Articles | Volume 19, issue 6
https://doi.org/10.5194/bg-19-1723-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-1723-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Aqueous system-level processes and prokaryote assemblages in the ferruginous and sulfate-rich bottom waters of a post-mining lake
Daniel A. Petrash
CORRESPONDING AUTHOR
SoWa Research Infrastructure, Biology Centre of the Czech Academy of Sciences, České
Budějovice, 370 05, Czechia
Department of Environmental Geochemistry and Biogeochemistry, Czech Geological Survey, Prague, 152 00, Czechia
Ingrid M. Steenbergen
SoWa Research Infrastructure, Biology Centre of the Czech Academy of Sciences, České
Budějovice, 370 05, Czechia
Department of Ecosystem Biology, University of South Bohemia, České Budějovice, 370 05,
Czechia
Astolfo Valero
SoWa Research Infrastructure, Biology Centre of the Czech Academy of Sciences, České
Budějovice, 370 05, Czechia
Department of Ecosystem Biology, University of South Bohemia, České Budějovice, 370 05,
Czechia
Travis B. Meador
SoWa Research Infrastructure, Biology Centre of the Czech Academy of Sciences, České
Budějovice, 370 05, Czechia
Department of Ecosystem Biology, University of South Bohemia, České Budějovice, 370 05,
Czechia
Tomáš Pačes
Department of Environmental Geochemistry and Biogeochemistry, Czech Geological Survey, Prague, 152 00, Czechia
Christophe Thomazo
UMR CNRS 6282 Biogéosciences, University of Burgundy, Dijon, 21000, France
Institut Universitaire de France, Paris, 75000, France
Related authors
No articles found.
Jolanta Niedźwiecka, Roey Angel, Petr Čapek, Ana Catalina Lara, Stanislav Jabinski, Travis B. Meador, and Hana Šantrůčková
SOIL, 11, 735–753, https://doi.org/10.5194/soil-11-735-2025, https://doi.org/10.5194/soil-11-735-2025, 2025
Short summary
Short summary
Studies on how microbes use C in soils typically assume oxic conditions but often overlook anaerobic processes and extracellular metabolite release. We examined how O2 and Fe content affect C mineralisation in forest soils by tracking 13C flow into biomass, CO2, metabolites, and active microbes under oxic and anoxic conditions. Results showed that anoxic conditions preserved C longer, especially in high-Fe soils. We conclude that microbial exudates play a role in anoxic C stabilisation.
Stanislav Jabinski, Vítězslav Kučera, Marek Kopáček, Jan Jansa, and Travis B. Meador
Biogeosciences, 22, 3127–3141, https://doi.org/10.5194/bg-22-3127-2025, https://doi.org/10.5194/bg-22-3127-2025, 2025
Short summary
Short summary
Microbial production is a key parameter in estimation of organic matter cycling in environmental systems, and fungi play a major role as decomposers. In order to improve investigation of fungal production and turnover times in environmental studies, we determined the isotopic signals encoded into lipid biomarkers of fungal pure cultures growing on various carbon substrates in media with isotopically labeled water and bicarbonate.
Karim Benzerara, Agnès Elmaleh, Maria Ciobanu, Alexis De Wever, Paola Bertolino, Miguel Iniesto, Didier Jézéquel, Purificación López-García, Nicolas Menguy, Elodie Muller, Fériel Skouri-Panet, Sufal Swaraj, Rosaluz Tavera, Christophe Thomazo, and David Moreira
Biogeosciences, 20, 4183–4195, https://doi.org/10.5194/bg-20-4183-2023, https://doi.org/10.5194/bg-20-4183-2023, 2023
Short summary
Short summary
Iron and manganese are poorly soluble in oxic and alkaline solutions but much more soluble under anoxic conditions. As a result, authigenic minerals rich in Fe and/or Mn have been viewed as diagnostic of anoxic conditions. However, here we reveal a new case of biomineralization by specific cyanobacteria, forming abundant Fe(III)- and Mn(IV)-rich amorphous phases under oxic conditions in an alkaline lake. This might be an overlooked biotic contribution to the scavenging of Fe from water columns.
Robin Havas, Christophe Thomazo, Miguel Iniesto, Didier Jézéquel, David Moreira, Rosaluz Tavera, Jeanne Caumartin, Elodie Muller, Purificación López-García, and Karim Benzerara
Biogeosciences, 20, 2405–2424, https://doi.org/10.5194/bg-20-2405-2023, https://doi.org/10.5194/bg-20-2405-2023, 2023
Short summary
Short summary
Dissolved organic carbon (DOC) is a reservoir of prime importance in the C cycle of both continental and marine systems. It has also been suggested to influence the past Earth climate but is still poorly characterized in ancient-Earth-like environments. In this paper we show how DOC analyses from modern redox-stratified lakes can evidence specific metabolic reactions and environmental factors and how these can help us to interpret the C cycle of specific periods in the Earth's past.
Robin Havas, Christophe Thomazo, Miguel Iniesto, Didier Jézéquel, David Moreira, Rosaluz Tavera, Jeanne Caumartin, Elodie Muller, Purificación López-García, and Karim Benzerara
Biogeosciences, 20, 2347–2367, https://doi.org/10.5194/bg-20-2347-2023, https://doi.org/10.5194/bg-20-2347-2023, 2023
Short summary
Short summary
We describe the C cycle of four modern stratified water bodies from Mexico, a necessary step to better understand the C cycle of primitive-Earth-like environments, which were dominated by these kinds of conditions. We highlight the importance of local external factors on the C cycle of these systems. Notably, they influence the sensitivity of the carbonate record to environmental changes. We also show the strong C-cycle variability among these lakes and their organic C sediment record.
Pierre Nevers, Julien Bouchez, Jérôme Gaillardet, Christophe Thomazo, Delphine Charpentier, Laëticia Faure, and Catherine Bertrand
Earth Surf. Dynam., 9, 487–504, https://doi.org/10.5194/esurf-9-487-2021, https://doi.org/10.5194/esurf-9-487-2021, 2021
Cited articles
Angly, F. E., Dennis, P. G., Skarshewski, A., Vanwonterghem, I., Hugenholtz, P., and Tyson, G. W.: CopyRighter: a rapid tool
for improving the accuracy of microbial community profiles through
lineage-specic gene copy number correction, Microbiome, 2, 1–13, 2014.
Antler, G., Turchyn, A. V., Rennie, V., Herut, B., and Sivan, O.: Coupled
sulfur and oxygen isotope insight into bacterial sulfate reduction in the
natural environment, Geochim. Cosmochim. Ac., 118, 98–117, 2013.
Antler, G., Mills, J. V., Hutchings, A. M., Redeker, K. R., and Turchyn, A.
V.: The sedimentary carbon-sulfur-iron interplay – a lesson from East
Anglian salt marsh sediments, Front. Earth Sci., 7, 140, https://doi.org/10.3389/feart.2019.00140, 2019.
Bachan, A. and Kump, L. R.: The rise of oxygen and siderite oxidation during
the Lomagundi event, P. Natl. Acad. Sci. USA, 112, 6562–6567, 2015.
Balci, N., Shanks, W. C., Mayer, B., and Mandernack, K. W.: Oxygen and
sulfur isotope systematics of sulfate produced by bacterial and abiotic
oxidation of pyrite, Geochim. Cosmochim. Ac., 71, 3796–3811, 2007.
Barnard, A. S. and Russo, S. P.: Modelling nanoscale FeS2 formation in
sulfur-rich conditions, J. Mater. Chem., 19, 3389–3394, 2009.
Bauer, K. W., Bottini, C., Katsev, S., Jellinek, M., Francois, R., Erba, E.,
and Crowe, S. A.: Ferruginous oceans during OAE1a and collapse of the marine
sulfate pool, Earth Planet. Sc. Lett., 578, 117324, https://doi.org/10.1016/j.epsl.2021.117324, 2022.
Berben, T., Sorokin, D. Y., Ivanova, N., Pati, A., Kyrpides, N., Goodwin, L.
A., Woyke, T., and Muyzer, G.: Complete genome sequence of Thioalkalivibrio paradoxus type strain ARh
1T, an obligately chemolithoautotrophic haloalkaliphilic sulfur-oxidizing
bacterium isolated from a Kenyan soda lake, Stand. Genomic Sci., 10, 105, https://doi.org/10.1186/s40793-015-0097-7, 2015.
Bertran, E., Waldeck, A., Wing, B. A., Halevy, I., Leavitt, W. D., Bradley,
A. S., and Johnston, D. T.: Oxygen isotope effects during microbial sulfate
reduction: applications to sediment cell abundances, ISME J., 14, 1508–1519, 2020.
Blättler, C. L., Claire, M. W., Prave, A. R., Kirsimäe, K., Higgins,
J. A., Medvedev, P. V., Romashkin, A. E., Rychanchik, D. V., Zerkle, A. L.,
Paiste, K., Kreitsmann, T., Millar, I. L., Hayles, J. A., Bao, H., Turchyn,
A. V., Warke, M. R., and Lepland, A.: Two-billion-year-old evaporites
capture Earth's great oxidation, Science, 360, 320–323, 2018.
Blättler, C. L., Bergmann, K. D., Kah, L. C., Gómez-Pérez, I.,
and Higgins, J. A.: Constraints on Meso- to Neoproterozoic seawater from
ancient evaporite deposits, Earth Planet. Sc. Lett., 532, 115951, https://doi.org/10.1016/j.epsl.2019.115951, 2020.
Boehrer, B. and Schultze, M.: Stratification of lakes, Rev. Geophys., 46,
RG2005, https://doi.org/10.1029/2006RG000210, 2008.
Böttcher, M. E. and Thamdrup, B.: Anaerobic sulfide oxidation
and stable isotope fractionation associated with bacterial sulfur
disproportionation in the presence of MnO2, Geochim. Cosmochim. Ac.,
65, 1573–1581, 2001.
Böttcher, M. E., Thamdrup, B., and Vennemann, T. W.: Oxygen
and sulfur isotope fractionation during anaerobic bacterial
disproportionation of elemental sulfur, Geochim. Cosmochim. Ac., 65,
1601–1609, 2001.
Böttcher, M. E., Hespenheide, B., Brumsack, H. J., and Bosselmann, K.:
Stable isotope biogeochemistry of the sulfur cycle in modern marine
sediments, Isotopes Environ. Health Stud., 40, 267–283, 2004.
Böttcher, M. E., Thamdrup, B., Gehre, M., and Theune, A.:
and fractionation during sulfur
disproportionation by Desulfobulbus propionicus, Geomicrobiol. J., 22, 219–226, 2005.
Bottrell, S. H. and Newton, R. J.: Reconstruction of changes in global
sulfur cycling from marine sulfate isotopes, Earth-Sci. Rev., 75, 59–83,
2006.
Bouška, V., Pešek, J., and Žák, K.: Values of δ34S in iron disulphides of the North Bohemian Lignite Basin, Czech
Republic, Geol. Soc. Lond. Spec. Publ., 125, 261–267, 1997.
Brüchert, V.: Physiological and ecological aspects of
sulfur isotope fractionation during bacterial sulfate reduction, Spec. Pap.
Geol. Soc. Am., 379, 1–16, 2004.
Brunet, R. C. and Garcia-Gil, L. J.: Sulfide-induced dissimilatory nitrate
reduction to ammonia in anaerobic freshwater sediments, FEMS Microbiol.
Ecol., 21, 131–138, 1996.
Brunner, B., Bernasconi, S. M., Kleikemper, J., and Schroth, M. H.: A model
for oxygen and sulfur isotope fractionation in sulfate during bacterial
sulfate reduction processes, Geochim. Cosmochim. Ac., 69, 4773–4785, 2005.
Busigny, V., Planavsky, N. J., Jézéquel, D., Crowe, S., Louvat, P.,
Moureau, J., Viollier, E., and Lyons, T. W.: Iron isotopes in an Archean
ocean analogue, Geochim. Cosmochim. Ac., 133, 443–462, 2014.
Butler, J. E., Young, N. D., and Lovley, D. R.: Evolution from a respiratory
ancestor to fill syntrophic and fermentative niches: comparative genomics of
six Geobacteraceae species, BMC Genomics, 101, 1–10, 2009.
Canfield, D. E.: Reactive iron in marine sediments, Geochim. Cosmochim.
Ac., 53, 619–632, 1989.
Canfield, D. E.: Biogeochemistry of Sulfur Isotopes, Rev. Mineral.
Geochem., 43, 607–636, 2001.
Canfield, D. E. and Berner, R. A.: Dissolution and pyritization of magnetite
in anoxic marine sediments, Geochim. Cosmochim. Ac., 51, 645–659, 1987.
Canfield, D. E., Raiswell, R., Westrich, J. T., Reaves, C. M., and Berner,
R. A.: The use of chromium reduction in the analysis of reduced inorganic
sulfur in sediments and shales, Chem. Geol., 54, 149–155, 1986.
Canfield, D. E., Thamdrup, B., and Hansen, J. W.: The anaerobic degradation
of organic matter in Danish coastal sediments: Iron reduction, manganese
reduction, and sulfate reduction, Geochim. Cosmochim. Ac., 57, 3867–3883,
1993.
Canfield, D. E., Zhang, S., Wang, H., Wang, X., Zhao, W., Su, J., Bjerrum, C. J., Haxen, E. R., and Hammarlund, E. U.: A Mesoproterozoic iron formation, P. Natl. Acad. Sci. USA, 115, E3895–E3904, https://doi.org/10.1073/pnas.1720529115, 2018.
Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., Fierer, N., Pẽa, A. G., Goodrich, J. K., Gordon, J. I., Huttley, G. A., Kelley, S. T., Knights, D., Koenig, J. E., Ley, R. E., Lozupone, C. A., McDonald, D., Muegge, B. D., Pirrung, M., Reeder, J., Sevinsky, J. R., Turnbaugh, P. J., Walters, W. A., Widmann, J., Yatsunenko, T., Zaneveld, J., and Knight, R.: QIIME allows analysis of high-throughput community sequencing data, Nat. Methods, 7, 335–336, 2010.
Davison, W.: Iron and manganese in lakes, Earth Sci. Rev., 34, 119–163,
1993.
Chabrière, E., Charon, M. H., Volbeda, A., Pieulle, L., Hatchikian, E.
C., and Fontecilla-Camps, J. C.: Crystal structures of the key anaerobic
enzyme pyruvate:ferredoxin oxidoreductase, free and in complex with
pyruvate, Nat. Struct. Biol., 62, 182–190, 1999.
Crowe, S. A., O'Neill, A. H., Katsev, S., Hehanussa, P., Haffner, G. D.,
Sundby, B., Mucci, A., and Fowle, D. A.: The biogeochemistry of tropical
lakes: A case study from Lake Matano, Indonesia, Limnol. Oceanogr., 53,
319–331, 2008.
Daebeler, A., Herbold, C. W., Vierheilig, J., Sedlacek, C. J., Pjevac, P.,
Albertsen, M., Kirkegaard, R. H., de la Torre, J. R., Daims, H., and Wagner,
M.: Cultivation and genomic analysis of “Candidatus Nitrosocaldus
islandicus,” an obligately thermophilic, ammonia-oxidizing thaumarchaeon
from a hot spring biofilm in Graendalur valley, Iceland, Front. Microbiol.,
9, 193, https://doi.org/10.3389/fmicb.2018.00193, 2018.
de la Torre, J. R., Walker, C. B., Ingalls, A. E., Könneke, M., and
Stahl, D. A.: Cultivation of a thermophilic ammonia oxidizing archaeon
synthesizing crenarchaeol, Environ. Microbiol., 10, 810–818, 2008.
Denimal, S., Bertrand, C., Mudry, J., Paquette, Y., Hochart, M., and
Steinmann, M.: Evolution of the aqueous geochemistry of mine pit lakes –
Blanzy-Montceau-les-Mines coal basin (Massif Central, France): Origin of
sulfate contents; effects of stratification on water quality, Appl.
Geochem., 20, 825–839, 2005.
DeWeerd, K. A., Mandelco, L., Tanner, R. S., Woese, C. R., and Suflita, J.
M.: Desulfomonile tiedjei gen. nov. and sp. nov., a novel anaerobic, dehalogenating,
sulfate-reducing bacterium, Arch. Microbiol., 1541, 23–30, 1990.
Dèzes, P., Schmid, S. M., and Ziegler, P. A.: Evolution of the European
Cenozoic Rift System: interaction of the Alpine and Pyrenean orogens with
their foreland lithosphere, Tectonophysics, 389, 1–33, 2004.
Dupalová, T., Sracek, O., Vencelides, Z., and Žák, K.: The
origin of thermal waters in the northeastern part of the Eger Rift, Czech
Republic, Appl. Geochem., 27, 689–702, 2012.
Dziuba, M., Koziaeva, V., Grouzdev, D., Burganskaya, E., Baslerov, R., Kolganova, T., Chernyadyev, A., Osipov, G., Andrianova, E., Gorlenko, V., and Kuznetsov, B.: Magnetospirillum caucaseum sp. Nov., Magnetospirillum marisnigri sp. Nov. and
Magnetospirillum moscoviense sp. Nov., freshwater magnetotactic bacteria isolated from three distinct
geographical locations in European Russia, Int. J. Syst. Evol. Micr.,
66, 2069–2077, 2016.
Edgar, R. C., Hass, B. J., Clemente, J. C., Quince, C., and Knight, R.: UCHIME improves sensitivity
and speed of chimera detection, Bioinformatics, 27, 2194–2200, 2011.
Emerson, D. and Moyer, C.: Isolation and characterization of novel
iron-oxidizing bacteria that grow at circumneutral pH, Appl. Environ.
Microb., 63, 4784–4792, 1997.
Fakhraee, M., Hancisse, O., Canfield, D. E., Crowe, S. A., and Katsev, S.:
Proterozoic seawater sulfate scarcity and the evolution of ocean–atmosphere
chemistry, Nat. Geosci., 125, 375–380, 2019.
Flores, G. E., Hunter, R. C., Liu, Y., Mets, A., Schouten, S., and
Reysenbach, A. L.: Hippea jasoniae sp. nov. and Hippea alviniae sp. nov., thermoacidophilic members of the
class Deltaproteobacteria isolated from deep-sea hydrothermal vent deposits,
Int. J. Syst. Evol. Microbiol., 62, 1252–1258, 2012.
Fritz, P., Basharmal, G. M., Drimmie, R. J., Ibsen, J., and Qureshi, R. M.:
Oxygen isotope exchange between sulphate and water during bacterial
reduction of sulphate, Chem. Geol. Isot. Geosci. Sect., 79, 99–105, 1989.
Gallagher, K. L., Kading, T., Braissant, O., Dupraz, C., and Visscher, P. T.: Inside the
alkalinity engine: The role of electron donors in the organomineralization
potential of sulfate-reducing bacteria, Geobiology, 10, 518–530, 2012.
Geszvain, K., Yamaguchi, A., Maybee, J., and Tebo, B. M.: Mn(II) oxidation
in Pseudomonas putida GB-1 is influenced by flagella synthesis and surface substrate, Arch.
Microbiol., 193, 605–614, 2011.
Goldberg, T., Archer, C., Vance, D., Thamdrup, B., McAnena, A., and Poulton,
S. W.: Controls on Mo isotope fractionations in a Mn-rich anoxic marine
sediment, Gullmar Fjord, Sweden, Chem. Geol., 296–297, 73–82, 2012.
Gwak, J.-H., Jung, M.-Y., Hong, H., Kim, J.-G., Quan, Z.-X., Reinfelder, J.
R., Spasov, E., Neufeld, J. D., Wagner, M., and Rhee, S.-K.: Archaeal
nitrification is constrained by copper complexation with organic matter in
municipal wastewater treatment plants, ISME J., 142, 335–346, 2019.
Hambright, K. D., Gophen, M., and Serruya, S.: Influence of long-term
climatic changes on the stratification of a subtropical, warm monomictic
lake, Limnol. Oceanogr., 39, 1233–1242, 1994.
Holmes, D. E., O'Neil, R. A., Vrionis, H. A., N'Guessan, L. A.,
Ortiz-Bernad, I., Larrahondo, M. J., Adams, L. A., Wards, J. A., Nicoll, J.
S., Nevin, K. P., Chavan, M. A., Johnson, J. P., Long, P. E., and Lovley, D.
R.: Subsurface clade of Geobacteraceae that predominates in a diversity of
Fe(III)-reducing subsurface environments, ISME J., 1, 663–677, 2007.
Holmkvist, L., Ferdelman, T. G., and Jørgensen, B. B.: A cryptic sulfur
cycle driven by iron in the methane zone of marine sediment (Aarhus Bay,
Denmark), Geochim. Cosmochim. Ac., 75, 3581–3599, 2011.
Jewell, T. N. M., Karaoz, U., Brodie, E. L., Williams, K. H., and Beller, H.
R.: Metatranscriptomic evidence of pervasive and diverse
chemolithoautotrophy relevant to C, S, N and Fe cycling in a shallow
alluvial aquifer, ISME J., 10, 2106–2117, 2016.
Jewell, T. N. M., Karaoz, U., Bill, M., Chakraborty, R., Brodie, E. L.,
Williams, K. H., and Beller, H. R.: Metatranscriptomic analysis reveals
unexpectedly diverse microbial metabolism in a biogeochemical hot spot in an
alluvial aquifer, Front. Microbiol., 8, 40, https://doi.org/10.3389/fmicb.2017.00040, 2017.
Jiang, C. Z. and Tosca, N. J.: Fe(II)-carbonate precipitation kinetics and
the chemistry of anoxic ferruginous seawater, Earth Planet. Sc. Lett., 506,
231–242, 2019.
Johnston, D. T., Farquhar, J., Wing, B. A., Kaufman, A., Canfield, D. E., and
Habicht, K. S.: Multiple sulfur isotope fractionations in biological systems:
a case study with sulfate reducers and sulfur disproportionators, Am. J.
Sci., 305, 645–660, 2005.
Johnston, D. T., Gill, B. C., Masterson, A., Beirne, E., Casciotti, K. L.,
Knapp, A. N., and Berelson, W.: Placing an upper limit on cryptic marine
sulphur cycling, Nature, 513, 530–533, 2014.
Jung, M.-Y., Islam, M. A., Gwak, J.-H., Kim, J.-G., and Rhee, S.-K.:
Nitrosarchaeum koreense gen. nov., sp. nov., an aerobic and mesophilic, ammonia-oxidizing archaeon
member of the phylum Thaumarchaeota isolated from agricultural soil, Int. J.
Syst. Evol. Micr., 68, 3084–3095, 2018.
Khalifa, A., Nakasuji, Y., Saka, N., Honjo, H., Asakawa, S., and Watanabe,
T.: Ferrigenium kumadai gen. Nov., sp. nov., a microaerophilic iron-oxidizing bacterium
isolated from a paddy field soil, Int. J. Syst. Evol. Micr., 68,
2587–2592, 2018.
Klueglein, N., Zeitvogel, F., Stierhof, Y. D., Floetenmeyer, M., Konhauser,
K. O., Kappler, A., and Obst, M.: Potential Role of Nitrite for Abiotic
Fe(II) Oxidation and Cell Encrustation during Nitrate Reduction by
Denitrifying Bacteria, Appl. Environ. Microb., 80, 1051–1061, 2014.
Koeksoy, E., Halama, M., Konhauser, K. O., and Kappler, A.: Using modern
ferruginous habitats to interpret Precambrian banded iron formation
deposition, Int. J. Astrobiol., 15, 205–217, 2016.
Kojima, H. and Fukui, M.: Sulfuritalea hydrogenivorans gen. nov., sp. nov., a facultative autotroph
isolated from a freshwater lake, Int. J. Syst. Evol. Micr., 61,
1651–1655, 2011.
Kojima, H., Watanabe, T., Iwata, T., and Fukui, M.: Identification of major
planktonic sulfur oxidizers in stratified freshwater lake, PLoS One, 9,
e93877, https://doi.org/10.1371/journal.pone.0093877, 2014.
Konhauser, K. O., Amskold, L., Lalonde, S. V., Posth, N. R., Kappler, A.,
and Anbar, A.: Decoupling photochemical Fe(II) oxidation from shallow-water
BIF deposition, Earth Planet. Sc. Lett., 258, 87–100, 2007.
Kostka, J. E., Luther, G. W., and Nealson, K. H.: Chemical and biological
reduction of Mn (III)-pyrophosphate complexes: Potential importance of
dissolved Mn (III) as an environmental oxidant, Geochim. Cosmochim. Ac.,
59, 885–894, 1995.
Kovar, P., Kalibova, J., and Bacinova, H.: Computing hydrological balance in
the Medard Mining Pit with the help of the water balance conceptual model,
J. Civ. Environ. Eng., 6, 5, https://doi.org/10.4172/2165-784X.1000250, 2016.
Kříbek, B., Strnad, M., Boh\'{a}̂cek, Z.,
Sýkorová, I., Čejka, J., and Sobalík, Z.: Geochemistry of Miocene
lacustrine sediments from the Sokolov Coal Basin (Czech Republic), Int. J.
Coal Geol., 37, 207–233, 1998.
Kříbek, B., Knésl, I., Rojík, P., Sýkorová, I.,
and Martínek, K.: Geochemical history of a Lower Miocene Lake, the
Cypris Formation, Sokolov Basin, Czech Republic, J. Paleolimnol., 58,
169–190, 2017.
Krs, M., Krsová, M., Pruner, P., Zeman, A., Novák, F., and Jansa, J.: A
petromagnetic study of Miocene rocks bearing micro-organic material and the
magnetic mineral greigite (Sokolov and Cheb basins, Czechoslovakia), Phys. Earth Planet. In., 63, 98–112, 1990.
Lambrecht, N., Wittkop, C., Katsev, S., Fakhraee, M., and Swanner, E. D.:
Geochemical Characterization of Two Ferruginous Meromictic Lakes in the
Upper Midwest, USA, J. Geophys. Res.-Biogeo., 123, 3403–3422, 2018.
Lehtovirta-Morley, L. E.: Ammonia oxidation: Ecology, physiology,
biochemistry and why they must all come together, EMS Microbiol. Lett.,
365, fny058, https://doi.org/10.1093/femsle/fny058, 2018.
Li, C., Planavsky, N. J., Love, G. D., Reinhard, C. T., Hardisty, D., Feng,
L., Bates, S. M., Huang, J., Zhang, Q., Chu, X., and Lyons, T. W.: Marine
redox conditions in the middle Proterozoic ocean and isotopic constraints on
authigenic carbonate formation: Insights from the Chuanlinggou Formation,
Yanshan Basin, North China, Geochim. Cosmochim. Ac., 150, 90–105, 2015.
Lin, W., Deng, A., Wang, Z., Li, Y., Wen, T., Wu, L.-F., Wu, M., and Pan,
Y.: Genomic insights into the uncultured genus Candidatus Magnetobacterium in the
phylum Nitrospirae, ISME J., 812, 2463–2477, 2014.
Lovley, D.: Dissimilatory Fe(III)- and Mn(IV)-Reducing prokaryotes, in: The
Prokaryotes: Prokaryotic Physiology and Biochemistry, Springer, Berlin,
Heidelberg, 287–308, 2013.
Lovley, D. R. and Holmes, D. E.: Electromicrobiology: the ecophysiology of phylogenetically diverse electroactive microorganisms, Nat. Rev. Microbiol., 20, 5–19, https://doi.org/10.1038/s41579-021-00597-6, 2022.
Lovley, D. R. and Phillips, E. J. P.: Manganese inhibition of microbial iron
reduction in anaerobic sediments, Geomicrobiol. J., 6, 145–155, 1988.
Lovley, D. R. and Phillips, E. J. P.: Novel processes for anaerobic sulfate
production from elemental sulfur by sulfate-reducing bacteria, Appl.
Environ. Microb., 60, 2394–2399, 1994.
Lovley, D. R., Holmes, D. E., and Nevin, K. P.: Dissimilatory Fe(III) and
Mn(IV) reduction, Adv. Microb. Physiol., 49, 219–286, 2004.
Luo, Z. H., Narsing Rao, M. P., Chen, H., Hua, Z. S., Li, Q., Hedlund, B.
P., Dong, Z. Y., Liu, B. B., Guo, S. X., Shu, W. S., and Li, W. J.: Genomic
insights of Candidatus Nitrosocaldaceae based on nine new metagenome-assembled
genomes, including Candidatus Nitrosothermus gen nov. and two new species of
Candidatus Nitrosocaldus, Front. Microbiol., 11, https://doi.org/10.3389/fmicb.2020.608832, 2021.
Magoč, T. and Salzberg, S.: FLASH: Fast length adjustment of short reads to
improve genome assemblies, Bioinformatics, 27, 2957–2963, 2011.
Massaro, F. R., Rubbo, M., and Aquilano, D.: Theoretical Equilibrium
Morphology of Gypsum (CaSO4 ⚫ 2H2O). 1. A Syncretic
Strategy to Calculate the Morphology of Crystals, Cryst. Growth Des., 10,
2870–2878, 2010.
Mattes, A., Gould, D., Taupp, M., and Glasauer, S.: A novel autotrophic
bacterium isolated from an engineered wetland system links nitrate-coupled
iron oxidation to the removal of As, Zn and S, Water. Air. Soil Poll.,
224, 1–15, 2013.
Matys Grygar, T., Mach, K., Schnabl, P., Pruner, P., Laurin, J., and
Martinez, M.: A lacustrine record of the early stage of the Miocene Climatic
Optimum in Central Europe from the Most Basin, Ohře (Eger) Graben, Czech
Republic, Geol. Mag., 151, 1013–1033, 2014.
McCullough, C. D. and Schultze, M.: Engineered river flow-through to improve mine pit lake and river values, Sci. Total Environ., 640–641, 217–231, https://doi.org/10.1016/J.SCITOTENV.2018.05.279, 2018.
Meyer, K. M. and Kump, L. R.: Oceanic euxinia in Earth history: Causes and
consequences, Annu. Rev. Earth Planet. Sc., 36, 251–288, 2008.
Medová, H., Přikryl, I., Zapomnělová, E., and Pechar, L.:
Effect of Postmining waters on cyanobacterial photosynthesis, Water Environ.
Res., 87, 180–190, 2015.
Michiels, C. C., Darchambeau, F., Roland, F. A. E., Morana, C., Llirós, M., García-Armisen, T., Thamdrup, B., Borges, A. V., Canfield, D. E., Servais, P., Descy, J. P., and Crowe, S. A.: Iron-dependent nitrogen cycling in a ferruginous lake and the nutrient status of Proterozoic oceans, Nat. Geosci., 10, 217–221, https://doi.org/10.1038/ngeo2886, 2017.
Murad, E. and Rojík, P.: Iron-rich precipitates in a mine drainage environment:
Influence of pH on mineralogy, Am. Mineral., 88, 1915–1918, 2003.
Murad, E. and Rojík, P.: Iron mineralogy of mine-drainage precipitates
as environmental indicators: review of current concepts and a case study
from the Sokolov Basin, Czech Republic, Clay Miner., 40, 427–440, 2005.
Mußmann, M., Brito, I., Pitcher, A., Damsté, J. S. S.,
Hatzenpichler, R., Richter, A., Nielsen, J. L., Nielsen, P. H., Müller,
A., Daims, H., Wagner, M., and Head, I. M.: Thaumarchaeotes abundant in refinery nitrifying
sludges express amoA but are not obligate autotrophic ammonia oxidizers,
P. Natl. Acad. Sci. USA, 108, 16771, https://doi.org/10.1073/pnas.1106427108, 2011.
Myers, C. R. and Nealson, K. H.: Microbial reduction of manganese oxides: Interactions with iron and sulfur, Geochim. Cosmochim. Acta, 52(11), 2727–2732, doi:10.1016/0016-7037(88)90041-5, 1988.
Namgung, S., Guo, B., Sasaki, K., Lee, S. S., and Lee, G.: Macroscopic and
microscopic behaviors of Mn(II) (ad)sorption to goethite with the effects of
dissolved carbonates under anoxic conditions, Geochim. Cosmochim. Ac., 277,
300–319, 2020.
Northup, D. E., Barns, S. M., Yu, L. E., Spilde, M. N., Schelble, R. T., Dano, K. E., Crossey, L. J., Connolly, C. A., Boston, P. J., Natvig, D. O., and Dahm, C. N.: Diverse microbial communities inhabiting ferromanganese deposits in Lechuguilla and Spider Caves, Environ. Microbiol., 5, 1071–1086, https://doi.org/10.1046/j.1462-2920.2003.00500.x, 2003.
Noseck, U., Brasser, T., Rajlich, P., Laciok, A., and Hercik, M.: Mobility
of uranium in tertiary argillaceous sediments – A natural analogue study,
Radiochim. Acta, 92, 797–803, 2004.
Oude Elferink, S. J. W. H., Akkermans-van Met, W, M., Bogte, J. J., and
Stams, A. J. M.: Desulfobacca acetoxidans gen. nov., sp. nov., a novel acetate-degrading sulfate
reducer isolated from sulfidogenic granular sludge, Int. J. Syst.
Bacteriol., 49, 345–350, 1999.
Pačes, T. and Šmejkal, V.: Magmatic and fossil components of thermal
and mineral waters in the Eger River continental rift (Bohemian massif,
central Europe), in: Water-Rock Interaction, Proc. 11th International
Symposium, edited by: Wanty, R. B. and Seal II, R. R., Taylor and Francis
Group, London, 167–172, 2004.
Pellerin, A., Antler, G., Holm, S. A., Findlay, A. J., Crockford, P. W.,
Turchyn, A. V., Jørgensen, B. B., and Finster, K.: Large sulfur isotope
fractionation by bacterial sulfide oxidation, Sci. Adv., 5, eaaw1480, https://doi.org/10.1126/sciadv.aaw1480, 2019.
Petrash, D. A., Gingras, M. K., Lalonde, S. V., Orange, F., Pecoits, E., and
Konhauser, K. O.: Dynamic controls on accretion and lithification of modern
gypsum-dominated thrombolites, Los Roques, Venezuela, Sediment. Geol.,
245–246, 29–47, 2012.
Petrash, D. A., Gueneli, N., Brocks, J. J., Méndez-Dot, J. A.,
González-Arismendi, G., Poulton, S. W., and Konhauser, K. O.: Black
shale deposition and early diagenetic dolomite cementation during Oceanic
Anoxic Event 1: The mid-Cretaceous Maracaibo Platform, Northwestern South
America, Am. J. Sci., 316, 669–711, 2016.
Petrash, D. A., Jan, J., Sirová, D., Osafo, N. O.-A., and Borovec, J.:
Iron and nitrogen cycling, bacterioplankton community composition and
mineral transformations involving phosphorus stabilisation in the
ferruginous hypolimnion of a post-mining lake, Environ. Sci.-Proc.
Imp., 20, 1414–1426, 2018.
Petrash, D. A., Bialik, O. M., Staudigel, P. T., Konhauser, K. O., and Budd,
D. A.: Biogeochemical reappraisal of the freshwater–seawater mixing-zone
diagenetic model, Sedimentology, 68, 1797–1830, 2021.
Petrash, D. A. Steenbergen, I. M., Valero, A., Meador, T. B., Lalonde, S. V., and
Thomazo, C.: Disentangling the overlapping zonation of dissimilatory iron
and sulfate reduction in a carbonate-buffered sulfate-rich and ferruginous
lake water column,
Geophys. Res. Abstr.,
EGU22-183, EGU General Assembly 2022, Vienna, Austria, 2022.
Philippot, P., Van Kranendonk, M., Van Zuilen, M., Lepot, K., Rividi, N.,
Teitler, Y., Thomazo, C., Blanc-Valleron, M. M., Rouchy, J. M., Grosch, E.,
and de Wit, M.: Early traces of life investigations in drilling Archean
hydrothermal and sedimentary rocks of the Pilbara Craton, Western Australia
and Barberton Greenstone Belt, South Africa, C. R. Palevol., 8, 649–663, 2009.
Phillips, D. L. and Gregg, J. W.: Uncertainty in source partitioning using
stable isotopes, Oecologia, 127, 171–179, 2001.
Piwosz, K., Shabarova, T., Pernthaler, J., Posch, T., Šimek, K., Porcal,
P., and Salcher, M. M.: Bacterial and Eukaryotic Small-Subunit Amplicon Data
Do Not Provide a Quantitative Picture of Microbial Communities, but They Are
Reliable in the Context of Ecological Interpretations, mSphere 5,
e00052-20 https://doi.org/10.1128/mSphere.00052-20, 2020.
Post, J. and Bish, D.: Rietveld refinement of crystal structures using powder
X-ray diffraction data, Rev. Mineral. Geochem., 20, 277–308, 1989.
Posth, N. R., Canfield, D. E., and Kappler, A.: Biogenic Fe(III) minerals:
From formation to diagenesis and preservation in the rock record,
Earth-Sci. Rev., 135, 103–121, 2014.
Poulton, S. W. and Canfield, D. E.: Development of a sequential extraction
procedure for iron: Implications for iron partitioning in continentally
derived particulates, Chem. Geol., 214, 209–221, 2005.
Poulton, S. W. and Canfield, D. E.: Ferruginous Conditions: A Dominant
Feature of the Ocean through Earth's History, Elements, 7, 107–112, 2011.
Poulton, S. W., Krom, M. D., and Raiswell, R.: A revised scheme for the
reactivity of iron (oxyhydr)oxide minerals towards dissolved sulfide,
Geochim. Cosmochim. Ac., 68, 3703–3715, 2004.
Rapantová, N., Krzeszowski, Ś., Grmela, A., and Wolkersdorfer, C.:
Quantitative Assessment of Mine Water Sources Based on the General Mixing
Equation and Multivariate Statistics, Mine Water Environ., 31, 252–265,
2012.
Rasmussen, B., Krapež, B., Muhling, J. R., and Suvorova, A.:
Precipitation of iron silicate nanoparticles in early Precambrian oceans
marks Earth's first iron age, Geology, 43, 303–306, 2015.
Reershemius, T. and Planavsky, N. J.: What controls the duration and
intensity of ocean anoxic events in the Paleozoic and the Mesozoic?,
Earth-Sci. Rev., 221, 103787, https://doi.org/10.1016/j.earscirev.2021.103787, 2021.
Rennie, V. C. F. and Turchyn, A. V.: The preservation of δ34S and δ18O in carbonate-associated
sulfate during marine diagenesis: A 25 Myr test case using marine sediments,
Earth Planet. Sc. Lett., 395, 13–23, 2014.
Rickard, D. and Morse, J. W.: Acid volatile sulfide (AVS), Mar. Chem.,
97, 141–197, 2005.
Rognes, T., Flouri, T., Nichols, B., Quince, C., and Mahé, F.: VSEARCH: a versatile
open-source tool for metagenomics, PeerJ, 4, e2584, https://doi.org/10.7717/peerj.258, 2016.
Robertson, E. K. and Thamdrup, B.: The fate of nitrogen is linked to
iron(II) availability in a freshwater lake sediment, Geochim. Cosmochim.
Ac., 205, 84–99, 2017.
Rodríguez-Ruiz, I., Van Driessche, A. E. S., Veesler, S.,
García-Ruiz, J. M., and IUCr: Nucleation of gypsum at low
supersaturations, Acta Crystallogr. A, 67, 461–462, https://doi.org/10.1107/S0108767311088386,
2011.
Rosenbaum, J. and Sheppard, S. M. F.: An isotopic study of siderites, dolomites
and ankerites at high temperatures, Geochim. Cosmochim. Ac., 50, 1147–1150,
1986.
Salcher, M. M.: Same but different: Ecological niche partitioning of
planktonic freshwater prokaryotes, J. Limnol., 73, 74–87, 2014.
Scholz, F.: Identifying oxygen minimum zone-type biogeochemical cycling in
Earth history using inorganic geochemical proxies, Earth-Sci. Rev., 184,
29–45, 2018.
Scholz, F. and Neumann, T.: Trace element diagenesis in pyrite-rich
sediments of the Achterwasser lagoon, SW Baltic Sea, Mar. Chem., 107,
516–532, 2007.
Schoonen, M.: Mechanisms of sedimentary pyrite formation, in: Sulfur
biogeochemistry – Past and present, Geological Society of America Special
Paper 379, edited by: Amend, J. P., Edwards, K. J., and Lyons, T. W.,
Geological Society of America, Boulder, Colorado, 117–134, https://doi.org/10.1130/0-8137-2379-5.117, 2004.
Schultze, M., Pokrandt, K. H., and Hille, W.: Pit lakes of the Central
German lignite mining district: Creation, morphometry and water quality
aspects, Limnologica, 40, 148–155, 2010.
Simon, B., Bienfait, M., and IUCr: Structure et mécanisme de croissance
du gypse, Acta Cryst., 19, 750–756, 1965.
Slomp, C. P., Malschaert, J. F. P., Lohse, L., and Van Raaphorst, W.: Iron
and manganese cycling in different sedimentary environments on the North Sea
continental margin, Cont. Shelf Res., 17, 1083–1117, 1997.
Šmejkal, V.: Oxygen isotopic composition of sulphates from some mineral
waters and mine waters in western Bohemia, in: Isotope hydrology, 1978:
Proceedings of IAEA, Vienna, International symposium on isotope hydrology;
Neuherberg, Germany, 19–23 June 1978, IAEA-SM-228/4, 83–97, ISBN 92-0-040179-1, 1978.
Šmejkal, V.: Isotopic composition of carbonates and differences in
deposition environment during the Miocene lacustrine sedimentation in the
Krusne Hory graben, Zentralinstitut für Isot. und
Strahlenforschung, Leipzig, 84, 372–379, ISSN 0323-8776, 1984.
Soetaert, K., Hofmann, A. F., Middelburg, J. J., Meysman, F. J. R., and
Greenwood, J.: The effect of biogeochemical processes on pH, Mar. Chem.,
105, 30–51, 2007.
Spilde, M. N., Northup, D. E., Boston, P. J., Schelble, R. T., Dano, K. E., Crossey, L. J., and Dahm, C. N.: Geomicrobiology of cave ferromanganese deposits: A field and laboratory investigation, Geomicrobiol. J., 22, 99–116, https://doi.org/10.1080/01490450590945889, 2005.
Starke, R., Müller, M., Gaspar, M., Marz, M., Küsel, K., Totsche, K.
U., von Bergen, M., and Jehmlich, N.: Candidate Brocadiales dominates C, N and S
cycling in anoxic groundwater of a pristine limestone-fracture aquifer, J.
Proteomics, 152, 153–160, https://doi.org/10.1016/j.jprot.2016.11.003,
2017.
Sun, B., Cole, J. R., and Tiedje, J. M.: Desulfomonile limimaris sp. nov., an anaerobic
dehalogenating bacterium from marine sediments, Int. J. Syst. Evol.
Microbiol., 51, 365–371, 2001.
Swanner, E. D., Lambrecht, N., Wittkop, C., Harding, C., Katsev, S.,
Torgeson, J., and Poulton, S. W.: The biogeochemistry of ferruginous lakes
and past ferruginous oceans, Earth-Sci. Rev., 211, 103430, https://doi.org/10.1016/j.earscirev.2020.103430, 2020.
Taylor, B. E., Wheeler, M. C., and Nordstrom, D. K.: Isotope composition of
sulphate in acid mine drainage as measure of bacterial oxidation, Nature,
308, 538–541, 1984a.
Taylor, B. E., Wheeler, M. C., and Nordstrom, D. K.: Stable isotope
geochemistry of acid mine drainage: Experimental oxidation of pyrite,
Geochim. Cosmochim. Ac., 48, 2669–2678, 1984b.
Tebo, B. M., Johnson, H. A., McCarthy, J. K., and Templeton, A. S.:
Geomicrobiology of manganese(II) oxidation, Trends Microbiol., 13, 421–428, 2005.
Thamdrup, B., Finster, K., Hansen, J. W., and Bak, F.: Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese, Appl. Environ. Microb., 59, 101–108, https://doi.org/10.1128/aem.59.1.101-108.1993, 1993.
Thomazo, C., Brayard, A., Elmeknassi, S., Vennin, E., Olivier, N., Caravaca,
G., Escarguel, G., Fara, E., Bylund, K. G., Jenks, J. F., Stephen, D. A.,
Killingsworth, B., Sansjofre, P., and Cartigny, P.: Multiple sulfur isotope
signals associated with the late Smithian event and the Smithian/Spathian
boundary, Earth-Sci. Rev., 195, 96–113, 2019.
Toran, L. and Harris, R. F.: Interpretation of sulfur and oxygen isotopes in
biological and abiological sulfide oxidation, Geochim. Cosmochim. Ac., 53,
2341–2348, 1989.
Trettin, R., Gläser, H. R., Schultze, M., and Strauch, G.: Sulfur
isotope studies to quantify sulfate components in water of flooded lignite
open pits – Lake Goitsche, Germany, Appl. Geochem., 22, 69–89, 2007.
Ulrych, J., Dostal, J., Adamović, J., Jelínek, E., Špaček, P., Hegner,
E., and Balogh, K.: Recurrent Cenozoic volcanic activity in the Bohemian Massif
(Czech Republic), Lithos, 123, 133–144, 2011.
Umbría-Salinas, K., Valero, A., Jan, J., Borovec, J., Chrastný, V.,
and Petrash, D. A.: Redox-driven geochemical partitioning of metal(loid)s in
the iron-rich anoxic sediments of a recently flooded lignite mine pit: Lake
Medard, NW Czechia, J. Hazard. Mater. Adv., 3, 100009, https://doi.org/10.1016/j.hazadv.2021.100009, 2021.
van der Voort, E. and Hartman, P.: The habit of gypsum and solvent
interaction, J. Cryst. Growth, 112, 445–450, 1991.
Van Der Zee, C. and Van Raaphorst, W.: Manganese oxide reactivity in North
Sea sediments, J. Sea Res., 52, 73–85, 2004.
van de Velde, S. J., Reinhard, C. T., Ridgwell, A., and Meysman, F. J. R.:
Bistability in the redox chemistry of sediments and oceans, P. Natl.
Acad. Sci. USA, 117, 33043–33050, 2021.
Viollier, E., Jézéquel, D., Michard, G., Pèpe, M., Sarazin, G.,
and Alberic, P.: Geochernical study of a crater lake (Pavin Lake, France):
Trace-element behaviour in the monimolimnion, Chem. Geol., 125, 61–72,
1995.
Waite, D. W., Chuvochina, M., Pelikan, C., Parks, D. H., Yilmaz, P., Wagner,
M., Loy, A., Naganuma, T., Nakai, R., Whitman, W. B., Hahn, M. W., Kuever,
J., and Hugenholtz, P.: Proposal to reclassify the proteobacterial classes
Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria
into four phyla reflecting major functional capabilities, Int. J. Syst.
Evol. Micr., 70, 5972–6016, 2020.
Walter, X. A., Picazo, A., Miracle, M. R., Vicente, E., Camacho, A., Aragno, M., and Zopfi, J.: Phototrophic Fe(II)-oxidation in the chemocline of a ferruginous meromictic lake, Front. Microbiol., 5, 713, https://doi.org/10.3389/fmicb.2014.00713, 2014.
Wang, C. F., Fan, X., Zhang, F., Wang, S. Z., Zhao, Y. P., Zhao, X. Y., Zhao, W., Zhu, T. G., Lu, J. L., and Wei, X. Y.: Characterization of humic acids extracted from a lignite and interpretation for the mass spectra, RSC Adv., 7, 20677–20684, https://doi.org/10.1039/C7RA01497J, 2017.
Ward, L. M., Bertran, E., and Johnston, D. T.: Expanded Genomic Sampling of
the Desulfobulbales Reveals Distribution and Evolution of Sulfur
Metabolisms, Front. Microbiol., 12, 666052, https://doi.org/10.3389/fmicb.2021.666052, 2021.
Weber, K. A., Achenbach, L. A., and Coates, J. D.: Microorganisms pumping
iron: Anaerobic microbial iron oxidation and reduction, Nat. Rev.
Microbiol., 4, 752–764, 2006.
Weelink, S. A. B., Van Doesburg, W., Saia, F. T., Rijpstra, W. I. C.,
Röling, W. F. M., Smidt, H., and Stams, A. J. M.: A strictly anaerobic
betaproteobacterium Georgfuchsia toluolica gen. nov., sp. nov. degrades aromatic compounds with
Fe(III), Mn(IV) or nitrate as an electron acceptor, FEMS Microbiol. Ecol.,
70, 575–585, 2009.
Weinlich, F. H., Bräuer, K., Kämpf, H., Strauch, G., Tesař, J.,
and Weise, S. M.: An active subcontinental mantle volatile system in the
western Eger rift, Central Europe: Gas flux, isotopic (He, C, and N) and
compositional fingerprints, Geochim. Cosmochim. Ac., 63, 3653–3671, 1999.
Wright, M. H., Geszvain, K., Oldham, V. E., Luther, G. W., and Tebo, B. M.:
Oxidative formation and removal of complexed Mn(III) by Pseudomonas species, Front.
Microbiol., 9, 560, https://doi.org/10.3389/fmicb.2018.00560, 2018.
Zerkle, A. L., Jones, D. S., Farquhar, J., and Macalady, J. L.: Sulfur
isotope values in the sulfidic Frasassi cave system, central Italy: A case
study of a chemolithotrophic S-based ecosystem, Geochim. Cosmochim. Ac.,
173, 373–386, 2016.
Short summary
We spectroscopically evaluated the gradients of dissolved C, N, S, Fe and Mn in a newly formed redox-stratified lake. The lake features an intermediate redox state between nitrogenous and euxinic conditions that encompasses vigorous open sulfur cycling fuelled by the reducible Fe and Mn stocks of the anoxic sediments. This results in substantial bottom water loads of dissolved iron and sulfate. Observations made in this ecosystem have relevance for deep-time paleoceanographic reconstructions.
We spectroscopically evaluated the gradients of dissolved C, N, S, Fe and Mn in a newly formed...
Altmetrics
Final-revised paper
Preprint