Articles | Volume 19, issue 23
https://doi.org/10.5194/bg-19-5419-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-5419-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Climate and geology overwrite land use effects on soil organic nitrogen cycling on a continental scale
Lisa Noll
Division of Terrestrial Ecosystem Research, Department of Microbiology
and Ecosystem Science, Center of Microbiology and Environmental Systems
Science, University of Vienna, Vienna, Austria
German Environment Agency, Dessau-Rosslau, Germany
Shasha Zhang
Division of Terrestrial Ecosystem Research, Department of Microbiology
and Ecosystem Science, Center of Microbiology and Environmental Systems
Science, University of Vienna, Vienna, Austria
Qing Zheng
Division of Terrestrial Ecosystem Research, Department of Microbiology
and Ecosystem Science, Center of Microbiology and Environmental Systems
Science, University of Vienna, Vienna, Austria
Yuntao Hu
Division of Terrestrial Ecosystem Research, Department of Microbiology
and Ecosystem Science, Center of Microbiology and Environmental Systems
Science, University of Vienna, Vienna, Austria
Lawrence Berkeley National Laboratory, Berkeley, CA, USA
Florian Hofhansl
International Institute for Applied Systems Analysis, Schlossplatz 1,
2361 Laxenburg, Austria
Wolfgang Wanek
CORRESPONDING AUTHOR
Division of Terrestrial Ecosystem Research, Department of Microbiology
and Ecosystem Science, Center of Microbiology and Environmental Systems
Science, University of Vienna, Vienna, Austria
Related authors
No articles found.
Michael Lintner, Irina Polovodova Asteman, Wolfgang Wanek, Petra Heinz, Jan Goleń, and Jarosław Tyszka
J. Micropalaeontol., 44, 263–273, https://doi.org/10.5194/jm-44-263-2025, https://doi.org/10.5194/jm-44-263-2025, 2025
Short summary
Short summary
Foraminifera are microorganisms which, due to their abundance and diversity, are often used as proxies to describe climatic changes in marine environments. For this purpose, experiments containing antibiotics that are intended to reduce the activity of other microorganisms are carried out with foraminifera. In our study, we examined the influence of antibiotics on foraminifera and tested whether these chemicals are really harmless for foraminifera or not.
Johanna Schlögl, Clemens Karwautz, Lena Cramaro, Wolfgang Wanek, Judith Prommer, Theresa Böckle, Andreas Kappler, Stefan B. Haderlein, and Christian Griebler
EGUsphere, https://doi.org/10.5194/egusphere-2025-2577, https://doi.org/10.5194/egusphere-2025-2577, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Climate change enhances the occurrence of summer droughts and heavy rainfall events in Central Europe. We investigated the response of inorganic nitrogen cycling, redox conditions and microbial community composition to an artificial heavy rain event following a drought in shallow arable soil. Redox conditions changed fast with the hydraulic event triggering nitrogen transport and turnover. Microbial communities reacted moderately in terms of composition but exhibited enzyme activity changes.
Thomas Janssen, Ype van der Velde, Florian Hofhansl, Sebastiaan Luyssaert, Kim Naudts, Bart Driessen, Katrin Fleischer, and Han Dolman
Biogeosciences, 18, 4445–4472, https://doi.org/10.5194/bg-18-4445-2021, https://doi.org/10.5194/bg-18-4445-2021, 2021
Short summary
Short summary
Satellite images show that the Amazon forest has greened up during past droughts. Measurements of tree stem growth and leaf litterfall upscaled using machine-learning algorithms show that leaf flushing at the onset of a drought results in canopy rejuvenation and green-up during drought while simultaneously trees excessively shed older leaves and tree stem growth declines. Canopy green-up during drought therefore does not necessarily point to enhanced tree growth and improved forest health.
Michael Lintner, Bianca Lintner, Wolfgang Wanek, Nina Keul, and Petra Heinz
Biogeosciences, 18, 1395–1406, https://doi.org/10.5194/bg-18-1395-2021, https://doi.org/10.5194/bg-18-1395-2021, 2021
Short summary
Short summary
Foraminifera are unicellular marine organisms that play an important role in the marine element cycle. Changes of environmental parameters such as salinity or temperature have a significant impact on the faunal assemblages. Our experiments show that changes in salinity immediately influence the foraminiferal activity. Also the light regime has a significant impact on carbon or nitrogen processing in foraminifera which contain no kleptoplasts.
Cited articles
Adamczyk, B., Kitunen, V., and Smolander, A.: Polyphenol oxidase, tannase
and proteolytic activity in relation to tannin concentration in the soil
organic horizon under silver birch and Norway spruce, Soil Biol.
Biochem., 41, 2085–2093, https://doi.org/10.1016/j.soilbio.2009.07.018, 2009.
Allison, S. D., Weintraub, M. N., Gartner, T. B., and Waldrop, M. P.:
Evolutionary-economic principles as regulators of soil enzyme production and
ecosystem function, in: Soil enzymology, Springer, Berlin, Heidelberg,
Germany, 229–243, ISBN 978-3-642-14225-3, 2010.
Angst, G., Messinger, J., Greiner, M., Häusler, W., Hertel, D., Kirfel,
K., Kögel-Knabner, I., Leuschner, C., Rethemeyer, J., and Mueller, C.
W.: Soil organic carbon stocks in topsoil and subsoil controlled by parent
material, carbon input in the rhizosphere, and microbial-derived compounds,
Soil Biol. Biochem., 122, 19–30, https://doi.org/10.1016/j.soilbio.2018.03.026, 2018.
Asch, K.: IGME 5000: 1 : 5 Million international geological map of Europe and
Adjacent Areas–final version for the internet, BGR, Hannover, 2005.
Augusto, L., Achat, D. L., Jonard, M., Vidal, D., and Ringeval, B.: Soil
parent material – A major driver of plant nutrient limitations in
terrestrial ecosystems, Glob. Change Biol., 23, 3808–3824, 2017.
BGR [Bundesanstalt für Geowissenschaften und Rohstoffe]: Soil Regions
Map of the European Union and Adjacent Countries 1 : 5 000 000 (Version 2.0),
Special Publication Ispra, EU catalogue number S.P.I.05.134., https://services.bgr.de/boden/eusr5000 (last access: 29 November 2022), 2005.
Bohn, U. and Katenina, G.: Map of the natural vegetation of Europe: scale 1 : 2,500,000, Part 2: Legend, Bundesamt für Naturschutz (German Federal Agency for Nature conservation), Bonn,
ISBN 3784338372, 2000.
Brookes, P., Landman, A., Pruden, G., and Jenkinson, D.: Chloroform
fumigation and the release of soil nitrogen: a rapid direct extraction
method to measure microbial biomass nitrogen in soil, Soil Biol.
Biochem., 17, 837–842, 1985.
Callesen, I., Raulund-Rasmussen, K., Westman, C. J., and Tau-Strand, L.:
Nitrogen pools and C : N ratios in well-drained Nordic forest soils related
to climate and soil texture, Boreal Environ. Res., 12, 681–692, 2007.
Cao, Y., Wei, X., Cai, P., Huang, Q., Rong, X., and Liang, W.: Preferential
adsorption of extracellular polymeric substances from bacteria on clay
minerals and iron oxide, Colloids Surface., 83,
122–127, https://doi.org/10.1016/j.colsurfb.2010.11.018, 2011.
Capek, P. T., Manzoni, S., Kastovska, E., Wild, B., Diakova, K., Barta, J.,
Schnecker, J., Blasi, C., Martikainen, P. J., Alves, R. J. E., Guggenberger,
G., Gentsch, N., Hugelius, G., Palmtag, J., Mikutta, R., Shibistova, O.,
Urich, T., Schleper, C., Richter, A., and Santruckova, H.: A plant-microbe
interaction framework explaining nutrient effects on primary production,
Nat. Ecol. Evol., 2, 1588–1596, https://doi.org/10.1038/s41559-018-0662-8,
2018.
Chen, Q., Yang, F., and Cheng, X.: Effects of land use change type on soil
microbial attributes and their controls: Data synthesis, Ecol.
Indic., 138, 108852, https://doi.org/10.1016/j.ecolind.2022.108852, 2022.
Chen, R., Senbayram, M., Blagodatsky, S., Myachina, O., Dittert, K., Lin,
X., Blagodatskaya, E., and Kuzyakov, Y.: Soil C and N availability determine
the priming effect: microbial N mining and stoichiometric decomposition
theories, Glob. Change Biol., 20, 2356–2367, 2014.
De Vries, F. T., Hoffland, E., van Eekeren, N., Brussaard, L., and Bloem,
J.: Fungal/bacterial ratios in grasslands with contrasting nitrogen
management, Soil Biol. Biochem., 38, 2092–2103, 2006.
Del Grosso, S., Parton, W., Stohlgren, T., Zheng, D., Bachelet, D., Prince,
S., Hibbard, K., and Olson, R.: Global potential net primary production
predicted from vegetation class, precipitation, and temperature, Ecology,
89, 2117–2126, 2008.
Delgado-Baquerizo, M., Maestre, F. T., Gallardo, A., Bowker, M. A.,
Wallenstein, M. D., Quero, J. L., Ochoa, V., Gozalo, B.,
García-Gómez, M., and Soliveres, S.: Decoupling of soil nutrient
cycles as a function of aridity in global drylands, Nature, 502, 672–676, 2013.
Doetterl, S., Stevens, A., Six, J., Merckx, R., Van Oost, K., Pinto, M.,
Casanova-Katny, A., Munoz, C., Boudin, M., Venegas, E., and Boeckx, P.: Soil
carbon storage controlled by interactions between geochemistry and climate,
Nat. Geosci., 8, 780–783, https://doi.org/10.1038/NGEO2516, 2015.
Du, E., Terrer, C., Pellegrini, A. F., Ahlström, A., van Lissa, C. J.,
Zhao, X., Xia, N., Wu., X. and Jackson, R. B.: Global patterns of
terrestrial nitrogen and phosphorus limitation, Nat. Geosci., 13,
221–226, 2020.
Elrys, A. S., Ali, A., Zhang, H., Cheng, Y., Zhang, J., Cai, Z. C., Mueller,
C., and Chang, S. X.: Patterns and drivers of global gross nitrogen
mineralization in soils, Glob. Change Biol., 27, 5950–5962, 2021.
Fang, K., Qin, S., Chen, L., Zhang, Q., and Yang, Y.: Al/Fe mineral controls
on soil organic carbon stock across Tibetan alpine grasslands, J.
Geophys. Res.-Biogeo., 124, 247–259, 2019.
Fick, S. E. and Hijmans, R. J.: Worldclim 2: New 1-km spatial resolution
climate surfaces for global land areas, Int. J. Climatol., 37, 4302–4315, https://doi.org/10.1002/joc.5086, 2017.
Fierer, N. and Jackson, R. B.: The diversity and biogeography of soil
bacterial communities, P. Natl. Acad. Sci.
USA, 103, 626–631, 2006.
Franco, L. F. M. and Pessôa Filho, P. d. A.: On the solubility of
proteins as a function of pH: Mathematical development and application,
Fluid Phase Equilibr., 306, 242–250, https://doi.org/10.1016/j.fluid.2011.04.015, 2011.
Fuka, M. M., Engel, M., Gattinger, A., Bausenwein, U., Sommer, M., Munch, J.
C., and Schloter, M.: Factors influencing variability of proteolytic genes
and activities in arable soils, Soil Biol. Biochem., 40,
1646–1653, 2008.
Gislason, S. R., Oelkers, E. H., Eiriksdottir, E. S., Kardjilov, M. I.,
Gisladottir, G., Sigfusson, B., Snorrason, A., Elefsen, S., Hardardottir,
J., Torssander, P., and Oskarsson, N.: Direct evidence of the feedback
between climate and weathering, Earth Planet. Sc. Lett., 277,
213–222, https://doi.org/10.1016/j.epsl.2008.10.018, 2009.
Gu, B., Schmitt, J., Chen, Z., Liang, L., and McCarthy, J. F.: Adsorption
and desorption of natural organic matter on iron oxide: mechanisms and
models, Environ. Sci. Technol., 28, 38–46, 1994.
Gu, B., Schmitt, J., Chen, Z., Liang, L., and McCarthy, J. F.: Adsorption
and desorption of different organic matter fractions on iron oxide,
Geochim. Cosmochim. Ac., 59, 219–229, https://doi.org/10.1016/0016-7037(94)00282-Q, 1995.
Hartman, W. H. and Richardson, C. J.: Differential nutrient limitation of
soil microbial biomass and metabolic quotients (q CO2): is there a
biological stoichiometry of soil microbes?, PloS one, 8, e57127, https://doi.org/10.1371/journal.pone.0057127, 2013.
Hendriksen, N. B., Creamer, R. E., Stone, D., and Winding, A.: Soil
exo-enzyme activities across Europe – The influence of climate, land-use and
soil properties, Appl. Soil Ecol., 97, 44–48, https://doi.org/10.1016/j.apsoil.2015.08.012, 2016.
Hernes, P. J., Benner, R., Cowie, G. L., Goñi, M. A.,
Bergamaschi, B. A., and Hedges, J. I.: Tannin diagenesis in mangrove leaves from a
tropical estuary: a novel molecular approach, Geochim. Cosmochim.
Ac., 65, 3109–3122, 2001.
Hood-Nowotny, R., Umana, N. H.-N., Inselbacher, E., Oswald-Lachouani, P.,
and Wanek, W.: Alternative methods for measuring inorganic, organic, and
total dissolved nitrogen in soil, Soil Sci. Soc. Am. J.,
74, 1018, https://doi.org/10.2136/sssaj2009.0389, 2010.
Hu, L. T. and Bentler, P. M.: Cutoff Criteria for Fit Indexes in Covariance
Structure Analysis: Conventional Criteria Versus New Alternatives,
Struct. Equ. Modeling, 6, 1–55,
https://doi.org/10.1080/10705519909540118, 1999.
Hu, Y., Zheng, Q., Zhang, S., Noll, L., and Wanek, W.: Significant release
and microbial utilization of amino sugars and d-amino acid enantiomers from
microbial cell wall decomposition in soils, Soil Biol. Biochem.,
123, 115–125, 2018.
Jangid, K., Williams, M. A., Franzluebbers, A. J., Sanderlin, J. S., Reeves,
J. H., Jenkins, M. B., Endale, D. M., Coleman, D. C., and Whitman, W. B.:
Relative impacts of land-use, management intensity and fertilization upon
soil microbial community structure in agricultural systems, Soil Biol.
Biochem., 40, 2843–2853, 2008.
Jones, D. L., Owen, A. G., and Farrar, J. F.: Simple method to enable the
high resolution determination of total free amino acids in soil solutions
and soil extracts, Soil Biol. Biochem., 34, 1893–1902, 2002.
Kaiser, C., Koranda, M., Kitzler, B., Fuchslueger, L., Schnecker, J.,
Schweiger, P., Rasche, F., Zechmeister-Boltenstern, S., Sessitsch, A., and
Richter, A.: Belowground carbon allocation by trees drives seasonal patterns
of extracellular enzyme activities by altering microbial community
composition in a beech forest soil, New Phytol., 187, 843–858, 2010.
Kaiser, K. and Guggenberger, G.: The role of DOM sorption to mineral
surfaces in the preservation of organic matter in soils, Org.
Geochem., 31, 711–725, https://doi.org/10.1016/S0146-6380(00)00046-2, 2000.
Kaiser, K. and Guggenberger, G.: Mineral surfaces and soil organic matter,
Eur. J. Soil Sci., 54, 219–236,
https://doi.org/10.1046/j.1365-2389.2003.00544.x, 2003.
Kang, H. Z., Xin, Z. J., Berg, B., Burgess, P. J., Liu, Q. L., Liu, Z. C.,
Li, Z. H., and Liu, C. J.: Global pattern of leaf litter nitrogen and
phosphorus in woody plants, Ann. For. Sci., 67, 8,
https://doi.org/10.1051/forest/2010047, 2010.
Khare, N., Eggleston, C. M., Lovelace, D. M., and Boese, S. W.: Structural
and redox properties of mitochondrial cytochrome c co-sorbed with phosphate
on hematite (α-Fe2O3) surfaces, J. Colloid Interf.
Sci., 303, 404–414, 2006.
Kim, S.: ppcor: Partial and Semi-Partial (Part) Correlation [code], https://CRAN.R-project.org/package=ppcor (last access: 14 October 2022), 2015.
Kirkham, D. and Bartholomew, W.: Equations for following nutrient
transformations in soil, utilizing tracer data, Soil Sci. Soc.
Am. J., 18, 33–34, 1954.
Kleber, M., Mikutta, R., Torn, M., and Jahn, R.: Poorly crystalline mineral
phases protect organic matter in acid subsoil horizons, Eur. J.
Soil Sci., 56, 717–725, 2005.
Kögel-Knabner, I., Guggenberger, G., Kleber, M., Kandeler, E., Kalbitz,
K., Scheu, S., Eusterhues, K., and Leinweber, P.: Organo-mineral
associations in temperate soils: Integrating biology, mineralogy, and
organic matter chemistry, J. Plant Nutr. Soil Sc., 171,
61–82, https://doi.org/10.1002/jpln.200700048, 2008.
Koutsoukos, P. G., Norde, W., and Lyklema, J.: Protein adsorption on
hematite (α-Fe2O3) surfaces, J. Colloid Interf.
Sci., 95, 385–397, https://doi.org/10.1016/0021-9797(83)90198-4, 1983.
Kuo, S.: Phosphorus,
Part 3, in: Methods of Soil
Analysis Part 3, edited by: Sparks, D. L., SSSA Book Series, Soil Science
Society of America, Inc. & American society of Agronomy, Inc., Madison,
WI, 869–919, 1996.
Lachouani, P., Frank, A. H., and Wanek, W.: A suite of sensitive chemical
methods to determine the δ15N of ammonium, nitrate and total dissolved N
in soil extracts, Rapid Commun. Mass Sp., 24, 3615–3623,
https://doi.org/10.1002/rcm.4798, 2010.
Lajtha, K., Driscoll, C., Jarrell, W., and Elliott, E.: Soil phosphorus:
characterization and total element analysis, Standard soil methods for
long-term ecological research, Oxford University Press, New York, 115–142,
1999.
La Pierre, K. J., Blumenthal, D. M., Brown, C. S., Klein, J. A., and Smith,
M. D.: Drivers of Variation in Aboveground Net Primary Productivity and
Plant Community Composition Differ Across a Broad Precipitation Gradient,
Ecosystems, 19, 521–533, https://doi.org/10.1007/s10021-015-9949-7, 2016.
Lauber, C. L., Strickland, M. S., Bradford, M. A., and Fierer, N.: The
influence of soil properties on the structure of bacterial and fungal
communities across land-use types, Soil Biol. Biochem., 40,
2407–2415, https://doi.org/10.1016/j.soilbio.2008.05.021, 2008.
Lauber, C. L., Hamady, M., Knight, R., and Fierer, N.: Pyrosequencing-Based Assessment of Soil pH as a Predictor of Soil Bacterial Community Structure at the Continental Scale, Appl. Environ. Microb., 75, 5111–5120, https://doi.org/10.1128/AEM.00335-09, 2009.
Leinemann, T., Preusser, S., Mikutta, R., Kalbitz, K., Cerli, C.,
Höschen, C., Mueller, C. W., Kandeler, E., and Guggenberger, G.:
Multiple exchange processes on mineral surfaces control the transport of
dissolved organic matter through soil profiles, Soil Biol.
Biochem., 118, 79–90, https://doi.org/10.1016/j.soilbio.2017.12.006, 2018.
Loeppert, R. H.: Iron Methods of Soil Analysis. Part 3, in: Methods of Soil
Analysis Part 3, edited by: Sparks, D. L., SSSA Book Series, Soil Science
Society of America, Inc. & American society of Agronomy, Inc., Madison,
WI, 639–664, 1996.
Luo, Z., Feng, W., Luo, Y., Baldock, J., and Wang, E.: Soil organic carbon
dynamics jointly controlled by climate, carbon inputs, soil properties and
soil carbon fractions, Glob. Change Biol., 23, 4430–4439, https://doi.org/10.1111/gcb.13767, 2017.
Lützow, M. V., Kögel-Knabner, I., Ekschmitt, K., Matzner, E.,
Guggenberger, G., Marschner, B., and Flessa, H.: Stabilization of organic
matter in temperate soils: mechanisms and their relevance under different
soil conditions – a review, Eur. J. Soil Sci., 57, 426–445,
2006.
Martens, D. A. and Loeffelmann, K. L.: Soil amino acid composition
quantified by acid hydrolysis and anion chromatography-pulsed amperometry,
J. Agr. Food Chem., 51, 6521–6529, 2003.
Marty, C., Houle, D., Gagnon, C., and Courchesne, F.: The relationships of
soil total nitrogen concentrations, pools and C : N ratios with climate,
vegetation types and nitrate deposition in temperate and boreal forests of
eastern Canada, Catena, 152, 163–172, https://doi.org/10.1016/j.catena.2017.01.014, 2017.
Mikutta, R., Kaiser, K., Dörr, N., Vollmer, A., Chadwick, O. A.,
Chorover, J., Kramer, M. G., and Guggenberger, G.: Mineralogical impact on
organic nitrogen across a long-term soil chronosequence (0.3–4100 kyr),
Geochim. Cosmochim. Ac., 74, 2142–2164, 2010.
Mooshammer, M., Wanek, W., Schnecker, J., Wild, B., Leitner, S., Hofhansl,
F., Blöchl, A., Hämmerle, I., Frank, A. H., and Fuchslueger, L.:
Stoichiometric controls of nitrogen and phosphorus cycling in decomposing
beech leaf litter, Ecology, 93, 770–782, 2012.
Moni, C., Chabbi, A., Nunan, N., Rumpel, C., and Chenu, C.: Do iron and aluminium oxides stabilise organic matter in soil? A multi-scale statistical analysis, from field to horizon, in: AGU Fall Meeting Abstracts, B11G-04, 2007.
Newcomb, C. J., Qafoku, N. P., Grate, J. W., Bailey, V. L., and De Yoreo, J. J.: Developing a molecular picture of soil organic matter–mineral interactions by quantifying organo–mineral binding, Nat. Commun., 8, 396, https://doi.org/10.1038/s41467-017-00407-9, 2017.
Nierop, K. G., Jansen, B., and Verstraten, J. M.: Dissolved organic matter,
aluminium and iron interactions: precipitation induced by metal/carbon
ratio, pH and competition, Sci. Total Environ., 300, 201–211,
2002.
Noll, L., Zhang, S., and Wanek, W.: Novel high-throughput approach to
determine key processes of soil organic nitrogen cycling: Gross protein
depolymerization and microbial amino acid uptake, Soil Biol.
Biochem., 130, 73–81, https://doi.org/10.1016/j.soilbio.2018.12.005, 2019a.
Noll, L., Zhang, S., Zheng, Q., Hu, Y., and Wanek, W.: Wide-spread
limitation of soil organic nitrogen transformations by substrate
availability and not by extracellular enzyme content, Soil Biol.
Biochem., 133, 37–49, https://doi.org/10.1016/j.soilbio.2019.02.016, 2019b.
Noll, L., Zhang, S., Zheng, Q., Hu, Y., Hofhansl, F., and Wanek, W.: Climate and geology overwrite land use effects on soil organic nitrogen cycling on a continental scale, Zenodo [data set], https://doi.org/10.5281/zenodo.7395605, 2022.
Padbhushan, R., Kumar, U., Sharma, S., Rana, D. S., Kumar, R., Kohli, A.,
Kumari, P., Parmar, B., Kaviraj, M, Sinha, A. K., Annapura, K., and Gupta, V.
V.: Impact of Land-Use Changes on Soil Properties and Carbon Pools in
India: A Meta-analysis, Front. Environ. Sci., 9, 794866, https://doi.org/10.3389/fenvs.2021.794866, 2022.
Peng, X. and Wang, W.: Stoichiometry of soil extracellular enzyme activity
along a climatic transect in temperate grasslands of northern China, Soil
Biol. Biochem., 98, 74–84, https://doi.org/10.1016/j.soilbio.2016.04.008, 2016.
Prommer, J., Wanek, W., Hofhansl, F., Trojan, D., Offre, P., Urich, T.,
Schleper, C., Sassmann, S., Kitzler, B., Soja, G., and Hood-Nowotny, R. C.:
Biochar decelerates soil organic nitrogen cycling but stimulates soil
nitrification in a temperate arable field trial, PLoS One, 9, e86388,
https://doi.org/10.1371/journal.pone.0086388, 2014.
Pronk, G. J., Heister, K., and Kögel-Knabner, I.: Is turnover and
development of organic matter controlled by mineral composition?, Soil
Biol. Biochem., 67, 235–244, 2013.
Quiquampoix, H.: Mechanisms of protein adsorption on surfaces and
consequences for extracellular enzyme activity in soil, in: Soil
biochemistry, edited by: Stotzky, G., 1st Edn., CRC Press, 171–206, ISBN 9780429182372, 2000.
Quiquampoix, H. and Ratcliffe, R. G.: A 31P NMR study of the adsorption of
bovine serum albumin on montmorillonite using phosphate and the paramagnetic
cation Mn2+: modification of conformation with pH, J. Colloid
Interf. Sc., 148, 343–352, https://doi.org/10.1016/0021-9797(92)90173-J, 1992.
R Development Core Team: R: A language and environment for statistical
computing, R Foundation for Statistical Computing [code], https://www.r-project.org/
(last access: 22 June 2022), 2008.
Reich, P. B. and Oleksyn, J.: Global patterns of plant leaf N and P in
relation to temperature and latitude, P. Natl. Acad.
Sci. USA, 101, 11001–11006,
https://doi.org/10.1073/pnas.0403588101, 2004.
Rosseel, Y.: The lavaan tutorial, https://lavaan.ugent.be/tutorial/ and https://github.com/yrosseel/lavaan/ (last access: 28 November 2022), 2018.
Rousk, J., Bååth, E., Brookes, P. C., Lauber, C. L., Lozupone, C.,
Caporaso, J. G., Knight, R., and Fierer, N.: Soil bacterial and fungal
communities across a pH gradient in an arable soil, ISME J., 4, 1340–1351, 2010.
Schulten, H.-R. and Schnitzer, M.: The chemistry of soil organic nitrogen: a
review, Biol. Fert. Soils, 26, 1–15, 1997.
Sinsabaugh, R. L., Lauber, C. L., Weintraub, M. N., Ahmed, B., Allison, S.
D., Crenshaw, C., Contosta, A. R., Cusack, D., Frey, S., Gallo, M. E.,
Gartner, T. B., Hobbie, S. E., Holland, K., Keeler, B. L., Powers, J. S.,
Stursova, M., Takacs-Vesbac, C., Waldrop, M. P., Wallenstein, M. D., Zak, D.
R., and Zeglin, L. H.: Stoichiometry of soil enzyme activity at global
scale, Ecol. Lett., 11, 1252–1264, https://doi.org/10.1111/j.1461-0248.2008.01245.x,
2008.
Six, J. and Jastrow, J. D.: Organic matter turnover, Encyclopedia of soil
science, edited by: Chesworth, W., Springer Verlag, 936–942, ISBN 978-1-4020-3994-2, 2002.
Staunton, S. and Quiquampoix, H.: Adsorption and conformation of bovine
serum albumin on montmorillonite: Modification of the balance between
hydrophobic and electrostatic interactions by protein methylation and pH
variation, J. Colloid Interf. Sci., 166, 89–94, https://doi.org/10.1006/jcis.1994.1274, 1994.
Wanek, W., Mooshammer, M., Blöchl, A., Hanreich, A., and Richter, A.:
Determination of gross rates of amino acid production and immobilization
in decomposing leaf litter by a novel 15N isotope pool dilution technique,
Soil Biol. Biochem., 42, 1293–1302, https://doi.org/10.1016/j.soilbio.2010.04.001,
2010.
Wattel-Koekkoek, E. J. W., van Genuchten, P. P. L., Buurman, P., and van
Lagen, B.: Amount and composition of clay-associated soil organic matter in
a range of kaolinitic and smectitic soils, Geoderma, 99, 27–49, https://doi.org/10.1016/S0016-7061(00)00062-8, 2001.
Wild, B., Schnecker, J., Barta, J., Capek, P., Guggenberger, G., Hofhansl,
F., Kaiser, C., Lashchinsky, N., Mikutta, R., Mooshammer, M., Santruckova,
H., Shibistova, O., Urich, T., Zimov, S. A., and Richter, A.: Nitrogen
dynamics in Turbic Cryosols from Siberia and Greenland, Soil Biol. Biochem.,
67, 85–93, https://doi.org/10.1016/j.soilbio.2013.08.004, 2013.
Xiao, W., Chen, X., Jing, X., and Zhu, B.: A meta-analysis of soil
extracellular enzyme activities in response to global change, Soil Biol. Biochem., 123, 21–32, 2018.
Xu, X., Thornton, P. E., and Post, W. M.: A global analysis of soil
microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems,
Global Ecol. Biogeogr., 22, 737–749, 2013.
Yaalon, D. H.: Soils in the Mediterranean region: what makes them
different?, CATENA, 28, 157–169, https://doi.org/10.1016/S0341-8162(96)00035-5, 1997.
Yang, Y., Fang, J., Ma, W., and Wang, W.: Relationship between variability
in aboveground net primary production and precipitation in global
grasslands, Geophys. Res. Lett., 35, L23710, https://doi.org/10.1029/2008GL035408, 2008.
Zhang, L. and Altabet, M. A.: Amino-group-specific natural abundance
nitrogen isotope ratio analysis in amino acids, Rapid Commun. Mass Sp.,
22, 559–566, https://doi.org/10.1002/rcm.3393, 2008.
Short summary
Cleavage of proteins to smaller nitrogen compounds allows microorganisms and plants to exploit the largest nitrogen reservoir in soils and is considered the bottleneck in soil organic nitrogen cycling. Results from soils covering a European transect show that protein turnover is constrained by soil geochemistry, shifts in climate and associated alterations in soil weathering and should be considered as a driver of soil nitrogen availability with repercussions on carbon cycle processes.
Cleavage of proteins to smaller nitrogen compounds allows microorganisms and plants to exploit...
Altmetrics
Final-revised paper
Preprint