Articles | Volume 19, issue 7
https://doi.org/10.5194/bg-19-2007-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-2007-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Suspended particulate matter drives the spatial segregation of nitrogen turnover along the hyper-turbid Ems estuary
Institute of Geology, Center for Earth System Research and
Sustainability (CEN), University Hamburg, Hamburg, 20146, Germany
Institute of Carbon Cycles, Helmholtz-Zentrum Hereon, Geesthacht,
21502, Germany
Tina Sanders
Institute of Carbon Cycles, Helmholtz-Zentrum Hereon, Geesthacht,
21502, Germany
Justus E. E. van Beusekom
Institute of Carbon Cycles, Helmholtz-Zentrum Hereon, Geesthacht,
21502, Germany
Institute of Oceanography, University Hamburg, Hamburg, 20146, Germany
Yoana G. Voynova
Institute of Carbon Cycles, Helmholtz-Zentrum Hereon, Geesthacht,
21502, Germany
Andreas Schöl
Department of Microbial Ecology, Federal Institute of
Hydrology, Koblenz, 56068, Germany
Kirstin Dähnke
Institute of Carbon Cycles, Helmholtz-Zentrum Hereon, Geesthacht,
21502, Germany
Related authors
Gesa Schulz, Kirstin Dähnke, Tina Sanders, Jan Penopp, Hermann W. Bange, Rena Czeschel, and Birgit Gaye
EGUsphere, https://doi.org/10.5194/egusphere-2025-1660, https://doi.org/10.5194/egusphere-2025-1660, 2025
Short summary
Short summary
Oxygen minimum zones (OMZs) are low-oxygen ocean areas that deplete nitrogen, a key marine nutrient. Understanding nitrogen cycling in OMZs is crucial for the global nitrogen cycle. This study examined nitrogen cycling in the OMZ of the Bay of Bengal and East Equatorial Indian Ocean, revealing limited mixing between both regions. Surface phytoplankton consumes nitrate, while deeper nitrification recycles nitrogen. In the BoB’s OMZ (100–300 m), nitrogen loss likely occurs via anammox.
Riel Carlo O. Ingeniero, Gesa Schulz, and Hermann W. Bange
Biogeosciences, 21, 3425–3440, https://doi.org/10.5194/bg-21-3425-2024, https://doi.org/10.5194/bg-21-3425-2024, 2024
Short summary
Short summary
Our research is the first to measure dissolved NO concentrations in temperate estuarine waters, providing insights into its distribution under varying conditions and enhancing our understanding of its production processes. Dissolved NO was supersaturated in the Elbe Estuary, indicating that it is a source of atmospheric NO. The observed distribution of dissolved NO most likely resulted from nitrification.
Gesa Schulz, Tina Sanders, Yoana G. Voynova, Hermann W. Bange, and Kirstin Dähnke
Biogeosciences, 20, 3229–3247, https://doi.org/10.5194/bg-20-3229-2023, https://doi.org/10.5194/bg-20-3229-2023, 2023
Short summary
Short summary
Nitrous oxide (N2O) is an important greenhouse gas. However, N2O emissions from estuaries underlie significant uncertainties due to limited data availability and high spatiotemporal variability. We found the Elbe Estuary (Germany) to be a year-round source of N2O, with the highest emissions in winter along with high nitrogen loads. However, in spring and summer, N2O emissions did not decrease alongside lower nitrogen loads because organic matter fueled in situ N2O production along the estuary.
Mona Norbisrath, Johannes Pätsch, Kirstin Dähnke, Tina Sanders, Gesa Schulz, Justus E. E. van Beusekom, and Helmuth Thomas
Biogeosciences, 19, 5151–5165, https://doi.org/10.5194/bg-19-5151-2022, https://doi.org/10.5194/bg-19-5151-2022, 2022
Short summary
Short summary
Total alkalinity (TA) regulates the oceanic storage capacity of atmospheric CO2. TA is also metabolically generated in estuaries and influences coastal carbon storage through its inflows. We used water samples and identified the Hamburg port area as the one with highest TA generation. Of the overall riverine TA load, 14 % is generated within the estuary. Using a biogeochemical model, we estimated potential effects on the coastal carbon storage under possible anthropogenic and climate changes.
Vlad A. Macovei, Louise C. V. Rewrie, Rüdiger Röttgers, and Yoana G. Voynova
Biogeosciences, 22, 3375–3396, https://doi.org/10.5194/bg-22-3375-2025, https://doi.org/10.5194/bg-22-3375-2025, 2025
Short summary
Short summary
We found that biogeochemical variability at the land–sea interface (LSI) in two major temperate estuaries is modulated by the 14 d spring–neap tidal cycle, with large effects on dissolved inorganic and organic carbon concentrations and distribution. As this effect increases the strength of the carbon source to the atmosphere by up to 74 % during spring tide, it should be accounted for in regional models, which aim to resolve biogeochemical processing at the LSI.
Gaziza Konyssova, Vera Sidorenko, Alexey Androsov, Sabine Horn, Sara Rubinetti, Ivan Kuznetsov, Karen Helen Wiltshire, and Justus van Beusekom
EGUsphere, https://doi.org/10.5194/egusphere-2025-2135, https://doi.org/10.5194/egusphere-2025-2135, 2025
Short summary
Short summary
This study explores how winds, tides, and biological activity influence suspended particle concentrations in a tidal basin of the Wadden Sea. Combining long-term measurements, ocean modelling, and machine learning, we found that wind dominates in winter, while biological processes like algae growth gain importance in spring and summer. The results also reveal contrasting short-term dynamics at shallow and deep stations, identifying the drivers of variability in coastal waters.
Andreas Neumann, Justus E. E. van Beusekom, Alexander Bratek, Jana Friedrich, Jürgen Möbius, Tina Sanders, Hendrik Wolschke, and Kirstin Dähnke
EGUsphere, https://doi.org/10.5194/egusphere-2025-1803, https://doi.org/10.5194/egusphere-2025-1803, 2025
Short summary
Short summary
The North-Western shelf of the Black Sea is substantially influenced by the discharge of nutrients from River Danube. We have sampled the sediment there and measured particulate carbon and nitrogen to reconstruct the variability of nitrogen sources to the NW shelf. Our results demonstrate that the balance of riverine nitrogen input and marine nitrogen fixation is sensitive to climate changes. Nitrogen from human activities is detectable in NW shelf sediment since the 12th century.
Gesa Schulz, Kirstin Dähnke, Tina Sanders, Jan Penopp, Hermann W. Bange, Rena Czeschel, and Birgit Gaye
EGUsphere, https://doi.org/10.5194/egusphere-2025-1660, https://doi.org/10.5194/egusphere-2025-1660, 2025
Short summary
Short summary
Oxygen minimum zones (OMZs) are low-oxygen ocean areas that deplete nitrogen, a key marine nutrient. Understanding nitrogen cycling in OMZs is crucial for the global nitrogen cycle. This study examined nitrogen cycling in the OMZ of the Bay of Bengal and East Equatorial Indian Ocean, revealing limited mixing between both regions. Surface phytoplankton consumes nitrate, while deeper nitrification recycles nitrogen. In the BoB’s OMZ (100–300 m), nitrogen loss likely occurs via anammox.
Bennet Juhls, Anne Morgenstern, Jens Hölemann, Antje Eulenburg, Birgit Heim, Frederieke Miesner, Hendrik Grotheer, Gesine Mollenhauer, Hanno Meyer, Ephraim Erkens, Felica Yara Gehde, Sofia Antonova, Sergey Chalov, Maria Tereshina, Oxana Erina, Evgeniya Fingert, Ekaterina Abramova, Tina Sanders, Liudmila Lebedeva, Nikolai Torgovkin, Georgii Maksimov, Vasily Povazhnyi, Rafael Gonçalves-Araujo, Urban Wünsch, Antonina Chetverova, Sophie Opfergelt, and Pier Paul Overduin
Earth Syst. Sci. Data, 17, 1–28, https://doi.org/10.5194/essd-17-1-2025, https://doi.org/10.5194/essd-17-1-2025, 2025
Short summary
Short summary
The Siberian Arctic is warming fast: permafrost is thawing, river chemistry is changing, and coastal ecosystems are affected. We aimed to understand changes in the Lena River, a major Arctic river flowing to the Arctic Ocean, by collecting 4.5 years of detailed water data, including temperature and carbon and nutrient contents. This dataset records current conditions and helps us to detect future changes. Explore it at https://doi.org/10.1594/PANGAEA.913197 and https://lena-monitoring.awi.de/.
Mona Norbisrath, Justus E. E. van Beusekom, and Helmuth Thomas
Ocean Sci., 20, 1423–1440, https://doi.org/10.5194/os-20-1423-2024, https://doi.org/10.5194/os-20-1423-2024, 2024
Short summary
Short summary
We present an observational study investigating total alkalinity (TA) in the Dutch Wadden Sea. Discrete water samples were used to identify the TA spatial distribution patterns and locate and shed light on TA sources. By observing a tidal cycle, the sediments and pore water exchange were identified as local TA sources. We assumed metabolically driven CaCO3 dissolution as the TA source in the upper, oxic sediments and anaerobic metabolic processes as TA sources in the deeper, anoxic ones.
Julia Meyer, Yoana G. Voynova, Bryce Van Dam, Lara Luitjens, Dagmar Daehne, and Helmuth Thomas
EGUsphere, https://doi.org/10.5194/egusphere-2024-3048, https://doi.org/10.5194/egusphere-2024-3048, 2024
Short summary
Short summary
The study highlights the inter-seasonal variability of the carbonate dynamics of the East Frisian Wadden Sea, the world's largest intertidal area. During spring, increased biological activity leads to lower CO2 and nitrate levels, while total alkalinity (TA) rises slightly. In summer, TA increases, enhancing the ocean's ability to absorb CO2. Our research emphasizes the vital role of these intertidal regions in regulating carbon, contributing to a better understanding of carbon storage.
Riel Carlo O. Ingeniero, Gesa Schulz, and Hermann W. Bange
Biogeosciences, 21, 3425–3440, https://doi.org/10.5194/bg-21-3425-2024, https://doi.org/10.5194/bg-21-3425-2024, 2024
Short summary
Short summary
Our research is the first to measure dissolved NO concentrations in temperate estuarine waters, providing insights into its distribution under varying conditions and enhancing our understanding of its production processes. Dissolved NO was supersaturated in the Elbe Estuary, indicating that it is a source of atmospheric NO. The observed distribution of dissolved NO most likely resulted from nitrification.
Louise C. V. Rewrie, Burkard Baschek, Justus E. E. van Beusekom, Arne Körtzinger, Gregor Ollesch, and Yoana G. Voynova
Biogeosciences, 20, 4931–4947, https://doi.org/10.5194/bg-20-4931-2023, https://doi.org/10.5194/bg-20-4931-2023, 2023
Short summary
Short summary
After heavy pollution in the 1980s, a long-term inorganic carbon increase in the Elbe Estuary (1997–2020) was fueled by phytoplankton and organic carbon production in the upper estuary, associated with improved water quality. A recent drought (2014–2020) modulated the trend, extending the water residence time and the dry summer season into May. The drought enhanced production of inorganic carbon in the estuary but significantly decreased the annual inorganic carbon export to coastal waters.
Mona Norbisrath, Andreas Neumann, Kirstin Dähnke, Tina Sanders, Andreas Schöl, Justus E. E. van Beusekom, and Helmuth Thomas
Biogeosciences, 20, 4307–4321, https://doi.org/10.5194/bg-20-4307-2023, https://doi.org/10.5194/bg-20-4307-2023, 2023
Short summary
Short summary
Total alkalinity (TA) is the oceanic capacity to store CO2. Estuaries can be a TA source. Anaerobic metabolic pathways like denitrification (reduction of NO3− to N2) generate TA and are a major nitrogen (N) sink. Another important N sink is anammox that transforms NH4+ with NO2− into N2 without TA generation. By combining TA and N2 production, we identified a TA source, denitrification, occurring in the water column and suggest anammox as the dominant N2 producer in the bottom layer of the Ems.
Gesa Schulz, Tina Sanders, Yoana G. Voynova, Hermann W. Bange, and Kirstin Dähnke
Biogeosciences, 20, 3229–3247, https://doi.org/10.5194/bg-20-3229-2023, https://doi.org/10.5194/bg-20-3229-2023, 2023
Short summary
Short summary
Nitrous oxide (N2O) is an important greenhouse gas. However, N2O emissions from estuaries underlie significant uncertainties due to limited data availability and high spatiotemporal variability. We found the Elbe Estuary (Germany) to be a year-round source of N2O, with the highest emissions in winter along with high nitrogen loads. However, in spring and summer, N2O emissions did not decrease alongside lower nitrogen loads because organic matter fueled in situ N2O production along the estuary.
Olga Ogneva, Gesine Mollenhauer, Bennet Juhls, Tina Sanders, Juri Palmtag, Matthias Fuchs, Hendrik Grotheer, Paul J. Mann, and Jens Strauss
Biogeosciences, 20, 1423–1441, https://doi.org/10.5194/bg-20-1423-2023, https://doi.org/10.5194/bg-20-1423-2023, 2023
Short summary
Short summary
Arctic warming accelerates permafrost thaw and release of terrestrial organic matter (OM) via rivers to the Arctic Ocean. We compared particulate organic carbon (POC), total suspended matter, and C isotopes (δ13C and Δ14C of POC) in the Lena delta and Lena River along a ~1600 km transect. We show that the Lena delta, as an interface between the Lena River and the Arctic Ocean, plays a crucial role in determining the qualitative and quantitative composition of OM discharged into the Arctic Ocean.
Johannes J. Rick, Mirco Scharfe, Tatyana Romanova, Justus E. E. van Beusekom, Ragnhild Asmus, Harald Asmus, Finn Mielck, Anja Kamp, Rainer Sieger, and Karen H. Wiltshire
Earth Syst. Sci. Data, 15, 1037–1057, https://doi.org/10.5194/essd-15-1037-2023, https://doi.org/10.5194/essd-15-1037-2023, 2023
Short summary
Short summary
The Sylt Roads (Wadden Sea) time series is illustrated. Since 1984, the water temperature has risen by 1.1 °C, while pH and salinity decreased by 0.2 and 0.3 units. Nutrients (P, N) displayed a period of high eutrophication until 1998 and have decreased since 1999, while Si showed a parallel increase. Chlorophyll did not mirror these changes, probably due to a switch in nutrient limitation. Until 1998, algae were primarily limited by Si, and since 1999, P limitation has become more important.
Kirstin Dähnke, Tina Sanders, Yoana Voynova, and Scott D. Wankel
Biogeosciences, 19, 5879–5891, https://doi.org/10.5194/bg-19-5879-2022, https://doi.org/10.5194/bg-19-5879-2022, 2022
Short summary
Short summary
Nitrogen is an important macronutrient that fuels algal production in rivers and coastal regions. We investigated the production and removal of nitrogen-bearing compounds in the freshwater section of the tidal Elbe Estuary and found that particles in the water column are key for the production and removal of water column nitrate. Using a stable isotope approach, we pinpointed regions where additional removal of nitrate or input from sediments plays an important role in estuarine biogeochemistry.
Mona Norbisrath, Johannes Pätsch, Kirstin Dähnke, Tina Sanders, Gesa Schulz, Justus E. E. van Beusekom, and Helmuth Thomas
Biogeosciences, 19, 5151–5165, https://doi.org/10.5194/bg-19-5151-2022, https://doi.org/10.5194/bg-19-5151-2022, 2022
Short summary
Short summary
Total alkalinity (TA) regulates the oceanic storage capacity of atmospheric CO2. TA is also metabolically generated in estuaries and influences coastal carbon storage through its inflows. We used water samples and identified the Hamburg port area as the one with highest TA generation. Of the overall riverine TA load, 14 % is generated within the estuary. Using a biogeochemical model, we estimated potential effects on the coastal carbon storage under possible anthropogenic and climate changes.
Matthias Fuchs, Juri Palmtag, Bennet Juhls, Pier Paul Overduin, Guido Grosse, Ahmed Abdelwahab, Michael Bedington, Tina Sanders, Olga Ogneva, Irina V. Fedorova, Nikita S. Zimov, Paul J. Mann, and Jens Strauss
Earth Syst. Sci. Data, 14, 2279–2301, https://doi.org/10.5194/essd-14-2279-2022, https://doi.org/10.5194/essd-14-2279-2022, 2022
Short summary
Short summary
We created digital, high-resolution bathymetry data sets for the Lena Delta and Kolyma Gulf regions in northeastern Siberia. Based on nautical charts, we digitized depth points and isobath lines, which serve as an input for a 50 m bathymetry model. The benefit of this data set is the accurate mapping of near-shore areas as well as the offshore continuation of the main deep river channels. This will improve the estimation of river outflow and the nutrient flux output into the coastal zone.
Shichao Tian, Birgit Gaye, Jianhui Tang, Yongming Luo, Wenguo Li, Niko Lahajnar, Kirstin Dähnke, Tina Sanders, Tianqi Xiong, Weidong Zhai, and Kay-Christian Emeis
Biogeosciences, 19, 2397–2415, https://doi.org/10.5194/bg-19-2397-2022, https://doi.org/10.5194/bg-19-2397-2022, 2022
Short summary
Short summary
We constrain the nitrogen budget and in particular the internal sources and sinks of nitrate in the Bohai Sea by using a mass-based and dual stable isotope approach based on δ15N and δ18O of nitrate. Based on available mass fluxes and isotope data an updated nitrogen budget is proposed. Compared to previous estimates, it is more complete and includes the impact of the interior cycle (nitrification) on the nitrate pool. The main external nitrogen sources are rivers contributing 19.2 %–25.6 %.
Charlotte Haugk, Loeka L. Jongejans, Kai Mangelsdorf, Matthias Fuchs, Olga Ogneva, Juri Palmtag, Gesine Mollenhauer, Paul J. Mann, P. Paul Overduin, Guido Grosse, Tina Sanders, Robyn E. Tuerena, Lutz Schirrmeister, Sebastian Wetterich, Alexander Kizyakov, Cornelia Karger, and Jens Strauss
Biogeosciences, 19, 2079–2094, https://doi.org/10.5194/bg-19-2079-2022, https://doi.org/10.5194/bg-19-2079-2022, 2022
Short summary
Short summary
Buried animal and plant remains (carbon) from the last ice age were freeze-locked in permafrost. At an extremely fast eroding permafrost cliff in the Lena Delta (Siberia), we found this formerly frozen carbon well preserved. Our results show that ongoing degradation releases substantial amounts of this carbon, making it available for future carbon emissions. This mobilisation at the studied cliff and also similarly eroding sites bear the potential to affect rivers and oceans negatively.
Onur Kerimoglu, Yoana G. Voynova, Fatemeh Chegini, Holger Brix, Ulrich Callies, Richard Hofmeister, Knut Klingbeil, Corinna Schrum, and Justus E. E. van Beusekom
Biogeosciences, 17, 5097–5127, https://doi.org/10.5194/bg-17-5097-2020, https://doi.org/10.5194/bg-17-5097-2020, 2020
Short summary
Short summary
In this study, using extensive field observations and a numerical model, we analyzed the physical and biogeochemical structure of a coastal system following an extreme flood event. Our results suggest that a number of anomalous observations were driven by a co-occurrence of peculiar meteorological conditions and increased riverine discharges. Our results call for attention to the combined effects of hydrological and meteorological extremes that are anticipated to increase in frequency.
Cited articles
Bange, H. W.: Nitrous oxide and methane in European coastal waters, Estuar.
Coast. Shelf Sci., 70, 361–374, https://doi.org/10.1016/j.ecss.2006.05.042,
2006.
Barnes, J. and Upstill-Goddard, R. C.: N2O seasonal distributions and
air-sea exchange in UK estuaries: Implications for the tropospheric N2O
source from European coastal waters, J. Geophys. Res.-Biogeo., 116, G01006,
https://doi.org/10.1029/2009JG001156, 2011.
Billen, G., Silvestre, M., Grizzetti, B., Leip, A., Garnier, J., Voss, M., Howarth, R., Bouraoui, F., Behrendt, H., Lepisto, A., Kortelainen, P., Johnes, P., Curtis, C., Humborg, C., Smedberg, E., Kaste, Ø., Ganeschram, R., Beusen, A., Lancelot, C., Butterbach-Bahl, K., and Gundersen, P.: Nitrogen Flows from European Regional Watersheds to Coastal Marine Waters, in: European Nitrogen Assessment, edited by: Sutton M., Howard C., Erisman, J. W., Billen, G., Bleeker, A., van Grinsven, H., Grennfelt, P., and Grizzetti, B., European Nitrogen Assessment, Cambridge University Press, European Nitrogen Assessment, 271–297, https://doi.org/10.1017/CBO9780511976988.016, 2011.
Borges, A., Vanderborght, J.-P., Schiettecatte, L.-S., Gazeau, F.,
Ferrón-Smith, S., Delille, B., and Frankignoulle, M.: Variability of gas
transfer velocity of CO2 in a macrotidal estuary (The Scheldt), Estuaries,
27, 593–603, https://doi.org/10.1007/BF02907647, 2004.
Bos, D., Büttger, H., Esselink, P., Jager, Z., de Jonge, V. N., Kruckenberg, H., van Maren, D. S., and Schuchardt, B.: The ecological
state of the Ems estaury and options for restoration, A&W Report, https://bioconsult-sh.de/site/assets/files/1303/1303.pdf (last access: 6 April 2022), 2012.
Böttcher, J., Strebel, O., Voerkelius, S., and Schmidt, H.-L.: Using
isotope fractionation of nitrate-nitrogen and nitrate-oxygen for evaluation
of microbial denitrification in a sandy aquifer, J. Hydrol., 114, 413–424,
https://doi.org/10.1016/0022-1694(90)90068-9, 1990.
Bouwman, A. F., Bierkens, M. F. P., Griffioen, J., Hefting, M. M., Middelburg, J. J., Middelkoop, H., and Slomp, C. P.: Nutrient dynamics, transfer and retention along the aquatic continuum from land to ocean: towards integration of ecological and biogeochemical models, Biogeosciences, 10, 1–22, https://doi.org/10.5194/bg-10-1-2013, 2013.
Brandes, J. A. and Devol, A. H.: Isotopic fractionation of oxygen and
nitrogen in coastal marine sediments, Geochim. Cosmochim. Acta, 61,
1793–1801, https://doi.org/10.1016/S0016-7037(97)00041-0, 1997.
Brase, L., Bange, H. W., Lendt, R., Sanders, T., and Dähnke, K.: High
Resolution Measurements of Nitrous Oxide (N2O) in the Elbe Estuary, Front.
Mar. Sci., 4, 162, https://doi.org/10.3389/fmars.2017.00162, 2017.
Brinkman, A. G., Riegman, R., Jacobs, P., Kuhn, S., and Meijboom, A.:
Ems-Dollard primary production research: Full data report, Institute for
Marine Resources & Ecosystem Studies, https://library.wur.nl/WebQuery/wurpubs/fulltext/350873 (last access: 6 April 2022), 2015.
Broder, T., Blodau, C., Biester, H., and Knorr, K. H.: Peat decomposition records in three pristine ombrotrophic bogs in southern Patagonia, Biogeosciences, 9, 1479–1491, https://doi.org/10.5194/bg-9-1479-2012, 2012.
Buchwald, C. and Casciotti, K. L.: Oxygen isotopic fractionation and
exchange during bacterial nitrite oxidation, Limnol. Oceanogr., 55,
1064–1074, https://doi.org/10.4319/lo.2010.55.3.1064, 2010.
Carstensen, J., Conley, D. J., Bonsdorff, E., Gustafsson, B. G., Hietanen,
S., Janas, U., Jilbert, T., Maximov, A., Norkko, A., Norkko, J., Reed, D.
C., Slomp, C. P., Timmermann, K., and Voss, M.: Hypoxia in the Baltic Sea:
Biogeochemical Cycles, Benthic Fauna, and Management, AMBIO, 43, 26–36,
https://doi.org/10.1007/s13280-013-0474-7, 2014.
Casciotti, K. L.: Inverse kinetic isotope fractionation during bacterial
nitrite oxidation, Geochim. Cosmochim. Acta, 73, 2061–2076,
https://doi.org/10.1016/j.gca.2008.12.022, 2009.
Casciotti, K. L., Sigman, D. M., Hastings, M. G., Böhlke, J. K., and
Hilkert, A.: Measurement of the Oxygen Isotopic Composition of Nitrate in
Seawater and Freshwater Using the Denitrifier Method, Anal. Chem., 74,
4905–4912, https://doi.org/10.1021/ac020113w, 2002.
Casciotti, K. L., Sigman, D. M., and Ward, B. B.: Linking Diversity and
Stable Isotope Fractionation in Ammonia-Oxidizing Bacteria, Geomicrobiol.
J., 20, 335–353, https://doi.org/10.1080/01490450303895, 2003.
Colijn, F.: Primary production in the Ems Dollard estuary, State University
Groningen, Groningen, https://doi.org/10.1016/0278-4343(87)90045-8, 1983.
Colijn, F., Admiraal, W., Baretta, J. W., and Ruardij, P.: Primary
production in a turbid estuary, the Ems-Dollard: field and model studies,
Cont. Shelf Res., 7, 1405–1409,
https://doi.org/10.1016/0278-4343(87)90045-8, 1987.
Compton, T. J., Holthuijsen, S., Mulder, M., van Arkel, M., Schaars, L. K.,
Koolhaas, A., Dekinga, A., ten Horn, J., Luttikhuizen, P. C., van der Meer,
J., Piersma, T., and van der Veer, H. W.: Shifting baselines in the Ems
Dollard estuary: A comparison across three decades reveals changing benthic
communities, J. Sea Res., 127, 119–132,
https://doi.org/10.1016/j.seares.2017.06.014, 2017.
Cox, T. J. S., Maris, T., Van Engeland, T., Soetaert, K., and Meire, P.:
Critical transitions in suspended sediment dynamics in a temperate
meso-tidal estuary, Sci. Rep., 9, 12745,
https://doi.org/10.1038/s41598-019-48978-5, 2019.
Crossland, C. J., Baird, D., Ducrotoy, J.-P., Lindeboom, H., Buddemeier, R.
W., Dennison, W. C., Maxwell, B. A., Smith, S. V., and Swaney, D. P.: The
Coastal Zone – a Domain of Global Interactions, in: Coastal Fluxes in the
Anthropocene: The Land-Ocean Interactions in the Coastal Zone Project of the
International Geosphere–Biosphere Programme, edited by: Crossland, C. J.,
Kremer, H. H., Lindeboom, H. J., Marshall Crossland, J. I., and Le Tissier,
M. D. A., Springer, Berlin, Heidelberg, 1–37,
https://doi.org/10.1007/3-540-27851-6_1, 2005.
Dähnke, K., Bahlmann, E., and Emeis, K.-C.: A nitrate sink in estuaries?
An assessment by means of stable nitrate isotopes in the Elbe estuary,
Limnol. Oceanogr., 53, 1504–1511,
https://doi.org/10.4319/lo.2008.53.4.1504, 2008.
Dähnke, K., Emeis, K.-C., Johannsen, A., and Nagel, B.: Stable isotope
composition and turnover of nitrate in the German Bight, Mar. Ecol. Prog.
Ser., 408, 7–18, https://doi.org/10.3354/meps08558, 2010.
De Jonge, V. N.: Relations Between Annual Dredging Activities, Suspended
Matter Concentrations, and the Development of the Tidal Regime in the Ems
Estuary, Can. J. Fish. Aquat. Sci., 40, 289–300,
https://doi.org/10.1139/f83-290, 1983.
De Jonge, V. N., Schuttelaars, H. M., van Beusekom, J. E. E., Talke, S. A.,
and de Swart, H. E.: The influence of channel deepening on estuarine
turbidity levels and dynamics, as exemplified by the Ems estuary, Estuar.
Coast. Shelf Sci., 139, 46–59, https://doi.org/10.1016/j.ecss.2013.12.030,
2014.
de Wilde, H. P. and de Bie, M. J.: Nitrous oxide in the Schelde estuary:
production by nitrification and emission to the atmosphere, Mar. Chem., 69,
203–216, https://doi.org/10.1016/S0304-4203(99)00106-1, 2000.
Deutsch, B., Mewes, M., Liskow, I., and Voss, M.: Quantification of diffuse
nitrate inputs into a small river system using stable isotopes of oxygen and
nitrogen in nitrate, Org. Geochem., 37, 1333–1342, 2006.
Diaz, R. J. and Rosenberg, R.: Spreading Dead Zones and Consequences for
Marine Ecosystems, Science, 321, 926–929, https://doi.org/10.1126/science.1156401,
2008.
Diaz, R. J., Rosenberg, R., and Sturdivant, K.: Hypoxia in estuaries and
semi-enclosed seas, in: Ocean deoxygenation: everyone's problem, 20 edn., edited by: Laffoley, D. and Baxter, J. M., IUCN, 85–102, https://doi.org/10.2305/IUCN.CH.2019.13.en,
2019.
Dong, L., Nedwell, D. B., Underwood, G. J. C., Thornton, D. C. O., and
Rusmana, I.: Nitrous oxide formation in the Colne estuary, England: the
central role of nitrite, Appl. Environ. Microbiol., 68, 1240–1249, https://doi.org/10.1128/aem.68.3.1240-1249.2002, 2002.
FGG Ems: Hochwasserriskiomanagmentplan 2015–2021 für den deutschen
Anteil der Flussgebietseinheit Ems gemäß § 75 WHG,
Flussgebietsgemeinschaft Ems, https://www.ems-eems.de/fileadmin/co_theme/Default/Media/pdfs/2015_nat_HWRMP_Ems.pdf (last access: 24 February 2022), 2015a.
FGG Ems: Internationaler Bewirtschaftungsplan nach Artikel 13
Wasserrahmenrichtlinie für die Flussgebietseinheit Ems:
Bewirtschaftungszeitraum 2015–2021, Flussgebietsgemeinschaft Ems, https://www.ems-eems.de/fileadmin/co_theme/Default/Media/pdfs/2015_int_BWP_Ems_DE.pdf (last access: 16 March 2022), 2015b.
Francis, C. A., Beman, J. M., and Kuypers, M. M. M.: New processes and
players in the nitrogen cycle: the microbial ecology of anaerobic and
archaeal ammonia oxidation, ISME J., 1, 19–27, https://doi.org/10.1038/ismej.2007.8,
2007.
Fry, B.: Conservative mixing of stable isotopes across estuarine salinity
gradients: A conceptual framework for monitoring watershed influences on
downstream fisheries production, Estuaries, 25, 264–271,
https://doi.org/10.1007/BF02691313, 2002.
Galloway, J. N., Aber, J. D., Erisman, J. W., Seitzinger, S. P., Howarth, R.
W., Cowling, E. B., and Cosby, B. J.: The Nitrogen Cascade, Bioscience, 53,
341–356, https://doi.org/10.1641/0006-3568(2003)053[0341:TNC]2.0.CO;2,
2003.
Gao, H., Schreiber, F., Collins, G., Jensen, M. M., Kostka, J. E., Lavik,
G., de Beer, D., Zhou, H.-Y., and Kuypers, M. M. M.: Aerobic denitrification
in permeable Wadden Sea sediments, ISME J., 4, 417–426,
https://doi.org/10.1038/ismej.2009.127, 2010.
GGally: Extension to “ggplot2”:
https://www.rdocumentation.org/packages/GGally/versions/1.5.0, last access:
29 January 2021.
Giblin, A., Tobias, C., Song, B., Weston, N., Banta, G., and Rivera-Monroy,
V.: The Importance of Dissimilatory Nitrate Reduction to Ammonium (DNRA) in
the Nitrogen Cycle of Coastal Ecosystems, Oceanography, 26, 124–131,
https://doi.org/10.5670/oceanog.2013.54, 2013.
Granger, J. and Sigman, D. M.: Removal of nitrite with sulfamic acid for
nitrate N and O isotope analysis with the denitrifier method, Rapid Commun.
Mass Spectrom., 23, 3753–3762, https://doi.org/10.1002/rcm.4307, 2009.
Granger, J. and Wankel, S.: Isotopic overprinting of nitrification on
denitrification as a ubiquitous and unifying feature of environmental
nitrogen cycling, Proc. Natl. Acad. Sci., 113, E6391–E6400,
https://doi.org/10.1073/pnas.1601383113, 2016.
Granger, J., Sigman, D. M., Needoba, J. A., and Harrison, P. J.: Coupled
nitrogen and oxygen isotope fractionation of nitrate during assimilation by
cultures of marine phytoplankton, Limnol. Oceanogr., 49, 1763–1773,
https://doi.org/10.4319/lo.2004.49.5.1763, 2004.
Grasso, F. and Le Hir, P.: Influence of morphological changes on suspended
sediment dynamics in a macrotidal estuary: diachronic analysis in the Seine
Estuary (France) from 1960 to 2010, Ocean Dyn., 69, 83–100,
https://doi.org/10.1007/s10236-018-1233-x, 2019.
Hansen, H. P. and Koroleff, F.: Determination of nutrients, in: Methods of
Seawater Analysis, 3rd edn., Methods of Seawater Analysis, edited by: Grasshoff, K., Kremling, K., and Ehrhardt, M., John Wiley & Sons Ltd., 159–228,
https://doi.org/10.1002/9783527613984.ch10, 2007.
Howarth, W.: Coastal nitrogen pollution: A review of sources and trends
globally and regionally, Harmful Algae, 8, 14–20,
https://doi.org/10.1016/j.hal.2008.08.015, 2008.
Howarth, R. W. and Marino, R.: Nitrogen as the limiting nutrient for
eutrophication in coastal marine ecosystems: Evolving views over three
decades, Limnol. Oceanogr., 51, 364–376,
https://doi.org/10.4319/lo.2006.51.1_part_2.0364, 2006.
IPCC: Climate Change 2007: The Physical Science Basis – Contribution of Working Group I to the Fourth Assessment
Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B.,
Tignor, M., and Miller, H. L., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996 pp., ISBN 978-0-521-70596-7, 2007.
Jacob, J., Nowka, B., Merten, V., Sanders, T., Spieck, E., and Dähnke,
K.: Oxidation kinetics and inverse isotope effect of marine
nitrite-oxidizing isolates, Aquat. Microb. Ecol., 80, 289–300,
https://doi.org/10.3354/ame01859, 2017.
Johannsen, A., Dähnke, K., and Emeis, K.: Isotopic composition of
nitrate in five German rivers discharging into the North Sea, Org. Geochem.,
39, 1678–1689, https://doi.org/10.1016/j.orggeochem.2008.03.004, 2008.
Kendall, C., Elliott, E. M., and Wankel, S. D.: Tracing Anthropogenic Inputs
of Nitrogen to Ecosystems, in: Stable Isotopes in Ecology and Environmental
Science, 2nd edn., Stable isotopes in ecology and environmental science, edited by: Michener, R. and Lajtha, K., John Wiley & Sons Ltd., 375–449,
https://doi.org/10.1002/9780470691854.ch12, 2007.
Kennish M. J.: Estuaries, Anthropogenic Impacts, in: Encyclopedia of Coastal Science, Encyclopedia of Earth Science Series, edited by: Schwartz M. L., Springer, Dordrecht, 434–436, https://doi.org/10.1007/1-4020-3880-1_140, 2005.
Kerner, M.: Effects of deepening the Elbe Estuary on sediment regime and
water quality, Estuar. Coast. Shelf Sci., 75, 492–500,
https://doi.org/10.1016/j.ecss.2007.05.033, 2007.
Knowles, R.: Denitrification, Microbiol. Rev., 46, 43–70, 1982.
Krebs, M. and Weilbeer, H.: Ems-Dollart Estuary, Küste, 74, 252–262,
2008.
Lehmann, M. F., Sigman, D. M., and Berelson, W. M.: Coupling the 15N 14N and
18O 16O of nitrate as a constraint on benthic nitrogen cycling, Mar. Chem.,
88, 1–20, https://doi.org/10.1016/j.marchem.2004.02.001, 2004.
Lewicka-Szczebak, D., Augustin, J., Giesemann, A., and Well, R.: Quantifying N2O reduction to N2 based on N2O isotopocules – validation with independent methods (helium incubation and 15N gas flux method), Biogeosciences, 14, 711–732, https://doi.org/10.5194/bg-14-711-2017, 2017.
Liss, P. S.: Conservative and non-conservative behavior ofdissolved
constituents during estuarine mixing, in: Estuarine chemistry, edited by: Burton, J. D. and Liss, J. D., Academic Press, 93–130, ISBN 978-0121473501, 1976.
Liu, B., de Swart, H. E., and de Jonge, V. N.: Phytoplankton bloom dynamics
in turbid, well-mixed estuaries: A model study, Estuar. Coast. Shelf Sci.,
211, 137–151, https://doi.org/10.1016/j.ecss.2018.01.010, 2018.
Liu, T., Xia, X., Liu, S., Mou, X., and Qiu, Y.: Acceleration of
denitrification in turbid rivers due to denitrification occurring on
suspended sediment in oxic waters, Environ. Sci. Technol., 47, 4053–4061,
https://doi.org/10.1021/es304504m, 2013.
Loisel, J., Gallego-Sala, A. V., and Yu, Z.: Global-scale pattern of peatland Sphagnum growth driven by photosynthetically active radiation and growing season length, Biogeosciences, 9, 2737–2746, https://doi.org/10.5194/bg-9-2737-2012, 2012.
Mariotti, A., Germon, J. C., Hubert, P., Kaiser, P., Letolle, R., Tardieux,
A., and Tardieux, P.: Experimental determination of nitrogen kinetic isotope
fractionation: some principles, illustrations for the denitrification and
nitrification process, Plant Soil, 62, 413–430, 1981.
Mengis, M., Schif, S. L., Harris, M., English, M. C., Aravena, R., Elgood,
R., and MacLean, A.: Multiple Geochemical and Isotopic Approaches for
Assessing Ground Water NO3− Elimination in a Riparian Zone, Groundwater, 37,
448–457, https://doi.org/10.1111/j.1745-6584.1999.tb01124.x, 1999.
Middelburg, J. and Nieuwenhuize, J.: Uptake of dissolved inorganic nitrogen
in turbid, tidal estuaries, Mar. Ecol.-Prog. Ser., 192, 79–88,
https://doi.org/10.3354/meps192079, 2001.
Möbius, J.: Isotope fractionation during nitrogen remineralization
(ammonification): Implications for nitrogen isotope biogeochemistry,
Geochim. Cosmochim. Acta, 105, 422–432,
https://doi.org/10.1016/j.gca.2012.11.048, 2013.
Murray, R. H., Erler, D. V., and Eyre, B. D.: Nitrous oxide fluxes in estuarine environments: response to global change, Glob. Change Biol., 21, 3219–3245, https://doi.org/10.1111/gcb.12923, 2015.
Ogilvie, B., Nedwell, D. B., Harrison, R. M., Robinson, A., and Sage, A.:
High nitrate, muddy estuaries as nitrogen sinks: the nitrogen budget of the
River Colne estuary (United Kingdom), Mar. Ecol. Prog. Ser., 150, 217–228,
https://doi.org/10.3354/meps150217, 1997.
Otte, S., Schalk, J., Kuenen, J. G., and Jetten, M. S.: Hydroxylamine
oxidation and subsequent nitrous oxide production by the heterotrophic
ammonia oxidizer Alcaligenes faecalis, Appl. Microbiol. Biotechnol., 51,
255–261, https://doi.org/10.1007/s002530051390, 1999.
Papenmeier, S., Schrottke, K., Bartholomä, A., and Flemming, B. W.:
Sedimentological and Rheological Properties of the Water–Solid Bed
Interface in the Weser and Ems Estuaries, North Sea, Germany: Implications
for Fluid Mud Classification, J. Coast. Res., 289, 797–808,
https://doi.org/10.2112/JCOASTRES-D-11-00144.1, 2013.
Pareja-Roman, L. F., Chant, R. J., and Sommerfield, C. K.: Impact of
Historical Channel Deepening on Tidal Hydraulics in the Delaware Estuary, J.
Geophys. Res. Oceans, 125, e2020JC016256,
https://doi.org/10.1029/2020JC016256, 2020.
Petersen, W., Schroeder, F., and Bockelmann, F.-D.: FerryBox – Application
of continuous water quality observations along transects in the North Sea,
Ocean Dyn., 61, 1541–1554, https://doi.org/10.1007/s10236-011-0445-0, 2011.
Quick, A. M., Reeder, W. J., Farrell, T. B., Tonina, D., Feris, K. P., and
Benner, S. G.: Nitrous oxide from streams and rivers: A review of primary
biogeochemical pathways and environmental variables, Earth-Sci. Rev., 191,
224–262, https://doi.org/10.1016/j.earscirev.2019.02.021, 2019.
Rhee, T. S., Kettle, A. J., and Andreae, M. O.: Methane and nitrous oxide
emissions from the ocean: A reassessment using basin-wide observations in
the Atlantic, J. Geophys. Res.-Atmos., 114, D12304,
https://doi.org/10.1029/2008JD011662, 2009.
Robinson, A. D., Nedwell, D. B., Harrison, R. M., and Ogilvie, B. G.:
Hypernutrified estuaries as sources of N2O emission to the atmosphere: the
estuary of the River Colne, Essex, UK, Mar. Ecol. Prog. Ser., 164, 59–71,
1998.
Röttgers, R., Heymann, K., and Krasemann, H.: Suspended matter
concentrations in coastal waters: Methodological improvements to quantify
individual measurement uncertainty, Estuar. Coast. Shelf Sci., 151,
148–155, https://doi.org/10.1016/j.ecss.2014.10.010, 2014.
Sanders, T. and Dähnke, K.: The N-isotope effect and fractionation of
nitrification in the tidal influenced Elbe River estuary, Germany, EGU
General Assembly Conference 2014, Wien, EGU2013-5061, https://ui.adsabs.harvard.edu/abs/2013EGUGA..15.5061S (last access: 16 March 2022), 2014.
Sanders, T. and Laanbroek, H. J.: The distribution of sediments and water
column nitrification potential in the hyper-turbid Ems estuary, Aquat. Sci.,
80, 33, https://doi.org/10.1007/s00027-018-0584-1, 2018.
Sanders, T. and Petersen, W.: Nitrogen turnover in the Ems estuary 2014, PANGAEA [data set], https://doi.pangaea.de/10.1594/PANGAEA.942220, 2022.
Santoro, A. E. and Casciotti, K. L.: Enrichment and characterization of
ammonia-oxidizing archaea from the open ocean: phylogeny, physiology and
stable isotope fractionation, ISME J., 5, 1796–1808,
https://doi.org/10.1038/ismej.2011.58, 2011.
Schröder, F., Wiltshire, K. H., Klages, D., Mathieu, B., and Knauth, H.
D.: Nitrogen and oxygen processes in sediments of the Elbe Estuary, Arch.
Für Hydrobiol. Suppl., 110, 311–328, 1995.
Schuchardt, B. and Scholle, J.: Estuaries. Thematic Report No. 16, in:
Quality Status Report 2009. WaddenSea
Ecosystem No. 25, edited by: Marencic, H. and de Vlas, J., Common Wadden Sea Secretariat, Trilateral Monitoring and
Assessment Group, Wilhelmshaven, Germany, ISSN 0928-2734, 2009.
Schulz, G., Voynova, Y. G., Metzke, M., and Schmidt, L.: Nitrogen turnover in the Ems estuary 2020, PANGAEA [data set], https://doi.pangaea.de/10.1594/PANGAEA.942222, 2022.
Seitzinger, S. P.: Denitrification in freshwater and coastal marine
ecosystems: Ecological and geochemical significance, Limnol. Oceanogr., 33,
702–724, https://doi.org/10.4319/lo.1988.33.4part2.0702, 1988.
Sigman, D. M. and Fripiat, F.: Nitrogen isotopes in the ocean, Encycl. Ocean
Sci., 1, 263–278, https://doi.org/10.1016/B978-0-12-409548-9.11605-7, 2018.
Sigman, D. M., Altabet, M., McCorkle, D., Francois, R., and Fischer, G.: The
δ15N of nitrate in the Southern Ocean: Nitrogen cycling and
circulation in the ocean interior, J. Geophys. Res., 105, 19599–19614,
https://doi.org/10.1029/2000JC000265, 2000.
Sigman, D. M., Casciotti, K. L., Andreani, M., Barford, C., Galanter, M.,
and Böhlke, J. K.: A Bacterial Method for the Nitrogen Isotopic Analysis
of Nitrate in Seawater and Freshwater, Anal. Chem., 73, 4145–4153,
https://doi.org/10.1021/ac010088e, 2001.
Sigman, D., Karsh, K., and Casciotti, K. L.: Ocean process tracers: Nitrogen
isotopes in the ocean, 2nd edn., Encycl. Ocean Sci., https://doi.org/10.1016/B978-012374473-9.00632-9, 4138–4153, 2009.
Sutka, R. L., Ostrom, N. E., Ostrom, P. H., Breznak, J. A., Gandhi, H.,
Pitt, A. J., and Li, F.: Distinguishing Nitrous Oxide Production from
Nitrification and Denitrification on the Basis of Isotopomer Abundances,
Appl. Environ. Microbiol., 72, 638–644,
https://doi.org/10.1128/AEM.72.1.638-644.2006, 2006.
Talke, S. and de Swart, H. E.: Hydrodynamics and Morphology in the
Ems/Dollard Estuary: Review of Models, Measurements, Scientific Literature,
and the Effects of Changing Conditions, Civ. Environ. Eng. Fac. Publ.
Present., 87, IMAU Report # R06-01, http://archives.pdx.edu/ds/psu/11193 (last access: 6 April 2022), 2006.
Talke, S. A., de Swart, H. E., and de Jonge, V. N.: An Idealized Model and
Systematic Process Study of Oxygen Depletion in Highly Turbid Estuaries,
Estuaries Coasts, 32, 602–620, https://doi.org/10.1007/s12237-009-9171-y,
2009.
The R Stats Package, Version 4.0.2:
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/prcomp,
last access: 29 January 2021.
Thornton, D. C. O., Dong, L. F., Underwood, G. J. C., and Nedwell, D. B.:
Sediment–water inorganic nutrient exchange and nitrogen budgets in the
Colne Estuary, UK, Mar. Ecol. Prog. Ser., 337, 63–77, 2007.
Tian, H., Xu, R., Canadell, J. G., Thompson, R. L., Winiwarter, W.,
Suntharalingam, P., Davidson, E. A., Ciais, P., Jackson, R. B.,
Janssens-Maenhout, G., Prather, M. J., Regnier, P., Pan, N., Pan, S.,
Peters, G. P., Shi, H., Tubiello, F. N., Zaehle, S., Zhou, F., Arneth, A.,
Battaglia, G., Berthet, S., Bopp, L., Bouwman, A. F., Buitenhuis, E. T.,
Chang, J., Chipperfield, M. P., Dangal, S. R. S., Dlugokencky, E., Elkins,
J. W., Eyre, B. D., Fu, B., Hall, B., Ito, A., Joos, F., Krummel, P. B.,
Landolfi, A., Laruelle, G. G., Lauerwald, R., Li, W., Lienert, S., Maavara,
T., MacLeod, M., Millet, D. B., Olin, S., Patra, P. K., Prinn, R. G.,
Raymond, P. A., Ruiz, D. J., van der Werf, G. R., Vuichard, N., Wang, J.,
Weiss, R. F., Wells, K. C., Wilson, C., Yang, J., and Yao, Y.: A
comprehensive quantification of global nitrous oxide sources and sinks,
Nature, 586, 248–256, https://doi.org/10.1038/s41586-020-2780-0, 2020.
Tiedje, J. M.: Ecology of denitrification and dissimilatory nitrate
reduction to ammonium, in: Environmental Microbiology
of Anaerobes, edited by: Zehnder, A. J. B., John Wiley and Sons, New York, 179–244, https://www.researchgate.net/publication/255948382_Ecology_of_denitrification_and_dissimilatory_nitrate_reduction_to_ammonium (last access: 11 April 2022), 1988.
Van Beusekom, J. E. E. and de Jonge, V. N.: The role of suspended matter in
the distribution of dissolved inorganic phosphate, iron and aluminium in the
ems estuary, Neth. J. Aquat. Ecol., 28, 383–395, 1994.
Van Beusekom, J. E. E. and de Jonge, V. N.: Transformation of phosphorus in
the wadden sea: Apatite formation, Dtsch. Hydrogr. Z., 49, 297–305,
https://doi.org/10.1007/BF02764040, 1997.
Van Beusekom, J. E. E. and de Jonge, V. N.: Retention of Phosphorus and
Nitrogen in the Ems Estaury, Estuaries, 21, 527–539, 1998.
Van Beusekom, J., Thiel, R., Bobsien, I., Boersma, M., Buschbaum, C.,
Dänhardt, A., Darr, A., Friedland, R., Kloppmann, M., Kröncke, I.,
Rick, J., and Wetzel, M.: Aquatische Ökosysteme: Nordsee, Wattenmeer,
Elbeästuar und Ostsee, in: Hamburger Klimabericht – Wissen über
Klima, Klimawandel und Auswirkungen in Hamburg und Norddeutschland, edited
by: von Storch, H., Meinke, I., and Claußen, M., Springer, Berlin,
Heidelberg, 89–107,
https://doi.org/10.1007/978-3-662-55379-4_5, 2018.
Van Beusekom, J. E. E., Carstensen, J., Dolch, T., Grage, A., Hofmeister,
R., Lenhart, H., Kerimoglu, O., Kolbe, K., Pätsch, J., Rick, J.,
Rönn, L., and Ruiter, H.: Wadden Sea Eutrophication: Long-Term Trends
and Regional Differences, Front. Mar. Sci., 6, 370,
https://doi.org/10.3389/fmars.2019.00370, 2019.
Van Maren, D. S., Winterwerp, J. C., Wang, Z. Y., and Pu, Q.: Suspended
sediment dynamics and morphodynamics in the Yellow River, China,
Sedimentology, 56, 785–806,
https://doi.org/10.1111/j.1365-3091.2008.00997.x, 2009.
Van Maren, D. S., Winterwerp, J. C., and Vroom, J.: Fine sediment transport
into the hyper-turbid lower Ems River: the role of channel deepening and
sediment-induced drag reduction, Ocean Dyn., 65, 589–605,
https://doi.org/10.1007/s10236-015-0821-2, 2015a.
Van Maren, D. S., van Kessel, T., Cronin, K., and Sittoni, L.: The impact of
channel deepening and dredging on estuarine sediment concentration, Cont.
Shelf Res., 95, 1–14, https://doi.org/10.1016/j.csr.2014.12.010, 2015b.
Voss, M., Baker, A., Bange, H. W., Conley, D., Cornell, S., Deutsch, B.,
Engel, A., Ganeshram, R., Garnier, J., Heiskanen, A.-S., Jickells, T.,
Lancelot, C., McQuatters-Gollop, A., Middelburg, J., Schiedek, D., Slomp, C.
P., and Conley, D. P.: Nitrogen processes in coastal and marine ecosystems,
in: The European Nitrogen Assessment: Sources, Effects and Policy
Perspectives, edited by: Bleeker, A., Grizzetti, B., Howard, C. M., Billen,
G., van Grinsven, H., Erisman, J. W., Sutton, M. A., and Grennfelt, P.,
Cambridge University Press, Cambridge, 147–176,
https://doi.org/10.1017/CBO9780511976988.011, 2011.
Wang, M., Moore, T. R., Talbot, J., and Riley, J. L.: The stoichiometry of
carbon and nutrients in peat formation, Glob. Biogeochem. Cycles, 29,
113–121, https://doi.org/10.1002/2014GB005000, 2015.
Wankel, S. D., Kendall, C., Francis, C. A., and Paytan, A.: Nitrogen sources
and cycling in the San Francisco Bay Estuary: A nitrate dual isotopic
composition approach, Limnol. Oceanogr., 51, 1654–1664, 2006.
Weiss, R. F. and Price, B. A.: Nitrous oxide solubility in water and
seawater, Mar. Chem., 8, 347–359,
https://doi.org/10.1016/0304-4203(80)90024-9, 1980.
Winterwerp, J. C., Wang, Z. B., van Braeckel, A., van Holland, G., and
Kösters, F.: Man-induced regime shifts in small estuaries – II: a
comparison of rivers, Ocean Dyn., 63, 1293–1306,
https://doi.org/10.1007/s10236-013-0663-8, 2013.
Wong, W. W., Applegate, A., Poh, S. C., and Cook, P. L. M.: Biogeochemical
attenuation of nitrate in a sandy subterranean estuary: Insights from two
stable isotope approaches, Limnol. Oceanogr., 65, 3098–3113,
https://doi.org/10.1002/lno.11576, 2020.
Wrage, N., Velthof, G. L., van Beusichem, M. L., and Oenema, O.: The role of
nitrifier denitrification in the production of nitrous oxide, Soil Biol.
Biochem., 33, 1723–1732, 2001.
Xia, X., Liu, T., Yang, Z., Michalski, G., Liu, S., Jia, Z., and Zhang, S.:
Enhanced nitrogen loss from rivers through coupled
nitrification-denitrification caused by suspended sediment, Sci. Total
Environ., 579, 47–59, https://doi.org/10.1016/j.scitotenv.2016.10.181,
2016.
Zhou, Y., Xu, X., Han, R., Li, L., Feng, Y., Yeerken, S., Song, K., and
Wang, Q.: Suspended particles potentially enhance nitrous oxide (N2O)
emissions in the oxic estuarine waters of eutrophic lakes: Field and
experimental evidence, Environ. Pollut., 252, 1225–1234,
https://doi.org/10.1016/j.envpol.2019.06.076, 2019.
Zhu, W., Wang, C., Hill, J., He, Y., Tao, B., Mao, Z., and Wu, W.: A missing
link in the estuarine nitrogen cycle?: Coupled nitrification-denitrification
mediated by suspended particulate matter, Sci. Rep., 8, 2282, https://doi.org/10.1038/s41598-018-20688-4, 2018.
Short summary
Estuaries can significantly alter nutrient loads before reaching coastal waters. Our study of the heavily managed Ems estuary (Northern Germany) reveals three zones of nitrogen turnover along the estuary with water-column denitrification in the most upstream hyper-turbid part, nitrate production in the middle reaches and mixing/nitrate uptake in the North Sea. Suspended particulate matter was the overarching control on nitrogen cycling in the hyper-turbid estuary.
Estuaries can significantly alter nutrient loads before reaching coastal waters. Our study of...
Altmetrics
Final-revised paper
Preprint