Articles | Volume 19, issue 20
https://doi.org/10.5194/bg-19-5021-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-5021-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Winter season Southern Ocean distributions of climate-relevant trace gases
Li Zhou
CORRESPONDING AUTHOR
Research Division 2: Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Dennis Booge
Research Division 2: Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Key Laboratory of Global Change and Marine-Atmospheric Chemistry,Third Institute of Oceanography, Ministry of Natural Resources (MNR), Xiamen, PR China
Christa A. Marandino
Research Division 2: Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Related authors
No articles found.
Miming Zhang, Haipeng Gao, Shanshan Wang, Yue Jia, Shibo Yan, Rong Tian, Jinpei Yan, and Yanfang Wu
EGUsphere, https://doi.org/10.5194/egusphere-2025-1622, https://doi.org/10.5194/egusphere-2025-1622, 2025
Short summary
Short summary
Under cold and clean conditions in the free troposphere, oceanic dimethyl sulfide (DMS) can form new particles. Using data from the field observation and Lana climatology with the FLEXPART model, we evaluated DMS contribution from surface ocean to the free troposphere. We found that cyclone enhances the contribution of oceanic dimethyl sulfide to the free troposphere over the Southern Ocean, suggesting significant DMS-derived new particles likely occurred at high altitudes in the Southern Ocean.
Sankirna D. Joge, Anoop S. Mahajan, Shrivardhan Hulswar, Christa A. Marandino, Martí Galí, Thomas G. Bell, and Rafel Simó
Biogeosciences, 21, 4439–4452, https://doi.org/10.5194/bg-21-4439-2024, https://doi.org/10.5194/bg-21-4439-2024, 2024
Short summary
Short summary
Dimethyl sulfide (DMS) is the largest natural source of sulfur in the atmosphere and leads to the formation of cloud condensation nuclei. DMS emission and quantification of its impacts have large uncertainties, but a detailed study on the emissions and drivers of their uncertainty is missing to date. The emissions are usually calculated from the seawater DMS concentrations and a flux parameterization. Here we quantify the differences in DMS seawater products, which can affect DMS fluxes.
Sankirna D. Joge, Anoop S. Mahajan, Shrivardhan Hulswar, Christa A. Marandino, Martí Galí, Thomas G. Bell, Mingxi Yang, and Rafel Simó
Biogeosciences, 21, 4453–4467, https://doi.org/10.5194/bg-21-4453-2024, https://doi.org/10.5194/bg-21-4453-2024, 2024
Short summary
Short summary
Dimethyl sulfide (DMS) is the largest natural source of sulfur in the atmosphere and leads to the formation of cloud condensation nuclei. DMS emissions and quantification of their impacts have large uncertainties, but a detailed study on the range of emissions and drivers of their uncertainty is missing to date. The emissions are calculated from the seawater DMS concentrations and a flux parameterization. Here we quantify the differences in the effect of flux parameterizations used in models.
Dennis Booge, Jerry F. Tjiputra, Dirk J. L. Olivié, Birgit Quack, and Kirstin Krüger
Earth Syst. Dynam., 15, 801–816, https://doi.org/10.5194/esd-15-801-2024, https://doi.org/10.5194/esd-15-801-2024, 2024
Short summary
Short summary
Oceanic bromoform, produced by algae, is an important precursor of atmospheric bromine, highlighting the importance of implementing these emissions in climate models. The simulated mean oceanic concentrations align well with observations, while the mean atmospheric values are lower than the observed ones. Modelled annual mean emissions mostly occur from the sea to the air and are driven by oceanic concentrations, sea surface temperature, and wind speed, which depend on season and location.
Jun Shi, Jinpei Yan, Shanshan Wang, Shuhui Zhao, Miming Zhang, Suqing Xu, Qi Lin, Hang Yang, and Siying Dai
Atmos. Chem. Phys., 23, 10349–10359, https://doi.org/10.5194/acp-23-10349-2023, https://doi.org/10.5194/acp-23-10349-2023, 2023
Short summary
Short summary
An underway aerosol-monitoring system was used to determine the Na+ concentration during different cyclone periods in the Southern Ocean in order to assess the potential effects of cyclones on sea spray aerosol (SSA) emissions. It was estimated that more than 23 % of SSAs were transported upwards during cyclone periods. Vertically transported SSAs can be regarded as an important source of CCN and hence have an effect on climate in the middle and high latitudes of the Southern Hemisphere.
Sonja Gindorf, Hermann W. Bange, Dennis Booge, and Annette Kock
Biogeosciences, 19, 4993–5006, https://doi.org/10.5194/bg-19-4993-2022, https://doi.org/10.5194/bg-19-4993-2022, 2022
Short summary
Short summary
Methane is a climate-relevant greenhouse gas which is emitted to the atmosphere from coastal areas such as the Baltic Sea. We measured the methane concentration in the water column of the western Kiel Bight. Methane concentrations were higher in September than in June. We found no relationship between the 2018 European heatwave and methane concentrations. Our results show that the methane distribution in the water column is strongly affected by temporal and spatial variabilities.
Miming Zhang, Jinpei Yan, Qi Lin, Hongguo Zheng, Keyhong Park, Shuhui Zhao, Suqing Xu, Meina Ruan, Shanshan Wang, Xinlin Zhong, and Suli Zhao
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-454, https://doi.org/10.5194/acp-2022-454, 2022
Revised manuscript not accepted
Short summary
Short summary
Extremely low contribution of DMS chemistry to the aerosols over the high AO was determined by the inhibition of marine phytoplankton, which extends the knowledge how will biogenic sulfur cycle impact the regional climate as AO sea ice retreat in the future.
Susann Tegtmeier, Christa Marandino, Yue Jia, Birgit Quack, and Anoop S. Mahajan
Atmos. Chem. Phys., 22, 6625–6676, https://doi.org/10.5194/acp-22-6625-2022, https://doi.org/10.5194/acp-22-6625-2022, 2022
Short summary
Short summary
In the atmosphere over the Indian Ocean, intense anthropogenic pollution from Southeast Asia mixes with pristine oceanic air. During the winter monsoon, high pollution levels are regularly observed over the entire northern Indian Ocean, while during the summer monsoon, clean air dominates. Here, we review current progress in detecting and understanding atmospheric gas-phase composition over the Indian Ocean and its impacts on the upper atmosphere, oceanic biogeochemistry, and marine ecosystems.
Yanan Zhao, Dennis Booge, Christa A. Marandino, Cathleen Schlundt, Astrid Bracher, Elliot L. Atlas, Jonathan Williams, and Hermann W. Bange
Biogeosciences, 19, 701–714, https://doi.org/10.5194/bg-19-701-2022, https://doi.org/10.5194/bg-19-701-2022, 2022
Short summary
Short summary
We present here, for the first time, simultaneously measured dimethylsulfide (DMS) seawater concentrations and DMS atmospheric mole fractions from the Peruvian upwelling region during two cruises in December 2012 and October 2015. Our results indicate low oceanic DMS concentrations and atmospheric DMS molar fractions in surface waters and the atmosphere, respectively. In addition, the Peruvian upwelling region was identified as an insignificant source of DMS emissions during both periods.
Sinikka T. Lennartz, Michael Gauss, Marc von Hobe, and Christa A. Marandino
Earth Syst. Sci. Data, 13, 2095–2110, https://doi.org/10.5194/essd-13-2095-2021, https://doi.org/10.5194/essd-13-2095-2021, 2021
Short summary
Short summary
This study provides a marine emission inventory for the sulphur gases carbonyl sulphide (OCS) and carbon disulphide (CS2), derived from a numerical model of the surface ocean at monthly resolution for the period 2000–2019. Comparison with a database of seaborne observations reveals very good agreement for OCS. Interannual variability in both gases seems to be mainly driven by the amount of chromophoric dissolved organic matter present in surface water.
Yanan Zhao, Cathleen Schlundt, Dennis Booge, and Hermann W. Bange
Biogeosciences, 18, 2161–2179, https://doi.org/10.5194/bg-18-2161-2021, https://doi.org/10.5194/bg-18-2161-2021, 2021
Short summary
Short summary
We present a unique and comprehensive time-series study of biogenic sulfur compounds in the southwestern Baltic Sea, from 2009 to 2018. Dimethyl sulfide is one of the key players regulating global climate change, as well as dimethylsulfoniopropionate and dimethyl sulfoxide. Their decadal trends did not follow increasing temperature but followed some algae group abundances at the Boknis Eck Time Series Station.
Cited articles
Andreae, M. O.: Ocean-atmosphere interactions in the global biogeochemical
sulfur cycle, Mar. Chem., 30, 1–29,
https://doi.org/10.1016/0304-4203(90)90059-L, 1990.
Andreae, M. O. and Crutzen, P. J.: Atmospheric aerosols: Biogeochemical
sources and role in atmospheric chemistry, Science, 276, 1052–1058,
https://doi.org/10.1126/science.276.5315.1052, 1997.
Archer, S. D., Widdicombe, C. E., Tarran, G. A., Rees, A. P., and Burkill,
P. H.: Production and turnover of particulate dimethylsulphoniopropionate
during a coccolithophore bloom in the northern North Sea, Aquat. Microb.
Ecol., 24, 225–241, https://doi.org/10.3354/ame024225, 2001.
Arneth, A., Monson, R. K., Schurgers, G., Niinemets, Ü., and Palmer, P. I.: Why are estimates of global terrestrial isoprene emissions so similar (and why is this not so for monoterpenes)?, Atmos. Chem. Phys., 8, 4605–4620, https://doi.org/10.5194/acp-8-4605-2008, 2008.
Arnold, S. R., Spracklen, D. V., Williams, J., Yassaa, N., Sciare, J., Bonsang, B., Gros, V., Peeken, I., Lewis, A. C., Alvain, S., and Moulin, C.: Evaluation of the global oceanic isoprene source and its impacts on marine organic carbon aerosol, Atmos. Chem. Phys., 9, 1253–1262, https://doi.org/10.5194/acp-9-1253-2009, 2009.
Baker, A. R., Turner, S. M., Broadgate, W. J., Thompson, A., McFiggans, G.
B., Vesperini, O., Nightingale, P. D., Liss, P. S., and Jickells, T. D.:
Distribution and sea-air fluxes of biogenic trace gases in the eastern
Atlantic Ocean, Global Biogeochem. Cy., 14, 871–886,
https://doi.org/10.1029/1999gb001219, 2000.
Bonsang, B., Polle, C., and Lambert, G.: Evidence for marine production of
isoprene, Geophys. Res. Lett., 19, 1129–1132,
https://doi.org/10.1029/92gl00083, 1992.
Booge, D., Marandino, C. A., Schlundt, C., Palmer, P. I., Schlundt, M., Atlas, E. L., Bracher, A., Saltzman, E. S., and Wallace, D. W. R.: Can simple models predict large-scale surface ocean isoprene concentrations?, Atmos. Chem. Phys., 16, 11807–11821, https://doi.org/10.5194/acp-16-11807-2016, 2016.
Booge, D., Schlundt, C., Bracher, A., Endres, S., Zäncker, B., and Marandino, C. A.: Marine isoprene production and consumption in the mixed layer of the surface ocean – a field study over two oceanic regions, Biogeosciences, 15, 649–667, https://doi.org/10.5194/bg-15-649-2018, 2018.
Bouillon, R.-C., Lee, P. A., de Mora, S. J., Levasseur, M., and Lovejoy, C.:
Vernal distribution of dimethylsulphide, dimethylsulphoniopropionate, and
dimethylsulphoxide in the North Water in 1998, Deep-Sea Res. Pt. II, 49, 5171–5189,
https://doi.org/10.1016/S0967-0645(02)00184-4, 2002.
Broadbent, A. D., Jones, G. B., and Jones, R. J.: DMSP in corals and benthic
algae from the Great Barrier Reef, Estuar. Coast. Shelf S., 55,
547–555, https://doi.org/10.1006/ecss.2002.1021, 2002.
Broadgate, W. J., Liss, P. S., and Penkett, S. A.: Seasonal emissions of
isoprene and other reactive hydrocarbon gases from the ocean, Geophys.
Res. Lett., 24, 2675–2678, https://doi.org/10.1029/97gl02736, 1997.
Broadgate, W. J., Malin, G., Kupper, F. C., Thompson, A., and Liss, P. S.:
Isoprene and other non-methane hydrocarbons from seaweeds: a source of
reactive hydrocarbons to the atmosphere, Mar. Chem., 88, 61–73,
https://doi.org/10.1016/j.marchem.2004.03.002, 2004.
Cantoni, G. L. and Anderson, D. G.: Enzymatic cleavage of
dimethylpropiothetin by polysiphonia lanosa, J. Biol.
Chem., 222, 171–177, https://doi.org/10.1016/S0021-9258(19)50782-7,
1956.
Carpenter, L. J., Archer, S. D., and Beale, R.: Ocean-atmosphere trace gas
exchange, Chem. Soc. Rev., 41, 6473–6506,
https://doi.org/10.1039/C2CS35121H, 2012.
Cerqueira, M. and Pio, C.: Production and release of dimethylsulphide from
an estuary in Portugal, Atmos. Environ., 33, 3355–3366,
https://doi.org/10.1016/S1352-2310(98)00378-1, 1999.
Charlson, R. J., Lovelock, J. E., Andreae, M. O., and Warren, S. G.: Oceanic
phytoplankton, atmospheric sulfur, cloud albedo and climate, Nature, 326,
655–661, https://doi.org/10.1038/326655a0, 1987.
Chen, Q., Sherwen, T., Evans, M., and Alexander, B.: DMS oxidation and sulfur aerosol formation in the marine troposphere: a focus on reactive halogen and multiphase chemistry, Atmos. Chem. Phys., 18, 13617–13637, https://doi.org/10.5194/acp-18-13617-2018, 2018.
Claeys, M., Graham, B., Vas, G., Wang, W., Vermeylen, R., Pashynska, V.,
Cafmeyer, J., Guyon, P., Andreae, M. O., Artaxo, P., and Maenhaut, W.:
Formation of secondary organic aerosols through photooxidation of isoprene,
Science, 303, 1173–1176, https://doi.org/10.1126/science.1092805, 2004.
Curran, M. A. and Jones, G. B.: Dimethyl sulfide in the Southern Ocean:
Seasonality and flux, J. Geophys. Res.-Atmos., 105,
20451–20459, https://doi.org/10.1029/2000JD900176, 2000.
Curran, M. A. J., Jones, G. B., and Burton, H.: Spatial distribution of
dimethylsulfide and dimethylsulfoniopropionate in the Australasian sector of
the Southern Ocean, J. Geophys. Res.-Atmos., 103,
16677–16689, https://doi.org/10.1029/97jd03453, 1998.
Curson, A. R. J., Todd, J. D., Sullivan, M. J., and Johnston, A. W. B.:
Catabolism of dimethylsulphoniopropionate: microorganisms, enzymes and
genes, Nat. Rev. Microbiol., 9, 849–859,
https://doi.org/10.1038/nrmicro2653, 2011.
Emerson, S., Stump, C., Wilbur, D., and Quay, P.: Accurate measurement of
O2, N2, and Ar gases in water and the solubility of N2, Mar. Chem.,
64, 337–347, https://doi.org/10.1016/s0304-4203(98)00090-5, 1999.
Exton, D. A., Suggett, D. J., McGenity, T. J., and Steinke, M.:
Chlorophyll-normalized isoprene production in laboratory cultures of marine
microalgae and implications for global models, Limnol. Oceanogr.,
58, 1301–1311, https://doi.org/10.4319/lo.2013.58.4.1301, 2013.
Fiddes, S. L., Woodhouse, M. T., Nicholls, Z., Lane, T. P., and Schofield, R.: Cloud, precipitation and radiation responses to large perturbations in global dimethyl sulfide, Atmos. Chem. Phys., 18, 10177–10198, https://doi.org/10.5194/acp-18-10177-2018, 2018.
Gibson, J. A., Garrick, R. C., Burton, H. R., and McTaggart, A. R.:
Dimethysulfide concentrations in the ocean close to the antarctic continent,
Geomicrobiol. J., 6, 179–184,
https://doi.org/10.1080/01490458809377837, 1988.
Guenther, A., Hewitt, C. N., Erickson, D., Fall, R., Geron, C., Graedel, T.,
Harley, P., Klinger, L., Lerdau, M., McKay, W. A., Pierce, T., Scholes, B.,
Steinbrecher, R., Tallamraju, R., Taylor, J., and Zimmerman, P.: A global model of natural volatile organic compound emissions, J.
Geophys. Res.-Atmos., 100, 8873–8892,
https://doi.org/10.1029/94jd02950, 1995.
Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys., 6, 3181–3210, https://doi.org/10.5194/acp-6-3181-2006, 2006.
Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X.: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions, Geosci. Model Dev., 5, 1471–1492, https://doi.org/10.5194/gmd-5-1471-2012, 2012.
Hackenberg, S., Andrews, S. J., Airs, R., Arnold, S., Bouman, H., Brewin,
R., Chance, R. J., Cummings, D., Dall'Olmo, G., and Lewis, A.: Potential
controls of isoprene in the surface ocean, Global Biogeochem. Cy., 31,
644–662, https://doi.org/10.1002/2016GB005531, 2017.
Hatton, A. D., Darroch, L., and Malin, G.: The role of dimethylsulphoxide in
the marine biogeochemical cycle of dimethylsulphide, Oceanogr. Mar. Biol. Ann.
Rev., 42, 29–55, 2004.
Hatton, A. D., Shenoy, D. M., Hart, M. C., Mogg, A., and Green, D. H.:
Metabolism of DMSP, DMS and DMSO by the cultivable bacterial community
associated with the DMSP-producing dinoflagellate Scrippsiella trochoidea,
Biogeochemistry, 110, 131–146, https://doi.org/10.1007/s10533-012-9702-7,
2012.
Hauck, J., Völker, C., Wang, T., Hoppema, M., Losch, M., and
Wolf-Gladrow, D. A.: Seasonally different carbon flux changes in the
Southern Ocean in response to the southern annular mode, Global
Biogeochem. Cy., 27, 1236–1245, https://doi.org/10.1002/2013gb004600,
2013.
Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., and Johnson, C.: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, The Press Syndicate of the University of Cambridge, United Kingdom and New York, NY, USA, 881 pp., 2001.
Hsu, S., Meindl, E. A., and Gilhousen, D. B.: Determining the power-law
wind-profile exponent under near-neutral stability conditions at sea,
J. Appl. Meteorol. Clim., 33, 757–765,
https://doi.org/10.1175/1520-0450(1994)033<0757:DTPLWP>2.0.CO;2, 1994.
Hulswar, S., Simó, R., Galí, M., Bell, T. G., Lana, A., Inamdar, S., Halloran, P. R., Manville, G., and Mahajan, A. S.: Third revision of the global surface seawater dimethyl sulfide climatology (DMS-Rev3), Earth Syst. Sci. Data, 14, 2963–2987, https://doi.org/10.5194/essd-14-2963-2022, 2022.
Inomata, Y., Hayashi, M., Osada, K., and Iwasaka, Y.: Spatial distributions
of volatile sulfur compounds in surface seawater and overlying atmosphere in
the northwestern Pacific Ocean, eastern Indian Ocean, and Southern Ocean,
Global Biogeochem. Cy., 20, GB2022, https://doi.org/10.1029/2005GB002518,
2006.
Jackson, R. L., Gabric, A. J., Cropp, R., and Woodhouse, M. T.: Dimethylsulfide (DMS), marine biogenic aerosols and the ecophysiology of coral reefs, Biogeosciences, 17, 2181–2204, https://doi.org/10.5194/bg-17-2181-2020, 2020.
Jiang, H.: Evaluation of altimeter undersampling in estimating global wind
and wave climate using virtual observation, Remote Sens. Environ.,
245, 111840, https://doi.org/10.1016/j.rse.2020.111840, 2020.
Jones, G. B., Curran, M. A., Swan, H. B., Greene, R. M., Griffiths, F. B.,
and Clementson, L. A.: Influence of different water masses and biological
activity on dimethylsulphide and dimethylsulphoniopropionate in the
subantarctic zone of the Southern Ocean during ACE 1, J. Geophys.
Res.-Atmos., 103, 16691–16701, https://doi.org/10.1029/98JD01200,
1998.
Kameyama, S., Yoshida, S., Tanimoto, H., Inomata, S., Suzuki, K., and
Yoshikawa-Inoue, H.: High-resolution observations of dissolved isoprene in
surface seawater in the Southern Ocean during austral summer 2010–2011,
J. Oceanogr., 70, 225–239,
https://doi.org/10.1007/s10872-014-0226-8, 2014.
Keller, M. D., Bellows, W. K., and Guillard, R. R. L.: Dimethyl sulfide
production in marine-phytoplankton, Acs Sym. Ser., 393, 167–182,
https://doi.org/10.1021/bk-1989-0393.ch011, 1989.
Kettle, A. J., Andreae, M. O., Amouroux, D., Andreae, T. W., Bates, T. S.,
Berresheim, H., Bingemer, H., Boniforti, R., Curran, M. A. J., DiTullio, G.
R., Helas, G., Jones, G. B., Keller, M. D., Kiene, R. P., Leck, C.,
Levasseur, M., Malin, G., Maspero, M., Matrai, P., McTaggart, A. R.,
Mihalopoulos, N., Nguyen, B. C., Novo, A., Putaud, J. P., Rapsomanikis, S.,
Roberts, G., Schebeske, G., Sharma, S., Simo, R., Staubes, R., Turner, S.,
and Uher, G.: A global database of sea surface dimethylsulfide (DMS)
measurements and a procedure to predict sea surface DMS as a function of
latitude, longitude, and month, Global Biogeochem. Cy., 13, 399–444,
https://doi.org/10.1029/1999gb900004, 1999.
Kiene, R. P., Kieber, D. J., Slezak, D., Toole, D. A., del Valle, D. A.,
Bisgrove, J., Brinkley, J., and Rellinger, A.: Distribution and cycling of
dimethylsulfide, dimethylsulfoniopropionate, and dimethylsulfoxide during
spring and early summer in the Southern Ocean south of New Zealand, Aquat.
Sci., 69, 305–319, https://doi.org/10.1007/s00027-007-0892-3, 2007.
Kloster, S., Feichter, J., Maier-Reimer, E., Six, K. D., Stier, P., and Wetzel, P.: DMS cycle in the marine ocean-atmosphere system – a global model study, Biogeosciences, 3, 29–51, https://doi.org/10.5194/bg-3-29-2006, 2006.
Koga, S., Nomura, D., and Wada, M.: Variation of dimethylsulfide mixing
ratio over the Southern Ocean from 36∘ S to 70∘ S, Polar
Sci., 8, 306–313, https://doi.org/10.1016/j.polar.2014.04.002, 2014.
Korhonen, H., Carslaw, K. S., Spracklen, D. V., Mann, G. W., and Woodhouse,
M. T.: Influence of oceanic dimethyl sulfide emissions on cloud condensation
nuclei concentrations and seasonality over the remote Southern Hemisphere
oceans: A global model study, J. Geophys. Res.-Atmos.,
113, D15204, https://doi.org/10.1029/2007jd009718, 2008.
Kulmala, M., Pirjola, U., and Makela, J. M.: Stable sulphate clusters as a
source of new atmospheric particles, Nature, 404, 66–69,
https://doi.org/10.1038/35003550, 2000.
Lana, A., Bell, T. G., Simo, R., Vallina, S. M., Ballabrera-Poy, J., Kettle,
A. J., Dachs, J., Bopp, L., Saltzman, E. S., Stefels, J., Johnson, J. E.,
and Liss, P. S.: An updated climatology of surface dimethlysulfide
concentrations and emission fluxes in the global ocean, Global
Biogeochem. Cy., 25, GB1004, https://doi.org/10.1029/2010gb003850, 2011.
Laothawornkitkul, J., Taylor, J. E., Paul, N. D., and Hewitt, C. N.:
Biogenic volatile organic compounds in the Earth system, New Phytol.,
183, 27–51, https://doi.org/10.1111/j.1469-8137.2009.02859.x, 2009.
Lee, P. and De Mora, S.: DMSP, DMS and DMSO concentrations and temporal trends in marine surface waters at Leigh, New Zealand, in: Biological and environmental chemistry of DMSP and related sulfonium compounds, Springer, Boston, MA, https://doi.org/10.1007/978-1-4613-0377-0_34, 1996.
Lennartz, S. T., Marandino, C. A., von Hobe, M., Cortes, P., Quack, B., Simo, R., Booge, D., Pozzer, A., Steinhoff, T., Arevalo-Martinez, D. L., Kloss, C., Bracher, A., Röttgers, R., Atlas, E., and Krüger, K.: Direct oceanic emissions unlikely to account for the missing source of atmospheric carbonyl sulfide, Atmos. Chem. Phys., 17, 385–402, https://doi.org/10.5194/acp-17-385-2017, 2017.
Li, J. L., Zhai, X., Ma, Z., Zhang, H. H., and Yang, G. P.: Spatial
distributions and sea-to-air fluxes of non-methane hydrocarbons in the
atmosphere and seawater of the Western Pacific Ocean, Sci. Total
Environ., 672, 491–501, https://doi.org/10.1016/j.scitotenv.2019.04.019,
2019.
Li, J. L., Zhai, X., Zhang, H. H., and Yang, G. P.: Temporal variations in
the distribution and sea-to-air flux of marine isoprene in the East China
Sea, Atmos. Environ., 187, 131–143,
https://doi.org/10.1016/j.atmosenv.2018.05.054, 2018.
Liss, P. S.: Trace gas emissions from the marine biosphere, Philos.
T. R. Soc. A, 365, 1697–1704, https://doi.org/10.1098/rsta.2007.2039, 2007.
Liss, P. S. and Slater, P. G.: Flux of gases across air-sea interface,
Nature, 247, 181–184, https://doi.org/10.1038/247181a0, 1974.
Liss, P. S., Marandino, C. A., and Dahl, E. E.: Short-lived trace gases in the surface ocean and the atmosphere, in: Ocean-Atmosphere Interactions of Gases and Particles, Springer, Berlin, Heidelberg, 1–54, https://doi.org/10.1007/978-3-642-25643-1_1, 2014.
Lovelock, J. E., Maggs, R. J., and Rasmusse.Ra: Atmospheric dimethyl sulfide
and natural sulfur cycle, Nature, 237, 452–453,
https://doi.org/10.1038/237452a0, 1972.
Luis, A. J. and Lotlikar, V. R.: Hydrographic characteristics along two XCTD
sections between Africa and Antarctica during austral summer 2018, Polar
Sci., 30, 100705, https://doi.org/10.1016/j.polar.2021.100705, 2021.
Mahajan, A. S., Fadnavis, S., Thomas, M. A., Pozzoli, L., Gupta, S., Royer,
S. J., Saiz-Lopez, A., and Simo, R.: Quantifying the impacts of an updated
global dimethyl sulfide climatology on cloud microphysics and aerosol
radiative forcing, J. Geophys. Res.-Atmos., 120,
2524–2536, https://doi.org/10.1002/2014jd022687, 2015.
Mahmood, R., von Salzen, K., Norman, A.-L., Galí, M., and Levasseur, M.: Sensitivity of Arctic sulfate aerosol and clouds to changes in future surface seawater dimethylsulfide concentrations, Atmos. Chem. Phys., 19, 6419–6435, https://doi.org/10.5194/acp-19-6419-2019, 2019.
Matsunaga, S., Mochida, M., Saito, T., and Kawamura, K.: In situ measurement
of isoprene in the marine air and surface seawater from the western North
Pacific, Atmos. Environ., 36, 6051–6057,
https://doi.org/10.1016/s1352-2310(02)00657-x, 2002.
McArdle, N., Liss, P., and Dennis, P.: An isotopic study of atmospheric
sulphur at three sites in Wales and at Mace Head, Eire, J.
Geophys. Res.-Atmos., 103, 31079–31094,
https://doi.org/10.1029/98jd01664, 1998.
McGillis, W. R., Dacey, J. W. H., Frew, N. M., Bock, E. J., and Nelson, R.
K.: Water-air flux of dimethylsulfide, J. Geophys. Res.-Oceans, 105, 1187–1193, https://doi.org/10.1029/1999jc900243, 2000.
McTaggart, A. R. and Burton, H.: Dimethyl Sulfide concentrations in the
surface waters of the Australasian Antarctic and Subantarctic Oceans during
an austral summer, J. Geophys. Res.-Oceans, 97, 14407–14412,
https://doi.org/10.1029/92JC01025, 1992.
Milne, P. J., Riemer, D. D., Zika, R. G., and Brand, L. E.: Measurement of
vertical-distribution of isoprene in surface seawater, its chemical fate,
and its emission from several phytoplankton monocultures, Mar. Chem.,
48, 237–244, https://doi.org/10.1016/0304-4203(94)00059-m, 1995.
Monson, R. K. and Holland, E. A.: Biospheric trace gas fluxes and their
control over tropospheric chemistry, Annu. Rev. Ecol.
Syst., 32, 547–576,
https://doi.org/10.1146/annurev.ecolsys.32.081501.114136, 2001.
Moore, R. and Wang, L.: The influence of iron fertilization on the fluxes of
methyl halides and isoprene from ocean to atmosphere in the SERIES
experiment, Deep-Sea Res. Pt. II, 53,
2398–2409, https://doi.org/10.1016/j.dsr2.2006.05.025, 2006.
Mopper, K. and Kieber, D. J.: Photochemistry and the Cycling of
Carbon, Sulfur, Nitrogen and Phosphorus, in: Biogeochemistry of Marine
Dissolved Organic Matter, edited by: Hansell, D. A. and Carlson, C. A., chap. 9, Academic
Press, San Diego, https://doi.org/10.1016/C2012-0-02714-7, 2002.
Naval Oceanographic Office: K10 Global 10 km Analyzed SST data set,
Ver. 1.0, PO.DAAC, CA, USA, Naval Oceanographic Office [data set],
https://doi.org/10.5067/GHK10-41N01 2008.
Nguyen, B., Mihalopoulos, N., and Belviso, S.: Seasonal variation of
atmospheric dimethylsulfide at Amsterdam Island in the southern Indian
Ocean, J. Atmos. Chem., 11, 123–141,
https://doi.org/10.1007/BF00053671, 1990.
Nguyen, B., Mihalopoulos, N., Putaud, J., Gaudry, A., Gallet, L., Keene, W.,
and Galloway, J.: Covariations in oceanic dimethyl sulfide, its oxidation
products and rain acidity at Amsterdam Island in the southern Indian Ocean,
J. Atmos. Chem., 15, 39–53,
https://doi.org/10.1007/BF0005360, 1992.
Nightingale, P. D., Malin, G., Law, C. S., Watson, A. J., Liss, P. S.,
Liddicoat, M. I., Boutin, J., and Upstill-Goddard, R. C.: In situ evaluation
of air-sea gas exchange parameterizations using novel conservative and
volatile tracers, Global Biogeochem. Cy., 14, 373–387,
https://doi.org/10.1029/1999gb900091, 2000.
Ooki, A., Nomura, D., Nishino, S., Kikuchi, T., and Yokouchi, Y.: A
global-scale map of isoprene and volatile organic iodine in surface seawater
of the Arctic, Northwest Pacific, Indian, and Southern Oceans, J.
Geophys. Res.-Oceans, 120, 4108–4128,
https://doi.org/10.1002/2014jc010519, 2015.
Otte, M. L., Wilson, G., Morris, J. T., and Moran, B. M.:
Dimethylsulphoniopropionate (DMSP) and related compounds in higher plants,
J. Exp. Bot., 55, 1919–1925,
https://doi.org/10.1093/jxb/erh178, 2004.
Palmer, P. I. and Shaw, S. L.: Quantifying global marine isoprene fluxes
using MODIS chlorophyll observations, Geophys. Res. Lett., 32, L09805,
https://doi.org/10.1029/2005gl022592, 2005.
Ryan-Keogh, T.: SCALE Winter SDS (1.0), Zenodo [data set], https://doi.org/10.5281/zenodo.6367853, 2022.
Rodríguez-Ros, P., Cortés, P., Robinson, C. M., Nunes, S., Hassler,
C., Royer, S.-J., Estrada, M., Sala, M. M., and Simó, R.: Distribution
and drivers of marine isoprene concentration across the Southern Ocean,
Atmosphere, 11, 556, https://doi.org/10.3390/atmos11060556, 2020.
Sanchez, K. J., Chen, C. L., Russell, L. M., Betha, R., Liu, J., Price, D.
J., Massoli, P., Ziemba, L. D., Crosbie, E. C., Moore, R. H., Muller, M.,
Schiller, S. A., Wisthaler, A., Lee, A. K. Y., Quinn, P. K., Bates, T. S.,
Porter, J., Bell, T. G., Saltzman, E. S., Vaillancourt, R. D., and
Behrenfeld, M. J.: Substantial Seasonal Contribution of Observed Biogenic
Sulfate Particles to Cloud Condensation Nuclei, Sci. Rep.-UK, 8, 3235,
https://doi.org/10.1038/s41598-018-21590-9, 2018.
Sharkey, T. D., Wiberley, A. E., and Donohue, A. R.: Isoprene emission from
plants: Why and how, Ann. Bot., 101, 5–18,
https://doi.org/10.1093/aob/mcm240, 2008.
Shaw, S. L., Chisholm, S. W., and Prinn, R. G.: Isoprene production by
Prochlorococcus, a marine cyanobacterium, and other phytoplankton, Mar.
Chem., 80, 227–245, https://doi.org/10.1016/s0304-4203(02)00101-9, 2003.
Simó, R. and Vila-Costa, M.: Ubiquity of algal dimethylsulfoxide in the
surface ocean: Geographic and temporal distribution patterns, Mar.
Chem., 100, 136–146, https://doi.org/10.1016/j.marchem.2005.11.006,
2006.
Simó, R., Pedrós-Alió, C., Malin, G., and Grimalt, J. O.: Biological turnover of DMS, DMSP and DMSO in contrasting open-sea waters, Mar. Ecol.-Prog. Ser., 203, 1–11, https://doi.org/10.3354/meps203001, 2000.
Stefels, J., Steinke, M., Turner, S., Malin, G., and Belviso, S.:
Environmental constraints on the production and removal of the climatically
active gas dimethylsulphide (DMS) and implications for ecosystem modelling,
Biogeochemistry, 83, 245–275, https://doi.org/10.1007/s10533-007-9091-5,
2007.
Thomas, M. A., Suntharalingam, P., Pozzoli, L., Rast, S., Devasthale, A., Kloster, S., Feichter, J., and Lenton, T. M.: Quantification of DMS aerosol-cloud-climate interactions using the ECHAM5-HAMMOZ model in a current climate scenario, Atmos. Chem. Phys., 10, 7425–7438, https://doi.org/10.5194/acp-10-7425-2010, 2010.
Tortell, P. D. and Long, M. C.: Spatial and temporal variability of biogenic
gases during the Southern Ocean spring bloom, Geophys. Res. Lett.,
36, L01603, https://doi.org/10.1029/2008gl035819, 2009.
Tran, S., Bonsang, B., Gros, V., Peeken, I., Sarda-Esteve, R., Bernhardt, A., and Belviso, S.: A survey of carbon monoxide and non-methane hydrocarbons in the Arctic Ocean during summer 2010, Biogeosciences, 10, 1909–1935, https://doi.org/10.5194/bg-10-1909-2013, 2013.
UK Met Office: OSTIA L4 SST Analysis (GDS2), Ver. 2.0, PO.DAAC, CA,
USA, UK Met Office [data set], https://doi.org/10.5067/GHOST-4FK02, 2012.
Vallina, S. M. and Simó, R.: Strong relationship between DMS and the solar
radiation dose over the global surface ocean, Science, 315, 506–508,
https://doi.org/10.1126/science.1133680, 2007.
Van Alstyne, K. L.: The distribution of DMSP in green macroalgae from
northern New Zealand, eastern Australia and southern Tasmania, J.
Mar. Biol. Assoc. UK, 88, 799–805,
https://doi.org/10.1017/s0025315408001562, 2008.
Vandemark, D., Salisbury, J. E., Hunt, C. W., Shellito, S. M., Irish, J.,
McGillis, W., Sabine, C., and Maenner, S.: Temporal and spatial dynamics of
CO2 air-sea flux in the Gulf of Maine, J. Geophys. Res.-Oceans, 116, C01012, https://doi.org/10.1029/2010JC006408, 2011.
Vogt, M. and Liss, P.: Dimethylsulfide and climate, Surface ocean-lower
atmosphere processes, Anthropocene, 187, 197–232, https://doi.org/10.1016/j.ancene.2015.11.001, 2009.
von Glasow, R. and Crutzen, P. J.: Model study of multiphase DMS oxidation with a focus on halogens, Atmos. Chem. Phys., 4, 589–608, https://doi.org/10.5194/acp-4-589-2004, 2004.
Wanninkhof, R.: Relationship between wind speed and gas exchange over the
ocean, J. Geophys. Res.-Oceans, 97, 7373–7382,
https://doi.org/10.1029/92JC00188, 1992.
Wanninkhof, R.: Relationship between wind speed and gas exchange over the
ocean revisited, Limnol. Oceanogr.-Meth., 12, 351–362,
https://doi.org/10.4319/lom.2014.12.351, 2014.
Went, F. W.: Blue Hazes in the Atmosphere, Nature, 187, 641–643,
https://doi.org/10.1038/187641a0, 1960.
Wiggert, J., Dickey, T., and Granata, T.: The effect of temporal
undersampling on primary production estimates, J. Geophys.
Res.-Oceans, 99, 3361–3371, https://doi.org/10.1029/93JC03163, 1994.
Wohl, C., Brown, I., Kitidis, V., Jones, A. E., Sturges, W. T., Nightingale, P. D., and Yang, M.: Underway seawater and atmospheric measurements of volatile organic compounds in the Southern Ocean, Biogeosciences, 17, 2593–2619, https://doi.org/10.5194/bg-17-2593-2020, 2020.
Yang, J. and Yang, G.-P.: Distribution of dissolved and particulate
dimethylsulfoxide in the East China Sea in winter, Mar. Chem., 127,
199–209, https://doi.org/10.1016/j.marchem.2011.09.006, 2011.
Yang, M., Blomquist, B., Fairall, C., Archer, S., and Huebert, B.: Air-sea
exchange of dimethylsulfide in the Southern Ocean: Measurements from SO
GasEx compared to temperate and tropical regions, J. Geophys. Res.-Oceans, 116, C00F05, https://doi.org/10.1029/2010JC006526, 2011.
Yoch, D. C.: Dimethylsulfoniopropionate: Its sources, role in the marine
food web, and biological degradation to dimethylsulfide, Appl.
Environ. Microbiol., 68, 5804–5815,
https://doi.org/10.1128/aem.68.12.5804-5815.2002, 2002.
Zavarsky, A., Goddijn-Murphy, L., Steinhoff, T., and Marandino, C. A.:
Bubble-Mediated Gas Transfer and Gas Transfer Suppression of DMS and CO2,
J. Geophys. Res.-Atmos., 123, 6624–6647,
https://doi.org/10.1029/2017jd028071, 2018.
Zhang, M., Marandino, C. A., Chen, L., Sun, H., Gao, Z., Park, K., Kim, I.,
Yang, B., Zhu, T., and Yan, J.: Characteristics of the surface water DMS and
pCO2 distributions and their relationships in the Southern Ocean, southeast
Indian Ocean, and northwest Pacific Ocean, Global Biogeochem. Cy., 31,
1318–1331, https://doi.org/10.1002/2017GB005637, 2017.
Zhang, M., Park, K.-T., Yan, J., Park, K., Wu, Y., Jang, E., Gao, W., Tan,
G., Wang, J., and Chen, L.: Atmospheric dimethyl sulfide and its significant
influence on the sea-to-air flux calculation over the Southern Ocean,
Prog. Oceanogr., 186, 102392,
https://doi.org/10.1016/j.pocean.2020.102392, 2020.
Zhang, M. M., Gao, W., Yan, J. P., Wu, Y. F., Marandino, C. A., Park, K.,
Chen, L. Q., Lin, Q., Tan, G. B., and Pan, M. J.: An integrated sampler for
shipboard underway measurement of dimethyl sulfide in surface seawater and
air, Atmos. Environ., 209, 86–91,
https://doi.org/10.1016/j.atmosenv.2019.04.022, 2019.
Zhou, L., Booge, D., Zhang, M., and Marandino, C. A.: Winter time trace gas concentrations during SCALE in 2019, Zenodo [data set], https://doi.org/10.5281/zenodo.7185513, 2022.
Zindler, C., Bracher, A., Marandino, C. A., Taylor, B., Torrecilla, E., Kock, A., and Bange, H. W.: Sulphur compounds, methane, and phytoplankton: interactions along a north–south transit in the western Pacific Ocean, Biogeosciences, 10, 3297–3311, https://doi.org/10.5194/bg-10-3297-2013, 2013.
Zindler, C., Lutterbeck, H., Endres, S., and Bange, H. W.: Environmental
control of dimethylsulfoxide (DMSO) cycling under ocean acidification,
Environ. Chem., 13, 330–339, https://doi.org/10.1071/EN14270, 2015.
Zindler, C., Marandino, C. A., Bange, H. W., Schutte, F., and Saltzman, E.
S.: Nutrient availability determines dimethyl sulfide and isoprene
distribution in the eastern Atlantic Ocean, Geophys. Res. Lett.,
41, 3181–3188, https://doi.org/10.1002/2014gl059547, 2014.
Zubkov, M. V., Fuchs, B. M., Archer, S. D., Kiene, R. P., Amann, R., and
Burkill, P. H.: Rapid turnover of dissolved DMS and DMSP by defined
bacterioplankton communities in the stratified euphotic zone of the North
Sea, Deep-Sea Res. Pt. II, 49,
3017–3038, https://doi.org/10.1016/s0967-0645(02)00069-3, 2002.
Short summary
Trace gas air–sea exchange exerts an important control on air quality and climate, especially in the Southern Ocean (SO). Almost all of the measurements there are skewed to summer, but it is essential to expand our measurement database over greater temporal and spatial scales. Therefore, we report measured concentrations of dimethylsulfide (DMS, as well as related sulfur compounds) and isoprene in the Atlantic sector of the SO. The observations of isoprene are the first in the winter in the SO.
Trace gas air–sea exchange exerts an important control on air quality and climate, especially in...
Altmetrics
Final-revised paper
Preprint