Articles | Volume 19, issue 24
https://doi.org/10.5194/bg-19-5893-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-5893-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Role of phosphorus in the seasonal deoxygenation of the East China Sea shelf
Department of Oceanography, Dalhousie University, Halifax, Nova
Scotia, Canada
Haiyan Zhang
Department of Oceanography, Dalhousie University, Halifax, Nova
Scotia, Canada
School of Marine Science and Technology, Tianjin University, Tianjin,
China
Katja Fennel
Department of Oceanography, Dalhousie University, Halifax, Nova
Scotia, Canada
Related authors
Arnaud Laurent, Bin Wang, Dariia Atamanchuk, Subhadeep Rakshit, Kumiko Azetsu-Scott, Chris Algar, and Katja Fennel
EGUsphere, https://doi.org/10.5194/egusphere-2025-3361, https://doi.org/10.5194/egusphere-2025-3361, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Surface ocean alkalinity enhancement, through the release of alkaline materials, is a technology that could increase the storage of anthropogenic carbon in the ocean. Halifax Harbour (Canada) is a current test site for operational alkalinity addition. Here, we present a model of Halifax Harbour that simulates alkalinity addition at various locations of the harbour and quantifies the resulting net CO2 uptake. The model can be relocated to study alkalinity addition in other coastal systems.
Kyoko Ohashi, Arnaud Laurent, Christoph Renkl, Jinyu Sheng, Katja Fennel, and Eric Oliver
Geosci. Model Dev., 17, 8697–8733, https://doi.org/10.5194/gmd-17-8697-2024, https://doi.org/10.5194/gmd-17-8697-2024, 2024
Short summary
Short summary
We developed a modelling system of the northwest Atlantic Ocean that simulates the currents, temperature, salinity, and parts of the biochemical cycle of the ocean, as well as sea ice. The system combines advanced, open-source models and can be used to study, for example, the ocean capture of atmospheric carbon dioxide, which is a key process in the global climate. The system produces realistic results, and we use it to investigate the roles of tides and sea ice in the northwest Atlantic Ocean.
Katja Fennel, Matthew C. Long, Christopher Algar, Brendan Carter, David Keller, Arnaud Laurent, Jann Paul Mattern, Ruth Musgrave, Andreas Oschlies, Josiane Ostiguy, Jaime B. Palter, and Daniel B. Whitt
State Planet, 2-oae2023, 9, https://doi.org/10.5194/sp-2-oae2023-9-2023, https://doi.org/10.5194/sp-2-oae2023-9-2023, 2023
Short summary
Short summary
This paper describes biogeochemical models and modelling techniques for applications related to ocean alkalinity enhancement (OAE) research. Many of the most pressing OAE-related research questions cannot be addressed by observation alone but will require a combination of skilful models and observations. We present illustrative examples with references to further information; describe limitations, caveats, and future research needs; and provide practical recommendations.
Arnaud Laurent, Katja Fennel, and Angela Kuhn
Biogeosciences, 18, 1803–1822, https://doi.org/10.5194/bg-18-1803-2021, https://doi.org/10.5194/bg-18-1803-2021, 2021
Short summary
Short summary
CMIP5 and CMIP6 models, and a high-resolution regional model, were evaluated by comparing historical simulations with observations in the northwest North Atlantic, a climate-sensitive and biologically productive ocean margin region. Many of the CMIP models performed poorly for biological properties. There is no clear link between model resolution and skill in the global models, but there is an overall improvement in performance in CMIP6 from CMIP5. The regional model performed best.
Haiyan Zhang, Katja Fennel, Arnaud Laurent, and Changwei Bian
Biogeosciences, 17, 5745–5761, https://doi.org/10.5194/bg-17-5745-2020, https://doi.org/10.5194/bg-17-5745-2020, 2020
Short summary
Short summary
In coastal seas, low oxygen, which is detrimental to coastal ecosystems, is increasingly caused by man-made nutrients from land. This is especially so near mouths of major rivers, including the Changjiang in the East China Sea. Here a simulation model is used to identify the main factors determining low-oxygen conditions in the region. High river discharge is identified as the prime cause, while wind and intrusions of open-ocean water modulate the severity and extent of low-oxygen conditions.
Arnaud Laurent, Bin Wang, Dariia Atamanchuk, Subhadeep Rakshit, Kumiko Azetsu-Scott, Chris Algar, and Katja Fennel
EGUsphere, https://doi.org/10.5194/egusphere-2025-3361, https://doi.org/10.5194/egusphere-2025-3361, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Surface ocean alkalinity enhancement, through the release of alkaline materials, is a technology that could increase the storage of anthropogenic carbon in the ocean. Halifax Harbour (Canada) is a current test site for operational alkalinity addition. Here, we present a model of Halifax Harbour that simulates alkalinity addition at various locations of the harbour and quantifies the resulting net CO2 uptake. The model can be relocated to study alkalinity addition in other coastal systems.
Lina Garcia-Suarez, Katja Fennel, Neha Mehendale, Tronje Peer Kemena, and David Peter Keller
EGUsphere, https://doi.org/10.22541/essoar.173758192.24328151/v2, https://doi.org/10.22541/essoar.173758192.24328151/v2, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
This study shows that regional ocean warming can make the Gulf Stream appear to shift north, even when its path remains stable in a changing climate. Temperature-based proxies, like the Gulf Stream North Wall, overestimate changes in its position. Methods based on sea surface height provide a more accurate view. These results help improve how we track changes in ocean currents and avoid misinterpreting signs of climate-related shifts.
Gianpiero Cossarini, Andrew Moore, Stefano Ciavatta, and Katja Fennel
State Planet, 5-opsr, 12, https://doi.org/10.5194/sp-5-opsr-12-2025, https://doi.org/10.5194/sp-5-opsr-12-2025, 2025
Short summary
Short summary
Marine biogeochemistry refers to the cycling of chemical elements resulting from physical transport, chemical reaction, uptake, and processing by living organisms. Biogeochemical models can have a wide range of complexity, from a single nutrient to fully explicit representations of multiple nutrients, trophic levels, and functional groups. Uncertainty sources are the lack of knowledge about the parameterizations, the initial and boundary conditions, and the lack of observations.
Kyoko Ohashi, Arnaud Laurent, Christoph Renkl, Jinyu Sheng, Katja Fennel, and Eric Oliver
Geosci. Model Dev., 17, 8697–8733, https://doi.org/10.5194/gmd-17-8697-2024, https://doi.org/10.5194/gmd-17-8697-2024, 2024
Short summary
Short summary
We developed a modelling system of the northwest Atlantic Ocean that simulates the currents, temperature, salinity, and parts of the biochemical cycle of the ocean, as well as sea ice. The system combines advanced, open-source models and can be used to study, for example, the ocean capture of atmospheric carbon dioxide, which is a key process in the global climate. The system produces realistic results, and we use it to investigate the roles of tides and sea ice in the northwest Atlantic Ocean.
Krysten Rutherford, Katja Fennel, Lina Garcia Suarez, and Jasmin G. John
Biogeosciences, 21, 301–314, https://doi.org/10.5194/bg-21-301-2024, https://doi.org/10.5194/bg-21-301-2024, 2024
Short summary
Short summary
We downscaled two mid-century (~2075) ocean model projections to a high-resolution regional ocean model of the northwest North Atlantic (NA) shelf. In one projection, the NA shelf break current practically disappears; in the other it remains almost unchanged. This leads to a wide range of possible future shelf properties. More accurate projections of coastal circulation features would narrow the range of possible outcomes of biogeochemical projections for shelf regions.
Robert W. Izett, Katja Fennel, Adam C. Stoer, and David P. Nicholson
Biogeosciences, 21, 13–47, https://doi.org/10.5194/bg-21-13-2024, https://doi.org/10.5194/bg-21-13-2024, 2024
Short summary
Short summary
This paper provides an overview of the capacity to expand the global coverage of marine primary production estimates using autonomous ocean-going instruments, called Biogeochemical-Argo floats. We review existing approaches to quantifying primary production using floats, provide examples of the current implementation of the methods, and offer insights into how they can be better exploited. This paper is timely, given the ongoing expansion of the Biogeochemical-Argo array.
Li-Qing Jiang, Adam V. Subhas, Daniela Basso, Katja Fennel, and Jean-Pierre Gattuso
State Planet, 2-oae2023, 13, https://doi.org/10.5194/sp-2-oae2023-13-2023, https://doi.org/10.5194/sp-2-oae2023-13-2023, 2023
Short summary
Short summary
This paper provides comprehensive guidelines for ocean alkalinity enhancement (OAE) researchers on archiving their metadata and data. It includes data standards for various OAE studies and a universal metadata template. Controlled vocabularies for terms like alkalinization methods are included. These guidelines also apply to ocean acidification data.
Katja Fennel, Matthew C. Long, Christopher Algar, Brendan Carter, David Keller, Arnaud Laurent, Jann Paul Mattern, Ruth Musgrave, Andreas Oschlies, Josiane Ostiguy, Jaime B. Palter, and Daniel B. Whitt
State Planet, 2-oae2023, 9, https://doi.org/10.5194/sp-2-oae2023-9-2023, https://doi.org/10.5194/sp-2-oae2023-9-2023, 2023
Short summary
Short summary
This paper describes biogeochemical models and modelling techniques for applications related to ocean alkalinity enhancement (OAE) research. Many of the most pressing OAE-related research questions cannot be addressed by observation alone but will require a combination of skilful models and observations. We present illustrative examples with references to further information; describe limitations, caveats, and future research needs; and provide practical recommendations.
Stefania A. Ciliberti, Enrique Alvarez Fanjul, Jay Pearlman, Kirsten Wilmer-Becker, Pierre Bahurel, Fabrice Ardhuin, Alain Arnaud, Mike Bell, Segolene Berthou, Laurent Bertino, Arthur Capet, Eric Chassignet, Stefano Ciavatta, Mauro Cirano, Emanuela Clementi, Gianpiero Cossarini, Gianpaolo Coro, Stuart Corney, Fraser Davidson, Marie Drevillon, Yann Drillet, Renaud Dussurget, Ghada El Serafy, Katja Fennel, Marcos Garcia Sotillo, Patrick Heimbach, Fabrice Hernandez, Patrick Hogan, Ibrahim Hoteit, Sudheer Joseph, Simon Josey, Pierre-Yves Le Traon, Simone Libralato, Marco Mancini, Pascal Matte, Angelique Melet, Yasumasa Miyazawa, Andrew M. Moore, Antonio Novellino, Andrew Porter, Heather Regan, Laia Romero, Andreas Schiller, John Siddorn, Joanna Staneva, Cecile Thomas-Courcoux, Marina Tonani, Jose Maria Garcia-Valdecasas, Jennifer Veitch, Karina von Schuckmann, Liying Wan, John Wilkin, and Romane Zufic
State Planet, 1-osr7, 2, https://doi.org/10.5194/sp-1-osr7-2-2023, https://doi.org/10.5194/sp-1-osr7-2-2023, 2023
Benjamin Richaud, Katja Fennel, Eric C. J. Oliver, Michael D. DeGrandpre, Timothée Bourgeois, Xianmin Hu, and Youyu Lu
The Cryosphere, 17, 2665–2680, https://doi.org/10.5194/tc-17-2665-2023, https://doi.org/10.5194/tc-17-2665-2023, 2023
Short summary
Short summary
Sea ice is a dynamic carbon reservoir. Its seasonal growth and melt modify the carbonate chemistry in the upper ocean, with consequences for the Arctic Ocean carbon sink. Yet, the importance of this process is poorly quantified. Using two independent approaches, this study provides new methods to evaluate the error in air–sea carbon flux estimates due to the lack of biogeochemistry in ice in earth system models. Those errors range from 5 % to 30 %, depending on the model and climate projection.
Krysten Rutherford, Katja Fennel, Dariia Atamanchuk, Douglas Wallace, and Helmuth Thomas
Biogeosciences, 18, 6271–6286, https://doi.org/10.5194/bg-18-6271-2021, https://doi.org/10.5194/bg-18-6271-2021, 2021
Short summary
Short summary
Using a regional model of the northwestern North Atlantic shelves in combination with a surface water time series and repeat transect observations, we investigate surface CO2 variability on the Scotian Shelf. The study highlights a strong seasonal cycle in shelf-wide pCO2 and spatial variability throughout the summer months driven by physical events. The simulated net flux of CO2 on the Scotian Shelf is out of the ocean, deviating from the global air–sea CO2 flux trend in continental shelves.
Bin Wang, Katja Fennel, and Liuqian Yu
Ocean Sci., 17, 1141–1156, https://doi.org/10.5194/os-17-1141-2021, https://doi.org/10.5194/os-17-1141-2021, 2021
Short summary
Short summary
We demonstrate that even sparse BGC-Argo profiles can substantially improve biogeochemical prediction via a priori model tuning. By assimilating satellite surface chlorophyll and physical observations, subsurface distributions of physical properties and nutrients were improved immediately. The improvement of subsurface chlorophyll was modest initially but was greatly enhanced after adjusting the parameterization for light attenuation through further a priori tuning.
Thomas S. Bianchi, Madhur Anand, Chris T. Bauch, Donald E. Canfield, Luc De Meester, Katja Fennel, Peter M. Groffman, Michael L. Pace, Mak Saito, and Myrna J. Simpson
Biogeosciences, 18, 3005–3013, https://doi.org/10.5194/bg-18-3005-2021, https://doi.org/10.5194/bg-18-3005-2021, 2021
Short summary
Short summary
Better development of interdisciplinary ties between biology, geology, and chemistry advances biogeochemistry through (1) better integration of contemporary (or rapid) evolutionary adaptation to predict changing biogeochemical cycles and (2) universal integration of data from long-term monitoring sites in terrestrial, aquatic, and human systems that span broad geographical regions for use in modeling.
Arnaud Laurent, Katja Fennel, and Angela Kuhn
Biogeosciences, 18, 1803–1822, https://doi.org/10.5194/bg-18-1803-2021, https://doi.org/10.5194/bg-18-1803-2021, 2021
Short summary
Short summary
CMIP5 and CMIP6 models, and a high-resolution regional model, were evaluated by comparing historical simulations with observations in the northwest North Atlantic, a climate-sensitive and biologically productive ocean margin region. Many of the CMIP models performed poorly for biological properties. There is no clear link between model resolution and skill in the global models, but there is an overall improvement in performance in CMIP6 from CMIP5. The regional model performed best.
Haiyan Zhang, Katja Fennel, Arnaud Laurent, and Changwei Bian
Biogeosciences, 17, 5745–5761, https://doi.org/10.5194/bg-17-5745-2020, https://doi.org/10.5194/bg-17-5745-2020, 2020
Short summary
Short summary
In coastal seas, low oxygen, which is detrimental to coastal ecosystems, is increasingly caused by man-made nutrients from land. This is especially so near mouths of major rivers, including the Changjiang in the East China Sea. Here a simulation model is used to identify the main factors determining low-oxygen conditions in the region. High river discharge is identified as the prime cause, while wind and intrusions of open-ocean water modulate the severity and extent of low-oxygen conditions.
Cited articles
Alexander, R. B., Smith, R. A., Schwarz, G. E., Boyer, E. W., Nolan, J. V.,
and Brakebill, J. W.: Differences in Phosphorus and Nitrogen Delivery to The
Gulf of Mexico from the Mississippi River Basin, Environ. Sci. Technol.,
42, 822–830, https://doi.org/10.1021/es0716103, 2008.
Bai, Y., He, X., Pan, D., Chen, C.-T. A., Kang, Y., Chen, X., and Cai, W.-J.:
Summertime Changjiang River plume variation during 1998–2010, J. Geophys.
Res.-Ocean., 119, 6238–6257, https://doi.org/10.1002/2014JC009866, 2014.
Beusen, A. H. W., Bouwman, A. F., Van Beek, L. P. H., Mogollón, J. M.,
and Middelburg, J. J.: Global riverine N and P transport to ocean increased
during the 20th century despite increased retention along the aquatic
continuum, Biogeosciences, 13, 2441–2451, https://doi.org/10.5194/bg-13-2441-2016,
2016.
Bian, C., Jiang, W., and Greatbatch, R. J.: An exploratory model study of
sediment transport sources and deposits in the Bohai Sea, Yellow Sea, and
East China Sea, J. Geophys. Res.-Ocean., 118, 5908–5923,
https://doi.org/10.1002/2013JC009116, 2013.
Boesch, D. F.: Barriers and Bridges in Abating Coastal Eutrophication,
Front. Mar. Sci., 6, 123, https://doi.org/10.3389/fmars.2019.00123, 2019.
Carton, J. A. and Giese, B. S.: A Reanalysis of Ocean Climate Using Simple
Ocean Data Assimilation (SODA), Mon. Weather Rev., 136, 2999–3017,
https://doi.org/10.1175/2007MWR1978.1, 2008.
Che, H., Zhang, J., Liu, Q., and Zhao, M.: A driving factor for harmful algal
blooms in the East China Sea coastal marine ecosystems – Implications of
Kuroshio subsurface water invasion, Mar. Pollut. Bull., 181, 113871,
https://doi.org/10.1016/j.marpolbul.2022.113871, 2022.
Chen, L., Liu, J., Xu, G., and Li, F.: Phytoplankton productivity and
community structure variations over the last 160 years in the East China Sea
coast in response to natural and human-induced environmental changes, The
Holocene, 29, 1145–1154, https://doi.org/10.1177/0959683619838040, 2019a.
Chen, X., Strokal, M., Kroeze, C., Ma, L., Shen, Z., Wu, J., Chen, X., and
Shi, X.: Seasonality in river export of nitrogen: A modelling approach for
the Yangtze River, Sci. Total Environ., 671, 1282–1292,
https://doi.org/10.1016/j.scitotenv.2019.03.323, 2019b.
Chen, X., Strokal, M., Kroeze, C., Supit, I., Wang, M., Ma, L., Chen, X., and
Shi, X.: Modeling the Contribution of Crops to Nitrogen Pollution in the
Yangtze River, Environ. Sci. Technol., 54, 11929–11939,
https://doi.org/10.1021/acs.est.0c01333, 2020.
Chi, L., Song, X., Yuan, Y., Wang, W., Zhou, P., Fan, X., Cao, X., and Yu,
Z.: Distribution and key influential factors of dissolved oxygen off the
Changjiang River Estuary (CRE) and its adjacent waters in China, Mar.
Pollut. Bull., 125, 440–450, https://doi.org/10.1016/j.marpolbul.2017.09.063,
2017.
Cloern, J. E.: Turbidity as a control on phytoplankton biomass and
productivity in estuaries, Cont. Shelf Res., 7, 1367–1381,
https://doi.org/10.1016/0278-4343(87)90042-2, 1987.
Dagg, M., Benner, R., Lohrenz, S., and Lawrence, D.: Transformation of
dissolved and particulate materials on continental shelves influenced by
large rivers: plume processes, Cont. Shelf Res., 24, 833–858,
https://doi.org/10.1016/j.csr.2004.02.003, 2004.
Dai, Z., Du, J., Zhang, X., Su, N., and Li, J.: Variation of Riverine
Material Loads and Environmental Consequences on the Changjiang (Yangtze)
Estuary in Recent Decades (1955–2008)†, Environ. Sci. Technol.,
45, 223–227, https://doi.org/10.1021/es103026a, 2011.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P.,
Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M.,
Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C.,
Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration
and performance of the data assimilation system, Q. J. R. Meteorol. Soc.,
137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Diaz, R. J. and Rosenberg, R.: Spreading Dead Zones and Consequences for
Marine Ecosystems, Science, 321, 926–929,
https://doi.org/10.1126/science.1156401, 2008.
Fennel, K. and Laurent, A.: N and P as ultimate and proximate limiting
nutrients in the northern Gulf of Mexico: implications for hypoxia reduction
strategies, Biogeosciences, 15, 3121–3131, https://doi.org/10.5194/bg-15-3121-2018,
2018.
Fennel, K. and Testa, J. M.: Biogeochemical Controls on Coastal Hypoxia,
Ann. Rev. Mar. Sci., 11, 105–130,
https://doi.org/10.1146/annurev-marine-010318-095138, 2019.
Fennel, K., Wilkin, J., Levin, J., Moisan, J., O'Reilly, J., and Haidvogel,
D.: Nitrogen cycling in the Middle Atlantic Bight: Results from a
three-dimensional model and implications for the North Atlantic nitrogen
budget, Global Biogeochem. Cy., 20, GB3007, https://doi.org/10.1029/2005GB002456,
2006.
Fennel, K., Brady, D., DiToro, D., Fulweiler, R. W., Gardner, W. S., Giblin,
A., McCarthy, M. J., Rao, A., Seitzinger, S., Thouvenot-Korppoo, M., and
Tobias, C.: Modeling denitrification in aquatic sediments, Biogeochemistry,
93, 159–178, https://doi.org/10.1007/s10533-008-9270-z, 2009.
Fennel, K., Hetland, R., Feng, Y., and DiMarco, S.: A coupled
physical-biological model of the Northern Gulf of Mexico shelf: model
description, validation and analysis of phytoplankton variability,
Biogeosciences, 8, 1881–1899, https://doi.org/10.5194/bg-8-1881-2011, 2011.
Fennel, K., Hu, J., Laurent, A., Marta-Almeida, M., and Hetland, R.:
Sensitivity of hypoxia predictions for the northern Gulf of Mexico to
sediment oxygen consumption and model nesting, J. Geophys. Res.-Ocean.,
118, 990–1002, https://doi.org/10.1002/jgrc.20077, 2013.
Gao, L., Li, D., Ishizaka, J., Zhang, Y., Zong, H., and Guo, L.: Nutrient
dynamics across the river-sea interface in the Changjiang (Yangtze River)
estuary-East China Sea region, Limnol. Oceanogr., 60, 2207–2221,
https://doi.org/10.1002/lno.10196, 2015.
Garcia, H. E., Boyer, T. P., Locarnini, R. A., Antonov, J. I., Mishonov, A.
V., Baranova, O. K., Zweng, M. M., Reagan, J. R., Johnson, D. R., and
Levitus, S.: World Ocean Atlas 2013, Volume 3: Dissolved oxygen, apparent
oxygen utilization, and oxygen saturation, National Oceanic and Atmospheric
Administration (NOAA), Silver Spring, MD, Silver Spring, MD, NOAA, https://doi.org/10.7289/V5XG9P2W, 2013a.
Garcia, H. E., Locarnini, R., Boyer, T. P., Antonov, J. I., Baranova, O. K.,
Zweng, M. M., Reagan, J. R., and Johnson, D. R.: World Ocean Atlas 2013,
Volume 4: Dissolved Inorganic Nutrients (phosphate, nitrate, silicate),
National Oceanic and Atmospheric Administration (NOAA), Silver Spring, MD, NOAA, https://doi.org/10.7289/V5J67DWD,
2013b.
Ge, J., Shi, S., Liu, J., Xu, Y., Chen, C., Bellerby, R., and Ding, P.:
Interannual Variabilities of Nutrients and Phytoplankton off the Changjiang
Estuary in Response to Changing River Inputs, J. Geophys. Res.-Ocean.,
125, e2019JC015595, https://doi.org/10.1029/2019JC015595, 2020.
Glibert, P. M., Maranger, R., Sobota, D. J., and Bouwman, L.: The Haber
Bosch–harmful algal bloom (HB–HAB) link, Environ. Res. Lett., 9,
105001, https://doi.org/10.1088/1748-9326/9/10/105001, 2014.
Große, F., Fennel, K., Zhang, H., and Laurent, A.: Quantifying the
contributions of riverine vs. oceanic nitrogen to hypoxia in the East China
Sea, Biogeosciences, 17, 2701–2714, https://doi.org/10.5194/bg-17-2701-2020, 2020.
Guo, C., Bai, Z., Shi, X., Chen, X., Chadwick, D., Strokal, M., Zhang, F.,
Ma, L., and Chen, X.: Challenges and strategies for agricultural green
development in the Yangtze River Basin, J. Integr. Environ. Sci., 18,
37–54, https://doi.org/10.1080/1943815X.2021.1883674, 2021.
Haidvogel, D. B., Arango, H., Budgell, W. P., Cornuelle, B. D., Curchitser,
E., Lorenzo, E. Di, Fennel, K., Geyer, W. R., Hermann, A. J., Lanerolle, L.,
Levin, J., McWilliams, J. C., Miller, A. J., Moore, A. M., Powell, T. M.,
Shchepetkin, A. F., Sherwood, C. R., Signell, R. P., Warner, J. C., and
Wilkin, J.: Ocean forecasting in terrain-following coordinates: Formulation
and skill assessment of the Regional Ocean Modeling System, J. Comput. Phys.,
227, 3595–3624, https://doi.org/10.1016/j.jcp.2007.06.016, 2008 (code available at http://myroms.org, last access: 10 August 2019).
Harrison, J. A., Bouwman, A. F., Mayorga, E., and Seitzinger, S.: Magnitudes
and sources of dissolved inorganic phosphorus inputs to surface fresh waters
and the coastal zone: A new global model, Global Biogeochem. Cy., 24,
GB1003, https://doi.org/10.1029/2009GB003590, 2010.
Harrison, P. J., Hu, M. H., Yang, Y. P., and Lu, X.: Phosphate limitation in
estuarine and coastal waters of China, J. Exp. Mar. Bio. Ecol., 140,
79–87, https://doi.org/10.1016/0022-0981(90)90083-O, 1990.
Heisler, J., Glibert, P. M., Burkholder, J. M., Anderson, D. M., Cochlan,
W., Dennison, W. C., Dortch, Q., Gobler, C. J., Heil, C. A., Humphries, E.,
Lewitus, A., Magnien, R., Marshall, H. G., Sellner, K., Stockwell, D. A.,
Stoecker, D. K., and Suddleson, M.: Eutrophication and harmful algal blooms:
A scientific consensus, Harmful Algae, 8, 3–13,
https://doi.org/10.1016/j.hal.2008.08.006, 2008.
Hu, M., Liu, Y., Zhang, Y., Shen, H., Yao, M., Dahlgren, R. A., and Chen, D.:
Long-term (1980–2015) changes in net anthropogenic phosphorus inputs and
riverine phosphorus export in the Yangtze River basin, Water Res., 177,
115779, https://doi.org/10.1016/j.watres.2020.115779, 2020.
Huang, T.-H., Chen, C.-T. A., Lee, J., Wu, C.-R., Wang, Y.-L., Bai, Y., He,
X., Wang, S.-L., Kandasamy, S., Lou, J.-Y., Tsuang, B.-J., Chen, H.-W.,
Tseng, R.-S., and Yang, Y. J.: East China Sea increasingly gains limiting
nutrient P from South China Sea, Sci. Rep., 9, 5648,
https://doi.org/10.1038/s41598-019-42020-4, 2019.
Jiang, Z., Liu, J., Chen, J., Chen, Q., Yan, X., Xuan, J., and Zeng, J.:
Responses of summer phytoplankton community to drastic environmental changes
in the Changjiang (Yangtze River) estuary during the past 50 years, Water
Res., 54, 1–11, https://doi.org/10.1016/j.watres.2014.01.032, 2014.
Kemp, W. M., Boynton, W. R., Adolf, J. E., Boesch, D. F., Boicourt, W. C.,
Brush, G., Cornwell, J. C., Fisher, T. R., Glibert, P. M., Hagy, J.,
Harding, L. W., Houde, E. D., Kimmel, D. G., Miller, W. D., Newell, R. I.
E., Roman, M. R., Smith, E. M., and Stevenson, J. C.: Eutrophication of
Chesapeake Bay: historical trends and ecological interactions, Mar. Ecol.
Prog. Ser., 303, 1–29, https://doi.org/10.3354/meps303001, 2005.
Kidwell, D. M., Lewitus, A. J., Brandt, S., Jewett, E. B., and Mason, D. M.:
Ecological impacts of hypoxia on living resources, J. Exp. Mar. Bio. Ecol.,
381, S1–S3, https://doi.org/10.1016/j.jembe.2009.07.009, 2009.
Kodama, T., Morimoto, A., Takikawa, T., Ito, M., Igeta, Y., Abe, S.,
Fukudome, K.-I., Honda, N., and Katoh, O.: Presence of high nitrate to
phosphate ratio subsurface water in the Tsushima Strait during summer, J.
Oceanogr., 73, 759–769, https://doi.org/10.1007/s10872-017-0430-4, 2017.
Laurent, A. and Fennel, K.: Simulated reduction of hypoxia in the northern
Gulf of Mexico due to phosphorus limitation, Elem. Sci. Anthr., 2,
000022, https://doi.org/10.12952/journal.elementa.000022, 2014.
Laurent, A. and Fennel, K.: Modeling River-Induced Phosphorus Limitation in
the Context of Coastal Hypoxia, in: Modeling Coastal Hypoxia, edited by:
Justic, D., Rose, K. A., Hetland, R. D., and Fennel, K., 149–171, Springer
International Publishing, Cham, Springer, ISBN: 978-3-319-54569-1, 2017.
Laurent, A., Fennel, K., Hu, J., and Hetland, R.: Simulating the effects of
phosphorus limitation in the Mississippi and Atchafalaya River plumes,
Biogeosciences, 9, 4707–4723, https://doi.org/10.5194/bg-9-4707-2012, 2012.
Laurent, A., Fennel, K., Cai, W.-J., Huang, W.-J., Barbero, L., and
Wanninkhof, R.: Eutrophication-induced acidification of coastal waters in
the northern Gulf of Mexico: insights into origin and processes from a
coupled physical-biogeochemical model, Geophys. Res. Lett., 44, 946–956,
https://doi.org/10.1002/2016GL071881, 2017.
Levin, L. A., Ekau, W., Gooday, A. J., Jorissen, F., Middelburg, J. J.,
Naqvi, S. W. A., Neira, C., Rabalais, N. N., and Zhang, J.: Effects of
natural and human-induced hypoxia on coastal benthos, Biogeosciences, 6,
2063–2098, https://doi.org/10.5194/bg-6-2063-2009, 2009.
Li, H.-M., Tang, H.-J., Shi, X.-Y., Zhang, C.-S., and Wang, X.-L.: Increased
nutrient loads from the Changjiang (Yangtze) River have led to increased
Harmful Algal Blooms, Harmful Algae, 39, 92–101,
https://doi.org/10.1016/j.hal.2014.07.002, 2014.
Li, J., Glibert, P., Zhou, M., Lu, S., and Lu, D.: Relationships between
nitrogen and phosphorus forms and ratios and the development of
dinoflagellate blooms in the East China Sea, Mar. Ecol. Prog. Ser., 383,
11–26, https://doi.org/10.3354/meps07975, 2009.
Li, W., Ge, J., Ding, P., Ma, J., Glibert, P. M., and Liu, D.: Effects of
Dual Fronts on the Spatial Pattern of Chlorophyll-a Concentrations in and
off the Changjiang River Estuary, Estuar. Coast., 44, 1408–1418,
https://doi.org/10.1007/s12237-020-00893-z, 2021.
Li, X., Bianchi, T. S., Yang, Z., Osterman, L. E., Allison, M. A., DiMarco,
S. F., and Yang, G.: Historical trends of hypoxia in Changjiang River
estuary: Applications of chemical biomarkers and microfossils, J. Mar.
Syst., 86, 57–68, https://doi.org/10.1016/j.jmarsys.2011.02.003, 2011.
Lin, X., Liu, M., Hou, L., Gao, D., Li, X., Lu, K., and Gao, J.: Nitrogen
Losses in Sediments of the East China Sea: Spatiotemporal Variations,
Controlling Factors, and Environmental Implications, J. Geophys. Res.-Biogeo., 122, 2699–2715, https://doi.org/10.1002/2017JG004036, 2017.
Liu, S. M., Zhang, J., and Chen, H.: Nutrients in the Changjiang and its
tributaries, Biogeochemistry, 62, 1–18, https://doi.org/10.1023/A:1021162214304, 2003.
Liu, S. M., Hong, G.-H., Zhang, J., Ye, X. W., and Jiang, X. L.: Nutrient
budgets for large Chinese estuaries, Biogeosciences, 6, 2245–2263,
https://doi.org/10.5194/bg-6-2245-2009, 2009.
Liu, X., Beusen, A. H. W., Van Beek, L. P. H., Mogollón, J. M., Ran, X.,
and Bouwman, A. F.: Exploring spatiotemporal changes of the Yangtze River
(Changjiang) nitrogen and phosphorus sources, retention and export to the
East China Sea and Yellow Sea, Water Res., 142, 246–255,
https://doi.org/10.1016/j.watres.2018.06.006, 2018.
Liu, Z., Gan, J., Wu, H., Hu, J., Cai, Z., and Deng, Y.: Advances on Coastal
and Estuarine Circulations Around the Changjiang Estuary in the Recent
Decades (2000–2020), Front. Mar. Sci., 8, 615929, https://doi.org/10.3389/fmars.2021.615929,
2021.
Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Garcia, H.
E., Baranova, O. K., Zweng, M. M., Paver, C. R., Reagan, J. R., Johnson, D.
R., Hamilton, M., and Seidov, D.: World Ocean Atlas 2013, Vol. 1,
Temperature, edited by: Levitus, S., A. Mishonov Technical Ed., NOAA, NOAA Atlas NESDIS
73, https://doi.org/10.7289/V55X26VD, 2013.
Lohrenz, S. E., Gary, L., Lang, G. A., Chen, X., and Michael, J.: Variations
in primary production of northern Gulf of Mexico continental shelf waters
linked to nutrient inputs from the Mississippi River, Cont. Shelf Res., 155, 45–54, 1997.
Lohrenz, S. E., Fahnenstiel, G. L., Redalje, D. G., Lang, G. a., Dagg, M.
J., Whitledge, T. E., and Dortch, Q.: Nutrients, irradiance, and mixing as
factors regulating primary production in coastal waters impacted by the
Mississippi River plume, Cont. Shelf Res., 19, 1113–1141,
https://doi.org/10.1016/S0278-4343(99)00012-6, 1999.
Malone, T. C., Conley, D. J., Fisher, T. R., Glibert, P. M., Harding, L. W.,
and Sellner, K. G.: Scales of Nutrient-Limited Phytoplankton in Chesapeake
Bay Productivity, Estuaries, 19, 371–385, 1996.
Moon, J., Lee, K., Lim, W., Lee, E., Dai, M., Choi, Y., Han, I., Shin, K.,
Kim, J., and Chae, J.: Anthropogenic nitrogen is changing the East China and
Yellow seas from being N deficient to being P deficient, Limnol. Oceanogr.,
66, 914–924, https://doi.org/10.1002/lno.11651, 2021.
Ning, X., Lin, C., Su, J., Liu, C., Hao, Q., and Le, F.: Long-term changes of
dissolved oxygen, hypoxia, and the responses of the ecosystems in the East
China Sea from 1975 to 1995, J. Oceanogr., 67, 59–75,
https://doi.org/10.1007/s10872-011-0006-7, 2011.
O'Boyle, S., Wilkes, R., McDermott, G., Ní Longphuirt, S., and Murray,
C.: Factors affecting the accumulation of phytoplankton biomass in Irish
estuaries and nearshore coastal waters: A conceptual model, Estuar. Coast.
Shelf Sci., 155, 75–88, https://doi.org/10.1016/j.ecss.2015.01.007, 2015.
Ou, L., Qin, X., Shi, X., Feng, Q., Zhang, S., Lu, S., and Qi, Y.: Alkaline
phosphatase activities and regulation in three harmful Prorocentrum species
from the coastal waters of the East China Sea, Microb. Ecol., 79,
459–471, https://doi.org/10.1007/s00248-019-01399-3, 2020.
Paerl, H. W.: Controlling Eutrophication along the Freshwater–Marine
Continuum: Dual Nutrient (N and P) Reductions are Essential, Estuar.
Coast., 32, 593–601, https://doi.org/10.1007/s12237-009-9158-8, 2009.
Paerl, H. W., Valdes, L. M., Joyner, A. R., Piehler, M. F., and Lebo, M. E.:
Solving problems resulting from solutions: evolution of a dual nutrient
management strategy for the eutrophying Neuse River Estuary, North
Carolina., Environ. Sci. Technol., 38, 3068–3073, 2004.
Paerl, H. W., Gardner, W. S., Havens, K. E., Joyner, A. R., McCarthy, M. J.,
Newell, S. E., Qin, B., and Scott, J. T.: Mitigating cyanobacterial harmful
algal blooms in aquatic ecosystems impacted by climate change and
anthropogenic nutrients, Harmful Algae, 54, 213–222,
https://doi.org/10.1016/J.HAL.2015.09.009, 2016.
Rabalais, N. N. and Turner, R. E. (Eds.): Coastal Hypoxia: Consequences for
Living Resources and Ecosystems, American Geophysical Union, Washington, DC, American Geophysical Union, https://doi.org/10.1029/CE058, 2001.
Scavia, D. and Donnelly, K. A.: Reassessing Hypoxia Forecasts for the Gulf of
Mexico, Environ. Sci. Technol., 41, 8111–8117, https://doi.org/10.1021/es0714235,
2007.
Seitzinger, S. P. and Giblin, A. E.: Estimating denitrification in North
Atlantic continental shelf sediments, Biogeochemistry, 35, 235–260,
https://doi.org/10.1007/BF02179829, 1996.
Seitzinger, S. P. and Harrison, J. A.: Land-Based Nitrogen Sources and Their
Delivery to Coastal Systems, in Nitrogen in the Marine Environment,
469–510, Elsevier, Academic Press, https://doi.org/10.1016/B978-0-12-372522-6.00009-8, 2008.
Shi, S., Xu, Y., Li, W., and Ge, J.: Long-term response of an estuarine
ecosystem to drastic nutrients changes in the Changjiang River during the
last 59 years: A modeling perspective, Front. Mar. Sci., 9,
https://doi.org/10.3389/fmars.2022.1012127, 2022.
Smith, M. D., Oglend, A., Kirkpatrick, A. J., Asche, F., Bennear, L. S.,
Craig, J. K., and Nance, J. M.: Seafood prices reveal impacts of a major
ecological disturbance, P. Natl. Acad. Sci. USA, 114, 1512–1517,
https://doi.org/10.1073/pnas.1617948114, 2017.
Strokal, M., Yang, H., Zhang, Y., Kroeze, C., Li, L., Luan, S., Wang, H.,
Yang, S., and Zhang, Y.: Increasing eutrophication in the coastal seas of
China from 1970 to 2050, Mar. Pollut. Bull., 85, 123–140,
https://doi.org/10.1016/j.marpolbul.2014.06.011, 2014.
Strokal, M., Ma, L., Bai, Z., Luan, S., Kroeze, C., Oenema, O., Velthof, G.,
and Zhang, F.: Alarming nutrient pollution of Chinese rivers as a result of
agricultural transitions, Environ. Res. Lett., 11, 024014,
https://doi.org/10.1088/1748-9326/11/2/024014, 2016.
Strokal, M., Kahil, T., Wada, Y., Albiac, J., Bai, Z., Ermolieva, T.,
Langan, S., Ma, L., Oenema, O., Wagner, F., Zhu, X., and Kroeze, C.:
Cost-effective management of coastal eutrophication: A case study for the
Yangtze river basin, Resour. Conserv. Recycl., 154, 104635,
https://doi.org/10.1016/j.resconrec.2019.104635, 2020.
Sylvan, J. B., Dortch, Q., Nelson, D. M., Brown, A. F. M., Morrison, W., and
Ammerman, J. W.: Phosphorus limits phytoplankton growth on the Louisiana
shelf during the period of hypoxia formation., Environ. Sci. Technol.,
40, 7548–7553, 2006.
Tong, Y., Zhao, Y., Zhen, G., Chi, J., Liu, X., Lu, Y., Wang, X., Yao, R.,
Chen, J., and Zhang, W.: Nutrient Loads Flowing into Coastal Waters from the
Main Rivers of China (2006–2012), Sci. Rep., 5, 16678,
https://doi.org/10.1038/srep16678, 2015.
Tseng, Y.-F., Lin, J., Dai, M., and Kao, S.-J.: Joint effect of freshwater
plume and coastal upwelling on phytoplankton growth off the Changjiang
River, Biogeosciences, 11, 409–423, https://doi.org/10.5194/bg-11-409-2014, 2014.
Turner, R. E., Rabalais, N. N., and Justic, D.: Gulf of Mexico Hypoxia:
Alternate States and a Legacy, Environ. Sci. Technol., 42, 2323–2327,
https://doi.org/10.1021/es071617k, 2008.
Umlauf, L. and Burchard, H.: A generic length-scale equation for geophysical
turbulence models, J. Mar. Res., 61, 235–265,
https://doi.org/10.1357/002224003322005087, 2003.
Van Meter, K. J., Van Cappellen, P., and Basu, N. B.: Legacy nitrogen may
prevent achievement of water quality goals in the Gulf of Mexico, Science, 360, 427–430, https://doi.org/10.1126/science.aar4462, 2018.
Wang, H., Dai, M., Liu, J., Kao, S.-J., Zhang, C., Cai, W.-J., Wang, G.,
Qian, W., Zhao, M., and Sun, Z.: Eutrophication-Driven Hypoxia in the East
China Sea off the Changjiang Estuary, Environ. Sci. Technol., 50,
2255–2263, https://doi.org/10.1021/acs.est.5b06211, 2016.
Wang, J. and Wu, J.: Occurrence and potential risks of harmful algal blooms
in the East China Sea, Sci. Total Environ., 407, 4012–4021,
https://doi.org/10.1016/j.scitotenv.2009.02.040, 2009.
Wang, J., Yan, W., Chen, N., Li, X., and Liu, L.: Modeled long-term changes
of DIN : DIP ratio in the Changjiang River in relation to Chl-a and DO
concentrations in adjacent estuary, Estuar. Coast. Shelf Sci., 166,
153–160, https://doi.org/10.1016/j.ecss.2014.11.028, 2015.
Wang, K., Chen, J., Jin, H., Li, H., Gao, S., Xu, J., Lu, Y., Huang, D.,
Hao, Q., and Weng, H.: Summer nutrient dynamics and biological carbon uptake
rate in the Changjiang River plume inferred using a three end-member mixing
model, Cont. Shelf Res., 91, 192–200, https://doi.org/10.1016/j.csr.2014.09.013, 2014.
Wang, M., Kroeze, C., Strokal, M., Vliet, M. T. H., and Ma, L.: Global Change
Can Make Coastal Eutrophication Control in China More Difficult, Earth's
Futur., 8, e2019EF001280, https://doi.org/10.1029/2019EF001280, 2020.
Westphal, K., Musolff, A., Graeber, D., and Borchardt, D.: Controls of point
and diffuse sources lowered riverine nutrient concentrations asynchronously,
thereby warping molar N:P ratios, Environ. Res. Lett., 15, 104009,
https://doi.org/10.1088/1748-9326/ab98b6, 2020.
Wong, G. T. F., Gong, G.-C., Liu, K.-K., and Pai, S.-C.: `Excess Nitrate' in
the East China Sea, Estuar. Coast. Shelf Sci., 46, 411–418,
https://doi.org/10.1006/ecss.1997.0287, 1998.
Wu, Y., Xi, X., Tang, X., Luo, D., Gu, B., Lam, S. K., Vitousek, P. M., and
Chen, D.: Policy distortions, farm size, and the overuse of agricultural
chemicals in China, P. Natl. Acad. Sci. USA, 115, 7010–7015,
https://doi.org/10.1073/pnas.1806645115, 2018.
Wurtsbaugh, W. A., Paerl, H. W., and Dodds, W. K.: Nutrients, eutrophication
and harmful algal blooms along the freshwater to marine continuum, Wiley
Interdiscip. Rev. Water, 6, e1373, https://doi.org/10.1002/wat2.1373, 2019.
Xing, L., Zhao, M., Zhang, T., Yu, M., Duan, S., Zhang, R., Huh, C.-A.,
Liao, W.-H., and Feng, X.: Ecosystem responses to anthropogenic and natural
forcing over the last 100 years in the coastal areas of the East China Sea,
The Holocene, 26, 669–677, https://doi.org/10.1177/0959683615618248, 2016.
Yan, W., Zhang, S., Sun, P., and Seitzinger, S. P.: How do nitrogen inputs to
the Changjiang basin impact the Changjiang River nitrate: A temporal
analysis for 1968–1997, Global Biogeochem. Cy., 17, 1091,
https://doi.org/10.1029/2002GB002029, 2003.
Yan, W., Mayorga, E., Li, X., Seitzinger, S. P., and Bouwman, A. F.:
Increasing anthropogenic nitrogen inputs and riverine DIN exports from the
Changjiang River basin under changing human pressures, Global Biogeochem.
Cy., 24, GB0A06, https://doi.org/10.1029/2009GB003575, 2010.
Yang, D., Yin, B., Liu, Z., Bai, T., Qi, J., and Chen, H.: Numerical study on
the pattern and origins of Kuroshio branches in the bottom water of southern
East China Sea in summer, J. Geophys. Res.-Ocean., 117, C02014,
https://doi.org/10.1029/2011JC007528, 2012.
Yu, C., Huang, X., Chen, H., Godfray, H. C. J., Wright, J. S., Hall, J. W.,
Gong, P., Ni, S., Qiao, S., Huang, G., Xiao, Y., Zhang, J., Feng, Z., Ju,
X., Ciais, P., Stenseth, N. C., Hessen, D. O., Sun, Z., Yu, L., Cai, W., Fu,
H., Huang, X., Zhang, C., Liu, H., and Taylor, J.: Managing nitrogen to
restore water quality in China, Nature, 567, 516–520,
https://doi.org/10.1038/s41586-019-1001-1, 2019.
Yu, L. and Gan, J.: Reversing impact of phytoplankton phosphorus limitation
on coastal hypoxia due to interacting changes in surface production and
shoreward bottom oxygen influx, Water Res., 212, 118094,
https://doi.org/10.1016/j.watres.2022.118094, 2022.
Yu, L., Fennel, K., Laurent, A., Murrell, M. C., and Lehrter, J. C.:
Numerical analysis of the primary processes controlling oxygen dynamics on
the Louisiana shelf, Biogeosciences, 12, 2063–2076,
https://doi.org/10.5194/bg-12-2063-2015, 2015.
Zhang, H., Fennel, K., Laurent, A., and Bian, C.: A numerical model study of
the main factors contributing to hypoxia and its interannual and short-term
variability in the East China Sea, Biogeosciences, 17, 5745–5761,
https://doi.org/10.5194/bg-17-5745-2020, 2020.
Zhou, F., Chai, F., Huang, D., Xue, H., Chen, J., Xiu, P., Xuan, J., Li, J.,
Zeng, D., Ni, X., and Wang, K.: Investigation of hypoxia off the Changjiang
Estuary using a coupled model of ROMS-CoSiNE, Prog. Oceanogr., 159,
237–254, https://doi.org/10.1016/j.pocean.2017.10.008, 2017.
Zhou, M., Shen, Z., and Yu, R.: Responses of a coastal phytoplankton
community to increased nutrient input from the Changjiang (Yangtze) River,
Cont. Shelf Res., 28, 1483–1489, https://doi.org/10.1016/j.csr.2007.02.009, 2008.
Zhu, Z.-Y., Ng, W.-M., Liu, S.-M., Zhang, J., Chen, J.-C., and Wu, Y.:
Estuarine phytoplankton dynamics and shift of limiting factors: A study in
the Changjiang (Yangtze River) Estuary and adjacent area, Estuar. Coast.
Shelf Sci., 84, 393–401, https://doi.org/10.1016/j.ecss.2009.07.005, 2009.
Zweng, M. M., Reagan, J. R., Antonov, J. I., Locarnini, R. A., Mishonov, A.
V., Boyer, T. P., Garcia, H. E., Baranova, O. K., Johnson, D. R., Seidov, D.,
and Biddle, M. M.: World Ocean Atlas 2013, Volume 2, Salinity, edited by: Levitus, S.,
A. Mishonov Technical Ed., NOAA, NOAA Atlas NESDIS 74, https://doi.org/10.7289/V5251G4D, 2013.
Short summary
The Changjiang is the main terrestrial source of nutrients to the East China Sea (ECS). Nutrient delivery to the ECS has been increasing since the 1960s, resulting in low oxygen (hypoxia) during phytoplankton decomposition in summer. River phosphorus (P) has increased less than nitrogen, and therefore, despite the large nutrient delivery, phytoplankton growth can be limited by the lack of P. Here, we investigate this link between P limitation, phytoplankton production/decomposition, and hypoxia.
The Changjiang is the main terrestrial source of nutrients to the East China Sea (ECS). Nutrient...
Altmetrics
Final-revised paper
Preprint