Articles | Volume 19, issue 7
https://doi.org/10.5194/bg-19-2043-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-2043-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
New constraints on biological production and mixing processes in the South China Sea from triple isotope composition of dissolved oxygen
Hana Jurikova
CORRESPONDING AUTHOR
School of Earth and Environmental Sciences, University of St Andrews,
KY16 9TS St Andrews, United Kingdom
Osamu Abe
Graduate School of Environmental Studies, Nagoya University, 464-8601
Nagoya, Japan
Fuh-Kwo Shiah
Research Center for Environmental Changes, Academia Sinica, 11529
Taipei, Taiwan
Institute of Earth Sciences, Academia Sinica, 11529 Taipei, Taiwan
Related authors
No articles found.
Duy-Hieu Nguyen, Hsin-Cheng Hsieh, Mao-Chang Liang, Neng-Huei Lin, Chieh-Heng Wang, and Jia-Lin Wang
EGUsphere, https://doi.org/10.5194/egusphere-2025-4090, https://doi.org/10.5194/egusphere-2025-4090, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Using year-round, high-frequency non-methane hydrocarbons measurements from three monitoring sites, each with distinct source–receptor characteristics, this study applied the source apportionment model to resolve eight sources and assess ozone-forming potential. Distinct acetylene plumes at Linyuan (R² > 0.99) provided an internal consistency check. Results reveal spatial–seasonal source variability and highlight the roles of petroleum, mixed, and aged air sources in ozone formation management.
Cited articles
Barkan, E. and Luz, B.: High-precision measurements of and
of O2 and ratio in air, Rapid
Commun. Mass Sp., 17, 2809–2814, https://doi.org/10.1002/rcm.1267, 2003.
Benson, B. B. and Krause Jr., D. K.: The concentration and isotopic
fractionation of oxygen dissolved in freshwater and seawater in equilibrium
with the atmosphere, Limnol. Oceanogr., 29, 620–632, https://doi.org/10.4319/lo.1984.29.3.0620, 1984.
Cai, W.-J. and Dai, M.: Comment on “Enhanced open ocean storage of CO2
from shelf sea pumping”, Science, 306, 1477, https://doi.org/10.1126/science.1102132, 2004.
Carr, M.-E., Friedrichs, M. A. M., Schmeltz, M., Aita, M. N., Antoine, D., Arrigo, K. R., Asanuma, I., Aumont, O., Barber, R., Behrenfeld, M., Bidigare, R., Buitenhuis, E. T., Campbell, J., Ciotti, A., Dierssen, H., Dowell, M., Dunne, J., Esaias, W., Gentili, B., Gregg, W., Groom, S., Hoepffner, N., Ishizaka, J., Kameda, T., Le Quéré, C., Lohrenz, S., Marra, J., Mélin, F., Moore, K., Morel, A., Reddy, T. E., Ryan, J., Scardi, M., Smyth, T., Turpie, K., Tilstone, G., Waters, K., and Yamanaka, Y.: A comparison of global estimates of marine primary
production from ocean color, Deep-Sea Res. Pt. II, 53, 741–770, https://doi.org/10.1016/j.dsr2.2006.01.028, 2006.
Castro-Morales, K. and Kaiser, J.: Using dissolved oxygen concentrations to determine mixed layer depths in the Bellingshausen Sea, Ocean Sci., 8, 1–10, https://doi.org/10.5194/os-8-1-2012, 2012.
Castro-Morales, K., Cassar, N., Shoosmith, D. R., and Kaiser, J.: Biological production in the Bellingshausen Sea from oxygen-to-argon ratios and oxygen triple isotopes, Biogeosciences, 10, 2273–2291, https://doi.org/10.5194/bg-10-2273-2013, 2013.
Chao, S.-Y., Shaw, P.-T., and Wu, S. S.: El Niño modulation of the South China
Sea circulation, Prog. Oceanogr., 38, 51–93, https://doi.org/10.1016/S0079-6611(96)00010-9, 1996a.
Chao, S.-Y., Shaw, P.-T., and Wu, S. S.: Deep water ventilation in the South China
Sea, Deep-Sea Res. Pt. I, 43, 445–466, https://doi.org/10.1016/0967-0637(96)00025-8, 1996b.
Chen, C.-C., Shiah, F.-K., Chung, S.-W., and Liu, K.-K.: Winter phytoplankton blooms
in the shallow mixed layer of the South China Sea enahnced by upwelling.
J. Marine Syst., 59, 97–110, https://doi.org/10.1016/j.jmarsys.2005.09.002, 2006.
Chen, C.-T. A., Liu, K.-K., and Macdonald R.: Continental margin exchanges, in:
Ocean Biogeochemistry: The Role of the Ocean Carbon Cycle in Global Change,
edited by: Fasham, M. J. R., Springer, New York, 53–98, https://doi.org/10.1007/978-3-642-55844-3_4, 2003.
Chen, Y. L.: Spatial and seasonal variations of nitrate-based new production
and primary production in the South China Sea, Deep-Sea Res. Pt. I, 52,
319–340, https://doi.org/10.1016/j.dsr.2004.11.001, 2005.
Craig, H. and Hayward, T.: Oxygen Supersaturation in the Ocean: Biological Versus Physical Contributions, Science, 288, 2028–2031, https://doi.org/10.1126/science.288.5473.2028, 1987.
DeGrandpre, M. D., Olbu, G. J., Beatty, C. M., and Hammar, T. R.: Air-CO2 fluxes on
the US Middle Atlantic Bight, Deep-Sea Res. Pt. II, 49, 4355–4367, https://doi.org/10.1016/S0967-0645(02)00122-4, 2002.
Duce, R. A., Liss, P. S., Merrill, J. T., Atlas, E. L., Buat-Menard, P., Hicks, B. B., Miller, J. M., Prospero, J. M., Arimoto, R., Church, T. M., Ellis, W., Galloway, J. N., Hansen, L., Jickells, T. D., Knap, A. H., Reinhardt, K. H., Schneider, B., Soudine, A., Tokos, J. J., Tsunogai, S., Wollast, R., and Zhou, M.: The atmospheric input of trace species to the world ocean.
Global Biogeochem. Cy., 5, 193–259, https://doi.org/10.1029/91GB01778, 1991.
Emerson S., Quay P. D., Stump C., Wilbur D., and Schudlich R.: Chemical
tracers of productivity and respiration in the subtropical Pacific Ocean,
J. Geophys. Res.-Oceans, 100, 15873–15887, https://doi.org/10.1029/95JC01333, 1995.
Frankignoulle, M. and Borges, A. V.: European continental shelf as a
significant sink for atmospheric carbon dioxide, Global Biogeochem.
Cy., 15, 569–576, https://doi.org/10.1029/2000GB001307,
2001.
Fung, I. Y., Meyn, S. K., Tegen, I., Doney, S. C., John, J. G., and Bishop J. K. B.: Iron
supply and demand in the upper ocean, Global Biogeochem. Cy., 14,
281–296, https://doi.org/10.1029/1999GB900059, 2000.
Gong, G.-C., Liu, K. K., Liu, C.-T., and Pai, S.-C.: The chemical hydrography of
the South China Sea west of Luzon and a comparison with the West Philippine
Sea, TAO, 3, 587–602, https://doi.org/10.3319/TAO.1992.3.4.587(O), 1992.
Gong, G.-C., Chen, Y.-L. L., and Liu, K.-K.: Chemical hydrography and
chlorophyll a distribution in the East China Sea in summer: implications in
nutrient dynamics, Cont. Shelf Res., 16, 1561–1590, https://doi.org/10.1016/0278-4343(96)00005-2, 1996.
Hamme, R. C., Cassar, N., Lance, V. P., Vaillancourt, R. D., Bender, M. L.,
Strutton, P. G., Moore, T. S., DeGrandpre, M. D., Sabine, C. L., Ho, D. T., and
Hargreaves, B. R.: Dissolved and other methods reveal rapid
changes in productivity during a Lagrangian experiment in the Southern
Ocean, J. Geophys. Res., 117, C00F12, https://doi.org/10.1029/2011JC007046, 2012.
Hendricks, M. B., Bender, M. L., and Barnett, B. A.: Net and gross O2 production
in the Southern Ocean from measurements of biological O2 saturation and
its triple isotope composition, Deep-Sea Res. Pt. I, 51,
1541–1561, https://doi.org/10.1016/j.dsr.2004.06.006, 2004.
Hendricks, M. B., Bender, M. L., Barnett, B. A., Strutton, P., and Chavez F. P.: Triple
oxygen isotope composition of dissolved O2 in the equatorial Pacific: A
tracer of mixing, production, and respiration, J. Geophys.
Res., 110, C12021, https://doi.org/10.1029/2004JC002735,
2005.
Hu, J., Kawamura, H., Hong, H., and Qi, Y.: A Review on the Currents in the
South China Sea: Seasonal Circulation, South China Sea Warm Current and
Kuroshio Intrusion, J. Oceanogr., 56, 607–624, https://doi.org/10.1023/A:1011117531252, 2000.
Hsu, H.-H. and Chen, C.-T.: Observed and projected climate change in Taiwan,
Meteorol. Atmos. Phys., 79, 87–104, https://doi.org/10.1007/s703-002-8230-x, 2002.
Juranek, L. W. and Quay, P. D.: In vitro and in situ gross primary and net
community production in the North Pacific Subtropical Gyre using labelled
and natural abundance isotopes of dissolved O2, Global Biogeochem.
Cy., 19, GB30009, https://doi.org/10.1029/2004GB002384, 2005.
Juranek, L. W. and Quay, P. D.: Using triple isotopes of dissolved oxygen to
evaluate global marine productivity, Annual Rev. Mar. Sci., 5,
503–524, https://doi.org/10.1146/annurev-marine-121211-172430,
2013.
Juranek, L. W., Quay, P. D., Feely, R. A., Lockwood, D., Karl, D. M., and Church,
M. J.: Biological production in the NE Pacific and its influence on air-sea
CO2 flux: Evidence from dissolved oxygen isotopes and ,
J. Geophys. Res., 117, C05043, https://doi.org/10.1029/2011JC007450, 2012.
Jurikova, H., Guha, T., Abe, O., Shiah, F.-K., Wang, C.-H., and Liang, M.-C.: Variations in triple isotope composition of dissolved oxygen and primary production in a subtropical reservoir, Biogeosciences, 13, 6683–6698, https://doi.org/10.5194/bg-13-6683-2016, 2016.
Kaiser, J.: Technical note: Consistent calculation of aquatic gross production from oxygen triple isotope measurements, Biogeosciences, 8, 1793–1811, https://doi.org/10.5194/bg-8-1793-2011, 2011.
Kaiser, J., Reuer, M. K., Barnett, B., and Bender, M. L.: Marine productivity
estimates from ratio measurements by membrane inlet mass
spectrometry, J. Geophys. Res., 32, L19605, https://doi.org/10.1029/2005GL023459, 2005.
Karl, D. M. and Lukas, R.: The Hawaii Ocean Time-series (HOT) program:
Background, rationale and field implementation, Deep-Sea Res. Pt. II, 43, 129–156, https://doi.org/10.1016/0967-0645(96)00005-7, 1996.
Karl, D. M., Laws, E. A., Morris, P., Williams, P. J. L. B., and Emerson, S.: Metabolic
balance in the open sea, Nature, 462, 32, https://doi.org/10.1038/426032a, 2003.
Lai, C.-C., Wu, C.-R., Chuang, C.-Y., Tai, J.-H., Lee, K.-Y., Kuo, H.-Y., and
Shiah, F.-K.: Phytoplankton and Bacterial Responses to Monsoon-Driven Water
Masses Mixing in the Kuroshio Off the East Coast of Taiwan, Front.
Mar. Sci., 8, 707807, https://doi.org/10.3389/fmars.2021.707807, 2021.
Lämmerzahl, P., Röckmann, T., Brenninkmeijer, C. A. M., Krankowsky, D., and
Mauersberger, K.: Oxygen isotope composition of stratospheric carbon dioxide,
Geophys. Res. Lett., 29, 1582, https://doi.org/10.1029/2001GL014343, 2002.
Laws, E. A.: Photosynthetic quotients, new production and net community
production in the open ocean, Deep-Sea Res. Pt. I, 38, 143–167, https://doi.org/10.1016/0198-0149(91)90059-O, 1991.
Laws, E. A., Landry, M. R., Barber, R. T., Campbell, L., Dickson, M. L., and
Marra, J.: Carbon cycling in primary production bottle incubations:
inferences from grazing experiments and photosynthetic studies using
14C and 18O in the Arabian Sea, Deep-Sea Res. Pt. II, 47,
1339–1352, https://doi.org/10.1016/S0967-0645(99)00146-0,
2000.
Li, H., Wiesner, M. G., Chen, J., Ling, Z., Zhang, J., and Ran, L.: Long-term variation
of mesopelagic biogenic flux in the central South China Sea: Impact of
monsoonal seasonality and mesoscale eddy, Deep-Sea Res. Pt. I, 126,
62–72, https://doi.org/10.1016/j.dsr.2017.05.012, 2017.
Liang, M.-C. and Mahata, S.: Oxygen anomaly in near surface carbon
dioxide reveals deep stratospheric intrusion, Sci. Rep.-UK, 5, 11352,
https://doi.org/10.1038/srep11352, 2015.
Liang, M.-C., Mahata, S., Laskar, A. H., Thiemens, M. H., and Newman, S.: Oxygen
isotope anomaly in tropospheric CO2 and implications for CO2
residence time in the atmosphere and gross primary productivity, Sci.
Rep.-UK, 7, 13180, https://doi.org/10.1038/s41598-017-12774-w, 2017.
Lin, I.-I., Liu, W. T., Wu, C.-C., Wong, G. T. F., Hu, C., Chen, Z., Liang, W.-D.,
Yang, Y., and Liu, K.-K.: New evidence for enhanced ocean primary production
triggered by tropical cyclone, Geophys. Res. Lett., 30, 1718,
https://doi.org/10.1029/2003GL017141, 2003.
Lin, I.-I., Chen, J.-P., Wong, G. T. F., Huang, C.-W., and Lien, C.-C.: Aerosol input
to the South China Sea: Results from the MODerate Resolution Imaging
Spectro-radiometer, the quick Scatterometer, and the Measurements of
Pollution in the Troposphere Sensor, Deep-Sea Res. Pt. II, 54,
1589–1601, https://doi.org/10.1016/j.dsr2.2007.05.013, 2007.
Lin, I.-I., Lien, C.-C., Wu, C.-R., Wong, G. T. F., Huang, C.-W., and Chiang, T.-L.:
Enhanced primary production in the oligotrophic South China Sea by eddy
injection in spring, Geophys. Res. Lett., 37, L16602, https://doi.org/10.1029/2010GL043872, 2010.
Liu, K.-K., Atkinson, L., Chen, C. T. A., Gao, S., Hall, J., MacDonald, R. W.,
McManus, L. T., and Quiñones, R.: Exploring continental margin carbon fluxes on
a global scale, EOS, 81, 641–644, https://doi.org/10.1029/EO081i052p00641-01, 2000.
Liu, K.-K., Chao, S.-Y., Shaw, P. T., Gong, G.-C., Chen, C.-C., and Tang, T. Y.:
Monsoon-forced chlorophyll distribution and primary production in the South
China Sea: observations and a numerical study, Deep-Sea Res. Pt. I, 49,
1387–1412, https://doi.org/10.1016/S0967-0637(02)00035-3,
2002.
Lorenzen, C. J.: Chlorophyll b in the eastern North Pacific Ocean, Deep-Sea
Res., 28A, 1049–1056, https://doi.org/10.1016/0198-0149(81)90017-0, 1981.
Luz, B. and Barkan, E.: Assessment of Oceanic Productivity with the
Triple-Isotope Composition of Dissolved Oxygen, Science, 288, 2028–2031,
https://doi.org/10.1126/science.288.5473.2028, 2000.
Luz, B. and Barkan, E.: The isotopic ratios and
in molecular oxygen and their significance in
biogeochemistry, Geochim. Cosmochim. Ac., 69, 1099–1110, https://doi.org/10.1016/j.gca.2004.09.001, 2005.
Luz, B. and Barkan, E.: Proper estimation of marine gross O2 production
with and ratios of dissolved O2,
Geophys. Res. Lett., 38, L19606, https://doi.org/10.1029/2011GL049138, 2011.
Luz, B., Barkan, E., Bender, M. L., Thiemens, M. H., and Boering, K. A.:
Triple-isotope composition of atmospheric oxygen as a tracer of biosphere
productivity, Nature, 400, 547–550, https://doi.org/10.1038/22987, 1999.
Luz, B., Barkan, E., Sagi, Y., and Yacobi, Y. Z.: Evaluation of community
respiratory mechanisms with oxygen isotopes: A case study in Lake Kinneret,
Limnol. Oceanogr., 47, 33–42, https://doi.org/10.4319/lo.2002.47.1.0033, 2002.
Mahata, S., Bhattacharya, S. K., Wang, C.-H., and Liang, M.-C.: An improved
CeO2 method for high-precision measurements of ratios
for atmospheric carbon dioxide, Rapid Commun. Mass Spectrom.,
26, 1909–1922, https://doi.org/10.1002/rcm.6296, 2012.
Marra, J.: Approaches to the measurement of plankton production,
Phytoplankton productivity: carbon assimilation in marine and freshwater
ecosystem, edited by: Willams, P. J. le B., Thomas, D. N., and Reynolds, C. S.,
Cambridge, Blackwells, 78–108, https://doi.org/10.1002/9780470995204.ch4, 2002.
Nicholson, D., Stanley, R. H. R., and Doney, S. C.: The triple oxygen isotope
tracer of primary productivity in a dynamic ocean model: Triple oxygen
isotopes in a global model, Global Biogeochem. Cy., 28, 538–552,
https://doi.org/10.1002/2013GB004704, 2014.
Ning, X., Chai, F., Xue, H., Cai, Y., Liu, C., and Shi, J.: Physical-biological
oceanographic coupling influencing phytoplankton and primary production in
the South China Sea, J. Geophys. Res., 1009, C10005,
https://doi.org/10.1029/2004JC002365, 2004.
Pai, S. C., Gong, G. C., and Liu, K. K.: Determination of dissolved oxygen in
seawater by direct spectrophotometry of total iodine, Mar. Chem., 41,
343–351, https://doi.org/10.1016/0304-4203(93)90266-Q, 1993.
Prokopenko, M. G., Pauluis, O. M., Granger, J., and Yeung, L. Y.: Exact
evaluation of gross photosynthetic production from the oxygen triple-isotope
composition of O2: Implications for the net-to-gross primary production
ratios, Geophys. Res. Lett., 38, L14603, https://doi.org/10.1029/2011GL047652, 2011.
Qin, C., Zhang, G., Zheng, W., Han, Y., and Liu, S.: High-resolution distributions of on the northern slope of the South China Sea and estimates of net community production, Ocean Sci., 17, 249–264, https://doi.org/10.5194/os-17-249-2021, 2021.
Qu, T., Mitsudera, H., and Yamagata, T.: Intrusion of the North Pacific waters into
the South China Sea, J. Geophys. Res., 105, 6415–6424,
https://doi.org/10.1029/1999JC900323, 2000.
Qu, T., Du, Y., Meyers, G., Ishida, A., and Wang, D.: Connecting the tropical
Pacific with Indian Ocean through South China Sea, Geophys. Res.
Lett., 32, L24609, https://doi.org/10.1029/2005GL024698, 2005.
Quay, P. D., Peacock, C., Björkman, K., and Karl, D. M.: Measuring primary
production rates in the ocean: Enigmatic results between incubation and
non-incubation methods at Station ALOHA, Global Biogeochem. Cy., 24,
GB3014, https://doi.org/10.1029/2009GB003665, 2010.
Regaudie-de-Gioux, A., Lasternas, S., Augustí, S., and Duarte, C. M.:
Comparing marine primary production estimates through different methods and
development of conversion equations, Frontiers in Marine Science, 1, 19,
https://doi.org/10.3389/fmars.2014.00019, 2014.
Rehder, G. and Suess, E.: Methane and pCO2 in the Kuroshio and the South
China Sea during maximum summer surface temperatures, Mar. Chem., 75,
89–108, https://doi.org/10.1016/S0304-4203(01)00026-3, 2001.
Reuer, M. K., Barnett, B. A., Bender, M. L., Falkowski, P. G., and Hendricks, M. B.: New
estimates of Southern Ocean biological production rates from
ratios and the triple isotope composition of O2, Deep-Sea Res. Pt. I,
54, 951–974, https://doi.org/10.1016/j.dsr.2007.02.007, 2007.
Sarma, V. V. S. S., Abe, O., Hashimoto, S., Hinuma, A., and Saino, T.: Seasonal
variations in triple oxygen isotopes and gross oxygen production in the
Sagami Bay, central Japan, Limnol. Oceanogr., 50, 544–552,
https://doi.org/10.4319/lo.2005.50.2.0544, 2005.
Schlitzer, R.: Ocean Data View, https://odv.awi.de/, last access: April 2020.
Seguro, I., Marca, A. D., Painting, S. J., Shutler, J., Suggett, D. J., and Kaiser,
J.: High-resolution net and gross biological production during a Celtic Sea
spring bloom, Prog. Oceanogr., 177, 101885, https://doi.org/10.1016/j.pocean.2017.12.003, 2019.
Shang, S., Zhang, C., Hong, H., Liu, Q., Wong, G. T. F., Hu, C., and Huang, B.:
Hydrographic and biological changes in the Taiwan Strait during the
1997–1998 El Niño winter, Geophys. Res. Lett., 32, L11601,
https://doi.org/10.1029/2005GL022578, 2005.
Shiah, F.-K., Liu, K.-K., and Tang, T.-Y.: South East Asian Time-series Station
established in South China Sea, US JGOFS Newsletter, 10, 8–9, 1999.
Stanley, R. H. R., Kirkpatrick, J. B., Cassar, N., Barnett, B. A., and Bender, M.
L.: Net community production and gross primary production rates in the
western equatorial Pacific, Global Biogeochem. Cy., 24, GB4001,
https://doi.org/10.1029/2009GB003651, 2010.
Steeman-Nielsen, E.: The use of radioactive carbon (14C) for measuring
organic production in the sea, ICES J. Mar. Sci., 18, 117–140, https://doi.org/10.1093/icesjms/18.2.117, 1952.
Strickland, J. D. H. and Parsons, T. R.: A Practical Handbook of Seawater
Analysis, Bulletin 167, 2nd Edn., edited by: Stevenson, J. C., Fisheries Research Board of Canada,
Ottawa, 1972.
Suga, T., Kato, A., and Hanawa, K.: North Pacific Tropical Water: its climatology
and temporal changes associated with the climate regime shift in the 1970s,
Prog. Oceanogr., 47, 223–256, https://doi.org/10.1016/S0079-6611(00)00037-9, 2003.
Tai, J.-H., Wong, G. T. F., and Pan, X.: Upper water structure and mixed layer
depth in tropical waters: The SEATS station in the northern South China Sea, TAO, 28, 1019–1032,
https://doi.org/10.3319/TAO.2017.01.09.01, 2017.
Tai, J.-H., Chou, W.-C., Hung, C.-C., Wu, K.-C., Chen, Y.-H., Chen, T.-Y., Gong,
G.-C., Shiah, F.-K., and Chow, C. H.: Short-term variability of biological
production and CO2 system around Dongsha Atoll of the northern South
China Sea: Impact of topography-flow interation, Front. Mar.
Sci., 7, 511, https://doi.org/10.3389/fmars.2020.00511,
2020.
Thomas, H., Bozec, Y., Elkalay, K., and de Baar, H. J. W.: Enhanced Open Ocean Storage
of CO2 from Shelf Sea Pumping, Science, 304, 1005–1008, https://doi.org/10.1126/science.1095491, 2004.
Tseng, C.-M., Wong, G. T. F., Lin, I.-I., Wu, C.-R., and Liu, K.-K.: A unique
seasonal pattern in phytoplankton biomass in low-latitude waters in the
South China Sea, Geophys. Res. Lett., 32, L08608, https://doi.org/10.1029/2004GL022111, 2005.
Tseng, C.-M., Wong, G. T. F., Chou, W.-C., Lee, B.-S., Sheu, D.-D., and Liu, K.-K.:
Temporal variations in the carbonate system in the upper layer at the SEATS,
Deep-Sea Res. Pt. II, 54, 1448–1468, https://doi.org/10.1016/j.dsr2.2007.05.003, 2007.
Tseng, C.-M., Liu, K.-K., Wang, L.-W., and Gong, G.-C.: Anomalous hydrographic and
biological conditions in the northern South China Sea during the 1997–1998
El Niño and comparisons with the equatorial Pacific, Deep-Sea Res. Pt. I, 56, 2129–2143, https://doi.org/10.1016/j.dsr.2009.09.004,
2009.
Tsunogai, S., Watanabe, S., and Sato, T.: Is there a “continental shelf pump”
for the absorption of atmospheric CO2?, Tellus, 51, 701–712, https://doi.org/10.1034/j.1600-0889.1999.t01-2-00010.x, 1999.
Wang, S.-L., Chen, C.-T. A., Hong, G.-H., and Chung, C.-S.: Carbon dioxide
related parameters in the East China Sea, Cont. Shelf Res., 2000,
525–544, https://doi.org/10.1016/S0278-4343(99)00084-9, 2000.
Wanninkhof, R., Asher, W. E., Ho, D. T., Sweeney, C., and McGillis, W. R.:
Advances in quantifying air-sea gas exchange and environmental forcing,
Annu. Rev. Mar. Sci., 1, 213–244, https://doi.org/10.1146/annurev.marine.010908.163742, 2009.
Wong, G. T. F., Ku, T.-L., Mulholland, M., Tseng, C. M., and Wang, D.-P.: The
SouthEast Asian Time-series Study (SEATS) and the biogeochemistry of the
South China Sea – An overview, Deep-Sea Res. Pt. II, 54, 1434–1447,
https://doi.org/10.1016/j.dsr2.2007.05.012, 2007a.
Wong, G. T. F., Tseng, C.-M., Wen, L.-S., and Chung, S.-W.: Nutrient dynamics and
N-anomaly at the SEATS station, Deep-Sea Res. Pt. II, 54, 1528–1545,
https://doi.org/10.1016/j.dsr2.2007.05.011, 2007b.
Wurgaft, E., Shamir, O., Barkan, E., Paldor, N., and Luz, B.: Mixing processes in
the deep water of the Gulf of Elat (Aqaba): evidence from measurements and
modelling of the triple isotopic composition of dissolved oxygen, Limnol. Oceanogr., 58, 1373–1386, https://doi.org/10.4319/lo.2013.58.4.1373, 2013.
Xu, M., Chang, C.-P., Fu, C., Qi, Y., Robock, A., Robinson, D., and Zhang, H.-M.:
Steady decline of east Asian monsoon winds, 1969–2000: Evidence from direct
ground measurements of wind speed, J. Geophys. Res., 111,
D24111, https://doi.org/10.1029/2006JD007337, 2006.
Yool, A. and Fasham, M. J. R.: An examination of the “Continental shelf pump”
in an open ocean general circulation model, Global Biogeochem. Cy., 15,
831–844, https://doi.org/10.1029/2000GB001359, 2001.
You, Y.: The pathway and circulation of North Pacific Intermediate Water,
Geophys. Res. Lett., 30, 2291, https://doi.org/10.1029/2003GL018561, 2003.
Zhai, W., Dai, M., Cai, W.-J., Wang, Y., and Hong, H.: The partial pressure of carbon
dioxide and air-sea fluxes in the northern South China Sea in spring, summer
and autumn, Mar. Chem., 96, 87–97, https://doi.org/10.1016/j.marchem.2004.12.002, 2005.
Zhou, W. and Chan, J. C. L.: ENSO and the South China Sea summer monsoon
onset, Int. J. Climatol., 27, 157–167, https://doi.org/10.1002/joc.1380, 2007.
Short summary
We studied the isotopic composition of oxygen dissolved in seawater in the South China Sea. This tells us about the origin of oxygen in the water column, distinguishing between biological oxygen produced by phytoplankton communities and atmospheric oxygen entering seawater through gas exchange. We found that the East Asian Monsoon plays an important role in determining the amount of oxygen produced vs. consumed by the phytoplankton, as well as in inducing vertical water mass mixing.
We studied the isotopic composition of oxygen dissolved in seawater in the South China Sea. This...
Altmetrics
Final-revised paper
Preprint