Articles | Volume 18, issue 19
https://doi.org/10.5194/bg-18-5363-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-5363-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Validation of a coupled δ2Hn-alkane–δ18Osugar paleohygrometer approach based on a climate chamber experiment
Johannes Hepp
CORRESPONDING AUTHOR
Chair of Geomorphology, BayCEER, University of Bayreuth,
Universitätsstrasse 30, 95440 Bayreuth, Germany
Soil
Biogeochemistry, Institute of Agricultural and Nutritional Sciences,, Martin Luther University of Halle–Wittenberg,
Von-Seckendorff-Platz 3, 06120 Halle (Saale), Germany
present address: Chair of Geomorphology, BayCEER, University of Bayreuth, Universitätsstrasse 30, 95440
Bayreuth, Germany
Christoph Mayr
Institute of Geography, Friedrich–Alexander University Erlangen–Nürnberg, Wetterkreuz 15, 91058 Erlangen, Germany
GeoBio-Center, Earth and Environmental Sciences, Ludwig Maximilian
University of Munich, Richard-Wagner-Str. 10, 80333 Munich, Germany
Kazimierz Rozanski
Faculty of Physics and Applied Computer Science, AGH University of
Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
Imke Kathrin Schäfer
Institute of Geography, Oeschger Centre for Climate Research,
University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland
Mario Tuthorn
Thermo Fisher Scientific, Hanna-Kunath-Str. 11, 28199 Bremen,
Germany
present address: Thermo Fisher Scientific,
Hanna-Kunath-Str. 11, 28199 Bremen, Germany
Bruno Glaser
Soil
Biogeochemistry, Institute of Agricultural and Nutritional Sciences,, Martin Luther University of Halle–Wittenberg,
Von-Seckendorff-Platz 3, 06120 Halle (Saale), Germany
Dieter Juchelka
Thermo Fisher Scientific, Hanna-Kunath-Str. 11, 28199 Bremen,
Germany
Willibald Stichler
Helmholtz Zentrum München, German Research Center for
Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg,
Germany
Roland Zech
Institute of Geography, Oeschger Centre for Climate Research,
University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland
Chair of Physical Geography, Institute of Geography,
Friedrich Schiller University of Jena, Löbdergraben 32, 07743 Jena,
Germany
present address: Chair of
Physical Geography, Institute of Geography, Friedrich Schiller University of Jena, Löbdergraben
32, 07743 Jena, Germany
Michael Zech
Soil
Biogeochemistry, Institute of Agricultural and Nutritional Sciences,, Martin Luther University of Halle–Wittenberg,
Von-Seckendorff-Platz 3, 06120 Halle (Saale), Germany
Heisenberg Chair of Physical Geography with
focus on paleoenvironmental research, Institute of Geography, Technische Universität Dresden,
Helmholtzstrasse 10, 01062 Dresden, Germany
present address: Heisenberg Chair of Physical Geography with focus on paleoenvironmental research,
Institute of Geography, Technische Universität Dresden,
Helmholtzstrasse 10, 01062 Dresden, Germany
Related authors
Johannes Hepp, Imke Kathrin Schäfer, Verena Lanny, Jörg Franke, Marcel Bliedtner, Kazimierz Rozanski, Bruno Glaser, Michael Zech, Timothy Ian Eglinton, and Roland Zech
Biogeosciences, 17, 741–756, https://doi.org/10.5194/bg-17-741-2020, https://doi.org/10.5194/bg-17-741-2020, 2020
Johannes Hepp, Bruno Glaser, Dieter Juchelka, Christoph Mayr, Kazimierz Rozanski, Imke Kathrin Schäfer, Willibald Stichler, Mario Tuthorn, Roland Zech, and Michael Zech
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-427, https://doi.org/10.5194/bg-2019-427, 2019
Manuscript not accepted for further review
Johannes Hepp, Lorenz Wüthrich, Tobias Bromm, Marcel Bliedtner, Imke Kathrin Schäfer, Bruno Glaser, Kazimierz Rozanski, Frank Sirocko, Roland Zech, and Michael Zech
Clim. Past, 15, 713–733, https://doi.org/10.5194/cp-15-713-2019, https://doi.org/10.5194/cp-15-713-2019, 2019
Vinicius dos Santos, Didier Gastmans, Ana María Durán-Quesada, Ricardo Sánchez-Murillo, Kazimierz Rozanski, Oliver Kracht, and Demilson de Assis Quintão
Atmos. Chem. Phys., 24, 6663–6680, https://doi.org/10.5194/acp-24-6663-2024, https://doi.org/10.5194/acp-24-6663-2024, 2024
Short summary
Short summary
We present novel findings on convective rainfall, summer rain in the late afternoon, by coupling water stable isotopes, micro rain radar, and satellite data. We found the tallest clouds in the afternoon and much smaller clouds at night, resulting in differences in day–night ratios in water stable isotopes. We sampled rain and meteorological variables every 5–10 min, allowing us to evaluate the development of convective rainfall, contributing to knowledge of rainfall related to extreme events.
Sudip Acharya, Maximilian Prochnow, Thomas Kasper, Linda Langhans, Peter Frenzel, Paul Strobel, Marcel Bliedtner, Gerhard Daut, Christopher Berndt, Sönke Szidat, Gary Salazar, Antje Schwalb, and Roland Zech
E&G Quaternary Sci. J., 72, 219–234, https://doi.org/10.5194/egqsj-72-219-2023, https://doi.org/10.5194/egqsj-72-219-2023, 2023
Short summary
Short summary
This study presents a palaeoenvironmental record from Lake Höglwörth, Bavaria, Germany. Before 870 CE peat deposits existed. Erosion increased from 1240 to 1380 CE, followed by aquatic productivity and anoxia from 1310 to 1470 CE. Increased allochthonous input and a substantial shift in the aquatic community in 1701 were caused by construction of a mill. Recent anoxia has been observed since the 1960s.
Jakob Labahn, Lucas Bittner, Philip Hirschmann, Christopher-Bastian Roettig, Diana Burghardt, Bruno Glaser, Slobodan B. Marković, and Michael Zech
E&G Quaternary Sci. J., 71, 83–90, https://doi.org/10.5194/egqsj-71-83-2022, https://doi.org/10.5194/egqsj-71-83-2022, 2022
Marcel Lerch, Tobias Bromm, Clemens Geitner, Jean Nicolas Haas, Dieter Schäfer, Bruno Glaser, and Michael Zech
Biogeosciences, 19, 1135–1150, https://doi.org/10.5194/bg-19-1135-2022, https://doi.org/10.5194/bg-19-1135-2022, 2022
Short summary
Short summary
Faecal biomarker analyses present a useful tool in geoarcheological research. For a better understanding of the lives of our ancestors in alpine regions, we investigated modern livestock faeces and Holocene soils at the prehistorical encampment site of Ullafelsen in the Fotsch Valley, Stubai Alps, Austria. Initial results show a high input of livestock faeces and a negligible input of human faeces for this archeological site. Future studies will focus on mire archives in the Fotsch Valley.
Anna K. Tobler, Alicja Skiba, Francesco Canonaco, Griša Močnik, Pragati Rai, Gang Chen, Jakub Bartyzel, Miroslaw Zimnoch, Katarzyna Styszko, Jaroslaw Nęcki, Markus Furger, Kazimierz Różański, Urs Baltensperger, Jay G. Slowik, and Andre S. H. Prevot
Atmos. Chem. Phys., 21, 14893–14906, https://doi.org/10.5194/acp-21-14893-2021, https://doi.org/10.5194/acp-21-14893-2021, 2021
Short summary
Short summary
Kraków is among the cities with the highest particulate matter levels within Europe. We conducted long-term and highly time-resolved measurements of the chemical composition of submicron particlulate matter (PM1). Combined with advanced source apportionment techniques, which allow for time-dependent factor profiles, our results elucidate that traffic and residential heating (biomass burning and coal combustion) as well as oxygenated organic aerosol are the key PM sources in Kraków.
Paul Strobel, Marcel Bliedtner, Andrew S. Carr, Peter Frenzel, Björn Klaes, Gary Salazar, Julian Struck, Sönke Szidat, Roland Zech, and Torsten Haberzettl
Clim. Past, 17, 1567–1586, https://doi.org/10.5194/cp-17-1567-2021, https://doi.org/10.5194/cp-17-1567-2021, 2021
Short summary
Short summary
This study presents a multi-proxy record from Lake Voёlvlei and provides new insights into the sea level and paleoclimate history of the past 8.5 ka at South Africa’s southern Cape coast. Our results show that sea level changes at the southern coast are in good agreement with the western coast of South Africa. In terms of climate our record provides valuable insights into changing sources of precipitation at the southern Cape coast, i.e. westerly- and easterly-derived precipitation contribution.
Michael Zech, Marcel Lerch, Marcel Bliedtner, Tobias Bromm, Fabian Seemann, Sönke Szidat, Gary Salazar, Roland Zech, Bruno Glaser, Jean Nicolas Haas, Dieter Schäfer, and Clemens Geitner
E&G Quaternary Sci. J., 70, 171–186, https://doi.org/10.5194/egqsj-70-171-2021, https://doi.org/10.5194/egqsj-70-171-2021, 2021
Marcel Bliedtner, Hans von Suchodoletz, Imke Schäfer, Caroline Welte, Gary Salazar, Sönke Szidat, Mischa Haas, Nathalie Dubois, and Roland Zech
Hydrol. Earth Syst. Sci., 24, 2105–2120, https://doi.org/10.5194/hess-24-2105-2020, https://doi.org/10.5194/hess-24-2105-2020, 2020
Short summary
Short summary
This study investigates the age and origin of leaf wax n-alkanes from a fluvial sediment–paleosol sequence (FSPS) by compound-class 14C dating. Our results show varying age offsets between the formation and sedimentation of leaf wax n-alkanes from well-developed (paleo)soils and fluvial sediments that are mostly due to their complex origin in such sequences. Thus, dating the leaf wax n-alkanes is an important step for more robust leaf-wax-based paleoenvironmental reconstructions in FSPSs.
Johannes Hepp, Imke Kathrin Schäfer, Verena Lanny, Jörg Franke, Marcel Bliedtner, Kazimierz Rozanski, Bruno Glaser, Michael Zech, Timothy Ian Eglinton, and Roland Zech
Biogeosciences, 17, 741–756, https://doi.org/10.5194/bg-17-741-2020, https://doi.org/10.5194/bg-17-741-2020, 2020
Julian Struck, Marcel Bliedtner, Paul Strobel, Jens Schumacher, Enkhtuya Bazarradnaa, and Roland Zech
Biogeosciences, 17, 567–580, https://doi.org/10.5194/bg-17-567-2020, https://doi.org/10.5194/bg-17-567-2020, 2020
Short summary
Short summary
We present leaf wax n-alkanes and their compound-specific (CS) δ13C isotopes from semi-arid and/or arid Mongolia to test their potential for paleoenvironmental reconstructions. Plants and topsoils were analysed and checked for climatic control. Chain-length variations are distinct between grasses and Caragana, which are not biased by climate. However CS δ13C is strongly correlated to climate, so n-alkanes and their CS δ13C show great potential for paleoenvironmental reconstruction in Mongolia.
Łukasz Chmura, Michał Gałkowski, Piotr Sekuła, Mirosław Zimnoch, Jarosław Nęcki, Jakub Bartyzel, Damian Zięba, Kazimierz Różański, Wojciech Wołkowicz, and Laszlo Haszpra
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-748, https://doi.org/10.5194/acp-2019-748, 2019
Revised manuscript not accepted
Short summary
Short summary
The rise of temperatures across the globe, mainly attributed to the anthropogenic emissions of greenhouse gases, is predicted to have an increased impact on ecosystems over the next century. One of the manifestations of this anthropogenic global warming will be the increased occurrence of prolonged droughts in the temperate climate zones. In the current study we present the evidence of an increased impact of droughts on the annual cycle of carbon dioxide over Central-Eastern Europe.
Johannes Hepp, Bruno Glaser, Dieter Juchelka, Christoph Mayr, Kazimierz Rozanski, Imke Kathrin Schäfer, Willibald Stichler, Mario Tuthorn, Roland Zech, and Michael Zech
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-427, https://doi.org/10.5194/bg-2019-427, 2019
Manuscript not accepted for further review
Bruk Lemma, Betelhem Mekonnen, Bruno Glaser, Wolfgang Zech, Sileshi Nemomissa, Tamrat Bekele, Lucas Bittner, and Michael Zech
E&G Quaternary Sci. J., 68, 189–200, https://doi.org/10.5194/egqsj-68-189-2019, https://doi.org/10.5194/egqsj-68-189-2019, 2019
Short summary
Short summary
Chemotaxonomic identification of keystone plant species in the Bale Mountains are possible using lignin phenols. However, Erica could not be differentiated chemotaxonomically from all other investigated plants using n-alkanes. Unambiguous characteristic patterns of lignin phenols reflected in the plant samples were not sustained in the organic layers and mineral topsoils. This is due to degradation and organic matter inputs by roots. Therefore, the past extent of Erica is still speculative.
Betelhem Mekonnen, Wolfgang Zech, Bruno Glaser, Bruk Lemma, Tobias Bromm, Sileshi Nemomissa, Tamrat Bekele, and Michael Zech
E&G Quaternary Sci. J., 68, 177–188, https://doi.org/10.5194/egqsj-68-177-2019, https://doi.org/10.5194/egqsj-68-177-2019, 2019
Short summary
Short summary
The study evaluates the ability of stable isotopes (δ13C and δ15N) and sugar biomarkers to distinguish Erica from the dominant vegetation of the Bale Mountains in order to reconstruct the past extent of Erica on the Sanetti Plateau. No significant differences in stable isotopes are found between the dominant plant species. Although Erica is characterized by quite high (G+M)/(A+X) ratios, it cannot be unambiguously distinguished from other plants due to degradation and soil microbial effects.
Johannes Hepp, Lorenz Wüthrich, Tobias Bromm, Marcel Bliedtner, Imke Kathrin Schäfer, Bruno Glaser, Kazimierz Rozanski, Frank Sirocko, Roland Zech, and Michael Zech
Clim. Past, 15, 713–733, https://doi.org/10.5194/cp-15-713-2019, https://doi.org/10.5194/cp-15-713-2019, 2019
Marcel Bliedtner, Imke K. Schäfer, Roland Zech, and Hans von Suchodoletz
Biogeosciences, 15, 3927–3936, https://doi.org/10.5194/bg-15-3927-2018, https://doi.org/10.5194/bg-15-3927-2018, 2018
Short summary
Short summary
In this study, we systematically analyze leaf wax derived n-alkane patterns in eastern Georgia to test their potential for paleoenvironmental reconstructions in the semi-humid to semi-arid central southern Caucasus region. We investigated the influence of vegetation types on the leaf wax signal in modern plants and topsoil material. Our results show distinct and systematic differences in the n-alkane patterns between vegetation types and prove their potential for vegetation reconstructions.
Ghulam Jeelani, Rajendrakumar D. Deshpande, Michal Galkowski, and Kazimierz Rozanski
Atmos. Chem. Phys., 18, 8789–8805, https://doi.org/10.5194/acp-18-8789-2018, https://doi.org/10.5194/acp-18-8789-2018, 2018
Short summary
Short summary
Analysis of stable isotope composition of daily precipitation collected along the southern foothills of the Himalayas was used to gain deeper insight into the mechanisms controlling isotopic composition of precipitation. The results suggested that the decrease in isotopic composition in the course of ISM evolution stems from large-scale recycling of moisture-driven monsoonal circulation. High d-excess of rainfall is attributed to moisture of continental origin released into the atmosphere.
Julian Struck, Christopher B. Roettig, Dominik Faust, and Roland Zech
E&G Quaternary Sci. J., 66, 109–114, https://doi.org/10.5194/egqsj-66-109-2018, https://doi.org/10.5194/egqsj-66-109-2018, 2018
Marcel Lerch, Marcel Bliedtner, Christopher-Bastian Roettig, Jan-Uwe Schmidt, Sönke Szidat, Gary Salazar, Roland Zech, Bruno Glaser, Arno Kleber, and Michael Zech
E&G Quaternary Sci. J., 66, 103–108, https://doi.org/10.5194/egqsj-66-103-2018, https://doi.org/10.5194/egqsj-66-103-2018, 2018
Lorenz Wüthrich, Marcel Bliedtner, Imke Kathrin Schäfer, Jana Zech, Fatemeh Shajari, Dorian Gaar, Frank Preusser, Gary Salazar, Sönke Szidat, and Roland Zech
E&G Quaternary Sci. J., 66, 91–100, https://doi.org/10.5194/egqsj-66-91-2017, https://doi.org/10.5194/egqsj-66-91-2017, 2017
Lorenz Wüthrich, Claudio Brändli, Régis Braucher, Heinz Veit, Negar Haghipour, Carla Terrizzano, Marcus Christl, Christian Gnägi, and Roland Zech
E&G Quaternary Sci. J., 66, 57–68, https://doi.org/10.5194/egqsj-66-57-2017, https://doi.org/10.5194/egqsj-66-57-2017, 2017
M. Tuthorn, R. Zech, M. Ruppenthal, Y. Oelmann, A. Kahmen, H. F. del Valle, T. Eglinton, K. Rozanski, and M. Zech
Biogeosciences, 12, 3913–3924, https://doi.org/10.5194/bg-12-3913-2015, https://doi.org/10.5194/bg-12-3913-2015, 2015
Short summary
Short summary
Stable water isotopes (18O/16O and 2H/1H) are invaluable proxies for paleoclimate research. Here we use a coupled 18O/16O and 2H/1H biomarker approach based on plant-derived sugars and n-alkanes. Applying this innovative approach to a topsoil transect allows for (i) calculating the deuterium-excess of leaf water as a proxy for relative humidity and (ii) calculating the plant source water isotopic composition (~precipitation). The approach is validated by the presented climate transect results.
J. Zhu, A. Lücke, H. Wissel, C. Mayr, D. Enters, K. Ja Kim, C. Ohlendorf, F. Schäbitz, and B. Zolitschka
Clim. Past, 10, 2153–2169, https://doi.org/10.5194/cp-10-2153-2014, https://doi.org/10.5194/cp-10-2153-2014, 2014
Related subject area
Paleobiogeoscience: Proxy use, Development & Validation
Disentangling influences of climate variability and lake-system evolution on climate proxies derived from isoprenoid and branched glycerol dialkyl glycerol tetraethers (GDGTs): the 250 kyr Lake Chala record
Electron backscatter diffraction analysis unveils foraminiferal calcite microstructure and processes of diagenetic alteration
Quantifying the δ15N trophic offset in a cold-water scleractinian coral (CWC): implications for the CWC diet and coral δ15N as a marine N cycle proxy
Stable oxygen isotopes of crocodilian tooth enamel allow tracking Plio-Pleistocene evolution of freshwater environments and climate in the Shungura Formation (Turkana Depression, Ethiopia)
Charcoal morphologies and morphometrics of a Eurasian grass-dominated system for robust interpretation of past fuel and fire type
Single-species dinoflagellate cyst carbon isotope fractionation in core-top sediments: environmental controls, CO2 dependency and proxy potential
Past fire dynamics inferred from polycyclic aromatic hydrocarbons and monosaccharide anhydrides in a stalagmite from the archaeological site of Mayapan, Mexico
Examination of the parameters controlling the triple oxygen isotope composition of grass leaf water and phytoliths at a Mediterranean site: a model–data approach
Biomarker characterization of the North Water Polynya, Baffin Bay: implications for local sea ice and temperature proxies
Technical note: No impact of alkenone extraction on foraminiferal stable isotope, trace element and boron isotope geochemistry
Deep-sea stylasterid δ18O and δ13C maps inform sampling scheme for paleotemperature reconstructions
Experimental burial diagenesis of aragonitic biocarbonates: from organic matter loss to abiogenic calcite formation
A modern snapshot of the isotopic composition of lacustrine biogenic carbonates – records of seasonal water temperature variability
Performance of temperature and productivity proxies based on long-chain alkane-1, mid-chain diols at test: a 5-year sediment trap record from the Mauritanian upwelling
Experimental production of charcoal morphologies to discriminate fuel source and fire type: an example from Siberian taiga
Toward a global calibration for quantifying past oxygenation in oxygen minimum zones using benthic Foraminifera
Calibration of Mg ∕ Ca and Sr ∕ Ca in coastal marine ostracods as a proxy for temperature
Technical note: Accelerate coccolith size separation via repeated centrifugation
Mg∕Ca, Sr∕Ca and stable isotopes from the planktonic foraminifera T. sacculifer: testing a multi-proxy approach for inferring paleotemperature and paleosalinity
Chemical destaining and the delta correction for blue intensity measurements of stained lake subfossil trees
Modern calibration of Poa flabellata (tussac grass) as a new paleoclimate proxy in the South Atlantic
Seawater pH reconstruction using boron isotopes in multiple planktonic foraminifera species with different depth habitats and their potential to constrain pH and pCO2 gradients
Bottom-water deoxygenation at the Peruvian margin during the last deglaciation recorded by benthic foraminifera
The pH dependency of the boron isotopic composition of diatom opal (Thalassiosira weissflogii)
Benthic foraminifera as tracers of brine production in the Storfjorden “sea ice factory”
Evaluation of bacterial glycerol dialkyl glycerol tetraether and 2H–18O biomarker proxies along a central European topsoil transect
Leaf wax n-alkane patterns and compound-specific δ13C of plants and topsoils from semi-arid and arid Mongolia
Organic-carbon-rich sediments: benthic foraminifera as bio-indicators of depositional environments
Strong correspondence between nitrogen isotope composition of foliage and chlorin across a rainfall gradient: implications for paleo-reconstruction of the nitrogen cycle
Environmental and biological controls on Na∕Ca ratios in scleractinian cold-water corals
Depth habitat of the planktonic foraminifera Neogloboquadrina pachyderma in the northern high latitudes explained by sea-ice and chlorophyll concentrations
Temporal variability in foraminiferal morphology and geochemistry at the West Antarctic Peninsula: a sediment trap study
Seasonality of archaeal lipid flux and GDGT-based thermometry in sinking particles of high-latitude oceans: Fram Strait (79° N) and Antarctic Polar Front (50° S)
Long-chain diols in settling particles in tropical oceans: insights into sources, seasonality and proxies
Multi-trace-element sea surface temperature coral reconstruction for the southern Mozambique Channel reveals teleconnections with the tropical Atlantic
Oxygen isotope composition of the final chamber of planktic foraminifera provides evidence of vertical migration and depth-integrated growth
Mg ∕ Ca and δ18O in living planktic foraminifers from the Caribbean, Gulf of Mexico and Florida Straits
Manganese incorporation in living (stained) benthic foraminiferal shells: a bathymetric and in-sediment study in the Gulf of Lions (NW Mediterranean)
Effects of light and temperature on Mg uptake, growth, and calcification in the proxy climate archive Clathromorphum compactum
A systematic look at chromium isotopes in modern shells – implications for paleo-environmental reconstructions
Reviews and syntheses: Revisiting the boron systematics of aragonite and their application to coral calcification
Physico-chemical and biological factors influencing dinoflagellate cyst production in the Cariaco Basin
Effects of alkalinity and salinity at low and high light intensity on hydrogen isotope fractionation of long-chain alkenones produced by Emiliania huxleyi
Interplay of community dynamics, temperature, and productivity on the hydrogen isotope signatures of lipid biomarkers
Benthic foraminiferal Mn / Ca ratios reflect microhabitat preferences
The effects of environment on Arctica islandica shell formation and architecture
Diatoms as a paleoproductivity proxy in the NW Iberian coastal upwelling system (NE Atlantic)
Factors controlling the depth habitat of planktonic foraminifera in the subtropical eastern North Atlantic
The effect of shell secretion rate on Mg / Ca and Sr / Ca ratios in biogenic calcite as observed in a belemnite rostrum
Carbonate “clumped” isotope signatures in aragonitic scleractinian and calcitic gorgonian deep-sea corals
Allix J. Baxter, Francien Peterse, Dirk Verschuren, Aihemaiti Maitituerdi, Nicolas Waldmann, and Jaap S. Sinninghe Damsté
Biogeosciences, 21, 2877–2908, https://doi.org/10.5194/bg-21-2877-2024, https://doi.org/10.5194/bg-21-2877-2024, 2024
Short summary
Short summary
This study investigates the impact of long-term lake-system evolution on the climate signal recorded by glycerol dialkyl glycerol tetraethers (GDGTs), a popular biomarker in paleoclimate research. It compares downcore changes in GDGTs in the 250 000 year sediment sequence of Lake Chala (Kenya/Tanzania) to independent data for lake mixing and water-column chemistry. These factors influence the GDGT proxies in the earliest depositional phases (before ~180 ka), confounding the climate signal.
Frances A. Procter, Sandra Piazolo, Eleanor H. John, Richard Walshaw, Paul N. Pearson, Caroline H. Lear, and Tracy Aze
Biogeosciences, 21, 1213–1233, https://doi.org/10.5194/bg-21-1213-2024, https://doi.org/10.5194/bg-21-1213-2024, 2024
Short summary
Short summary
This study uses novel techniques to look at the microstructure of planktonic foraminifera (single-celled marine organisms) fossils, to further our understanding of how they form their hard exterior shells and how the microstructure and chemistry of these shells can change as a result of processes that occur after deposition on the seafloor. Understanding these processes is of critical importance for using planktonic foraminifera for robust climate and environmental reconstructions of the past.
Josie L. Mottram, Anne M. Gothmann, Maria G. Prokopenko, Austin Cordova, Veronica Rollinson, Katie Dobkowski, and Julie Granger
Biogeosciences, 21, 1071–1091, https://doi.org/10.5194/bg-21-1071-2024, https://doi.org/10.5194/bg-21-1071-2024, 2024
Short summary
Short summary
Knowledge of ancient ocean N cycling can help illuminate past climate change. Using field and lab studies, this work ground-truths a promising proxy for marine N cycling, the N isotope composition of cold-water coral (CWC) skeletons. Our results estimate N turnover in CWC tissue; quantify the isotope effects between CWC tissue, diet, and skeleton; and suggest that CWCs possibly feed mainly on metazoan zooplankton, suggesting that the marine N proxy may be sensitive to the food web structure.
Axelle Gardin, Emmanuelle Pucéat, Géraldine Garcia, Jean-Renaud Boisserie, Adélaïde Euriat, Michael M. Joachimski, Alexis Nutz, Mathieu Schuster, and Olga Otero
Biogeosciences, 21, 437–454, https://doi.org/10.5194/bg-21-437-2024, https://doi.org/10.5194/bg-21-437-2024, 2024
Short summary
Short summary
We introduce a novel approach using stable oxygen isotopes from crocodilian fossil teeth to unravel palaeohydrological changes in past continental contexts. Applying it to the Plio-Pleistocene Ethiopian Shungura Formation, we found a significant increase in δ18O in the last 3 million years, likely due to monsoonal shifts and reduced rainfall, and that the local diversity of waterbodies (lakes, rivers, ponds) became restricted.
Angelica Feurdean, Richard S. Vachula, Diana Hanganu, Astrid Stobbe, and Maren Gumnior
Biogeosciences, 20, 5069–5085, https://doi.org/10.5194/bg-20-5069-2023, https://doi.org/10.5194/bg-20-5069-2023, 2023
Short summary
Short summary
This paper presents novel results of laboratory-produced charcoal forms from various grass, forb and shrub taxa from the Eurasian steppe to facilitate more robust interpretations of fuel sources and fire types in grassland-dominated ecosystems. Advancements in identifying fuel sources and changes in fire types make charcoal analysis relevant to studies of plant evolution and fire management.
Joost Frieling, Linda van Roij, Iris Kleij, Gert-Jan Reichart, and Appy Sluijs
Biogeosciences, 20, 4651–4668, https://doi.org/10.5194/bg-20-4651-2023, https://doi.org/10.5194/bg-20-4651-2023, 2023
Short summary
Short summary
We present a first species-specific evaluation of marine core-top dinoflagellate cyst carbon isotope fractionation (εp) to assess natural pCO2 dependency on εp and explore its geological deep-time paleo-pCO2 proxy potential. We find that εp differs between genera and species and that in Operculodinium centrocarpum, εp is controlled by pCO2 and nutrients. Our results highlight the added value of δ13C analyses of individual micrometer-scale sedimentary organic carbon particles.
Julia Homann, Niklas Karbach, Stacy A. Carolin, Daniel H. James, David Hodell, Sebastian F. M. Breitenbach, Ola Kwiecien, Mark Brenner, Carlos Peraza Lope, and Thorsten Hoffmann
Biogeosciences, 20, 3249–3260, https://doi.org/10.5194/bg-20-3249-2023, https://doi.org/10.5194/bg-20-3249-2023, 2023
Short summary
Short summary
Cave stalagmites contain substances that can be used to reconstruct past changes in local and regional environmental conditions. We used two classes of biomarkers (polycyclic aromatic hydrocarbons and monosaccharide anhydrides) to detect the presence of fire and to also explore changes in fire regime (e.g. fire frequency, intensity, and fuel source). We tested our new method on a stalagmite from Mayapan, a large Maya city on the Yucatán Peninsula.
Claudia Voigt, Anne Alexandre, Ilja M. Reiter, Jean-Philippe Orts, Christine Vallet-Coulomb, Clément Piel, Jean-Charles Mazur, Julie C. Aleman, Corinne Sonzogni, Helene Miche, and Jérôme Ogée
Biogeosciences, 20, 2161–2187, https://doi.org/10.5194/bg-20-2161-2023, https://doi.org/10.5194/bg-20-2161-2023, 2023
Short summary
Short summary
Data on past relative humidity (RH) ARE needed to improve its representation in Earth system models. A novel isotope parameter (17O-excess) of plant silica has been developed to quantify past RH. Using comprehensive monitoring and novel methods, we show how environmental and plant physiological parameters influence the 17O-excess of plant silica and leaf water, i.e. its source water. The insights gained from this study will help to improve estimates of RH from fossil plant silica deposits.
David J. Harning, Brooke Holman, Lineke Woelders, Anne E. Jennings, and Julio Sepúlveda
Biogeosciences, 20, 229–249, https://doi.org/10.5194/bg-20-229-2023, https://doi.org/10.5194/bg-20-229-2023, 2023
Short summary
Short summary
In order to better reconstruct the geologic history of the North Water Polynya, we provide modern validations and calibrations of lipid biomarker proxies in Baffin Bay. We find that sterols, rather than HBIs, most accurately capture the current extent of the North Water Polynya and will be a valuable tool to reconstruct its past presence or absence. Our local temperature calibrations for GDGTs and OH-GDGTs reduce the uncertainty present in global temperature calibrations.
Jessica G. M. Crumpton-Banks, Thomas Tanner, Ivan Hernández Almeida, James W. B. Rae, and Heather Stoll
Biogeosciences, 19, 5633–5644, https://doi.org/10.5194/bg-19-5633-2022, https://doi.org/10.5194/bg-19-5633-2022, 2022
Short summary
Short summary
Past ocean carbon is reconstructed using proxies, but it is unknown whether preparing ocean sediment for one proxy might damage the data given by another. We have tested whether the extraction of an organic proxy archive from sediment samples impacts the geochemistry of tiny shells also within the sediment. We find no difference in shell geochemistry between samples which come from treated and untreated sediment. This will help us to maximize scientific return from valuable sediment samples.
Theresa M. King and Brad E. Rosenheim
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-180, https://doi.org/10.5194/bg-2022-180, 2022
Revised manuscript accepted for BG
Short summary
Short summary
Corals can record ocean properties such as temperature in their skeletons. These records are useful for where and when we have no instrumental record like in the distant past. However, coral growth must be understood to interpret these records. Here, we analyze slices of a branching deep sea coral from Antarctica to determine how to best sample these corals for past climate work. We recommend sampling from the innermost portion of coral skeleton for accurate temperature reconstructions.
Pablo Forjanes, María Simonet Roda, Martina Greiner, Erika Griesshaber, Nelson A. Lagos, Sabino Veintemillas-Verdaguer, José Manuel Astilleros, Lurdes Fernández-Díaz, and Wolfgang W. Schmahl
Biogeosciences, 19, 3791–3823, https://doi.org/10.5194/bg-19-3791-2022, https://doi.org/10.5194/bg-19-3791-2022, 2022
Short summary
Short summary
Aragonitic skeletons are employed to decipher past climate dynamics and environmental change. Unfortunately, the information that these skeletons keep can be destroyed during diagenesis. In this work, we study the first changes undergone by aragonitic skeletons upon hydrothermal alteration. We observe that major changes occur from the very beginning of the alteration, even without mineralogical changes. These results have major implications for the use of these archives to understand the past.
Inga Labuhn, Franziska Tell, Ulrich von Grafenstein, Dan Hammarlund, Henning Kuhnert, and Bénédicte Minster
Biogeosciences, 19, 2759–2777, https://doi.org/10.5194/bg-19-2759-2022, https://doi.org/10.5194/bg-19-2759-2022, 2022
Short summary
Short summary
This study presents the isotopic composition of recent biogenic carbonates from several lacustrine species which calcify during different times of the year. The authors demonstrate that when biological offsets are corrected, the dominant cause of differences between species is the seasonal variation in temperature-dependent fractionation of oxygen isotopes. Consequently, such carbonates from lake sediments can provide proxy records of seasonal water temperature changes in the past.
Gerard J. M. Versteegh, Karin A. F. Zonneveld, Jens Hefter, Oscar E. Romero, Gerhard Fischer, and Gesine Mollenhauer
Biogeosciences, 19, 1587–1610, https://doi.org/10.5194/bg-19-1587-2022, https://doi.org/10.5194/bg-19-1587-2022, 2022
Short summary
Short summary
A 5-year record of long-chain mid-chain diol export flux and composition is presented with a 1- to 3-week resolution sediment trap CBeu (in the NW African upwelling). All environmental parameters as well as the diol composition are dominated by the seasonal cycle, albeit with different phase relations for temperature and upwelling. Most diol-based proxies are dominated by upwelling. The long-chain diol index reflects temperatures of the oligotrophic summer sea surface.
Angelica Feurdean
Biogeosciences, 18, 3805–3821, https://doi.org/10.5194/bg-18-3805-2021, https://doi.org/10.5194/bg-18-3805-2021, 2021
Short summary
Short summary
This study characterized the diversity of laboratory-produced charcoal morphological features of various fuel types from Siberia at different temperatures. The results obtained improve the attribution of charcoal particles to fuel types and fire characteristics. This work also provides recommendations for the application of this information to refine the past wildfire history.
Martin Tetard, Laetitia Licari, Ekaterina Ovsepyan, Kazuyo Tachikawa, and Luc Beaufort
Biogeosciences, 18, 2827–2841, https://doi.org/10.5194/bg-18-2827-2021, https://doi.org/10.5194/bg-18-2827-2021, 2021
Short summary
Short summary
Oxygen minimum zones are oceanic regions almost devoid of dissolved oxygen and are currently expanding due to global warming. Investigation of their past behaviour will allow better understanding of these areas and better prediction of their future evolution. A new method to estimate past [O2] was developed based on morphometric measurements of benthic foraminifera. This method and two other approaches based on foraminifera assemblages and porosity were calibrated using 45 core tops worldwide.
Maximiliano Rodríguez and Christelle Not
Biogeosciences, 18, 1987–2001, https://doi.org/10.5194/bg-18-1987-2021, https://doi.org/10.5194/bg-18-1987-2021, 2021
Short summary
Short summary
Mg/Ca in calcium carbonate shells of marine organisms such as foraminifera and ostracods has been used as a proxy to reconstruct water temperature. Here we provide new Mg/Ca–temperature calibrations for two shallow marine species of ostracods. We show that the water temperature in spring produces the best calibrations, which suggests the potential use of ostracod shells to reconstruct this parameter at a seasonal scale.
Hongrui Zhang, Chuanlian Liu, Luz María Mejía, and Heather Stoll
Biogeosciences, 18, 1909–1916, https://doi.org/10.5194/bg-18-1909-2021, https://doi.org/10.5194/bg-18-1909-2021, 2021
Delphine Dissard, Gert Jan Reichart, Christophe Menkes, Morgan Mangeas, Stephan Frickenhaus, and Jelle Bijma
Biogeosciences, 18, 423–439, https://doi.org/10.5194/bg-18-423-2021, https://doi.org/10.5194/bg-18-423-2021, 2021
Short summary
Short summary
Results from a data set acquired from living foraminifera T. sacculifer collected from surface waters are presented, allowing us to establish a new Mg/Ca–Sr/Ca–temperature equation improving temperature reconstructions. When combining equations, δ18Ow can be reconstructed with a precision of ± 0.5 ‰, while successive reconstructions involving Mg/Ca and δ18Oc preclude salinity reconstruction with a precision better than ± 1.69. A new direct linear fit to reconstruct salinity could be established.
Feng Wang, Dominique Arseneault, Étienne Boucher, Shulong Yu, Steeven Ouellet, Gwenaëlle Chaillou, Ann Delwaide, and Lily Wang
Biogeosciences, 17, 4559–4570, https://doi.org/10.5194/bg-17-4559-2020, https://doi.org/10.5194/bg-17-4559-2020, 2020
Short summary
Short summary
Wood stain is challenging the use of the blue intensity technique for dendroclimatic reconstructions. Using stained subfossil trees from eastern Canadian lakes, we compared chemical destaining approaches with the
delta bluemathematical correction of blue intensity data. Although no chemical treatment was completely efficient, the delta blue method is unaffected by the staining problem and thus is promising for climate reconstructions based on lake subfossil material.
Dulcinea V. Groff, David G. Williams, and Jacquelyn L. Gill
Biogeosciences, 17, 4545–4557, https://doi.org/10.5194/bg-17-4545-2020, https://doi.org/10.5194/bg-17-4545-2020, 2020
Short summary
Short summary
Tussock grasses that grow along coastlines of the Falkland Islands are slow to decay and build up thick peat layers over thousands of years. Grass fragments found in ancient peat can be used to reconstruct past climate because grasses can preserve a record of growing conditions in their leaves. We found that modern living tussock grasses in the Falkland Islands reliably record temperature and humidity in their leaves, and the peat they form can be used to understand past climate change.
Maxence Guillermic, Sambuddha Misra, Robert Eagle, Alexandra Villa, Fengming Chang, and Aradhna Tripati
Biogeosciences, 17, 3487–3510, https://doi.org/10.5194/bg-17-3487-2020, https://doi.org/10.5194/bg-17-3487-2020, 2020
Short summary
Short summary
Boron isotope ratios (δ11B) of foraminifera are a promising proxy for seawater pH and can be used to constrain pCO2. In this study, we derived calibrations for new foraminiferal taxa which extend the application of the boron isotope proxy. We discuss the origin of different δ11B signatures in species and also discuss the potential of using multispecies δ11B analyses to constrain vertical pH and pCO2 gradients in ancient water columns to shed light on biogeochemical carbon cycling in the past.
Zeynep Erdem, Joachim Schönfeld, Anthony E. Rathburn, Maria-Elena Pérez, Jorge Cardich, and Nicolaas Glock
Biogeosciences, 17, 3165–3182, https://doi.org/10.5194/bg-17-3165-2020, https://doi.org/10.5194/bg-17-3165-2020, 2020
Short summary
Short summary
Recent observations from today’s oceans revealed that oxygen concentrations are decreasing, and oxygen minimum zones are expanding together with current climate change. With the aim of understanding past climatic events and their relationship with oxygen content, we looked at the fossils, called benthic foraminifera, preserved in the sediment archives from the Peruvian margin and quantified the bottom-water oxygen content for the last 22 000 years.
Hannah K. Donald, Gavin L. Foster, Nico Fröhberg, George E. A. Swann, Alex J. Poulton, C. Mark Moore, and Matthew P. Humphreys
Biogeosciences, 17, 2825–2837, https://doi.org/10.5194/bg-17-2825-2020, https://doi.org/10.5194/bg-17-2825-2020, 2020
Short summary
Short summary
The boron isotope pH proxy is increasingly being used to reconstruct ocean pH in the past. Here we detail a novel analytical methodology for measuring the boron isotopic composition (δ11B) of diatom opal and apply this to the study of the diatom Thalassiosira weissflogii grown in culture over a range of pH. To our knowledge this is the first study of its kind and provides unique insights into the way in which diatoms incorporate boron and their potential as archives of palaeoclimate records.
Eleonora Fossile, Maria Pia Nardelli, Arbia Jouini, Bruno Lansard, Antonio Pusceddu, Davide Moccia, Elisabeth Michel, Olivier Péron, Hélène Howa, and Meryem Mojtahid
Biogeosciences, 17, 1933–1953, https://doi.org/10.5194/bg-17-1933-2020, https://doi.org/10.5194/bg-17-1933-2020, 2020
Short summary
Short summary
This study focuses on benthic foraminiferal distribution in an Arctic fjord characterised by continuous sea ice production during winter and the consequent cascading of salty and corrosive waters (brine) to the seabed. The inner fjord is dominated by calcareous species (C). In the central deep basins, where brines are persistent, calcareous foraminifera are dissolved and agglutinated (A) dominate. The high A/C ratio is suggested as a proxy for brine persistence and sea ice production.
Johannes Hepp, Imke Kathrin Schäfer, Verena Lanny, Jörg Franke, Marcel Bliedtner, Kazimierz Rozanski, Bruno Glaser, Michael Zech, Timothy Ian Eglinton, and Roland Zech
Biogeosciences, 17, 741–756, https://doi.org/10.5194/bg-17-741-2020, https://doi.org/10.5194/bg-17-741-2020, 2020
Julian Struck, Marcel Bliedtner, Paul Strobel, Jens Schumacher, Enkhtuya Bazarradnaa, and Roland Zech
Biogeosciences, 17, 567–580, https://doi.org/10.5194/bg-17-567-2020, https://doi.org/10.5194/bg-17-567-2020, 2020
Short summary
Short summary
We present leaf wax n-alkanes and their compound-specific (CS) δ13C isotopes from semi-arid and/or arid Mongolia to test their potential for paleoenvironmental reconstructions. Plants and topsoils were analysed and checked for climatic control. Chain-length variations are distinct between grasses and Caragana, which are not biased by climate. However CS δ13C is strongly correlated to climate, so n-alkanes and their CS δ13C show great potential for paleoenvironmental reconstruction in Mongolia.
Elena Lo Giudice Cappelli, Jessica Louise Clarke, Craig Smeaton, Keith Davidson, and William Edward Newns Austin
Biogeosciences, 16, 4183–4199, https://doi.org/10.5194/bg-16-4183-2019, https://doi.org/10.5194/bg-16-4183-2019, 2019
Short summary
Short summary
Fjords are known sinks of organic carbon (OC); however, little is known about the long-term fate of the OC stored in these sediments. The reason for this knowledge gap is the post-depositional degradation of OC. This study uses benthic foraminifera (microorganisms with calcite shells) to discriminate between post-depositional OC degradation and actual OC burial and accumulation in fjordic sediments, as foraminifera would only preserve the latter information in their assemblage composition.
Sara K. E. Goulden, Naohiko Ohkouchi, Katherine H. Freeman, Yoshito Chikaraishi, Nanako O. Ogawa, Hisami Suga, Oliver Chadwick, and Benjamin Z. Houlton
Biogeosciences, 16, 3869–3882, https://doi.org/10.5194/bg-16-3869-2019, https://doi.org/10.5194/bg-16-3869-2019, 2019
Short summary
Short summary
We investigate whether soil organic compounds preserve information about nitrogen availability to plants. We isolate chlorophyll degradation products in leaves, litter, and soil and explore possible species and climate effects on preservation and interpretation. We find that compound-specific nitrogen isotope measurements in soil have potential as a new tool to reconstruct changes in nitrogen cycling on a landscape over time, avoiding issues that have limited other proxies.
Nicolai Schleinkofer, Jacek Raddatz, André Freiwald, David Evans, Lydia Beuck, Andres Rüggeberg, and Volker Liebetrau
Biogeosciences, 16, 3565–3582, https://doi.org/10.5194/bg-16-3565-2019, https://doi.org/10.5194/bg-16-3565-2019, 2019
Short summary
Short summary
In this study we tried to correlate Na / Ca ratios from cold-water corals with environmental parameters such as salinity, temperature and pH. We do not observe a correlation between Na / Ca ratios and seawater salinity, but we do observe a strong correlation with temperature. Na / Ca data from warm-water corals (Porites spp.) and bivalves (Mytilus edulis) support this correlation, indicating that similar controls on the incorporation of sodium exist in these aragonitic organisms.
Mattia Greco, Lukas Jonkers, Kerstin Kretschmer, Jelle Bijma, and Michal Kucera
Biogeosciences, 16, 3425–3437, https://doi.org/10.5194/bg-16-3425-2019, https://doi.org/10.5194/bg-16-3425-2019, 2019
Short summary
Short summary
To be able to interpret the paleoecological signal contained in N. pachyderma's shells, its habitat depth must be known. Our investigation on 104 density profiles of this species from the Arctic and North Atlantic shows that specimens reside closer to the surface when sea-ice and/or surface chlorophyll concentrations are high. This is in contrast with previous investigations that pointed at the position of the deep chlorophyll maximum as the main driver of N. pachyderma vertical distribution.
Anna Mikis, Katharine R. Hendry, Jennifer Pike, Daniela N. Schmidt, Kirsty M. Edgar, Victoria Peck, Frank J. C. Peeters, Melanie J. Leng, Michael P. Meredith, Chloe L. C. Jones, Sharon Stammerjohn, and Hugh Ducklow
Biogeosciences, 16, 3267–3282, https://doi.org/10.5194/bg-16-3267-2019, https://doi.org/10.5194/bg-16-3267-2019, 2019
Short summary
Short summary
Antarctic marine calcifying organisms are threatened by regional climate change and ocean acidification. Future projections of regional carbonate production are challenging due to the lack of historical data combined with complex climate variability. We present a 6-year record of flux, morphology and geochemistry of an Antarctic planktonic foraminifera, which shows that their growth is most sensitive to sea ice dynamics and is linked with the El Niño–Southern Oscillation.
Eunmi Park, Jens Hefter, Gerhard Fischer, Morten Hvitfeldt Iversen, Simon Ramondenc, Eva-Maria Nöthig, and Gesine Mollenhauer
Biogeosciences, 16, 2247–2268, https://doi.org/10.5194/bg-16-2247-2019, https://doi.org/10.5194/bg-16-2247-2019, 2019
Short summary
Short summary
We analyzed GDGT-based proxy temperatures in the polar oceans. In the eastern Fram Strait (79° N), the nutrient distribution may determine the depth habit of Thaumarchaeota and thus the proxy temperature. In the Antarctic Polar Front (50° S), the contribution of Euryarchaeota or the nonlinear correlation between the proxy values and temperatures may cause the warm biases of the proxy temperatures relative to SSTs.
Marijke W. de Bar, Jenny E. Ullgren, Robert C. Thunnell, Stuart G. Wakeham, Geert-Jan A. Brummer, Jan-Berend W. Stuut, Jaap S. Sinninghe Damsté, and Stefan Schouten
Biogeosciences, 16, 1705–1727, https://doi.org/10.5194/bg-16-1705-2019, https://doi.org/10.5194/bg-16-1705-2019, 2019
Short summary
Short summary
We analyzed sediment traps from the Cariaco Basin, the tropical Atlantic and the Mozambique Channel to evaluate seasonal imprints in the concentrations and fluxes of long-chain diols (LDIs), in addition to the long-chain diol index proxy (sea surface temperature proxy) and the diol index (upwelling indicator). Despite significant degradation, LDI-derived temperatures were very similar for the sediment traps and seafloor sediments, and corresponded to annual mean sea surface temperatures.
Jens Zinke, Juan P. D'Olivo, Christoph J. Gey, Malcolm T. McCulloch, J. Henrich Bruggemann, Janice M. Lough, and Mireille M. M. Guillaume
Biogeosciences, 16, 695–712, https://doi.org/10.5194/bg-16-695-2019, https://doi.org/10.5194/bg-16-695-2019, 2019
Short summary
Short summary
Here we report seasonally resolved sea surface temperature (SST) reconstructions for the southern Mozambique Channel in the SW Indian Ocean, a region located along the thermohaline ocean surface circulation route, based on multi-trace-element temperature proxy records preserved in two Porites sp. coral cores for the past 42 years. Particularly, we show the suitability of both separate and combined Sr / Ca and Li / Mg proxies for improved multielement SST reconstructions.
Hilde Pracht, Brett Metcalfe, and Frank J. C. Peeters
Biogeosciences, 16, 643–661, https://doi.org/10.5194/bg-16-643-2019, https://doi.org/10.5194/bg-16-643-2019, 2019
Short summary
Short summary
In palaeoceanography the shells of single-celled foraminifera are routinely used as proxies to reconstruct the temperature, salinity and circulation of the ocean in the past. Traditionally a number of specimens were pooled for a single stable isotope measurement; however, technical advances now mean that a single shell or chamber of a shell can be measured individually. Three different hypotheses regarding foraminiferal biology and ecology were tested using this approach.
Anna Jentzen, Dirk Nürnberg, Ed C. Hathorne, and Joachim Schönfeld
Biogeosciences, 15, 7077–7095, https://doi.org/10.5194/bg-15-7077-2018, https://doi.org/10.5194/bg-15-7077-2018, 2018
Shauna Ní Fhlaithearta, Christophe Fontanier, Frans Jorissen, Aurélia Mouret, Adriana Dueñas-Bohórquez, Pierre Anschutz, Mattias B. Fricker, Detlef Günther, Gert J. de Lange, and Gert-Jan Reichart
Biogeosciences, 15, 6315–6328, https://doi.org/10.5194/bg-15-6315-2018, https://doi.org/10.5194/bg-15-6315-2018, 2018
Short summary
Short summary
This study looks at how foraminifera interact with their geochemical environment in the seabed. We focus on the incorporation of the trace metal manganese (Mn), with the aim of developing a tool to reconstruct past pore water profiles. Manganese concentrations in foraminifera are investigated relative to their ecological preferences and geochemical environment. This study demonstrates that Mn in foraminiferal tests is a promising tool to reconstruct oxygen conditions in the seabed.
Siobhan Williams, Walter Adey, Jochen Halfar, Andreas Kronz, Patrick Gagnon, David Bélanger, and Merinda Nash
Biogeosciences, 15, 5745–5759, https://doi.org/10.5194/bg-15-5745-2018, https://doi.org/10.5194/bg-15-5745-2018, 2018
Robert Frei, Cora Paulukat, Sylvie Bruggmann, and Robert M. Klaebe
Biogeosciences, 15, 4905–4922, https://doi.org/10.5194/bg-15-4905-2018, https://doi.org/10.5194/bg-15-4905-2018, 2018
Short summary
Short summary
The reconstruction of paleo-redox conditions of seawater has the potential to link to climatic changes on land and therefore to contribute to our understanding of past climate change. The redox-sensitive chromium isotope system is applied to marine calcifiers in order to characterize isotope offsets that result from vital processes during calcification processes and which can be eventually used in fossil equivalents to reconstruct past seawater compositions.
Thomas M. DeCarlo, Michael Holcomb, and Malcolm T. McCulloch
Biogeosciences, 15, 2819–2834, https://doi.org/10.5194/bg-15-2819-2018, https://doi.org/10.5194/bg-15-2819-2018, 2018
Short summary
Short summary
Understanding the mechanisms of coral calcification is limited by the isolation of the calcifying environment. The boron systematics (B / Ca and δ11B) of aragonite have recently been developed as a proxy for the carbonate chemistry of the calcifying fluid, but a variety of approaches have been utilized. We assess the available experimental B / Ca partitioning data and present a computer code for deriving calcifying fluid carbonate chemistry from the boron systematics of coral skeletons.
Manuel Bringué, Robert C. Thunell, Vera Pospelova, James L. Pinckney, Oscar E. Romero, and Eric J. Tappa
Biogeosciences, 15, 2325–2348, https://doi.org/10.5194/bg-15-2325-2018, https://doi.org/10.5194/bg-15-2325-2018, 2018
Short summary
Short summary
We document 2.5 yr of dinoflagellate cyst production in the Cariaco Basin using a sediment trap record. Each species' production pattern is interpreted in the context of the physico-chemical (e.g., temperature, nutrients) and biological (other planktonic groups) environment. Most species respond positively to upwelling, but seem to be negatively impacted by an El Niño event with a 1-year lag. This work helps understanding dinoflagellate ecology and interpreting fossil assemblages in sediments.
Gabriella M. Weiss, Eva Y. Pfannerstill, Stefan Schouten, Jaap S. Sinninghe Damsté, and Marcel T. J. van der Meer
Biogeosciences, 14, 5693–5704, https://doi.org/10.5194/bg-14-5693-2017, https://doi.org/10.5194/bg-14-5693-2017, 2017
Short summary
Short summary
Algal-derived compounds allow us to make assumptions about environmental conditions in the past. In order to better understand how organisms record environmental conditions, we grew microscopic marine algae at different light intensities, salinities, and alkalinities in a temperature-controlled environment. We determined how these environmental parameters affected specific algal-derived compounds, especially their relative deuterium content, which seems to be mainly affected by salinity.
S. Nemiah Ladd, Nathalie Dubois, and Carsten J. Schubert
Biogeosciences, 14, 3979–3994, https://doi.org/10.5194/bg-14-3979-2017, https://doi.org/10.5194/bg-14-3979-2017, 2017
Short summary
Short summary
Hydrogen isotopes of lipids provide valuable information about microbial activity, climate, and environmental stress. We show that heavy hydrogen in fatty acids declines from spring to summer in a nutrient-rich and a nutrient-poor lake and that the effect is nearly 3 times as big in the former. This effect is likely a combination of increased biomass from algae, warmer temperatures, and higher algal growth rates.
Karoliina A. Koho, Lennart J. de Nooijer, Christophe Fontanier, Takashi Toyofuku, Kazumasa Oguri, Hiroshi Kitazato, and Gert-Jan Reichart
Biogeosciences, 14, 3067–3082, https://doi.org/10.5194/bg-14-3067-2017, https://doi.org/10.5194/bg-14-3067-2017, 2017
Short summary
Short summary
Here we report Mn / Ca ratios in living benthic foraminifera from the NE Japan margin. The results show that the Mn incorporation directly reflects the environment where the foraminifera calcify. Foraminifera that live deeper in sediment, under greater redox stress, generally incorporate more Mn into their carbonate skeletons. As such, foraminifera living close to the Mn reduction zone in sediment appear promising tools for paleoceanographic reconstructions of sedimentary redox conditions.
Stefania Milano, Gernot Nehrke, Alan D. Wanamaker Jr., Irene Ballesta-Artero, Thomas Brey, and Bernd R. Schöne
Biogeosciences, 14, 1577–1591, https://doi.org/10.5194/bg-14-1577-2017, https://doi.org/10.5194/bg-14-1577-2017, 2017
Diana Zúñiga, Celia Santos, María Froján, Emilia Salgueiro, Marta M. Rufino, Francisco De la Granda, Francisco G. Figueiras, Carmen G. Castro, and Fátima Abrantes
Biogeosciences, 14, 1165–1179, https://doi.org/10.5194/bg-14-1165-2017, https://doi.org/10.5194/bg-14-1165-2017, 2017
Short summary
Short summary
Diatoms are one of the most important primary producers in highly productive coastal regions. Their silicified valves are susceptible to escape from the upper water column and be preserved in the sediment record, and thus are frequently used to reconstruct environmental conditions in the past from sediment cores. Here, we assess how water column diatom’s community in the NW Iberian coastal upwelling system is seasonally transferred from the surface to the seafloor sediments.
Andreia Rebotim, Antje H. L. Voelker, Lukas Jonkers, Joanna J. Waniek, Helge Meggers, Ralf Schiebel, Igaratza Fraile, Michael Schulz, and Michal Kucera
Biogeosciences, 14, 827–859, https://doi.org/10.5194/bg-14-827-2017, https://doi.org/10.5194/bg-14-827-2017, 2017
Short summary
Short summary
Planktonic foraminifera species depth habitat remains poorly constrained and the existing conceptual models are not sufficiently tested by observational data. Here we present a synthesis of living planktonic foraminifera abundance data in the subtropical eastern North Atlantic from vertical plankton tows. We also test potential environmental factors influencing the species depth habitat and investigate yearly or lunar migration cycles. These findings may impact paleoceanographic studies.
Clemens Vinzenz Ullmann and Philip A. E. Pogge von Strandmann
Biogeosciences, 14, 89–97, https://doi.org/10.5194/bg-14-89-2017, https://doi.org/10.5194/bg-14-89-2017, 2017
Short summary
Short summary
This study documents how much control growth rate has on the chemical composition of fossil shell material. Using a series of chemical analyses of the fossil hard part of a belemnite, an extinct marine predator, a clear connection between the rate of calcite formation and its magnesium and strontium contents was found. These findings provide further insight into biomineralization processes and help better understand chemical signatures of fossils as proxies for palaeoenvironmental conditions.
Justine Kimball, Robert Eagle, and Robert Dunbar
Biogeosciences, 13, 6487–6505, https://doi.org/10.5194/bg-13-6487-2016, https://doi.org/10.5194/bg-13-6487-2016, 2016
Short summary
Short summary
Deep-sea corals are a potentially valuable archive of temperature and ocean chemistry. We analyzed clumped isotope signatures (Δ47) in live-collected aragonitic scleractinian and high-Mg calcitic gorgonian deep-sea corals and compared results to published data and found offsets between taxa. The observed patterns in deep-sea corals may record distinct mineral equilibrium signatures due to very slow growth rates, kinetic isotope effects, and/or variable acid digestion fractionation factors.
Cited articles
Ali, H. A. M., Mayes, R. W., Hector, B. L., Verma, A. K., and Ørskov, E.
R.: The possible use of n-alkanes, long-chain fatty alcohols and long-chain
fatty acids as markers in studies of the botanical composition of the diet
of free-ranging herbivores, J. Agr. Sci., 143,
85–95, https://doi.org/10.1017/S0021859605004958, 2005.
Allison, G. B., Gat, J. R., and Leaney, F. W. J.: The relationship between
deuterium and oxygen-18 delta values in leaf water, Chem. Geol., 58,
145–156, 1985.
Altermatt, H. A. and Neish, A. C.: The biosynthesis of cell wall
carbohydrates: III. Further studies on formation of cellulose and xylan from
labeled monosaccharides in wheat plants, Can. J. Biochem.
Phys., 34, 405–413, https://doi.org/10.1139/o56-042, 1956.
Amelung, W., Cheshire, M. V., and Guggenberger, G.: Determination of neutral
and acidic sugars in soil by capillary gas-liquid chromatography after
trifluoroacetic acid hydrolysis, Soil Biol. Biochem., 28,
1631–1639, 1996.
Barbour, M. M. and Farquhar, G. D.: Relative humidity-and ABA-induced
variation in carbon and oxygen isotope ratios of cotton leaves, Plant Cell
Environ., 23, 473–485, 2000.
Barbour, M. M., Roden, J. S., Farquhar, G. D., and Ehleringer, J. R.:
Expressing leaf water and cellulose oxygen isotope ratios as enrichment
above source water reveals evidence of a Péclet effect, Oecologia,
138, 426–435, https://doi.org/10.1007/s00442-003-1449-3, 2004.
Bariac, T., Gonzalez-Dunia, J., Katerji, N., Béthenod, O., Bertolini, J.
M., and Mariotti, A.: Spatial variation of the isotopic composition of water
(18O, 2H) in the soil-plant-atmosphere system, 2. Assessment under
field conditions, Chem. Geol., 115, 317–333, 1994.
Benettin, P., Nehemy, M. F., Cernusak, L. A., Kahmen, A. and Jeffrey, J.: On
the use of leaf water to determine plant water source: A proof of concept,
Scientific Briefing to Hydrological Processes, 35, e14073,
https://doi.org/10.1002/hyp.14073, 2021.
Buck, A. L.: New Equations for Computing Vapor Pressure and Enhancement
Factor, J. Appl. Meteorol., 20, 1527–1532, 1981.
Burget, E. G., Verma, R., Mølhøj, M., and Reiter, W.-D.: The
Biosynthesis of L-Arabinose in Plants: Molecular Cloning and
Characterization of a Golgi-Localized UDP-D-Xylose 4-Epimerase Encoded by
the MUR4 Gene of Arabidopsis, Plant Cell, 15, 523–531,
https://doi.org/10.1105/tpc.008425, 2003.
Bush, R. T., Berke, M. A., and Jacobson, A. D.: Plant water dD and δ18O of tundra species from West Greenland, Arct. Antarct.
Alp. Res., 49, 341–358, 2017.
Cernusak, L. A., Wong, S. C., and Farquhar, G. D.: Oxygen isotope composition
of phloem sap in relation to leaf water in Ricinus communis, Funct.
Plant Biol., 30, 1059–1070, 2003.
Cernusak, L. A., Farquhar, G. D., and Pate, J. S.: Environmental and
physiological controls over oxygen and carbon isotope composition of
Tasmanian blue gum, Eucalyptus globulus, Tree Physiol., 25, 129–146,
https://doi.org/10.1093/treephys/25.2.129, 2005.
Cernusak, L. A., Barbour, M. M., Arndt, S. K., Cheesman, A. W., English, N.
B., Feild, T. S., Helliker, B. R., Holloway-Phillips, M. M., Holtum, J. A.
M., Kahmen, A., Mcinerney, F. A., Munksgaard, N. C., Simonin, K. A., Song,
X., Stuart-Williams, H., West, J. B., and Farquhar, G. D.: Stable isotopes in
leaf water of terrestrial plants, Plant Cell Environ., 39,
1087–1102, https://doi.org/10.1111/pce.12703, 2016.
Cheesman, A. W. and Cernusak, L. A.: Infidelity in the outback: Climate
signal recorded in Δ18O of leaf but not branch cellulose of
eucalypts across an Australian aridity gradient, Tree Physiol., 37,
554–564, https://doi.org/10.1093/treephys/tpw121, 2017.
Coplen, T. B.: Guidelines and recommended terms for expression of
stable-isotope-ratio and gas-ratio measurement results, Rapid Commun.
Mass Sp., 25, 2538–2560, https://doi.org/10.1002/rcm.5129, 2011.
Cormier, M.-A., Werner, R. A., Sauer, P. E., Gröcke, D. R., Leuenberger, M. C.,
Wieloch, T., Schleucher, J., and Kahmen, A.: 2H fractiontions during the
biosynthesis of carbohydrates and lipids imprint a metabolic signal on the
δ2H values of plant organic compounds, New Phytol., 218,
479–491, https://doi.org/10.1111/nph.15016, 2018.
Craig, H.: Isotopic Variations in Meteoric Waters, Science, 133, 1702–1703,
1961.
Craig, H. and Gordon, L. I.: Deuterium and oxygen-18 variations in the ocean
and the marine atmosphere, in: Proceedings of a Conference on Stable Isotopes
in Oceanographic Studies and Palaeotemperatures, edited by: Tongiorgi, E.,
9–130, Lischi and Figli, Pisa, 1965.
Dansgaard, W.: Stable isotopes in precipitation, Tellus, 16, 436–468,
https://doi.org/10.1111/j.2153-3490.1964.tb00181.x, 1964.
Dawson, T. E.: Hydraulic lift and water use by plants: implications for
water balance, performance and plant-plant interactions, Oecologia, 95,
565–574, 1993.
D'Souza, F., Garg, A., and Bhosle, N. B.: Seasonal variation in the chemical
composition and carbohydrate signature compounds of biofilm, Aquat.
Microb. Ecol., 41, 199–207, https://doi.org/10.3354/ame041199, 2005.
Farquhar, G. D., Hubick, K. T., Condon, A. G., and Richards, R. A.: Carbon
Isotope Fractionation and Plant Water-Use Efficiency, in: Stable Isotopes in
Ecological Research, Ecological Studies (Analysis and Synthesis), Vol. 68,
edited by: Rundel, P. W., Ehleringer, J. R., and Nagy, K. A., 21–40,
Springer-Verlag, New York, 1989.
Feakins, S. J. and Sessions, A. L.: Controls on the ratios of plant leaf
waxes in an arid ecosystem, Geochim. Cosmochim. Ac., 74,
2128–2141, https://doi.org/10.1016/j.gca.2010.01.016, 2010.
Flanagan, L. B., Comstock, J. P., and Ehleringer, J. R.: Comparison of
Modeled and Observed Environmental Influences on the Stable Oxygen and
Hydrogen Isotope Composition of Leaf Water in Phaseolus vulgaris L., Plant
Physiol., 96, 588–596, 1991.
Freimuth, E. J., Diefendorf, A. F., and Lowell, T. V.: Hydrogen isotopes of
n-alkanes and n-alkanoic acids as tracers of precipitation in a temperate
forest and implications for paleorecords, Geochim. Cosmochim. Ac.,
206, 166–183, https://doi.org/10.1016/j.gca.2017.02.027, 2017.
Gat, J. R. and Bowser, C. J.: The heavy isotope enrichment of water in
coupled evaporative systems, in: Stable Isotope Geochemistry: A Tribute to
Samuel Epstein, Vol. 3, edited by: Tayler, H. P., O'Neil, J. R., and
Kaplan, I. R., 159–168, The Geochemical Society, Lancester, 1991.
Gat, J. R., Yakir, D., Goodfriend, G., Fritz, P., Trimborn, P., Lipp, J.,
Gev, I., Adar, E., and Waisel, Y.: Stable isotope composition of water in
desert plants, Plant Soil, 298, 31–45,
https://doi.org/10.1007/s11104-007-9321-6, 2007.
Gross, S. and Glaser, B.: Minimization of carbon addition during
derivatization of monosaccharides for compound-specific δ13C
analysis in environmental research, Rapid Commun. Mass
Sp., 18, 2753–2764, https://doi.org/10.1002/rcm.1684, 2004.
Harper, A. D. and Bar-Peled, M.: Biosynthesis of UDP-Xylose. Cloning and
Characterization of a Novel Arabidopsis Gene Family, UXS, Encoding Soluble
and Putative Membrane-Bound UDP-Glucuronic Acid Decarboxylase Isoforms,
Gene, 130, 2188–2198, https://doi.org/10.1104/pp.009654, 2002.
Helliker, B. R. and Ehleringer, J. R.: Differential 18O enrichment of
leaf cellulose in C3 versus C4 grasses, Funct. Plant Biol., 29,
435–442, 2002a.
Helliker, B. R. and Ehleringer, J. R.: Grass blades as tree rings:
environmentally induced changes in the oxygen isotope ratio of cellulose
along the length of grass blades, New Phytol., 155, 417–424, 2002b.
Hepp, J., Tuthorn, M., Zech, R., Mügler, I., Schlütz, F., Zech, W.,
and Zech, M.: Reconstructing lake evaporation history and the isotopic
composition of precipitation by a coupled δ18O–δ2H biomarker approach, J. Hydrol., 529, 622–631, 2015.
Hepp, J., Rabus, M., Anhäuser, T., Bromm, T., Laforsch, C., Sirocko, F.,
Glaser, B., and Zech, M.: A sugar biomarker proxy for assessing terrestrial
versus aquatic sedimentary input, Org. Geochem., 98, 98–104,
https://doi.org/10.1016/j.orggeochem.2016.05.012, 2016.
Hepp, J., Zech, R., Rozanski, K., Tuthorn, M., Glaser, B., Greule, M.,
Keppler, F., Huang, Y., Zech, W., and Zech, M.: Late Quaternary relative
humidity changes from Mt. Kilimanjaro, based on a coupled 2H-18O
biomarker paleohygrometer approach, Quaternary Int., 438, 116–130,
https://doi.org/10.1016/j.quaint.2017.03.059, 2017.
Hepp, J., Wüthrich, L., Bromm, T., Bliedtner, M., Schäfer, I. K., Glaser, B., Rozanski, K., Sirocko, F., Zech, R., and Zech, M.: How dry was the Younger Dryas? Evidence from a coupled δ2H–δ18O biomarker paleohygrometer applied to the Gemündener Maar sediments, Western Eifel, Germany, Clim. Past, 15, 713–733, https://doi.org/10.5194/cp-15-713-2019, 2019.
Hepp, J., Schäfer, I. K., Lanny, V., Franke, J., Bliedtner, M., Rozanski, K., Glaser, B., Zech, M., Eglinton, T. I., and Zech, R.: Evaluation of bacterial glycerol dialkyl glycerol tetraether and 2H–18O biomarker proxies along a central European topsoil transect, Biogeosciences, 17, 741–756, https://doi.org/10.5194/bg-17-741-2020, 2020.
Herbin, G. A. and Robins, P. A.: Studies on plant cuticular waxes – II.
Alkanes from members of the genus Agave (Agavaceae), the genera Kalanchoe, Echeveria, Crassula and Sedum
(Crassulaceae) and the genus Eucalyptus (Myrtaceae) with an examination of Hutchinson,
Phytochemistry, 7, 257–268, 1968.
Heyng, A., Mayr, C., Lücke, A., Wissel, H., and Striewski, B.: Late
Holocene hydrologic changes in northern New Zealand inferred from stable
isotope values of aquatic cellulose in sediments from Lake Pupuke, J. Paleolimnol., 51, 485–497, https://doi.org/10.1007/s10933-014-9769-3, 2014.
Horita, J. and Wesolowski, D. J.: Liquid-vapor fractionation of oxygen and
hydrogen isotopes of water from the freezing to the critical temperature,
Geochim. Cosmochim. Ac., 58, 3425–3437,
https://doi.org/10.1016/0016-7037(94)90096-5, 1994.
Hou, J., D'Andrea, W. J., and Huang, Y.: Can sedimentary leaf waxes record
ratios of continental precipitation? Field, model, and experimental
assessments, Geochim. Cosmochim. Ac., 72, 3503–3517,
https://doi.org/10.1016/j.gca.2008.04.030, 2008.
Huang, Y., Shuman, B., Wang, Y., and Iii, T. W.: Hydrogen isotope ratios of
individual lipids in lake sediments as novel tracers of climatic and
environmental change: a surface sediment test, J. Paleolimnol.,
31, 363–375, 2004.
Jia, G., Dungait, J. A. J., Bingham, E. M., Valiranta, M., Korhola, A., and
Evershed, R. P.: Neutral monosaccharides as biomarker proxies for
bog-forming plants for application to palaeovegetation reconstruction in
ombrotrophic peat deposits, Org. Geochem., 39, 1790–1799,
https://doi.org/10.1016/j.orggeochem.2008.07.002, 2008.
Kahmen, A., Dawson, T. E., Vieth, A., and Sachse, D.: Leaf wax n-alkane
δD values are determined early in the ontogeny of Populus
trichocarpa leaves when grown under controlled environmental conditions,
Plant Cell Environ., 34, 1639–1651,
https://doi.org/10.1111/j.1365-3040.2011.02360.x, 2011.
Kahmen, A., Schefuß, E., and Sachse, D.: Leaf water deuterium enrichment
shapes leaf wax n-alkane δD values of angiosperm plants I:
Experimental evidence and mechanistic insights, Geochim. Cosmochim.
Ac., 111, 39–49, 2013.
Knapp, D. R.: Handbook of Analytical Derivatization Reactions, John Wiley
& Sons, New York, Chichester, Brisbane, Toronto, Singapore, 1979.
Lehmann, M. M., Gamarra, B., Kahmen, A., Siegwolf, R. T. W., and Saurer, M.:
Oxygen isotope fractionations across individual leaf carbohydrates in grass
and tree species, Plant Cell Environ., 40, 1658–1670,
https://doi.org/10.1111/pce.12974, 2017.
Lemma, B., Bittner, L., Glaser, B., Kebede, S., Nemomissa, S., Zech, W., and
Zech, M.: δ2Hn-alkanes and δ18Osugar biomarker proxies from leaves and topsoils of the Bale
Mountains, Ethiopia, and implications for paleoclimate reconstructions,
Biogeochemistry, 153, 135–153, https://doi.org/10.1007/s10533-021-00773-z, 2021.
Liu, H. T., Schäufele, R., Gong, X. Y., and Schnyder, H.: The δ18O and δ2H of water in the leaf
growth-and-differentiation zone of grasses is close to source water in both
humid and dry atmospheres, New Phytol., 214, 1423–1431,
https://doi.org/10.1111/nph.14549, 2017.
Maffei, M.: Chemotaxonomic significance of leaf wax n-alkanes in the
umbelliferae, cruciferae and leguminosae (subf. Papilionoideae), Biochem.
Syst. Ecol., 24, 531–545, https://doi.org/10.1016/0305-1978(96)00037-3,
1996.
Mayr, C.: Möglichkeiten der Klimarekonstruktion im Holozän mit
δ13C- und δ2H-Werten von Baum-Jahrringen auf der
Basis von Klimakammerversuchen und Rezentstudien, PhD thesis,
Ludwig-Maximilians-Universität München, GSF-Bericht 14/02, 152 pp., ISSN 0721-1694,
2002.
Mayr, C., Laprida, C., Lücke, A., Martín, R. S., Massaferro, J.,
Ramón-Mercau, J., and Wissel, H.: Oxygen isotope ratios of chironomids,
aquatic macrophytes and ostracods for lake-water isotopic reconstructions –
Results of a calibration study in Patagonia, J. Hydrol., 529,
600–607, https://doi.org/10.1016/j.jhydrol.2014.11.001, 2015.
McGill, R., Tukey, J. W., and Larsen, W. A.: Variations of Box Plots,
Am. Stat., 32, 12–16, 1978.
Merlivat, L.: Molecular diffusivities of H O, HD16O, and
H O in gases, J. Chem. Phys., 69,
2864–2871, https://doi.org/10.1063/1.436884, 1978.
Mügler, I., Sachse, D., Werner, M., Xu, B., Wu, G., Yao, T., and
Gleixner, G.: Effect of lake evaporation on δD values of lacustrine
n-alkanes: A comparison of Nam Co (Tibetan Plateau) and Holzmaar (Germany),
Org. Geochem., 39, 711–729, 2008.
Prietzel, J., Dechamps, N., and Spielvogel, S.: Analysis of non-cellulosic
polysaccharides helps to reveal the history of thick organic surface layers
on calcareous Alpine soils, Plant Soil, 365, 93–114,
https://doi.org/10.1007/s11104-012-1340-2, 2013.
Rao, Z., Zhu, Z., Jia, G., Henderson, A. C. G., Xue, Q., and Wang, S.:
Compound specific δD values of long chain n-alkanes derived from
terrestrial higher plants are indicative of the δD of meteoric
waters: Evidence from surface soils in eastern China, Org. Geochem.,
40, 922–930, https://doi.org/10.1016/j.orggeochem.2009.04.011,
2009.
R Core Team: R: A Language and Environment for Statistical Computing,
available at: https://www.r-project.org/ (last access: 21 October 2018), 2015.
Roden, J. S. and Ehleringer, J. R.: Observations of Hydrogen and Oxygen
Isotopes in Leaf Water Confirm the Craig-Gordon Model under Wide-Ranging
Environmental Conditions, Plant Physiol., 120, 1165–1173, 1999.
Sachse, D., Radke, J., and Gleixner, G.: Hydrogen isotope ratios of recent
lacustrine sedimentary n-alkanes record modern climate variability,
Geochim. Cosmochim. Ac., 68, 4877–4889,
https://doi.org/10.1016/j.gca.2004.06.004, 2004.
Sachse, D., Billault, I., Bowen, G. J., Chikaraishi, Y., Dawson, T. E.,
Feakins, S. J., Freeman, K. H., Magill, C. R., McInerney, F. A., van der
Meer, M. T. J., Polissar, P., Robins, R. J., Sachs, J. P., Schmidt, H.-L.,
Sessions, A. L., White, J. W. C., and West, J. B.: Molecular Paleohydrology:
Interpreting the Hydrogen-Isotopic Composition of Lipid Biomarkers from
Photosynthesizing Organisms, Annu. Rev., 40, 221–249,
https://doi.org/10.1146/annurev-earth-042711-105535, 2012.
Santrucek, J., Kveton, J., Setlik, J., and Bulickova, L.: Spatial Variation
of Deuterium Enrichment in Bulk Water of Snowgum Leaves, Plant Physiol.,
143, 88–97, https://doi.org/10.1104/pp.106.089284, 2007.
Sauer, P. E., Eglinton, T. I., Hayes, J. M., Schimmelmann, A., and Sessions,
A. L.: Compound-specific ratios of lipid biomarkers from sediments as a
proxy for environmental and climatic conditions, Geochim. Cosmochim.
Ac., 65, 213–222, https://doi.org/10.1016/S0016-7037(00)00520-2,
2001.
Schäfer, I. K., Lanny, V., Franke, J., Eglinton, T. I., Zech, M., Vysloužilová, B., and Zech, R.: Leaf waxes in litter and topsoils along a European transect, SOIL, 2, 551–564, https://doi.org/10.5194/soil-2-551-2016, 2016.
Schmidt, H.-L., Werner, R. A., and Roßmann, A.: 18O Pattern and
biosynthesis of natural plant products, Phytochemistry, 58, 9–32,
https://doi.org/10.1016/S0031-9422(01)00017-6, 2001.
Schmidt, H.-L., Werner, R. A., and Eisenreich, W.: Systematics of 2H
patterns in natural compounds and its importance for the elucidation of
biosynthetic pathways, Phytochem. Rev., 2, 61–85,
https://doi.org/10.1023/B:PHYT.0000004185.92648.ae, 2003.
Sessions, A. L., Burgoyne, T. W., Schimmelmann, A., and Hayes, J. M.:
Fractionation of hydrogen isotopes in lipid biosynthesis, Org.
Geochem., 30, 1193–1200, 1999.
Song, X., Farquhar, G. D., Gessler, A., and Barbour, M. M.: Turnover time of
the non-structural carbohydrate pool influences δ18O of leaf
cellulose, Plant Cell Environ., 37, 2500–2507,
https://doi.org/10.1111/pce.12309, 2014.
Sternberg, L. and Ellsworth, P. F. V.: Divergent Biochemical Fractionation,
Not Convergent Temperature, Explains Cellulose Oxygen Isotope Enrichment
across Latitudes, PLoS ONE, 6, e28040, https://doi.org/10.1371/journal.pone.0028040,
2011.
Sternberg, L. da S. L. O. and DeNiro, M. J. D.: Biogeochemical implications
of the isotopic equilibrium fractionation factor between the oxygen atoms of
acetone and water, Geochim. Cosmochim. Ac., 47, 2271–2274,
https://doi.org/10.1016/0016-7037(83)90049-2, 1983.
Sternberg, L. S. L., DeNiro, M. J., and Savidge, R. A.: Oxygen Isotope
Exchange between Metabolites and Water during Biochemical Reactions Leading
to Cellulose Synthesis, Plant Physiol., 82, 423–427, 1986.
Strobel, P., Haberzettl, T., Bliedtner, M., Struck, J., Glaser, B., Zech, M.,
and Zech, R.: The potential of δ2Hn-alkanes and
δ18Osugar for paleoclimate reconstruction – A regional
calibration study for South Africa, Sci. Total Environ., 716,
137045, https://doi.org/10.1016/j.scitotenv.2020.137045, 2020.
Tipple, B. J., Berke, M. A., Doman, C. E., Khachaturyan, S., and Ehleringer,
J. R.: Leaf-wax n-alkanes record the plant-water environment at leaf flush,
P. Natl. Acad. Sci., 110, 2659–2664,
https://doi.org/10.1073/pnas.1213875110, 2013.
Tipple, B. J., Berke, M. A., Hambach, B., Roden, J. S., and Ehleringer, J.
R.: Predicting leaf wax n-alkane ratios: Controlled water
source and humidity experiments with hydroponically grown trees confirm
predictions of Craig-Gordon model, Plant Cell Environ., 38,
1035–1047, https://doi.org/10.1111/pce.12457, 2015.
Tuthorn, M., Zech, M., Ruppenthal, M., Oelmann, Y., Kahmen, A., del Valle,
H. F., Wilcke, W., and Glaser, B.: Oxygen isotope ratios ( )
of hemicellulose-derived sugar biomarkers in plants, soils and sediments as
paleoclimate proxy II: Insight from a climate transect study, Geochim.
Cosmochim. Ac., 126, 624–634,
https://doi.org/10.1016/j.gca.2013.11.002, 2014.
Tuthorn, M., Zech, R., Ruppenthal, M., Oelmann, Y., Kahmen, A., del Valle, H. F., Eglinton, T., Rozanski, K., and Zech, M.: Coupling δ2H and δ18O biomarker results yields information on relative humidity and isotopic composition of precipitation – a climate transect validation study, Biogeosciences, 12, 3913–3924, https://doi.org/10.5194/bg-12-3913-2015, 2015.
Walker, C. D. and Brunel, J.-P.: Examining Evapotranspiration in a Semi-Arid
Region using Stable Isotopes of Hydrogen and Oxygen, J. Hydrol.,
118, 55–75, 1990.
Wang, X.-F., Yakir, D., and Avisha, M.: Non-climatic variations in the oxygen
isotopic composition of plants, Glob. Change Biol., 4, 835–849, 1998.
Waterhouse, J. S., Cheng, S., Juchelka, D., Loader, N. J., McCarroll, D.,
Switsur, V. R., and Gautam, L.: Position-specific measurement of oxygen
isotope ratios in cellulose: Isotopic exchange during heterotrophic
cellulose synthesis, Geochim.t Cosmochim. Ac., 112, 178–191,
https://doi.org/10.1016/j.gca.2013.02.021, 2013.
Werner, R. A. and Brand, W. A.: Referencing strategies and techniques in
stable isotope ratio analysis, Rapid Commun. Mass Sp.,
15, 501–519, https://doi.org/10.1002/rcm.258, 2001.
Wissel, H., Mayr, C., and Lücke, A.: A new approach for the isolation of
cellulose from aquatic plant tissue and freshwater sediments for stable
isotope analysis, Org. Geochem., 39, 1545–1561,
https://doi.org/10.1016/j.orggeochem.2008.07.014, 2008.
Yakir, D. and DeNiro, M. J.: Oxygen and Hydrogen Isotope Fractionation
during Cellulose Metabolism in Lemna gibba L., Plant Ecol., 93, 325–332, 1990.
Zech, M. and Glaser, B.: Compound-specific δ18O analyses of
neutral sugars in soils using gas chromatography-pyrolysis-isotope ratio
mass spectrometry: problems, possible solutions and a first application,
Rapid Commun. Mass Sp., 23, 3522–3532, https://doi.org/10.1002/rcm.4278,
2009.
Zech, M., Pedentchouk, N., Buggle, B., Leiber, K., Kalbitz, K., Markovic, S.
B., and Glaser, B.: Effect of leaf litter degradation and seasonality on
isotope ratios of n-alkane biomarkers, Geochim. Cosmochim. Ac.,
75, 4917–4928, https://doi.org/10.1016/j.gca.2011.06.006, 2011.
Zech, M., Werner, R. A., Juchelka, D., Kalbitz, K., Buggle, B. and Glaser,
B.: Absence of oxygen isotope fractionation/exchange of (hemi-) cellulose
derived sugars during litter decomposition, Org. Geochem., 42,
1470–1475, https://doi.org/10.1016/j.orggeochem.2011.06.006, 2012.
Zech, M., Tuthorn, M., Detsch, F., Rozanski, K., Zech, R., Zöller, L.,
Zech, W., and Glaser, B.: A 220 ka terrestrial δ18O and
deuterium excess biomarker record from an eolian permafrost paleosol
sequence, NE-Siberia, Chem. Geol., 360–361, 220–230,
https://doi.org/10.1016/j.chemgeo.2013.10.023, 2013a.
Zech, M., Tuthorn, M., Glaser, B., Amelung, W., Huwe, B., Zech, W.,
Zöller, L., and Löffler, J.: Natural abundance of δ18O
of sugar biomarkers in topsoils along a climate transect over the Central
Scandinavian Mountains, Norway, J. Plant Nutr. Soil Sc.,
176, 12–15, https://doi.org/10.1002/jpln.201200365, 2013b.
Zech, M., Mayr, C., Tuthorn, M., Leiber-Sauheitl, K., and Glaser, B.: Oxygen
isotope ratios ( ) of hemicellulose-derived sugar biomarkers
in plants, soils and sediments as paleoclimate proxy I: Insight from a
climate chamber experiment, Geochim. Cosmochim. Ac., 126,
614–623, https://doi.org/10.1016/j.gca.2013.10.048, 2014a.
Zech, M., Mayr, C., Tuthorn, M., Leiber-Sauheitl, K., and Glaser, B.: Reply
to the comment of Sternberg on “Zech et al. (2014) Oxygen isotope ratios
( ) of hemicellulose-derived sugar biomarkers in plants,
soils and sediments as paleoclimate proxy I: Insight from a climate chamber
experiment. GCA, Geochim. Cosmochim. Ac., 141, 680–682,
https://doi.org/10.1016/j.gca.2014.04.051, 2014b.
Zech, M., Zech, R., Rozanski, K., Gleixner, G., and Zech, W.: Do n-alkane
biomarkers in soils/sediments reflect the δ2H isotopic
composition of precipitation? A case study from Mt. Kilimanjaro and
implications for paleoaltimetry and paleoclimate research, Isot.
Environ. Healt. S., 51, 508–524,
https://doi.org/10.1080/10256016.2015.1058790, 2015.
Zhang, X., Gillespie, A. L., and Sessions, A. L.: Large variations in
bacterial lipids reflect central metabolic pathways, P. Natl. Acad. Sci. USA, 106,
12580–12586, 2009.
Zhou, Y., Grice, K., Stuart-Williams, H., Farquhar, G. D., Hocart, C. H.,
Lu, H., and Liu, W.: Biosynthetic origin of the saw-toothed profile in
δ13C and δ2H of n-alkanes and systematic isotopic
differences between n-, iso- and anteiso-alkanes in leaf waxes of land plants,
Phytochemistry, 71, 388–403, https://doi.org/10.1016/j.phytochem.2009.11.009, 2010.
Short summary
Deriving more quantitative climate information like relative air humidity is one of the key challenges in paleostudies. Often only qualitative reconstructions can be done when single-biomarker-isotope data are derived from a climate archive. However, the coupling of hemicellulose-derived sugar with leaf-wax-derived n-alkane isotope results has the potential to overcome this limitation and allow a quantitative relative air humidity reconstruction.
Deriving more quantitative climate information like relative air humidity is one of the key...
Altmetrics
Final-revised paper
Preprint