Articles | Volume 19, issue 23
https://doi.org/10.5194/bg-19-5419-2022
https://doi.org/10.5194/bg-19-5419-2022
Research article
 | 
05 Dec 2022
Research article |  | 05 Dec 2022

Climate and geology overwrite land use effects on soil organic nitrogen cycling on a continental scale

Lisa Noll, Shasha Zhang, Qing Zheng, Yuntao Hu, Florian Hofhansl, and Wolfgang Wanek

Related authors

The influence of three common antibiotics on coastal benthic foraminifera: implications for culture experiments and biomonitoring
Michael Lintner, Irina Polovodova Asteman, Wolfgang Wanek, Petra Heinz, Jan Goleń, and Jarosław Tyszka
J. Micropalaeontol., 44, 263–273, https://doi.org/10.5194/jm-44-263-2025,https://doi.org/10.5194/jm-44-263-2025, 2025
Short summary
Dynamics of inorganic nitrogen cycling, redox conditions, and microbial community composition in a floodplain soil induced by a heavy rainfall after summer drought
Johanna Schlögl, Clemens Karwautz, Lena Cramaro, Wolfgang Wanek, Judith Prommer, Theresa Böckle, Andreas Kappler, Stefan B. Haderlein, and Christian Griebler
EGUsphere, https://doi.org/10.5194/egusphere-2025-2577,https://doi.org/10.5194/egusphere-2025-2577, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Drought effects on leaf fall, leaf flushing and stem growth in the Amazon forest: reconciling remote sensing data and field observations
Thomas Janssen, Ype van der Velde, Florian Hofhansl, Sebastiaan Luyssaert, Kim Naudts, Bart Driessen, Katrin Fleischer, and Han Dolman
Biogeosciences, 18, 4445–4472, https://doi.org/10.5194/bg-18-4445-2021,https://doi.org/10.5194/bg-18-4445-2021, 2021
Short summary
The effect of the salinity, light regime and food source on carbon and nitrogen uptake in a benthic foraminifer
Michael Lintner, Bianca Lintner, Wolfgang Wanek, Nina Keul, and Petra Heinz
Biogeosciences, 18, 1395–1406, https://doi.org/10.5194/bg-18-1395-2021,https://doi.org/10.5194/bg-18-1395-2021, 2021
Short summary

Cited articles

Adamczyk, B., Kitunen, V., and Smolander, A.: Polyphenol oxidase, tannase and proteolytic activity in relation to tannin concentration in the soil organic horizon under silver birch and Norway spruce, Soil Biol. Biochem., 41, 2085–2093, https://doi.org/10.1016/j.soilbio.2009.07.018, 2009. 
Allison, S. D., Weintraub, M. N., Gartner, T. B., and Waldrop, M. P.: Evolutionary-economic principles as regulators of soil enzyme production and ecosystem function, in: Soil enzymology, Springer, Berlin, Heidelberg, Germany, 229–243, ISBN 978-3-642-14225-3, 2010. 
Angst, G., Messinger, J., Greiner, M., Häusler, W., Hertel, D., Kirfel, K., Kögel-Knabner, I., Leuschner, C., Rethemeyer, J., and Mueller, C. W.: Soil organic carbon stocks in topsoil and subsoil controlled by parent material, carbon input in the rhizosphere, and microbial-derived compounds, Soil Biol. Biochem., 122, 19–30, https://doi.org/10.1016/j.soilbio.2018.03.026, 2018. 
Asch, K.: IGME 5000: 1 : 5 Million international geological map of Europe and Adjacent Areas–final version for the internet, BGR, Hannover, 2005. 
Augusto, L., Achat, D. L., Jonard, M., Vidal, D., and Ringeval, B.: Soil parent material – A major driver of plant nutrient limitations in terrestrial ecosystems, Glob. Change Biol., 23, 3808–3824, 2017. 
Download
Short summary
Cleavage of proteins to smaller nitrogen compounds allows microorganisms and plants to exploit the largest nitrogen reservoir in soils and is considered the bottleneck in soil organic nitrogen cycling. Results from soils covering a European transect show that protein turnover is constrained by soil geochemistry, shifts in climate and associated alterations in soil weathering and should be considered as a driver of soil nitrogen availability with repercussions on carbon cycle processes.
Share
Altmetrics
Final-revised paper
Preprint