Articles | Volume 18, issue 19
https://doi.org/10.5194/bg-18-5539-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-5539-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Episodic subduction patches in the western North Pacific identified from BGC-Argo float data
Shuangling Chen
State Key Laboratory of Satellite Ocean Environment Dynamics, Second
Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
Mark L. Wells
State Key Laboratory of Satellite Ocean Environment Dynamics, Second
Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
School of Marine Sciences, University of Maine, Orono, ME, USA
Rui Xin Huang
Woods Hole Oceanographic Institution, Woods Hole, MA, USA
Huijie Xue
State Key Laboratory of Marine Environmental Science, Xiamen
University, Xiamen, China
College of Ocean and Earth Sciences, Xiamen University, Xiamen,
China
Jingyuan Xi
State Key Laboratory of Satellite Ocean Environment Dynamics, Second
Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
State Key Laboratory of Satellite Ocean Environment Dynamics, Second
Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
School of Oceanography, Shanghai Jiao Tong University, Shanghai,
China
Related authors
No articles found.
Aaron Chesler, Dominic Winski, Karl Kreutz, Bess Koffman, Erich Osterberg, David Ferris, Zayta Thundercloud, Jihong Cole-Dai, Mark Wells, Aaron Putnam, and Katherine Anderson
EGUsphere, https://doi.org/10.5194/egusphere-2025-1897, https://doi.org/10.5194/egusphere-2025-1897, 2025
Short summary
Short summary
The Southern Hemisphere Westerly Winds impact global climate and Antarctic ice sheet stability; however, there are few complete records over the past 12,000 years. We use a new mineral dust record from a South Pole ice core and identify a decrease in particle concentration and an increase in coarse particle percentage over the past ~11,000 years. Together with other records, our data suggests a southward shift in the winds starting ~6,500 years ago related to warming in the Southern Hemisphere.
Viktor Gouretski, Lijing Cheng, Juan Du, Xiaogang Xing, Fei Chai, and Zhetao Tan
Earth Syst. Sci. Data, 16, 5503–5530, https://doi.org/10.5194/essd-16-5503-2024, https://doi.org/10.5194/essd-16-5503-2024, 2024
Short summary
Short summary
High-quality observations are crucial to understanding ocean oxygen changes and their impact on marine biota. We developed a quality control procedure to ensure the high quality of the heterogeneous ocean oxygen data archive and to prove data consistency. Oxygen data obtained by means of oxygen sensors on autonomous Argo floats were compared with reference data based on the chemical analysis, and estimates of the residual offsets were obtained.
Qian Wang, Yang Zhang, Fei Chai, Y. Joseph Zhang, and Lorenzo Zampieri
Geosci. Model Dev., 17, 7067–7081, https://doi.org/10.5194/gmd-17-7067-2024, https://doi.org/10.5194/gmd-17-7067-2024, 2024
Short summary
Short summary
We coupled an unstructured hydro-model with an advanced column sea ice model to meet the growing demand for increased resolution and complexity in unstructured sea ice models. Additionally, we present a novel tracer transport scheme for the sea ice coupled model and demonstrate that this scheme fulfills the requirements for conservation, accuracy, efficiency, and monotonicity in an idealized test. Our new coupled model also has good performance in realistic tests.
Aaron Chesler, Dominic Winski, Karl Kreutz, Bess Koffman, Erich Osterberg, David Ferris, Zayta Thundercloud, Joseph Mohan, Jihong Cole-Dai, Mark Wells, Michael Handley, Aaron Putnam, Katherine Anderson, and Natalie Harmon
Clim. Past, 19, 477–492, https://doi.org/10.5194/cp-19-477-2023, https://doi.org/10.5194/cp-19-477-2023, 2023
Short summary
Short summary
Ice core microparticle data typically use geometry assumptions to calculate particle mass and flux. We use dynamic particle imaging, a novel technique for ice core dust analyses, combined with traditional laser particle counting and Coulter counter techniques to assess particle shape in the South Pole Ice Core (SPC14) spanning 50–16 ka. Our results suggest that particles are dominantly ellipsoidal in shape and that spherical assumptions overestimate particle mass and flux.
Steve Widdicombe, Kirsten Isensee, Yuri Artioli, Juan Diego Gaitán-Espitia, Claudine Hauri, Janet A. Newton, Mark Wells, and Sam Dupont
Ocean Sci., 19, 101–119, https://doi.org/10.5194/os-19-101-2023, https://doi.org/10.5194/os-19-101-2023, 2023
Short summary
Short summary
Ocean acidification is a global perturbation of the ocean carbonate chemistry as a consequence of increased carbon dioxide concentration in the atmosphere. While great progress has been made over the last decade for chemical monitoring, ocean acidification biological monitoring remains anecdotal. This is a consequence of a lack of standards, general methodological framework, and overall methodology. This paper presents methodology focusing on sensitive traits and rates of change.
Yang Feng, Dimitris Menemenlis, Huijie Xue, Hong Zhang, Dustin Carroll, Yan Du, and Hui Wu
Geosci. Model Dev., 14, 1801–1819, https://doi.org/10.5194/gmd-14-1801-2021, https://doi.org/10.5194/gmd-14-1801-2021, 2021
Short summary
Short summary
Simulation of coastal plume regions was improved in global ECCOv4 with a series of sensitivity tests. We find modeled SSS is closer to SMAP when using daily point-source runoff as well as increasing the resolution from coarse to intermediate. The plume characteristics, freshwater transport, and critical water properties are modified greatly. But this may not happen with a further increase to high resolution. The study will advance the seamless modeling of land–ocean–atmosphere feedback in ESMs.
Fei Chai, Yuntao Wang, Xiaogang Xing, Yunwei Yan, Huijie Xue, Mark Wells, and Emmanuel Boss
Biogeosciences, 18, 849–859, https://doi.org/10.5194/bg-18-849-2021, https://doi.org/10.5194/bg-18-849-2021, 2021
Short summary
Short summary
The unique observations by a Biogeochemical Argo float in the NW Pacific Ocean captured the impact of a super typhoon on upper-ocean physical and biological processes. Our result reveals typhoons can increase the surface chlorophyll through strong vertical mixing without bringing nutrients upward from the depth. The vertical redistribution of chlorophyll contributes little to enhance the primary production, which is contradictory to many former satellite-based studies related to this topic.
Cited articles
Argo: Argo float data and metadata from Global Data Assembly Centre (Argo GDAC), SEANOE [data set], https://doi.org/10.17882/42182, 2021.
Boyd, P. W., Claustre, H., Levy, M., Siegel, D. A., and Weber, T.:
Multi-faceted particle pumps drive carbon sequestration in the ocean,
Nature, 568, 327–335,
https://doi.org/10.1038/s41586-019-1098-2, 2019.
Brainerd, K. E. and Gregg, M. C.: Surface mixed and mixing layer depths,
Deep.-Sea. Res. Pt. I., 42, 1521-1543,
https://doi.org/10.1016/0967-0637(95)00068-h, 1995.
Breitburg, D., Levin, L. A., Oschlies, A., Grégoire, M., Chavez, F. P.,
Conley, D. J., Garcon, V., Gilbert, D., Gutiérrez, D., Isensee, K.,
Jacinto, G.S., Limburg, K. E., Montes, I., Naqvi, S. W. A., Pitcher, G. C.,
Rabalais, N. N., Roman, M. R., Rose, K. A., Seibel, B. A., Telszewski, M.,
Yasuhara, M., and Zhang, J.: Declining oxygen in the global ocean and
coastal waters, Science, 359, eaam7240,
https://doi.org/10.1126/science.aam7240, 2018.
Buesseler, K. O., Lamborg, C. H., Boyd, P. W., Lam, P. J., Trull, T. W.,
Bidigare, R. R., Bishop, J. K. B., Casciotti, K. L., Dehairs, F., Elskens,
M., Honda, M., Karl, D. M., Siegel, D. A., Silver, M. W., Steinberg, D. K.,
Valdes, J., Mooy, B. V., and Wilson, S.: Revisiting Carbon Flux Through the
Ocean's Twilight Zone. Science, 316, 567–570,
https://doi.org/10.1126/science.1137959, 2007.
Bushinsky, S. M. and Emerson, S. R.: Biological and physical controls on the
oxygen cycle in the Kuroshio Extension from an array of profiling floats,
Deep.-Sea. Res. Pt. I., 141, 51–70,
https://doi.org/10.1016/j.dsr.2018.09.005, 2018.
Catala, T. S., Martinez-Perez, A. M., Nieto-Cid, M., Alvarez, M., Otero, J.,
Emelianov, M., Reche, I., Aristegui, J., and Alvarez-Salgado, X. A.:
Dissolved Organic Matter (DOM) in the open Mediterranean Sea. I. Basin-wide
distribution and drivers of chromophoric DOM, Prog. Oceanogr., 165, 35–51,
https://doi.org/10.1016/j.pocean.2018.05.002, 2018.
Chai, F., Johnson, K. S., Claustre, H., Xing, X., Wang, Y., Boss, E., Riser,
S., Fennel, K., Schofield, O., and Sutton, A.: Monitoring ocean
biogeochemistry with autonomous platforms, Nat. Rev. Earth Environ., 1, 315–326,
https://doi.org/10.1038/s43017-020-0053-y, 2020.
Chelton, D. B., Schlax, M. G., and Samelson, R. M.: Global observations of
nonlinear mesoscale eddies, Prog. Oceanogr., 91, 167–216,
https://doi.org/10.1016/j.pocean.2011.01.002, 2011.
Claustre, H., Johnson, K. S., and Takeshita, Y.: Observing the Global Ocean
with Biogeochemical-Argo, Annu. Rev. Mar. Sci., 12, 1–26,
https://doi.org/10.1146/annurev-marine-010419-010956, 2020.
Cronin, M. F., Bond, N. A., Farrar, J. T., Ichikawa, H., Jayne, S. R.,
Kawai, Y., Konda, M., Qiu, B., Rainville, L., and Tomita, H.: Formation and
erosion of the seasonal thermocline in the Kuroshio Extension Recirculation
Gyre, Deep.-Sea. Res. Pt. II., 85, 62–74,
https://doi.org/10.1016/j.dsr2.2012.07.018, 2013.
Dall'Olmo, G., Dingle, J., Polimene, L., Brewin, R. J., and Claustre, H.:
Substantial energy input to the mesopelagic ecosystem from the seasonal
mixed-layer pump, Nat. Geosci., 9, 820–823,
https://doi.org/10.1038/ngeo2818, 2016.
Di Lorenzo, E., Schneider, N., Cobb, K. M., Franks, P. J. S., Chhak, K.,
Miller, A. J., McWilliams, J. C., Bograd, S. J., Arango, H., Curchitser, E.,
Powell, T. M., and Riviere, P.: North Pacific Gyre Oscillation links ocean
climate and ecosystem change, Geophys. Res. Lett., 35, 1–6,
https://doi.org/10.1029/2007GL032838, 2008.
Emerson, S., Mecking, S., and Abell, J.: The biological pump in the
subtropical North Pacific Ocean: Nutrient sources, Redfield ratios, and
recent changes, Global. Biogeochem. Cy., 15, 535–554,
https://doi.org/10.1029/2000GB001320, 2001.
Emerson, S.: Annual net community production and the biological carbon flux
in the ocean, Global. Biogeochem. Cy., 28, 14–28,
https://doi.org/10.1002/2013GB004680, 2014.
Estapa, M. L., Feen, M. L., and Breves, E.: Direct observations of
biological carbon export from profiling floats in the subtropical North
Atlantic, Global. Biogeochem. Cy., 33, 282–300,
https://doi.org/10.1029/2018GB006098, 2019.
Feucher, C., Maze, G., and Mercier, H.: Subtropical mode water and permanent
pycnocline properties in the world ocean, J. Geophys. Res., 124, 1139–1154,
https://doi.org/10.1029/2018JC014526, 2019.
Flament, P.: A state variable for characterizing water masses and their
diffusive stability: spiciness, Prog. Oceanogr., 54, 493–501,
https://doi.org/10.1016/S0079-6611(02)00065-4, 2002.
Garcia, H. E. and Gordon, L. I.: Oxygen solubility in seawater: Better fitting
equations, Limnol. Oceanogr., 37, 1307–1312,
https://doi.org/10.4319/lo.1992.37.6.1307, 1992.
Hosoda, S., Inoue, R., Nonaka, M., Sasaki, H., Sasai, Y., and Hirano, M.:
Rapid water parcel transport across the Kuroshio Extension in the lower
thermocline from dissolved oxygen measurements by Seaglider, Prog. Earth Planet. Sci., 8, 1–19,
https://doi.org/10.1186/s40645-021-00406-x, 2021.
Huang, R. X.: Ocean Circulation, wind-driven and thermohaline processes,
Cambridge Press, Cambridge, 810 pp., 2010.
Huang, R. X.: Defining the spicity, J. Mar. Res., 69, 545–559,
https://doi.org/10.1357/002224011799849390, 2011.
Huang, R. X., Yu, L. S., and Zhou, S. Q.: New definition of potential spicity
by the least square method, J. Geophys. Res.-Oceans., 123, 7351–7365,
https://doi.org/10.1029/2018JC014306, 2018.
Hurlburt, H. E., Wallcraft, A. J., Schmitz Jr, W. J., Hogan, P. J., and Metzger,
E. J.: Dynamics of the Kuroshio/Oyashio current system using eddy-resolving
models of the North Pacific Ocean, J. Geophys. Res.-Oceans., 101, 941–976,
https://doi.org/10.1029/95JC01674, 1996.
Inoue, R., Honda, M. C., Fujiki, T., Matsumoto, K., Kouketsu, S., Suga, T.,
and Saino, T.: Western North Pacific integrated physical-biogeochemical
ocean observation experiment (INBOX): Part 2. Biogeochemical responses to
eddies and typhoons revealed from the S1 mooring and shipboard measurements,
J. Mar. Res., 74, 71–99,
https://doi.org/10.1357/002224016819257335, 2016a.
Inoue, R., Suga, T., Kouketsu, S., Kita, T., Hosoda, S., Kobayashi, T.,
Sato, K., Nakajima, H., and Kawano, T.: Western north Pacific integrated
physical-biogeochemical ocean observation experiment (INBOX): part 1.
Specifications and chronology of the S1-INBOX floats, J. Mar. Res., 74,
43–69, https://doi.org/10.1357/002224016819257344, 2016b.
Jing, Z., Wang, S., Wu, L., Chang, P., Zhang, Q., Sun, B., Ma, X., Qiu, B.,
Small, J., Jin, F., Chen, Z., Gan, B., Yang, Y., Yang, H., and Wan, X.:
Maintenance of mid-latitude oceanic fronts by mesoscale eddies, Sci. Adv., 6, eaba7880,
doi:10.1126/sciadv.aba7880, 2020.
Joyce, T. M., Yasuda, I., Hiroe, Y., Komatsu, K., Kawasaki, K., and Bahr,
F.: Mixing in the meandering Kuroshio Extension and the formation of North
Pacific Intermediate Water, J. Geophys. Res.-Oceans, 106, 4397–4404,
https://doi.org/10.1029/2000JC000232, 2001.
Karleskind, P., Lévy, M., and Mémery, L.: Subduction of carbon,
nitrogen, and oxygen in the northeast Atlantic, J. Geophys. Res.-Oceans,
116, C02025, https://doi.org/10.1029/2010JC006446, 2011a.
Karleskind, P., Lévy, M., and Mémery, L.: Modifications of mode
water properties by sub-mesoscales in a bio-physical model of the Northeast
Atlantic, Ocean. Model., 39, 47–60,
https://doi.org/10.1016/j.ocemod.2010.12.003, 2011b.
Karstensen, J., Stramma, L., and Visbeck, M.: Oxygen minimum zones in the
eastern tropical Atlantic and Pacific oceans, Prog. Oceanogr., 77, 331–350,
https://doi.org/10.1016/j.pocean.2007.05.009, 2008.
Kawakami, Y., Sugimoto, S., and Suga, T.: Inter-annual zonal shift of the
formation region of the lighter variety of the north pacific central mode
water, J. Oceanogr., 72, 1–10,
https://doi.org/10.1007/s10872-015-0325-1, 2015.
Koch-Larrouy, A., Morrow, R., Penduff, T., and Juza, M.: Origin and
mechanism of Subantarctic Mode Water formation and transformation in the
Southern Indian Ocean, Ocean. Dynam., 60, 563–583,
https://doi.org/10.1007/s10236-010-0276-4, 2010.
Kouketsu, S., Inoue, R., and Suga, T.: Western North Pacific integrated
physical-biogeochemical ocean observation experiment (INBOX): part 3.
Mesoscale variability of dissolved oxygen concentrations observed by
multiple floats during S1-INBOX, J. Mar. Res., 74, 101–131,
https://doi.org/10.1357/002224016819257326, 2016.
Lévy, M., Klein, P., and Treguier, A. M.: Impact of sub-mesoscale physics
on production and subduction of phytoplankton in an oligotrophic regime, J.
Mar. Res., 59, 535–565,
https://doi.org/10.1357/002224001762842181, 2001.
Lin, P., Chai, F., Xue, H., and Xiu, P.: Modulation of decadal oscillation
on surface chlorophyll in the Kuroshio Extension, J. Geophys. Res.-Oceans,
119, 187–199, https://doi.org/10.1002/2013JC009359, 2014.
Liu, L. L. and Huang, R. X.: The global subduction/obduction rates: Their
interannual and decadal variability, J. Climate, 25, 1096–1115,
https://doi.org/10.1175/2011JCLI4228.1, 2012.
Liu, Y., Dong, C., Guan, Y., Chen, D., McWilliams, J., and Nencioli, F.:
Eddy analysis in the subtropical zonal band of the North Pacific Ocean,
Deep.-Sea. Res. Pt. I., 68, 54–67,
https://doi.org/10.1016/j.dsr.2012.06.001, 2012.
Llort, J., Langlais, C., Matear, R., Moreau, S., Lenton, A., and Strutton,
P.G.: Evaluating Southern Ocean carbon eddy-pump from biogeochemical-Argo
floats, J. Geophys. Res.-Oceans, 123, 971–984,
https://doi.org/10.1002/2017JC012861, 2018.
Ma, X., Chang, P., Saravanan, R., Montuoro, R., Nakamura, H., Wu, D., Lin,
X., and Wu, L.: Importance of resolving Kuroshio front and eddy influence in
simulating the North Pacific storm track, J. Climate, 30, 1861–1880,
https://doi.org/10.1175/JCLI-D-16-0154.1, 2017.
Marshall, J. C., Williams, R. G., and Nurser, A. G.: Inferring the subduction
rate and period over the North Atlantic, J. Phys. Oceanogr., 23, 1315–1329,
https://doi.org/10.1175/1520-0485(1993)023<1315:ITSRAP>2.0.CO;2, 1993.
Martin, A., Boyd, P., Buesseler, K., Cetinic, I., Claustre, H., Giering, S.,
Henson, S., Irigoien, X., Kriest, I., Memery, L., Robinson, C., Saba, G.,
Sanders, R., Siegel, D., Villa-Alfageme, M., and Guidi, L.: The oceans'
twilight zone must be studied now, before it is too late, Nature, 580,
26–28, https://doi.org/10.1038/d41586-020-00915-7, 2020.
McDougall, T. and Barker, P.: Getting started with TEOS-10 and the Gibbs
Seawater (GSW) oceanographic toolbox, SCOR/IAPSO WG127, 28 pp., 2011.
McDougall, T. J. and Krzysik, O. A.: Spiciness, J. Mar. Res., 73, 141–152,
https://doi.org/10.1357/002224015816665589, 2015.
McGillicuddy, D. J.: Mechanisms of Physical-Biological-Biogeochemical
Interaction at the Oceanic Mesoscale, Annu. Rev. Mar. Sci., 8, 125–159,
https://doi.org/10.1146/annurev-marine-010814-015606, 2016.
Nagai, T., Gruber, N., Frenzel, H., Lachkar, Z., McWilliams, J. C., and
Plattner, G. K.: Dominant role of eddies and filaments in the offshore
transport of carbon and nutrients in the California Current System, J. Geophys. Res.-Oceans, 120, 5318–5341,
https://doi.org/10.1002/2015JC010889, 2015.
Nagano, A., Suga, T., Kawai, Y., Wakita, M., Uehara, K., and Taniguchi, K.:
Ventilation revealed by the observation of dissolved oxygen concentration
south of the Kuroshio Extension during 2012–2013, J. Oceanogr., 72,
837–850, https://doi.org/10.1007/s10872-016-0386-9, 2016.
Nie, X., Gao, S., Wang, F., and Qu, T.: Subduction of north pacific tropical
water and its equatorward pathways as shown by a simulated passive tracer,
J. Geophys. Res.-Oceans, 121, 8770–8786,
https://doi.org/10.1002/2016JC012305, 2016.
Nishikawa, S., Tsujino, H., Sakamoto, K. and Nakano, H.: Effects of
mesoscale eddies on subduction and distribution of subtropical mode water in
an eddy-resolving OGCM of the western North Pacific, J. Phys. Oceanogr., 40,
1748–1765, https://doi.org/10.1175/2010JPO4261.1, 2010.
Oka, E., Toyama, K., and Suga, T.: Subduction of North Pacific central mode
water associated with subsurface mesoscale eddy, Geophys. Res. Lett., 36,
L08607, https://doi.org/10.1029/2009GL037540, 2009.
Oka, E. and Qiu, B.: Progress of North Pacific mode water research in the
past decade, J. Oceanogr., 68, 5–20,
https://doi.org/10.1007/s10872-011-0032-5, 2012.
Okuda, K., Yasuda, I., Hiroe, Y., and Shimizu, Y.: Structure of subsurface
intrusion of the Oyashio water into the Kuroshio Extension and formation
process of the North Pacific Intermediate Water, J. Oceanogr., 57, 121–140,
https://doi.org/10.1023/A:1011135006278, 2001.
Omand, M. M., D'Asaro, E. A., Lee, C. M., Perry, M. J., Briggs, N., Cetinić,
I., and Mahadevan, A.: Eddy-driven subduction exports particulate organic
carbon from the spring bloom, Science, 348, 222–225,
https://doi.org/10.1126/science.1260062, 2015.
Oschlies, A., Brandt, P., Stramma, L., and Schmidtko, S.: Drivers and
mechanisms of ocean deoxygenation, Nat. Geosci., 11, 467–473,
https://doi.org/10.1038/s41561-018-0152-2, 2018.
Palevsky, H. I. and Doney, S. C.: How choice of depth horizon influences the
estimated spatial patterns and global magnitude of ocean carbon export flux,
Geophys. Res. Lett., 45, 4171–4179,
https://doi.org/10.1029/2017GL076498, 2018.
Pan, X., Achterberg, E. P., Sanders, R., Poulton, A. J., Oliver, K. I., and
Robinson, C.: Dissolved organic carbon and apparent oxygen utilization in
the Atlantic Ocean, Deep.-Sea. Res. Pt. I, 85, 80–87,
https://doi.org/10.1016/j.dsr.2013.12.003, 2014.
Qiu, B. and Huang, R. X.: Ventilation of the North Atlantic and North
Pacific: subduction versus obduction, J. Phys. Oceanogr., 25, 2374–2390,
https://doi.org/10.1175/1520-0485(1995)025<2374:VOTNAA>2.0.CO;2, 1995.
Qiu, B., Chen, S., and Hacker, P.: Effect of mesoscale eddies on subtropical
mode water variability from the Kuroshio Extension System Study (KESS), J.
Phys. Oceanogr., 37, 982–1000,
https://doi.org/10.1175/JPO3097.1, 2007.
Qiu, B. and Chen, S.: Eddy-mean flow interaction in the decadally modulating
Kuroshio Extension system, Deep.-Sea. Res. Pt. II., 57, 1098–1110,
https://doi.org/10.1016/j.dsr2.2008.11.036, 2010.
Qu, T., Xie, S. P., Mitsudera, H., and Ishida, A.: Subduction of the North
Pacific mode waters in a global high-resolution GCM, J. Phys. Oceanogr., 32,
746–763, https://doi.org/10.1175/1520-0485(2002)032<0746:SOTNPM>2.0.CO;2, 2002.
Qu, T. and Chen, J.: A North Pacific decadal variability in subduction rate,
Geophys. Res. Lett., 36, L22602,
https://doi.org/10.1029/2009GL040914, 2009.
Resplandy, L., Lévy, M., and Mcgillicuddy, D. J.: Effects of eddy-driven
subduction on ocean biological carbon pump, Global. Biogeochem. Cy., 33,
1071–1084, https://doi.org/10.1029/2018GB006125, 2019.
Robinson, C.: Microbial respiration, the engine of ocean deoxygenation,
Front. Mar. Sci., 5, 533,
https://doi.org/10.3389/fmars.2018.00533, 2019.
Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullister, J.L.,
Wanninkhof, R., Wong, C. S. L., Wallace, D. W., Tilbrook, B., and Millero,
F. J.: The oceanic sink for anthropogenic CO2, Science, 305, 367–371,
https://doi.org/10.1126/science.1097403, 2004.
Sarmiento, J. L. and Gruber, N.: Ocean biogeochemical dynamics, Princeton
University Press, 528 pp., 2006.
Sasaki, H., Klein, P., Qiu, B., and Sasai, Y.: Impact of oceanic-scale
interactions on the seasonal modulation of ocean dynamics by the
atmosphere, Nat. Commun., 5, 5636,
https://doi.org/10.1038/ncomms6636, 2014.
Stommel, H. M.: Determination of water mass properties of water pumped down
from the Ekman layer to the geostrophic flow below, P. Natl. Acad. Sci. USA, 76, 3051–3055, https://doi.org/10.1073/pnas.76.7.3051,
1979.
Steinberg, D. K., Van Mooy, B. A., Buesseler, K. O., Boyd, P. W., Kobari,
T., and Karl, D. M.: Bacterial vs. zooplankton control of sinking particle
flux in the ocean's twilight zone, Limnol. Oceanogr., 53, 1327–1338,
https://doi.org/10.4319/lo.2008.53.4.1327, 2008.
Stramma, L., Johnson, G. C., Sprintall, J., and Mohrholz, V.: Expanding
oxygen-minimum zones in the tropical oceans, Science, 320, 655–658,
https://doi.org/10.1126/science.1153847, 2008.
Stukel, M. R., Aluwihare, L. I., Barbeau, K. A., Chekalyuk, A. M., Goericke, R.,
Miller, A. J., Ohman, M. D., Ruacho, A., Song, H., Stephens, B. M., and Landry,
M. R.: Mesoscale ocean fronts enhance carbon export due to gravitational
sinking and subduction, P. Natl. Acad. Sci. USA, 114, 1252–1257,
https://doi.org/10.1073/pnas.1609435114, 2017.
Stukel, M. R., Song, H., Goericke, R., and Miller, A. J.: The role of
subduction and gravitational sinking in particle export, carbon
sequestration, and the remineralization length scale in the California
Current Ecosystem, Limnol. Oceanogr., 63, 363–383,
https://doi.org/10.1002/lno.10636, 2018.
Takano, Y., Ito, T., and Deutsch, C.: Projected centennial oxygen trends and
their attribution to distinct ocean climate forcings, Global. Biogeochem.
Cy., 32, 1329–1349, https://doi.org/10.1029/2018GB005939, 2018.
Talley, L. D.: North Pacific Intermediate Water transports in the mixed
water region, J. Phys. Oceanogr., 27, 1795–1803,
https://doi.org/10.1175/1520-0485(1997)027<1795:NPIWTI>2.0.CO;2, 1997.
Williams, R. G.: Ocean Subduction, in: Encyclopedia of Ocean Sciences, edited
by: Cochran, J. K., Bokuniewicz, H., and Yager, P., Elsevier, 1982–1993,
2001.
Wohlers, J., Engel, A., Zöllner, E., Breithaupt, P., Jürgens, K.,
Hoppe, H. G., Sommer, U., and Riebesell, U.: Changes in biogenic carbon flow
in response to sea surface warming, Proceedings of the national academy of
sciences, 106, 7067–7072,
https://doi.org/10.1073/pnas.0812743106, 2009.
Xu, L., Xie, S. P., McClean, J. L., Liu, Q., and Sasaki, H.: Mesoscale eddy
effects on the subduction of North Pacific mode waters, J. Geophys. Res.-Oceans, 119, 4867–4886,
https://doi.org/10.1002/2014JC009861, 2014.
Xu, L., Li, P., Xie, S. P., Liu, Q., Liu, C., and Gao, W.: Observing
mesoscale eddy effects on mode-water subduction and transport in the North
Pacific, Nat. Commun., 7, 10505,
https://doi.org/10.1038/ncomms10505, 2016.
Yasuda, I., Okuda, K., and Shimizu, Y.: Distribution and modification of
North Pacific Intermediate Water in the Kuroshio-Oyashio interfrontal zone,
J. Phys. Oceanogr., 26, 448–465,
https://doi.org/10.1175/1520-0485(1996)026<0448:DAMONP>2.0.CO;2, 1996.
Yu, J., Gan, B., Zhao J., and Wu, L.: Winter Extreme Mixed Layer Depth South
of the Kuroshio Extension, J. Climate, 33, 10419–10436,
https://doi.org/10.1175/JCLI-D-20-0119.1, 2020.
Zhang, Z., Wang, W., and Qiu, B.: Oceanic mass transport by mesoscale
eddies, Science, 345, 322–324,
https://doi.org/10.1126/science.1252418, 2014.
Zhang, Z., Li, P., Xu, L., Li, C., Zhao, W., Tian, J., and Qu, T.:
Subthermocline eddies observed by rapid-sampling Argo floats in the
subtropical northwestern Pacific Ocean in Spring 2014, Geophys. Res. Lett.,
42, 6438–6445, https://doi.org/10.1002/2015GL064601, 2015.
Zhang, Y., Zhang, Z., Chen, D., Qiu, B., and Wang, W.: Strengthening of the
Kuroshio current by intensifying tropical cyclones, Science, 368, 988–993,
https://doi.org/10.1126/science.aax5758, 2020.
Zhu, R., Chen, Z., Zhang, Z., Yang, H., and Wu, L.: Subthermocline eddies in
the Kuroshio Extension region observed by mooring arrays, J. Phys.
Oceanogr., 51, 439–455,
https://doi.org/10.1175/JPO-D-20-0047.1, 2021.
Short summary
Subduction transports surface waters to the oceanic interior, which can supply significant amounts of carbon and oxygen to the twilight zone. Using a novel BGC-Argo dataset covering the western North Pacific, we successfully identified the imprints of episodic shallow subduction patches. These subduction patches were observed mainly in spring and summer (70.6 %), and roughly half of them extended below ~ 450 m, injecting carbon- and oxygen-enriched waters into the ocean interior.
Subduction transports surface waters to the oceanic interior, which can supply significant...
Altmetrics
Final-revised paper
Preprint