Articles | Volume 19, issue 16
https://doi.org/10.5194/bg-19-3825-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-3825-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Stable isotope profiles of soil organic carbon in forested and grassland landscapes in the Lake Alaotra basin (Madagascar): insights in past vegetation changes
Vao Fenotiana Razanamahandry
CORRESPONDING AUTHOR
Department of Earth and Environmental Sciences, KU Leuven, Leuven,
Belgium
Marjolein Dewaele
Department of Earth and Environmental Sciences, KU Leuven, Leuven,
Belgium
Gerard Govers
Department of Earth and Environmental Sciences, KU Leuven, Leuven,
Belgium
Liesa Brosens
Department of Earth and Environmental Sciences, KU Leuven, Leuven,
Belgium
Research Foundation Flanders (FWO), Egmontstraat 5, 1000 Brussels,
Belgium
Benjamin Campforts
Institute for Arctic and Alpine Research, University of Colorado at
Boulder, Boulder, CO, USA
Liesbet Jacobs
Department of Earth and Environmental Sciences, KU Leuven, Leuven,
Belgium
Institute for Biodiversity and Ecosystem Dynamics, University of
Amsterdam, Amsterdam, the Netherlands
Tantely Razafimbelo
Laboratoire des Radio-Isotopes, Université d'Antananarivo,
Antananarivo, Madagascar
Tovonarivo Rafolisy
Laboratoire des Radio-Isotopes, Université d'Antananarivo,
Antananarivo, Madagascar
Steven Bouillon
Department of Earth and Environmental Sciences, KU Leuven, Leuven,
Belgium
Related authors
Vao Fenotiana Razanamahandry, Alberto Vieira Borges, Liesa Brosens, Cedric Morana, Tantely Razafimbelo, Tovonarivo Rafolisy, Gerard Govers, and Steven Bouillon
Biogeosciences, 22, 2403–2424, https://doi.org/10.5194/bg-22-2403-2025, https://doi.org/10.5194/bg-22-2403-2025, 2025
Short summary
Short summary
A comprehensive survey of the biogeochemistry of the Lake Alaotra system showed that the lake and surrounding wetlands acted as a substantial source of new organic carbon (OC), which was exported downstream. Marsh vegetation was the main source of dissolved OC, while phytoplankton contributed to the particulate OC pool. The biogeochemical functioning of Lake Alaotra differs from most East African lakes studied, likely due to its large surface area, shallow water depth, and surrounding wetlands.
Liesa Brosens, Benjamin Campforts, Gerard Govers, Emilien Aldana-Jague, Vao Fenotiana Razanamahandry, Tantely Razafimbelo, Tovonarivo Rafolisy, and Liesbet Jacobs
Earth Surf. Dynam., 10, 209–227, https://doi.org/10.5194/esurf-10-209-2022, https://doi.org/10.5194/esurf-10-209-2022, 2022
Short summary
Short summary
Obtaining accurate information on the volume of geomorphic features typically requires high-resolution topographic data, which are often not available. Here, we show that the globally available 12 m TanDEM-X DEM can be used to accurately estimate gully volumes and establish an area–volume relationship after applying a correction. This allowed us to get a first estimate of the amount of sediment that has been mobilized by large gullies (lavaka) in central Madagascar over the past 70 years.
Mona Huyzentruyt, Maarten Wens, Gregory Scott Fivash, David C. Walters, Steven Bouillon, Joell A. Carr, Glenn C. Guntenspergen, Matthew L. Kirwan, and Stijn Temmerman
EGUsphere, https://doi.org/10.5194/egusphere-2025-3293, https://doi.org/10.5194/egusphere-2025-3293, 2025
Short summary
Short summary
Vegetated environments from forests to peatlands store carbon in the soil, which mitigates climate change. But which environment does this best? In this study, we show how the levees of tidal marshes are one of the most effective carbon sequestering environments in the world. This is because soil water-logging and high salinity inhibits carbon degradation while the levee fosters fast vegetation growth, complimented also by the preferential settlement of carbon-rich sediments on the marsh levee.
Zita Kelemen, David P. Gillikin, and Steven Bouillon
Biogeosciences, 22, 2621–2635, https://doi.org/10.5194/bg-22-2621-2025, https://doi.org/10.5194/bg-22-2621-2025, 2025
Short summary
Short summary
We analysed the C and O stable isotope composition (δ13C, δ18O) across the growth axis of museum-archived and recent Chambardia wissmanni shells from the Oubangui River (Congo basin) covering sections of the past ~120 years. Recent shells showed a much wider range of δ18O values compared to historical specimens, consistent with the suggestion that dry periods in the upper Congo basin have become more extreme in recent times and highlighting the potential of this species to reconstruct hydroclimatic conditions.
Vao Fenotiana Razanamahandry, Alberto Vieira Borges, Liesa Brosens, Cedric Morana, Tantely Razafimbelo, Tovonarivo Rafolisy, Gerard Govers, and Steven Bouillon
Biogeosciences, 22, 2403–2424, https://doi.org/10.5194/bg-22-2403-2025, https://doi.org/10.5194/bg-22-2403-2025, 2025
Short summary
Short summary
A comprehensive survey of the biogeochemistry of the Lake Alaotra system showed that the lake and surrounding wetlands acted as a substantial source of new organic carbon (OC), which was exported downstream. Marsh vegetation was the main source of dissolved OC, while phytoplankton contributed to the particulate OC pool. The biogeochemical functioning of Lake Alaotra differs from most East African lakes studied, likely due to its large surface area, shallow water depth, and surrounding wetlands.
Coline Ariagno, Philippe Steer, Pierre Valla, and Benjamin Campforts
EGUsphere, https://doi.org/10.5194/egusphere-2025-2088, https://doi.org/10.5194/egusphere-2025-2088, 2025
Short summary
Short summary
This study explored the impact of landslides on their topography using a landscape evolution model called ‘Hyland’, which enables long-term topographical analysis. Our finding reveal that landslides are concentrated at two specific elevations over time and predominantly affect the highest and steepest slopes, particularly along ridges and crests. This study is part of the large question about the origin of the erosion acceleration during the Quaternary.
Marijn Van de Broek, Gerard Govers, Marion Schrumpf, and Johan Six
Biogeosciences, 22, 1427–1446, https://doi.org/10.5194/bg-22-1427-2025, https://doi.org/10.5194/bg-22-1427-2025, 2025
Short summary
Short summary
Soil organic carbon models are used to predict how soils affect the concentration of CO2 in the atmosphere. We show that equifinality – the phenomenon that different parameter values lead to correct overall model outputs, albeit with a different model behaviour – is an important source of model uncertainty. Our results imply that adding more complexity to soil organic carbon models is unlikely to lead to better predictions as long as more data to constrain model parameters are not available.
Jeffrey Keck, Erkan Istanbulluoglu, Benjamin Campforts, Gregory Tucker, and Alexander Horner-Devine
Earth Surf. Dynam., 12, 1165–1191, https://doi.org/10.5194/esurf-12-1165-2024, https://doi.org/10.5194/esurf-12-1165-2024, 2024
Short summary
Short summary
MassWastingRunout (MWR) is a new landslide runout model designed for sediment transport, landscape evolution, and hazard assessment applications. MWR is written in Python and includes a calibration utility that automatically determines best-fit parameters for a site and empirical probability density functions of each parameter for probabilistic model implementation. MWR and Jupyter Notebook tutorials are available as part of the Landlab package at https://github.com/landlab/landlab.
Claude Raoul Müller, Johan Six, Liesa Brosens, Philipp Baumann, Jean Paolo Gomes Minella, Gerard Govers, and Marijn Van de Broek
SOIL, 10, 349–365, https://doi.org/10.5194/soil-10-349-2024, https://doi.org/10.5194/soil-10-349-2024, 2024
Short summary
Short summary
Subsoils in the tropics are not as extensively studied as those in temperate regions. In this study, the conversion of forest to agriculture in a subtropical region affected the concentration of stabilized organic carbon (OC) down to 90 cm depth, while no significant differences between 90 cm and 300 cm were detected. Our results suggest that subsoils below 90 cm are unlikely to accumulate additional stabilized OC through reforestation over decadal periods due to declining OC input with depth.
Daniel O'Hara, Liran Goren, Roos M. J. van Wees, Benjamin Campforts, Pablo Grosse, Pierre Lahitte, Gabor Kereszturi, and Matthieu Kervyn
Earth Surf. Dynam., 12, 709–726, https://doi.org/10.5194/esurf-12-709-2024, https://doi.org/10.5194/esurf-12-709-2024, 2024
Short summary
Short summary
Understanding how volcanic edifices develop drainage basins remains unexplored in landscape evolution. Using digital evolution models of volcanoes with varying ages, we quantify the geometries of their edifices and associated drainage basins through time. We find that these metrics correlate with edifice age and are thus useful indicators of a volcano’s history. We then develop a generalized model for how volcano basins develop and compare our results to basin evolution in other settings.
Tian Gan, Gregory E. Tucker, Eric W. H. Hutton, Mark D. Piper, Irina Overeem, Albert J. Kettner, Benjamin Campforts, Julia M. Moriarty, Brianna Undzis, Ethan Pierce, and Lynn McCready
Geosci. Model Dev., 17, 2165–2185, https://doi.org/10.5194/gmd-17-2165-2024, https://doi.org/10.5194/gmd-17-2165-2024, 2024
Short summary
Short summary
This study presents the design, implementation, and application of the CSDMS Data Components. The case studies demonstrate that the Data Components provide a consistent way to access heterogeneous datasets from multiple sources, and to seamlessly integrate them with various models for Earth surface process modeling. The Data Components support the creation of open data–model integration workflows to improve the research transparency and reproducibility.
Christian Lønborg, Cátia Carreira, Gwenaël Abril, Susana Agustí, Valentina Amaral, Agneta Andersson, Javier Arístegui, Punyasloke Bhadury, Mariana B. Bif, Alberto V. Borges, Steven Bouillon, Maria Ll. Calleja, Luiz C. Cotovicz Jr., Stefano Cozzi, Maryló Doval, Carlos M. Duarte, Bradley Eyre, Cédric G. Fichot, E. Elena García-Martín, Alexandra Garzon-Garcia, Michele Giani, Rafael Gonçalves-Araujo, Renee Gruber, Dennis A. Hansell, Fuminori Hashihama, Ding He, Johnna M. Holding, William R. Hunter, J. Severino P. Ibánhez, Valeria Ibello, Shan Jiang, Guebuem Kim, Katja Klun, Piotr Kowalczuk, Atsushi Kubo, Choon-Weng Lee, Cláudia B. Lopes, Federica Maggioni, Paolo Magni, Celia Marrase, Patrick Martin, S. Leigh McCallister, Roisin McCallum, Patricia M. Medeiros, Xosé Anxelu G. Morán, Frank E. Muller-Karger, Allison Myers-Pigg, Marit Norli, Joanne M. Oakes, Helena Osterholz, Hyekyung Park, Maria Lund Paulsen, Judith A. Rosentreter, Jeff D. Ross, Digna Rueda-Roa, Chiara Santinelli, Yuan Shen, Eva Teira, Tinkara Tinta, Guenther Uher, Masahide Wakita, Nicholas Ward, Kenta Watanabe, Yu Xin, Youhei Yamashita, Liyang Yang, Jacob Yeo, Huamao Yuan, Qiang Zheng, and Xosé Antón Álvarez-Salgado
Earth Syst. Sci. Data, 16, 1107–1119, https://doi.org/10.5194/essd-16-1107-2024, https://doi.org/10.5194/essd-16-1107-2024, 2024
Short summary
Short summary
In this paper, we present the first edition of a global database compiling previously published and unpublished measurements of dissolved organic matter (DOM) collected in coastal waters (CoastDOM v1). Overall, the CoastDOM v1 dataset will be useful to identify global spatial and temporal patterns and to facilitate reuse in studies aimed at better characterizing local biogeochemical processes and identifying a baseline for modelling future changes in coastal waters.
Matthew C. Morriss, Benjamin Lehmann, Benjamin Campforts, George Brencher, Brianna Rick, Leif S. Anderson, Alexander L. Handwerger, Irina Overeem, and Jeffrey Moore
Earth Surf. Dynam., 11, 1251–1274, https://doi.org/10.5194/esurf-11-1251-2023, https://doi.org/10.5194/esurf-11-1251-2023, 2023
Short summary
Short summary
In this paper, we investigate the 28 June 2022 collapse of the Chaos Canyon landslide in Rocky Mountain National Park, Colorado, USA. We find that the landslide was moving prior to its collapse and took place at peak spring snowmelt; temperature modeling indicates the potential presence of permafrost. We hypothesize that this landslide could be part of the broader landscape evolution changes to alpine terrain caused by a warming climate, leading to thawing alpine permafrost.
Rey Harvey Suello, Simon Lucas Hernandez, Steven Bouillon, Jean-Philippe Belliard, Luis Dominguez-Granda, Marijn Van de Broek, Andrea Mishell Rosado Moncayo, John Ramos Veliz, Karem Pollette Ramirez, Gerard Govers, and Stijn Temmerman
Biogeosciences, 19, 1571–1585, https://doi.org/10.5194/bg-19-1571-2022, https://doi.org/10.5194/bg-19-1571-2022, 2022
Short summary
Short summary
This research shows indications that the age of the mangrove forest and its position along a deltaic gradient (upstream–downstream) play a vital role in the amount and sources of carbon stored in the mangrove sediments. Our findings also imply that carbon capture by the mangrove ecosystem itself contributes partly but relatively little to long-term sediment organic carbon storage. This finding is particularly relevant for budgeting the potential of mangrove ecosystems to mitigate climate change.
Liesa Brosens, Benjamin Campforts, Gerard Govers, Emilien Aldana-Jague, Vao Fenotiana Razanamahandry, Tantely Razafimbelo, Tovonarivo Rafolisy, and Liesbet Jacobs
Earth Surf. Dynam., 10, 209–227, https://doi.org/10.5194/esurf-10-209-2022, https://doi.org/10.5194/esurf-10-209-2022, 2022
Short summary
Short summary
Obtaining accurate information on the volume of geomorphic features typically requires high-resolution topographic data, which are often not available. Here, we show that the globally available 12 m TanDEM-X DEM can be used to accurately estimate gully volumes and establish an area–volume relationship after applying a correction. This allowed us to get a first estimate of the amount of sediment that has been mobilized by large gullies (lavaka) in central Madagascar over the past 70 years.
Gregory E. Tucker, Eric W. H. Hutton, Mark D. Piper, Benjamin Campforts, Tian Gan, Katherine R. Barnhart, Albert J. Kettner, Irina Overeem, Scott D. Peckham, Lynn McCready, and Jaia Syvitski
Geosci. Model Dev., 15, 1413–1439, https://doi.org/10.5194/gmd-15-1413-2022, https://doi.org/10.5194/gmd-15-1413-2022, 2022
Short summary
Short summary
Scientists use computer simulation models to understand how Earth surface processes work, including floods, landslides, soil erosion, river channel migration, ocean sedimentation, and coastal change. Research benefits when the software for simulation modeling is open, shared, and coordinated. The Community Surface Dynamics Modeling System (CSDMS) is a US-based facility that supports research by providing community support, computing tools and guidelines, and educational resources.
Arthur Depicker, Gerard Govers, Liesbet Jacobs, Benjamin Campforts, Judith Uwihirwe, and Olivier Dewitte
Earth Surf. Dynam., 9, 445–462, https://doi.org/10.5194/esurf-9-445-2021, https://doi.org/10.5194/esurf-9-445-2021, 2021
Short summary
Short summary
We investigated how shallow landslide occurrence is impacted by deforestation and rifting in the North Tanganyika–Kivu rift region (Africa). We developed a new approach to calculate landslide erosion rates based on an inventory compiled in biased © Google Earth imagery. We find that deforestation increases landslide erosion by a factor of 2–8 and for a period of roughly 15 years. However, the exact impact of deforestation depends on the geomorphic context of the landscape (rejuvenated/relict).
Man Zhao, Liesbet Jacobs, Steven Bouillon, and Gerard Govers
Biogeosciences, 18, 1511–1523, https://doi.org/10.5194/bg-18-1511-2021, https://doi.org/10.5194/bg-18-1511-2021, 2021
Short summary
Short summary
We investigate the relative importance of two individual factors (hydrodynamical disturbance and aquatic microbial community) that possibly control SOC decomposition rates in river systems. We found aquatic microbial organisms led to rapid SOC decomposition, while effect of mechanical disturbance is relative minor. We propose a simple conceptual model: hydrodynamic disturbance is only important when soil aggregates are strong enough to withstand the disruptive forces imposed by water immersions.
Cédric Morana, Steven Bouillon, Vimac Nolla-Ardèvol, Fleur A. E. Roland, William Okello, Jean-Pierre Descy, Angela Nankabirwa, Erina Nabafu, Dirk Springael, and Alberto V. Borges
Biogeosciences, 17, 5209–5221, https://doi.org/10.5194/bg-17-5209-2020, https://doi.org/10.5194/bg-17-5209-2020, 2020
Short summary
Short summary
A growing body of studies challenges the paradigm that methane (CH4) production occurs only under anaerobic conditions. Our field experiments revealed that oxic CH4 production is closely related to phytoplankton metabolism and is indeed a common feature in five contrasting African lakes. Nevertheless, we found that methanotrophic activity in surface waters and CH4 emissions to the atmosphere were predominantly fuelled by CH4 generated in sediments and physically transported to the surface.
Cited articles
Abril, A., Barttfeld, P., and Bucher, E. H.: The effect of fire and
overgrazing disturbes on soil carbon balance in the Dry Chaco forest, Forest
Ecol. Manage., 206, 399–405, https://doi.org/10.1016/j.foreco.2004.11.014, 2005.
Andriamampianina, J.: Nature Reserves and Nature Conservation in Madagascar,
in Key Environments: Madagascar, edited by: Jolly, A., Oberle, P., Albignac, R., 219–228, Elsevier, https://doi.org/10.1016/B978-0-08-028002-8.50023-X, 1984.
Andriamananjara, A., Hewson, J., Razakamanarivo, H., Andrisoa, R. H.,
Ranaivoson, N., Ramboatiana, N., Razafindrakoto, M., Ramifehiarivo, N.,
Razafimanantsoa, M.-P., Rabeharisoa, L., Ramananantoandro, T., Rasolohery,
A., Rabetokotany, N., and Razafimbelo, T.: Land cover impacts on aboveground
and soil carbon stocks in Malagasy rainforest, Agr. Ecosyst. Environ.,
233, 1–15, https://doi.org/10.1016/j.agee.2016.08.030, 2016.
Andriamananjara, A., Ranaivoson, N., Razafimbelo, T., Hewson, J.,
Ramifehiarivo, N., Rasolohery, A., Andrisoa, R. H., Razafindrakoto, M. A.,
Razafimanantsoa, M. P., Rabetokotany, N., and Razakamanarivo, R. H.: Towards
a better understanding of soil organic carbon variation in Madagascar, Eur.
J. Soil Sci., 68, 930–940, https://doi.org/10.1111/ejss.12473, 2017.
Aubréville, A. and Bossanyi, I.: Erosion under Forest Cover and Erosion
in Deforested Areas in the Humid Tropical Zone, Bois Fôr. Trop.,
323, 103–112, https://doi.org/10.19182/bft2015.323.a31259, 2015.
Bakoariniaina, L. N., Kusky, T., and Raharimahefa, T.: Disappearing Lake
Alaotra: Monitoring catastrophic erosion, waterway silting, and land
degradation hazards in Madagascar using Landsat imagery, J. Afr. Earth
Sci., 44, 241–252, https://doi.org/10.1016/j.jafrearsci.2005.10.013, 2006.
Baron, R.: The Flora of Madagascar, J. Linn. Soc. London, Bot., 25,
246–294, https://doi.org/10.1111/j.1095-8339.1889.tb00798.x, 1889.
Batlle-Bayer, L., Batjes, N. H., and Bindraban, P. S.: Changes in organic
carbon stocks upon land use conversion in the Brazilian Cerrado: A review,
Agr. Ecosyst. Environ., 137, 47–58, https://doi.org/10.1016/j.agee.2010.02.003,
2010.
Battistini, R. and Verin, P.: Man and the Environment in Madagascar, in:
Monographiae Biologicae, 311–337, Springer Netherlands, edited by: Dumont, H. J., https://doi.org/10.1007/978-94-015-7159-3_9, 1972.
Bird, M., Kracht, O., Derrien, D., and Zhou, Y.: The effect of soil texture
and roots on the stable carbon isotope composition of soil organic carbon,
Soil Res., 41, 77–94, https://doi.org/10.1071/SR02044, 2003.
Bond, W. and Keeley, J.: Fire as a global “herbivore”: the ecology and
evolution of flammable ecosystems, Trends Ecol. Evol., 20, 387–394,
https://doi.org/10.1016/j.tree.2005.04.025, 2005.
Bond, W. J., Silander, J. A., Ranaivonasy, J., and Ratsirarson, J.: The
antiquity of Madagascar's grasslands and the rise of C4 grassy biomes, J.
Biogeogr., 35, 1743–1758, https://doi.org/10.1111/j.1365-2699.2008.01923.x, 2008.
Boutton, T. W., Archer, S. R., Midwood, A. J., Zitzer, S. F., and Bol, R.:
δ13C values of soil organic carbon and their use in documenting
vegetation change in a subtropical savanna ecosystem, Geoderma, 82,
5–41, https://doi.org/10.1016/S0016-7061(97)00095-5, 1998.
Brosens, L., Broothaerts, N., Campforts, B., Jacobs, L., Razanamahandry, V.
F., Van Moerbeke, Q., Bouillon, S., Razafimbelo, T., Rafolisy, T., and
Govers, G.: Under pressure: Rapid lavaka erosion and floodplain
sedimentation in central Madagascar, Sci. Total Environ., 806, 150483,
https://doi.org/10.1016/j.scitotenv.2021.150483, 2022.
Burney, D. A.: A chronology for late prehistoric Madagascar, J. Hum. Evol.,
47, 25–63, https://doi.org/10.1016/j.jhevol.2004.05.005, 2004.
Cerling, T. E. and Harris, J. M.: Carbon isotope fractionation between diet
and bioapatite in ungulate mammals and implications for ecological and
paleoecological studies, Oecologia, 120, 347–363,
https://doi.org/10.1007/s004420050868, 1999.
Cerri, C. E. P., Easter, M., Paustian, K., Killian, K., Coleman, K.,
Bernoux, M., Falloon, P., Powlson, D. S., Batjes, N. H., Milne, E., and
Cerri, C. C.: Predicted soil organic carbon stocks and changes in the
Brazilian Amazon between 2000 and 2030, Agr. Ecosyst. Environ., 122,
58–72, https://doi.org/10.1016/j.agee.2007.01.008, 2007.
Chevalier, A.: La végétation à Madagascar, Ann. Geogr.,
31, 465–484, https://doi.org/10.3406/geo.1922.10075, 1922.
Chevallier, T., Razafimbelo, T. M., and Michel, L. C.: Carbone des sols en
Afrique, edited by: Chevallier, T., Razafimbelo, T. M., Chapuis-Lardy, L., and Brossard, M., IRD Éditions, https://doi.org/10.4000/books.irdeditions.34867, 2020.
Conrad, K. A., Dalal, R. C., Dalzell, S. A., Allen, D. E., and Menzies, N.
W.: The sequestration and turnover of soil organic carbon in subtropical
leucaena-grass pastures, Agr. Ecosyst. Environ., 248, 38–47,
https://doi.org/10.1016/j.agee.2017.07.020, 2017.
Cox, R., Bierman, P., Jungers, M. C., and Rakotondrazafy, A. F. M.: Erosion
Rates and Sediment Sources in Madagascar Inferred from 10Be Analysis of
Lavaka, Slope, and River Sediment, J. Geol., 117, 363–376,
https://doi.org/10.1086/598945, 2009.
Cox, R., Zentner, D. B., Rakotondrazafy, A. F. M., and Rasoazanamparany, C.
F.: Shakedown in Madagascar: Occurrence of lavakas (erosional gullies)
associated with seismic activity, Geology, 38, 179–182,
https://doi.org/10.1130/G30670.1, 2010.
Davidson, E. A. and Janssens, I. A.: Temperature sensitivity of soil carbon
decomposition and feedbacks to climate change, Nature, 440, 165–173,
https://doi.org/10.1038/nature04514, 2006.
Desjardins, T., Turcq, B., Nguetnkam, J.-P., Achoundong, G., Mandeng-Yogo,
M., Cetin, F., and Lézine, A.-M.: ä13C variation of soil organic
matter as an indicator of vegetation change during the Holocene in central
Cameroon, C.R. Geosci., 345, 266–271,
https://doi.org/10.1016/j.crte.2013.06.001, 2013.
Desjardins, T., Turcq, B., Lézine, A. M., Nguetnkam, J. P.,
Mandeng-Yogo, M., Cetin, F., and Achoundong, G.: The origin of the
forest-grassland mosaic of central Cameroon: What we learn from the isotopic
geochemistry of soil organic matter, Holocene, 30, 1391–1399,
https://doi.org/10.1177/0959683620932963, 2020.
Domeignoz-Horta, L. A., Shinfuku, M., Junier, P., Poirier, S., Verrecchia,
E., Sebag, D., and Deangelis, K. M.: Direct evidence for the role of
microbial community composition in the formation of soil organic matter
composition and persistence, ISME Commun., 1,
https://doi.org/10.1038/s43705-021-00071-7, 2021.
Don, A., Schumacher, J., and Freibauer, A.: Impact of tropical land-use
change on soil organic carbon stocks – a meta-analysis, Glob. Change Biol.,
17, 1658–1670, https://doi.org/10.1111/j.1365-2486.2010.02336.x, 2011.
Du Puy, D. J. and Moat, J.: A refined classification of the primary
vegetation of Madagascar based on the underlying geology: using GIS to map
its distribution and to assess its conservation status, Biogéographie de
Madagascar, 205–218, 1996.
Ehleringer, J. R., Buchmann, N., and Flanagan, L. B.: Carbon Isotope Ratios
in Belowground Carbon Cycle Processes, Ecol. Appl., 10, 412–422,
https://doi.org/10.2307/2641103, 2000.
Ferry, L. M.: Alaotra Lake (Madagascar) Past, Present and Future,
Z. Geomorphol., 53, 299–318,
https://doi.org/10.1127/0372-8854/2009/0053-0299, 2009.
Gasse, F. and Van Campo, E.: Late Quaternary environmental changes from a
pollen and diatom record in the southern tropics (Lake Tritrivakely,
Madagascar), Palaeogeogr. Palaeocl., 167, 287–308,
https://doi.org/10.1016/S0031-0182(00)00242-X, 2001.
Graz, Y., Di-Giovanni, C., Copard, Y., Laggoun-Défarge, F., Boussafir,
M., Lallier-Vergès, E., Baillif, P., Perdereau, L., and Simonneau, A.:
Quantitative palynofacies analysis as a new tool to study transfers of
fossil organic matter in recent terrestrial environments, Int. J. Coal
Geol., 84, 49–62, https://doi.org/10.1016/j.coal.2010.08.006, 2010.
Grinand, C., Maire, G. Le, Vieilledent, G., Razakamanarivo, H., Razafimbelo,
T., and Bernoux, M.: Estimating temporal changes in soil carbon stocks at
ecoregional scale in Madagascar using remote-sensing, Int. J. Appl. Earth
Obs., 54, 1–14, https://doi.org/10.1016/j.jag.2016.09.002, 2017.
Guillet, B., Achoundong, G., Happi, J. Y., Beyala, V. K. K., Bonvallot, J.,
Riera, B., Mariotti, A., and Schwartz, D.: Agreement between floristic and
soil organic carbon isotope ( , 14C) indicators of
forest invasion of savannas during the last century in Cameroon, J. Trop.
Ecol., 17, 809–832, https://doi.org/10.1017/S0266467401001614, 2001.
Hackel, J., Vorontsova, M. S., Nanjarisoa, O. P., Hall, R. C., Razanatsoa,
J., Malakasi, P., and Besnard, G.: Grass diversification in Madagascar: In
situ radiation of two large C3 shade clades and support for a Miocene to
Pliocene origin of C4 grassy biomes, J. Biogeogr., 45, 750–761,
https://doi.org/10.1111/jbi.13147, 2018.
Häring, V., Fischer, H., Cadisch, G., and Stahr, K.: Improved
ä13C method to assess soil organic carbon dynamics on sites
affected by soil erosion, Eur. J. Soil Sci., 64, 639–650,
https://doi.org/10.1111/ejss.12060, 2013.
Harris, N. L., Brown, S., Hagen, S. C., Saatchi, S. S., Petrova, S., Salas,
W., Hansen, M. C., Potapov, P. V., and Lotsch, A.: Baseline map of carbon
emissions from deforestation in tropical regions, Science, 336,
1573–1576, https://doi.org/10.1126/science.1217962, 2012.
Hoefs, J.: Stable Isotope Geochemistry, Springer International Publishing,
Cham., edited by: Hoefs, J., 6th Edn., https://doi.org/10.1007/978-3-540-70708-0, 2015.
Jacinthe, P.-A., Lal, R., and Kimble, J. M.: Carbon dioxide evolution in
runoff from simulated rainfall on long-term no-till and plowed soils in
southwestern Ohio, Soil Till. Res., 66, 23–33,
https://doi.org/10.1016/s0167-1987(02)00010-7, 2002.
Kallenbach, C. M., Frey, S. D., and Grandy, A. S.: Direct evidence for
microbial-derived soil organic matter formation and its ecophysiological
controls, Nat. Commun., 7, 13630, https://doi.org/10.1038/ncomms13630, 2016.
Keeling, R. F., Graven, H. D., Welp, L. R., Resplandy, L., Bi, J., Piper, S.
C., Sun, Y., Bollenbacher, A., and Meijer, H. A. J.: Atmospheric evidence for
a global secular increase in carbon isotopic discrimination of land
photosynthesis, P. Natl. Acad. Sci., 114, 10361–10366,
https://doi.org/10.1073/pnas.1619240114, 2017.
Kennedy, P., Kennedy, H., and Papadimitriou, S.: The effect of acidification
on the determination of organic carbon, total nitrogen and their stable
isotopic composition in algae and marine sediment, Rapid Commun. Mass
Sp., 19, 1063–1068, https://doi.org/10.1002/rcm.1889, 2005.
Kohn, M. J.: Carbon isotope compositions of terrestrial C3 plants as
indicators of (paleo)ecology and (paleo)climate, P. Natl. Acad. Sci.,
107, 19691–19695, https://doi.org/10.1073/pnas.1004933107, 2010.
Komada, T., Anderson, M. R., and Dorfmeier, C. L.: Carbonate removal from
coastal sediments for the determination of organic carbon and its isotopic
signatures, ä13C and Ä14C: comparison of fumigation and
direct acidification by hydrochloric acid, Limnol. Oceanogr. Meth., 6,
254–262, https://doi.org/10.4319/lom.2008.6.254, 2008.
Krull, E. S., Skjemstad, J. O., Burrows, W. H., Bray, S. G., Wynn, J. G.,
Bol, R., Spouncer, L., and Harms, B.: Recent vegetation changes in central
Queensland, Australia: Evidence from ä13C and 14C analyses of
soil organic matter, Geoderma, 126, 241–259,
https://doi.org/10.1016/j.geoderma.2004.09.012, 2005.
Lal, R.: Soil carbon sequestration to mitigate climate change, Geoderma,
123, 1–22, https://doi.org/10.1016/j.geoderma.2004.01.032, 2004.
Marwick, T. R., Borges, A. V., Van Acker, K., Darchambeau, F., and Bouillon,
S.: Disproportionate Contribution of Riparian Inputs to Organic Carbon Pools
in Freshwater Systems, Ecosystems, 17, 974–989,
https://doi.org/10.1007/s10021-014-9772-6, 2014.
Martin, A., Mariotti, A., Balesdent, J., Lavelle, P., and Vuattoux, R.: Estimate of organic matter turnover rate in a savanna soil by 13C natural abundance measurements, Soil Biol. Biochem., 22, 517–523, https://doi.org/10.1016/0038-0717(90)90188-6, 1990.
Matsumoto, K. and Burney, D. A.: Late Holocene environments at Lake
Mitsinjo, northwestern Madagascar, Holocene, 4, 16–24,
https://doi.org/10.1177/095968369400400103, 1994.
Mietton, M., Gunnell, Y., Nicoud, G., Ferry, L., Razafimahefa, R., and
Grandjean, P.: “Lake” Alaotra, Madagascar: A late Quaternary wetland
regulated by the tectonic regime, Catena, 165, 22–41,
https://doi.org/10.1016/j.catena.2018.01.021, 2018.
Penot, E., Fevre, V., Flodrops, P., and Razafimahatratra, H. M.: Conservation
Agriculture to buffer and alleviate the impact of climatic variations in
Madagascar: farmers' perception, Cah. Agric., 27, 25003,
https://doi.org/10.1051/cagri/2018009, 2018.
Peterson, B. J. and Fry, B.: Stable isotopes in ecosystem studies, Annu.
Rev. Ecol. Syst., 18, 293–320, https://doi.org/10.1146/annurev.es.18.110187.001453,
1987.
Rabetokotany-Rarivoson, N., Andriamananjara, A., Razafimbelo, T.,
Ramifehiarivo, N., Ramboatiana, N., Razafimanantsoa, M., Razafimahatratra,
H., Rabeharisoa, L., Bernoux, M., Brossard, M., Albrecht, A., Winowiecki,
L., Vagen, T., Grinand, C., Vaudry, R., Rakotoarijaona, J.-R., Rahagalala,
P., Rasolohery, A., Parany, L., Bürren, C., Saneho, H. J., Miasa, E., and
Razakamanarivo, H.: Changes in soil organic carbon (SOC) stocks after forest
conversion in humid ecoregion of Madagascar, XIV WORLD For. Congr. Durban,
South Africa, 7–11 September 2015, 8 pp., 2015.
Raboanarielina, C.: The forgotten resource: Community perspectives on
conservation and well-being in Zahamena National Park, Madagascar,
Madagascar Conserv. Dev., 7, 70–78, https://doi.org/10.4314/mcd.v7i2S.3, 2012.
Razafindrakoto, M., Andriamananjara, A., Razafimbelo, T., Hewson, J.,
Andrisoa, R. H., Jones, J. P. G., van Meerveld, I., Cameron, A., Ranaivoson,
N., Ramifehiarivo, N., Ramboatiana, N., Razafinarivo, R. N. G.,
Ramananantoandro, T., Rasolohery, A., Razafimanantsoa, M. P., Jourdan, C.,
Saint-André, L., Rajoelison, G., and Razakamanarivo, H.: Organic Carbon
Stocks in all Pools Following Land Cover Change in the Rainforest of
Madagascar, Soil Manag. Clim. Chang. Eff. Org. Carbon, Nitrogen Dyn. Greenh.
Gas Emiss., edited by: Ángeles Muñoz, M. and Zornoza, R., Academic press, September 2018, 25–37,
https://doi.org/10.1016/B978-0-12-812128-3.00003-3, 2018.
Reimer, P. J., Brown, T. A., and Reimer, R. W.: Discussion: Reporting and
calibration of post-bomb 14C data, Radiocarbon, 46, 1299–1304,
https://doi.org/10.1017/S0033822200033154, 2004.
Restrepo, J. D., Kettner, A. J., and Syvitski, J. P. M.: Recent deforestation
causes rapid increase in river sediment load in the Colombian Andes,
Anthropocene, 10, 13–28, https://doi.org/10.1016/j.ancene.2015.09.001, 2015.
Sanaiotti, T. M., Martinelli, L. A., Victoria, R. L., Trumbore, S. E., and
Camargo, P. B.: Past Vegetation Changes in Amazon Savannas Determined Using
Carbon Isotopes of Soil Organic Matter1, Biotropica, 34, 2–16,
https://doi.org/10.1111/j.1744-7429.2002.tb00237.x, 2002.
Schlesinger, W. H.: Carbon Balance in Terrestrial Detritus, Annu. Rev. Ecol.
Syst., 8, 51–81, https://doi.org/10.1146/annurev.es.08.110177.000411, 1977.
Schuur, E. A. G., Trumbore, S. E., Druffel, E. R. M., Southon, J. R.,
Steinhof, A., Taylor, R. E., and Turnbull, J. C.: Radiocarbon and the Global
Carbon Cycle, in Radiocarbon and Climate Change, 1–19, Springer
International Publishing, Cham., https://doi.org/10.1007/978-3-319-25643-6_1, 2016.
Schwartz, D., Mariotti, A., Lanfranchi, R., and Guillet, B.:
13C/12C Ratios of soil organic matter as indicators of vegetation
changes in the congo, Geoderma, 39, 97–103,
https://doi.org/10.1016/0016-7061(86)90069-8, 1986.
Straka, H.: Histoire de la végétation de Madagascar oriental dans
les derniers 100 millenaires, Biogéographie de Madagascar, 37–47,
doi:fdi:010008445, 1996.
Styger, E., Rakotondramasy, H. M., Pfeffer, M. J., Fernandes, E. C. M., and
Bates, D. M.: Influence of slash-and-burn farming practices on fallow
succession and land degradation in the rainforest region of Madagascar,
Agr. Ecosyst. Environ., 119, 257–269,
https://doi.org/10.1016/j.agee.2006.07.012, 2007.
Szabó, A. I., Raveloson, A., and Székely, B.: Landscape evolution and
climate in Madagascar: lavakization in the light of archive precipitation
data, Cuad. Investig. Geográfica, 41, 181, https://doi.org/10.18172/cig.2646,
2015.
Trumbore, S.: Radiocarbon and Soil Carbon Dynamics, Annu. Rev. Earth Planet.
Sc., 37, 47–66, https://doi.org/10.1146/annurev.earth.36.031207.124300, 2009.
Van Oost, K., Quine, T. A., Govers, G., De Gryze, S., Six, J., Harden, J.
W., Ritchie, J. C., McCarty, G. W., Heckrath, G., Kosmas, C., Giraldez, J.
V., da Silva, J. R. M., and Merckx, R.: The Impact of Agricultural Soil
Erosion on the Global Carbon Cycle, Science, 318, 626–629,
https://doi.org/10.1126/science.1145724, 2007.
Virah-Sawmy, M., Gillson, L., Gardner, C. J., Anderson, A., Clark, G., and
Haberle, S.: A landscape vulnerability framework for identifying integrated
conservation and adaptation pathways to climate change: the case of
Madagascar's spiny forest, Landscape. Ecol., 31, 637–654,
https://doi.org/10.1007/s10980-015-0269-2, 2016.
Voarintsoa, N. R. G., Cox, R., Razanatseheno, M. O. M., and Rakotondrazafy,
A. F. M.: Relation between bedrock geology, topography and lavaka
distribution in Madagascar, S. Afr. J. Geol., 115, 225–250,
https://doi.org/10.2113/gssajg.115.225, 2012.
Vorontsova, M. S., Besnard, G., Forest, F., Malakasi, P., Moat, J., Clayton,
W. D., Ficinski, P., Savva, G. M., Nanjarisoa, O. P., Razanatsoa, J.,
Randriatsara, F. O., Kimeu, J. M., Quentin Luke, W. R., Kayombo, C., and
Peter Linder, H.: Madagascar's grasses and grasslands: Anthropogenic or
natural?, P. Roy. Soc. B-Biol. Sci., 283, 20152262, https://doi.org/10.1098/rspb.2015.2262,
2016.
Wang, Y., Amundson, R., and Trumbore, S.: Radiocarbon dating of soil organic
matter, Quaternary Res., 45, 282–288, https://doi.org/10.1006/qres.1996.0029, 1996.
Wells, N. A. and Andriamihaja, B.: The initiation and growth of gullies in
Madagascar: are humans to blame?, Geomorphology, 8, 1–46,
https://doi.org/10.1016/0169-555X(93)90002-J, 1993.
Winowiecki, L. A., Vågen, T.-G., Boeckx, P., and Dungait, J. A. J.:
Landscape-scale assessments of stable carbon isotopes in soil under diverse
vegetation classes in East Africa: application of near-infrared
spectroscopy, Plant Soil, 421, 259–272,
https://doi.org/10.1007/s11104-017-3418-3, 2017.
World Reference Base for Soil Resources: A framework for international
classification, correlation and communication, World Soil Resources Report
103, FAO, Rome, 2006.
Wutzler, T. and Reichstein, M.: Soils apart from equilibrium – consequences for soil carbon balance modelling, Biogeosciences, 4, 125–136, https://doi.org/10.5194/bg-4-125-2007, 2007.
Yang, Y., Chen, Y., Li, Z., and Chen, Y.: Land-use/cover conversion affects
soil organic-carbon stocks: A case study along the main channel of the Tarim
River, China, PLOS One, 13, e0206903, https://doi.org/10.1371/journal.pone.0206903, 2018.
Yoder, A. D. and Nowak, M. D.: Has Vicariance or Dispersal Been the
Predominant Biogeographic Force in Madagascar? Only Time Will Tell, Annu.
Rev. Ecol. Evol., 37, 405–431,
https://doi.org/10.1146/annurev.ecolsys.37.091305.110239, 2006.
Short summary
In order to shed light on possible past vegetation shifts in the Central Highlands of Madagascar, we measured stable isotope ratios of organic carbon in soil profiles along both forested and grassland hillslope transects in the Lake Alaotra region. Our results show that the landscape of this region was more forested in the past: soils in the C4-dominated grasslands contained a substantial fraction of C3-derived carbon, increasing with depth.
In order to shed light on possible past vegetation shifts in the Central Highlands of...
Altmetrics
Final-revised paper
Preprint