002/2017MS001115,
2017.
a
Yool, A., Popova, E. E., and Anderson, T. R.: MEDUSA-2.0: an intermediate complexity biogeochemical model of the marine carbon cycle for climate change and ocean acidification studies, Geosci. Model Dev., 6, 1767–1811, https://doi.org/10.5194/gmd-6-1767-2013, 2013. a
Yool, A., Palmiéri, J., Jones, C. G., Sellar, A. A., de Mora, L.,
Kuhlbrodt, T., Popova, E. E., Mulcahy, J. P., Wiltshire, A., Rumbold, S. T.,
Stringer, M., Hill, R. S. R., Tang, Y., Walton, J., Blaker, A., Nurser, A. J. G., Coward, A. C., Hirschi, J., Woodward, S., Kelley, D. I., Ellis, R.,
and Rumbold-Jones, S.: Spin-up of UK Earth System Model 1 (UKESM1) for CMIP6,
J. Adv. Model. Earth Sy., e2019MS001933,
https://doi.org/10.1029/2019MS001933, 2020. a
Yu, L., Fennel, K., Bertino, L., Gharamti, M. E., and Thompson, K. R.: Insights
on multivariate updates of physical and biogeochemical ocean variables using
an Ensemble Kalman Filter and an idealized model of upwelling, Ocean
Model., 126, 13–28, https://doi.org/10.1016/j.ocemod.2018.04.005,
2018. a
Yu, L., Fennel, K., Wang, B., Laurent, A., Thompson, K. R., and Shay, L. K.: Evaluation of nonidentical versus identical twin approaches for observation impact assessments: an ensemble-Kalman-filter-based ocean assimilation application for the Gulf of Mexico, Ocean Sci., 15, 1801–1814, https://doi.org/10.5194/os-15-1801-2019, 2019. a
Zalesak, S. T.: Fully multidimensional flux-corrected transport algorithms for
fluids, J. Comput. Phys., 31, 335–362, 1979. a
Short summary
Biogeochemical-Argo floats are starting to routinely measure ocean chlorophyll, nutrients, oxygen, and pH. This study generated synthetic observations representing two potential Biogeochemical-Argo observing system designs and created a data assimilation scheme to combine them with an ocean model. The proposed system of 1000 floats brought clear benefits to model results, with additional floats giving further benefit. Existing satellite ocean colour observations gave complementary information.
Biogeochemical-Argo floats are starting to routinely measure ocean chlorophyll, nutrients,...
Altmetrics
Final-revised paper
Preprint