Articles | Volume 19, issue 22
https://doi.org/10.5194/bg-19-5221-2022
https://doi.org/10.5194/bg-19-5221-2022
Research article
 | 
18 Nov 2022
Research article |  | 18 Nov 2022

Temporal patterns and drivers of CO2 emission from dry sediments in a groyne field of a large river

Matthias Koschorreck, Klaus Holger Knorr, and Lelaina Teichert

Related authors

Technical note: CO2 is not like CH4 – limits of and corrections to the headspace method to analyse pCO2 in fresh water
Matthias Koschorreck, Yves T. Prairie, Jihyeon Kim, and Rafael Marcé
Biogeosciences, 18, 1619–1627, https://doi.org/10.5194/bg-18-1619-2021,https://doi.org/10.5194/bg-18-1619-2021, 2021
Short summary
A closed-chamber method to measure greenhouse gas fluxes from dry aquatic sediments
Lukas Lesmeister and Matthias Koschorreck
Atmos. Meas. Tech., 10, 2377–2382, https://doi.org/10.5194/amt-10-2377-2017,https://doi.org/10.5194/amt-10-2377-2017, 2017
Short summary
CO2 emissions from German drinking water reservoirs estimated from routine monitoring data
H. Saidi and M. Koschorreck
Biogeosciences Discuss., https://doi.org/10.5194/bg-2015-648,https://doi.org/10.5194/bg-2015-648, 2016
Manuscript not accepted for further review
Short summary
Technical note: drifting versus anchored flux chambers for measuring greenhouse gas emissions from running waters
A. Lorke, P. Bodmer, C. Noss, Z. Alshboul, M. Koschorreck, C. Somlai-Haase, D. Bastviken, S. Flury, D. F. McGinnis, A. Maeck, D. Müller, and K. Premke
Biogeosciences, 12, 7013–7024, https://doi.org/10.5194/bg-12-7013-2015,https://doi.org/10.5194/bg-12-7013-2015, 2015
Short summary
Regulation of CO2 emissions from temperate streams and reservoirs
S. Halbedel and M. Koschorreck
Biogeosciences, 10, 7539–7551, https://doi.org/10.5194/bg-10-7539-2013,https://doi.org/10.5194/bg-10-7539-2013, 2013

Related subject area

Biogeochemistry: Greenhouse Gases
Meteorological responses of carbon dioxide and methane fluxes in the terrestrial and aquatic ecosystems of a subarctic landscape
Lauri Heiskanen, Juha-Pekka Tuovinen, Henriikka Vekuri, Aleksi Räsänen, Tarmo Virtanen, Sari Juutinen, Annalea Lohila, Juha Mikola, and Mika Aurela
Biogeosciences, 20, 545–572, https://doi.org/10.5194/bg-20-545-2023,https://doi.org/10.5194/bg-20-545-2023, 2023
Short summary
Carbon emission and export from the Ket River, western Siberia
Artem G. Lim, Ivan V. Krickov, Sergey N. Vorobyev, Mikhail A. Korets, Sergey Kopysov, Liudmila S. Shirokova, Jan Karlsson, and Oleg S. Pokrovsky
Biogeosciences, 19, 5859–5877, https://doi.org/10.5194/bg-19-5859-2022,https://doi.org/10.5194/bg-19-5859-2022, 2022
Short summary
Evaluation of wetland CH4 in the Joint UK Land Environment Simulator (JULES) land surface model using satellite observations
Robert J. Parker, Chris Wilson, Edward Comyn-Platt, Garry Hayman, Toby R. Marthews, A. Anthony Bloom, Mark F. Lunt, Nicola Gedney, Simon J. Dadson, Joe McNorton, Neil Humpage, Hartmut Boesch, Martyn P. Chipperfield, Paul I. Palmer, and Dai Yamazaki
Biogeosciences, 19, 5779–5805, https://doi.org/10.5194/bg-19-5779-2022,https://doi.org/10.5194/bg-19-5779-2022, 2022
Short summary
Greenhouse gas fluxes in mangrove forest soil in an Amazon estuary
Saúl Edgardo Martínez Castellón, José Henrique Cattanio, José Francisco Berrêdo, Marcelo Rollnic, Maria de Lourdes Ruivo, and Carlos Noriega
Biogeosciences, 19, 5483–5497, https://doi.org/10.5194/bg-19-5483-2022,https://doi.org/10.5194/bg-19-5483-2022, 2022
Short summary
Effects of water table level and nitrogen deposition on methane and nitrous oxide emissions in an alpine peatland
Wantong Zhang, Zhengyi Hu, Joachim Audet, Thomas A. Davidson, Enze Kang, Xiaoming Kang, Yong Li, Xiaodong Zhang, and Jinzhi Wang
Biogeosciences, 19, 5187–5197, https://doi.org/10.5194/bg-19-5187-2022,https://doi.org/10.5194/bg-19-5187-2022, 2022
Short summary

Cited articles

Asher-Bolinder, S., Owen, D. E., and Schumann, R. R.: A preliminary evaluation of environmental factors influencing day-to-day and seasonal soil-gas radon concentrations, in: Field Studies of radon in rocks, soils, and water, edited by: Gundersen, L. C. S. and Wanty, R. B., US Geological Survey, Washingtom DC, ISBN 9781003070177, 1971. 
Battin, T. J., Luyssaert, S., Kaplan, L. A., Aufdenkampe, A. K., Richter, A., and Tranvik, L. J.: The boundless carbon cycle, Nat. Geosci., 2, 598–600, https://doi.org/10.1038/ngeo618, 2009. 
Beardall, J. and Giordano, M.: Ecological implications of microalgal and cyanobacterial CO2 concentrating mechanisms, and their regulation, Funct. Plant Biol., 29, 335–347, https://doi.org/10.1071/PP01195, 2002. 
Birch, H. F.: The effect of soil drying on humus decomposition and nitrogen availability, Plant Soil, 10, 9–31, https://doi.org/10.1007/bf01343734, 1958. 
Bolpagni, R., Folegot, S., Laini, A., and Bartoli, M.: Role of ephemeral vegetation of emerging river bottoms in modulating CO2 exchanges across a temperate large lowland river stretch, Aquat. Sci., 79, 149–158, https://doi.org/10.1007/s00027-016-0486-z, 2017. 
Download
Short summary
At low water levels, parts of the bottom of rivers fall dry. These beaches or mudflats emit the greenhouse gas carbon dioxide (CO2) to the atmosphere. We found that those emissions are caused by microbial reactions in the sediment and that they change with time. Emissions were influenced by many factors like temperature, water level, rain, plants, and light.
Altmetrics
Final-revised paper
Preprint