Articles | Volume 19, issue 22
https://doi.org/10.5194/bg-19-5221-2022
https://doi.org/10.5194/bg-19-5221-2022
Research article
 | 
18 Nov 2022
Research article |  | 18 Nov 2022

Temporal patterns and drivers of CO2 emission from dry sediments in a groyne field of a large river

Matthias Koschorreck, Klaus Holger Knorr, and Lelaina Teichert

Related authors

Surface CO2 gradients challenge conventional CO2 emission quantification in lentic water bodies under calm conditions
Patrick Aurich, Uwe Spank, and Matthias Koschorreck
Biogeosciences, 22, 1697–1709, https://doi.org/10.5194/bg-22-1697-2025,https://doi.org/10.5194/bg-22-1697-2025, 2025
Short summary
Diurnal versus spatial variability of greenhouse gas emissions from an anthropogenically modified lowland river in Germany
Matthias Koschorreck, Norbert Kamjunke, Uta Koedel, Michael Rode, Claudia Schuetze, and Ingeborg Bussmann
Biogeosciences, 21, 1613–1628, https://doi.org/10.5194/bg-21-1613-2024,https://doi.org/10.5194/bg-21-1613-2024, 2024
Short summary
Technical note: CO2 is not like CH4 – limits of and corrections to the headspace method to analyse pCO2 in fresh water
Matthias Koschorreck, Yves T. Prairie, Jihyeon Kim, and Rafael Marcé
Biogeosciences, 18, 1619–1627, https://doi.org/10.5194/bg-18-1619-2021,https://doi.org/10.5194/bg-18-1619-2021, 2021
Short summary
A closed-chamber method to measure greenhouse gas fluxes from dry aquatic sediments
Lukas Lesmeister and Matthias Koschorreck
Atmos. Meas. Tech., 10, 2377–2382, https://doi.org/10.5194/amt-10-2377-2017,https://doi.org/10.5194/amt-10-2377-2017, 2017
Short summary
CO2 emissions from German drinking water reservoirs estimated from routine monitoring data
H. Saidi and M. Koschorreck
Biogeosciences Discuss., https://doi.org/10.5194/bg-2015-648,https://doi.org/10.5194/bg-2015-648, 2016
Manuscript not accepted for further review
Short summary

Related subject area

Biogeochemistry: Greenhouse Gases
Observations of methane net sinks in the upland Arctic tundra
Antonio Donateo, Daniela Famulari, Donato Giovannelli, Arturo Mariani, Mauro Mazzola, Stefano Decesari, and Gianluca Pappaccogli
Biogeosciences, 22, 2889–2908, https://doi.org/10.5194/bg-22-2889-2025,https://doi.org/10.5194/bg-22-2889-2025, 2025
Short summary
Intercomparison of biogenic CO2 flux models in four urban parks in the city of Zurich
Stavros Stagakis, Dominik Brunner, Junwei Li, Leif Backman, Anni Karvonen, Lionel Constantin, Leena Järvi, Minttu Havu, Jia Chen, Sophie Emberger, and Liisa Kulmala
Biogeosciences, 22, 2133–2161, https://doi.org/10.5194/bg-22-2133-2025,https://doi.org/10.5194/bg-22-2133-2025, 2025
Short summary
CO2 flux characteristics of the open savanna and its response to environmental factors in the dry–hot valley of Jinsha River, China
Chaolei Yang, Yufeng Tian, Jingqi Cui, Guangxiong He, Jingyuan Li, Canfeng Li, Haichuang Duan, Zong Wei, Liu Yan, Xin Xia, Yong Huang, Aihua Jiang, and Yuwen Feng
Biogeosciences, 22, 2097–2114, https://doi.org/10.5194/bg-22-2097-2025,https://doi.org/10.5194/bg-22-2097-2025, 2025
Short summary
Rising Arctic seas and thawing permafrost: uncovering the carbon cycle impact in a thermokarst lagoon system in the outer Mackenzie Delta, Canada
Maren Jenrich, Juliane Wolter, Susanne Liebner, Christian Knoblauch, Guido Grosse, Fiona Giebeler, Dustin Whalen, and Jens Strauss
Biogeosciences, 22, 2069–2086, https://doi.org/10.5194/bg-22-2069-2025,https://doi.org/10.5194/bg-22-2069-2025, 2025
Short summary
Modelling decadal trends and the impact of extreme events on carbon fluxes in a temperate deciduous forest using a terrestrial biosphere model
Tea Thum, Tuuli Miinalainen, Outi Seppälä, Holly Croft, Cheryl Rogers, Ralf Staebler, Silvia Caldararu, and Sönke Zaehle
Biogeosciences, 22, 1781–1807, https://doi.org/10.5194/bg-22-1781-2025,https://doi.org/10.5194/bg-22-1781-2025, 2025
Short summary

Cited articles

Asher-Bolinder, S., Owen, D. E., and Schumann, R. R.: A preliminary evaluation of environmental factors influencing day-to-day and seasonal soil-gas radon concentrations, in: Field Studies of radon in rocks, soils, and water, edited by: Gundersen, L. C. S. and Wanty, R. B., US Geological Survey, Washingtom DC, ISBN 9781003070177, 1971. 
Battin, T. J., Luyssaert, S., Kaplan, L. A., Aufdenkampe, A. K., Richter, A., and Tranvik, L. J.: The boundless carbon cycle, Nat. Geosci., 2, 598–600, https://doi.org/10.1038/ngeo618, 2009. 
Beardall, J. and Giordano, M.: Ecological implications of microalgal and cyanobacterial CO2 concentrating mechanisms, and their regulation, Funct. Plant Biol., 29, 335–347, https://doi.org/10.1071/PP01195, 2002. 
Birch, H. F.: The effect of soil drying on humus decomposition and nitrogen availability, Plant Soil, 10, 9–31, https://doi.org/10.1007/bf01343734, 1958. 
Bolpagni, R., Folegot, S., Laini, A., and Bartoli, M.: Role of ephemeral vegetation of emerging river bottoms in modulating CO2 exchanges across a temperate large lowland river stretch, Aquat. Sci., 79, 149–158, https://doi.org/10.1007/s00027-016-0486-z, 2017. 
Download
Short summary
At low water levels, parts of the bottom of rivers fall dry. These beaches or mudflats emit the greenhouse gas carbon dioxide (CO2) to the atmosphere. We found that those emissions are caused by microbial reactions in the sediment and that they change with time. Emissions were influenced by many factors like temperature, water level, rain, plants, and light.
Share
Altmetrics
Final-revised paper
Preprint