Articles | Volume 19, issue 3
https://doi.org/10.5194/bg-19-763-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-763-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Estimation of the natural background of phosphate in a lowland river using tidal marsh sediment cores
Florian Lauryssen
CORRESPONDING AUTHOR
Division of Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, Kasteelpark Arenberg 20 bus 2459, 3001 Leuven, Belgium
Philippe Crombé
Department of Archaeology, Ghent University, Sint-Pietersnieuwstraat 35, 9000, Ghent, Belgium
Tom Maris
University of Antwerp, Ecosystem Management Research Group, Campus Drie Eiken, D.C.120, Universiteitsplein 1, 2610 Wilrijk, Belgium
Elliot Van Maldegem
Department of Archaeology, Ghent University, Sint-Pietersnieuwstraat 35, 9000, Ghent, Belgium
Marijn Van de Broek
Sustainable Agroecosystems group, Department of Environmental Systems Science, Swiss Federal Institute of Technology, ETH Zürich, Zürich, Switzerland
Stijn Temmerman
University of Antwerp, Ecosystem Management Research Group, Campus Drie Eiken, D.C.120, Universiteitsplein 1, 2610 Wilrijk, Belgium
Erik Smolders
Division of Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, Kasteelpark Arenberg 20 bus 2459, 3001 Leuven, Belgium
Related authors
No articles found.
Mona Huyzentruyt, Maarten Wens, Gregory Scott Fivash, David C. Walters, Steven Bouillon, Joell A. Carr, Glenn C. Guntenspergen, Matthew L. Kirwan, and Stijn Temmerman
EGUsphere, https://doi.org/10.5194/egusphere-2025-3293, https://doi.org/10.5194/egusphere-2025-3293, 2025
Short summary
Short summary
Vegetated environments from forests to peatlands store carbon in the soil, which mitigates climate change. But which environment does this best? In this study, we show how the levees of tidal marshes are one of the most effective carbon sequestering environments in the world. This is because soil water-logging and high salinity inhibits carbon degradation while the levee fosters fast vegetation growth, complimented also by the preferential settlement of carbon-rich sediments on the marsh levee.
Lennert Schepers, Mona Huyzentruyt, Matthew L. Kirwan, Glenn R. Guntenspergen, and Stijn Temmerman
EGUsphere, https://doi.org/10.5194/egusphere-2025-2362, https://doi.org/10.5194/egusphere-2025-2362, 2025
Short summary
Short summary
In some tidal marshes, vegetation can convert to ponds as a result of sea level rise. We investigated to what extent this is related to decreasing strength of the marsh soil in relation to sea level rise. We found a reduction of marsh soil strength in areas with more inundation by sea water and more ponding, which results in easier erosion of the marsh and thus further expansion of ponds. This decrease in marsh soil strength is highly related to lower content of roots in the soil.
Claude Raoul Müller, Johan Six, Daniel Mugendi Njiru, Bernard Vanlauwe, and Marijn Van de Broek
Biogeosciences, 22, 2733–2747, https://doi.org/10.5194/bg-22-2733-2025, https://doi.org/10.5194/bg-22-2733-2025, 2025
Short summary
Short summary
We studied how different organic and inorganic nutrient inputs affect soil organic carbon (SOC) down to 70 cm in Kenya. After 19 years, all organic treatments increased SOC stocks compared with the control, but mineral nitrogen had no significant effect. Manure was the organic treatment that significantly increased SOC at the deepest soil depths, as its effect could be observed down to 60 cm. Manure was the best strategy to limit SOC loss in croplands and maintain soil quality after deforestation.
Marijn Van de Broek, Fiona Stewart-Smith, Moritz Laub, Marc Corbeels, Monicah Wanjiku Mucheru-Muna, Daniel Mugendi, Wycliffe Waswa, Bernard Vanlauwe, and Johan Six
EGUsphere, https://doi.org/10.5194/egusphere-2025-2287, https://doi.org/10.5194/egusphere-2025-2287, 2025
This preprint is open for discussion and under review for SOIL (SOIL).
Short summary
Short summary
To improve soil health and increase crop yields, organic matter is commenly added to arable soils. Studying the effect of different organic amenmends on soil organic carbon sequestration in four long-term field trials in Kenya, we found that only a small portion (< 7 %) of added carbon was stabilised. Moreover, this was only observed in the top 15 cm of the soil. These results underline the challenges associated with increasing the organic carbon content of tropical arable soils.
Margot Vanheukelom, Nina Haenen, Talal Almahayni, Lieve Sweeck, Nancy Weyns, May Van Hees, and Erik Smolders
SOIL, 11, 339–362, https://doi.org/10.5194/soil-11-339-2025, https://doi.org/10.5194/soil-11-339-2025, 2025
Short summary
Short summary
Radiocaesium (137Cs) in soil poses long-term risks of entering the food chain after nuclear accidents. This study examined its binding in soils with contrasting properties, questioning the concept that clay content controls the fate of 137Cs. Instead, soil mineralogy, such as illite content, plays a greater role. Soil structure also affects its availability as isolated soil fractions do not fully reflect intact soils. These findings improve predictions of 137Cs bioavailability in diverse soils.
Hannah Van Ryckel, Lynn Van Aelst, Toon van Dael, and Erik Smolders
EGUsphere, https://doi.org/10.5194/egusphere-2025-1012, https://doi.org/10.5194/egusphere-2025-1012, 2025
Short summary
Short summary
Soil acidity below the plow layer harms crops and is difficult to correct with surface lime applications. Adding organic matter may help lime move deeper, but its effectiveness remains uncertain. We set up column leaching experiments to identify the mechanisms of subsurface liming. We found that combining lime with organic amendments can improve deeper soil conditions, but only in soils that do not strongly retain organic carbon. These insights can help develop better soil management strategies.
Marijn Van de Broek, Gerard Govers, Marion Schrumpf, and Johan Six
Biogeosciences, 22, 1427–1446, https://doi.org/10.5194/bg-22-1427-2025, https://doi.org/10.5194/bg-22-1427-2025, 2025
Short summary
Short summary
Soil organic carbon models are used to predict how soils affect the concentration of CO2 in the atmosphere. We show that equifinality – the phenomenon that different parameter values lead to correct overall model outputs, albeit with a different model behaviour – is an important source of model uncertainty. Our results imply that adding more complexity to soil organic carbon models is unlikely to lead to better predictions as long as more data to constrain model parameters are not available.
Moritz Laub, Magdalena Necpalova, Marijn Van de Broek, Marc Corbeels, Samuel Mathu Ndungu, Monicah Wanjiku Mucheru-Muna, Daniel Mugendi, Rebecca Yegon, Wycliffe Waswa, Bernard Vanlauwe, and Johan Six
Biogeosciences, 21, 3691–3716, https://doi.org/10.5194/bg-21-3691-2024, https://doi.org/10.5194/bg-21-3691-2024, 2024
Short summary
Short summary
We used the DayCent model to assess the potential impact of integrated soil fertility management (ISFM) on maize production, soil fertility, and greenhouse gas emission in Kenya. After adjustments, DayCent represented measured mean yields and soil carbon stock changes well and N2O emissions acceptably. Our results showed that soil fertility losses could be reduced but not completely eliminated with ISFM and that, while N2O emissions increased with ISFM, emissions per kilogram yield decreased.
Claude Raoul Müller, Johan Six, Liesa Brosens, Philipp Baumann, Jean Paolo Gomes Minella, Gerard Govers, and Marijn Van de Broek
SOIL, 10, 349–365, https://doi.org/10.5194/soil-10-349-2024, https://doi.org/10.5194/soil-10-349-2024, 2024
Short summary
Short summary
Subsoils in the tropics are not as extensively studied as those in temperate regions. In this study, the conversion of forest to agriculture in a subtropical region affected the concentration of stabilized organic carbon (OC) down to 90 cm depth, while no significant differences between 90 cm and 300 cm were detected. Our results suggest that subsoils below 90 cm are unlikely to accumulate additional stabilized OC through reforestation over decadal periods due to declining OC input with depth.
Sarah Hautekiet, Jan-Eike Rossius, Olivier Gourgue, Maarten Kleinhans, and Stijn Temmerman
Earth Surf. Dynam., 12, 601–619, https://doi.org/10.5194/esurf-12-601-2024, https://doi.org/10.5194/esurf-12-601-2024, 2024
Short summary
Short summary
This study examined how vegetation growing in marshes affects the formation of tidal channel networks. Experiments were conducted to imitate marsh development, both with and without vegetation. The results show interdependency between biotic and abiotic factors in channel development. They mainly play a role when the landscape changes from bare to vegetated. Overall, the study suggests that abiotic factors are more important near the sea, while vegetation plays a larger role closer to the land.
Johan Six, Sebastian Doetterl, Moritz Laub, Claude R. Müller, and Marijn Van de Broek
SOIL, 10, 275–279, https://doi.org/10.5194/soil-10-275-2024, https://doi.org/10.5194/soil-10-275-2024, 2024
Short summary
Short summary
Soil C saturation has been tested in several recent studies and led to a debate about its existence. We argue that, to test C saturation, one should pay attention to six fundamental principles: the right measures, the right units, the right dispersive energy and application, the right soil type, the right clay type, and the right saturation level. Once we take care of those six rights across studies, we find support for a maximum of C stabilized by minerals and thus soil C saturation.
Ignace Pelckmans, Jean-Philippe Belliard, Olivier Gourgue, Luis Elvin Dominguez-Granda, and Stijn Temmerman
Hydrol. Earth Syst. Sci., 28, 1463–1476, https://doi.org/10.5194/hess-28-1463-2024, https://doi.org/10.5194/hess-28-1463-2024, 2024
Short summary
Short summary
The combination of extreme sea levels with increased river flow typically can lead to so-called compound floods. Often these are caused by storms (< 1 d), but climatic events such as El Niño could trigger compound floods over a period of months. We show that the combination of increased sea level and river discharge causes extreme water levels to amplify upstream. Mangrove forests, however, can act as a nature-based flood protection by lowering the extreme water levels coming from the sea.
Moritz Laub, Sergey Blagodatsky, Marijn Van de Broek, Samuel Schlichenmaier, Benjapon Kunlanit, Johan Six, Patma Vityakon, and Georg Cadisch
Geosci. Model Dev., 17, 931–956, https://doi.org/10.5194/gmd-17-931-2024, https://doi.org/10.5194/gmd-17-931-2024, 2024
Short summary
Short summary
To manage soil organic matter (SOM) sustainably, we need a better understanding of the role that soil microbes play in aggregate protection. Here, we propose the SAMM model, which connects soil aggregate formation to microbial growth. We tested it against data from a tropical long-term experiment and show that SAMM effectively represents the microbial growth, SOM, and aggregate dynamics and that it can be used to explore the importance of aggregate formation in SOM stabilization.
Ignace Pelckmans, Jean-Philippe Belliard, Luis E. Dominguez-Granda, Cornelis Slobbe, Stijn Temmerman, and Olivier Gourgue
Nat. Hazards Earth Syst. Sci., 23, 3169–3183, https://doi.org/10.5194/nhess-23-3169-2023, https://doi.org/10.5194/nhess-23-3169-2023, 2023
Short summary
Short summary
Mangroves are increasingly recognized as a coastal protection against extreme sea levels. Their effectiveness in doing so, however, is still poorly understood, as mangroves are typically located in tropical countries where data on mangrove vegetation and topography properties are often scarce. Through a modelling study, we identified the degree of channelization and the mangrove forest floor topography as the key properties for regulating high water levels in a tropical delta.
Moritz Laub, Marc Corbeels, Antoine Couëdel, Samuel Mathu Ndungu, Monicah Wanjiku Mucheru-Muna, Daniel Mugendi, Magdalena Necpalova, Wycliffe Waswa, Marijn Van de Broek, Bernard Vanlauwe, and Johan Six
SOIL, 9, 301–323, https://doi.org/10.5194/soil-9-301-2023, https://doi.org/10.5194/soil-9-301-2023, 2023
Short summary
Short summary
In sub-Saharan Africa, long-term low-input maize cropping threatens soil fertility. We studied how different quality organic inputs combined with mineral N fertilizer could counteract this. Farmyard manure was the best input to counteract soil carbon loss; mineral N fertilizer had no effect on carbon. Yet, the rates needed to offset soil carbon losses are unrealistic for farmers (>10 t of dry matter per hectare and year). Additional agronomic measures may be needed.
Olivier Gourgue, Jim van Belzen, Christian Schwarz, Wouter Vandenbruwaene, Joris Vanlede, Jean-Philippe Belliard, Sergio Fagherazzi, Tjeerd J. Bouma, Johan van de Koppel, and Stijn Temmerman
Earth Surf. Dynam., 10, 531–553, https://doi.org/10.5194/esurf-10-531-2022, https://doi.org/10.5194/esurf-10-531-2022, 2022
Short summary
Short summary
There is an increasing demand for tidal-marsh restoration around the world. We have developed a new modeling approach to reduce the uncertainty associated with this development. Its application to a real tidal-marsh restoration project in northwestern Europe illustrates how the rate of landscape development can be steered by restoration design, with important consequences for restored tidal-marsh resilience to increasing sea level rise and decreasing sediment supply.
Rey Harvey Suello, Simon Lucas Hernandez, Steven Bouillon, Jean-Philippe Belliard, Luis Dominguez-Granda, Marijn Van de Broek, Andrea Mishell Rosado Moncayo, John Ramos Veliz, Karem Pollette Ramirez, Gerard Govers, and Stijn Temmerman
Biogeosciences, 19, 1571–1585, https://doi.org/10.5194/bg-19-1571-2022, https://doi.org/10.5194/bg-19-1571-2022, 2022
Short summary
Short summary
This research shows indications that the age of the mangrove forest and its position along a deltaic gradient (upstream–downstream) play a vital role in the amount and sources of carbon stored in the mangrove sediments. Our findings also imply that carbon capture by the mangrove ecosystem itself contributes partly but relatively little to long-term sediment organic carbon storage. This finding is particularly relevant for budgeting the potential of mangrove ecosystems to mitigate climate change.
Zhan Hu, Pim W. J. M. Willemsen, Bas W. Borsje, Chen Wang, Heng Wang, Daphne van der Wal, Zhenchang Zhu, Bas Oteman, Vincent Vuik, Ben Evans, Iris Möller, Jean-Philippe Belliard, Alexander Van Braeckel, Stijn Temmerman, and Tjeerd J. Bouma
Earth Syst. Sci. Data, 13, 405–416, https://doi.org/10.5194/essd-13-405-2021, https://doi.org/10.5194/essd-13-405-2021, 2021
Short summary
Short summary
Erosion and accretion processes govern the ecogeomorphic evolution of intertidal (salt marsh and tidal flat) ecosystems and hence substantially affect their valuable ecosystem services. By applying a novel sensor, we obtained unique high-resolution daily bed-level change datasets from 10 marsh–mudflat sites in northwestern Europe. This dataset has revealed diverse spatial bed-level change patterns over daily to seasonal scales, which are valuable to theoretical and model development.
Chen Wang, Lennert Schepers, Matthew L. Kirwan, Enrica Belluco, Andrea D'Alpaos, Qiao Wang, Shoujing Yin, and Stijn Temmerman
Earth Surf. Dynam., 9, 71–88, https://doi.org/10.5194/esurf-9-71-2021, https://doi.org/10.5194/esurf-9-71-2021, 2021
Short summary
Short summary
Coastal marshes are valuable natural habitats with normally dense vegetation. The presence of bare patches is a symptom of habitat degradation. We found that the occurrence of bare patches and regrowth of vegetation is related to spatial variations in soil surface elevation and to the distance and connectivity to tidal creeks. These relations are similar in three marshes at very different geographical locations. Our results may help nature managers to conserve and restore coastal marshes.
Cited articles
Azevedo, L. B., Van Zelm, R., Leuven, R. S. E. W., Hendriks, A. J., and Huijbregts, M. A. J.: Combined ecological risks of nitrogen and phosphorus in European freshwaters, Environ. Pollut., 200, 85–92, https://doi.org/10.1016/J.ENVPOL.2015.02.011, 2015.
Baken, S., Verbeeck, M., Verheyen, D., Diels, J., and Smolders, E.: Phosphorus losses from agricultural land to natural waters are reduced by immobilisation in iron-rich sediments of drainage ditches, Water Res., 71, 160–170, https://doi.org/10.1016/j.watres.2015.01.008, 2015.
Ballantine, D. J., Walling, D. E., Collins, A. L., and Leeks, G. J. L.: The content and storage of phosphorus in fine-grained channel bed sediment in contrasting lowland agricultural catchments in the UK, Geoderma, 151, 141–149, https://doi.org/10.1016/j.geoderma.2009.03.021, 2009.
Belliard, J. P., Silinski, A., Meire, D., Kolokythas, G., Levy, Y., Van Braeckel, A., Bouma, T. J., and Temmerman, S.: High-resolution bed level changes in relation to tidal and wave forcing on a narrow fringing macrotidal flat: Bridging intra-tidal, daily and seasonal sediment dynamics, Mar. Geol., 412, 123–138, https://doi.org/10.1016/j.margeo.2019.03.001, 2019.
Billen, G., Garnier, J., and Rousseau, V.: Nutrient fluxes and water quality in the drainage network of the Scheldt basin over the last 50 years, Hydrobiologia, 540, 47–67, https://doi.org/10.1007/s10750-004-7103-1, 2005.
Birch, G. F., McCready, S., Long, E. R., Taylor, S. S., and Spyrakis, G.: Contaminant chemistry and toxicity of sediments in Sydney Harbour, Australia: Spatial extent and chemistry-toxicity relationships, Mar. Ecol. Prog. Ser., 363, 71–87, https://doi.org/10.3354/meps07445, 2008.
Bitschofsky, F. and Nausch, M.: Spatial and seasonal variations in phosphorus speciation along a river in a lowland catchment (Warnow, Germany), Sci. Total Environ., 657, 671–685, https://doi.org/10.1016/J.SCITOTENV.2018.12.009, 2019.
Bjerrum, C. J. and Canfield, D. E.: Ocean productivity before about 1.9 Gyr ago limited by phosphorus adsorption onto iron oxides, Nature, 417, 159–162, https://doi.org/10.1038/417159a, 2002.
Borggaard, O. K., Jdrgensen S. S., Moberg, J. P., and Raben-Lange, B.: Influence of organic matter on phosphate adsorption by aluminium and iron oxides in sandy soils, J. Soil Sci., 43, 3, https://doi.org/10.1111/j.1365-2389.1990.tb00078.x, 1990.
Boyle, J. F., Chiverrell, R. C., Davies, H., and Alderson, D. M.: An approach to modelling the impact of prehistoric farming on Holocene landscape phosphorus dynamics, Holocene, 25, 203–214, https://doi.org/10.1177/0959683614556381, 2015.
Breeuwsma, A., Reijerink, J. G. A., and Schoumans, O. F.: Impact of manure on accumulation and leaching of phosphate in areas of intensive livestock farming, in: Animal Waste and the Land-Water Interface (pp. 239–249), edited by: Steele, K. F., Lewis Publishers,
ISBN 978-1566701891, 1995.
Burson, A., Stomp, M., Akil, L., Brussaard, C. P. D., and Huisman, J.: Unbalanced reduction of nutrient loads has created an offshore gradient from phosphorus to nitrogen limitation in the North Sea, Limnol. Oceanogr., 61, 869–888, https://doi.org/10.1002/LNO.10257, 2016.
Callaway, J. C., Nyman, J. A., and DeLaune, R. D.: Sediment accretion in coastal wetlands: A review and a simulation model of processes, Curr. Top. Wetl. Biogeochem., 2, 2–23, 1996.
Cardoso, A. C., Solimini, A., Premazzi, G., Carvalho, L., Lyche, A., and Rekolainen, S.: Phosphorus reference concentrations in European lakes, Hydrobiologia, 584, 3–12, 2007.
Correll, D. L.: The Role of Phosphorus in the Eutrophication of Receiving Waters: A Review, J. Environ. Qual., 27, 261–266, https://doi.org/10.2134/jeq1998.00472425002700020004x, 1998.
De Pauw, C.: The environment and plankton of the
WesterScheldt estuary, Ghent, available at:
http://www.vliz.be/en/imis?module=dataset&dasid=1390 (last
access: 2 April 2020,
2007.
De Swart, H. E. and Zimmerman, J. T. F.: Morphodynamics of tidal inlet systems, Annu. Rev. Fluid Mech., 41, 203–229, https://doi.org/10.1146/annurev.fluid.010908.165159, 2009.
Dodds, W. K. and Smith, V. H.: Nitrogen, phosphorus, and eutrophication in streams, Inland Waters, 6, 155–164, https://doi.org/10.5268/IW-6.2.909, 2016.
ECOBE-UA and De Vlaamse Waterweg: OMES: Monitoring
fysical-chemical water quality in the Zeeschelde, available at:
http://www.vliz.be/en/imis?module=dataset&dasid=1069 (last access: 28 September 2020), 2016.
ECOBE – UA: The Flemish Waterway: OMES monitoring data
Zeeschelde since 1995, ECOBE – UA [data set], available at: http://vliz.be/ (last access: 2 April 2020), 2019.
ECOBE – UAntwerpen: AZ monitoring water quality of the
Scheldt, available at:
http://www.vliz.be/en/imis?module=dataset&dasid=1468 (last access: 28 September 2020), 2007.
Edmunds, W. and Shand, P.: Natural groundwater quality, Blackwwell Publishing Ltd, ISBN 978-14051-5675-2, 2009.
Elser, J. J., Bracken, M. E. S., Cleland, E. E., Gruner, D. S., Harpole, W. S., Hillebrand, H., Ngai, J. T., Seabloom, E. W., Shurin, J. B., and Smith, J. E.: Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems, Ecol. Lett., 10, 1135–1142, https://doi.org/10.1111/j.1461-0248.2007.01113.x, 2007.
European Commission: Directive 2000/60/EC of the European
Parliament and of the Council of 23 October 2000 establishing a
framework for Community action in the field of water policy, available at: http://data.europa.eu/eli/dir/2000/60/oj
(last access: 28 September 2021),
2000.
Flemish Government: VLAREM II, Vlarem II, EMIS Navig,
available at:
https://navigator.emis.vito.be/mijn-navigator?woId = 263 (last
access: 23 December 2020), 1995.
Friedrichs, C. T. and Perry, J. E.: Tidal Salt Marsh Morphodynamics: A Synthesis, J. Coastal Res., 27, 7–37, 2001.
Froelich, P. N.: Kinetic control of dissolved phosphate in natural rivers and estuaries: A primer on the phosphate buffer mechanism1, Limnol. Oceanogr., 33, 649–668, https://doi.org/10.4319/lo.1988.33.4part2.0649, 1988.
Hiemstra, T., Antelo, J., Rahnemaie, R., and van Riemsdijk, W. H.: Nanoparticles in natural systems I: The effective reactive surface area of the natural oxide fraction in field samples, Geochim. Cosmochim. Acta, 74, 41–58, https://doi.org/10.1016/j.gca.2009.10.018, 2010.
Holtan, H., Kamp-Nielsen, L., and Stuanes, A. O.: Phosphorus in soil, water and sediment: an overview, Hydrobiologia, 170, 19–34, https://doi.org/10.1007/BF00024896, 1988.
House, W. A. and Denison, F. H.: Phosphorus dynamics in a lowland river, Water Res., 32, 1819–1830, https://doi.org/10.1016/S0043-1354(97)00407-7, 1998.
Institute voor Hygiëne en Epidemiologie (IHE):
Scheldt water quality data, available at:
http://www.vliz.be/en/imis?module=dataset&dasid=1438 (last access: 28 September 2020), 2007.
Jarvie, H. P., Neal, C., and Withers, P. J. A.: Sewage-effluent phosphorus: A greater risk to river eutrophication than agricultural phosphorus?, Sci. Total Environ., 360, 246–253, https://doi.org/10.1016/j.scitotenv.2005.08.038, 2006.
Laane, R. W. P. M.: Background concentrations of natural
compounds in rivers, sea water, atmosphere and mussels, The Hague,
available at:
http://publicaties.minienm.nl/documenten/ background-concentrations-of-natural-compounds-in-rivers-sea-wat
(last access: 19 October 2020), 1992.
Lexmond, T. M., Riemsdijk, W. H. van, and Haan,
F. A. M. de: Onderzoek naar fosfaat en koper in de bodem in het
bijzonder in gebieden met intensieve veehouderij, L. H., available
at:
https://research.wur.nl/en/publications/onderzoek-naar-
fosfaat-en-koper-in-de-bodem-in-het-bijzonder-in-g
(last access: 15 September 2021), 1982.
Lookman, R., Vandeweert, N., Merckx, R., and Vlassak, K.: Geostatistical assessment of the regional distribution of phosphate sorption capacity parameters (FeOX and AlOX) in northern Belgium, Geoderma, 66, 285–296, https://doi.org/10.1016/0016-7061(94)00084-N, 1995.
Mainstone, C. P. and Parr, W.: Phosphorus in rivers – Ecology and management, Sci. Total Environ., 282–283, 25–47, https://doi.org/10.1016/S0048-9697(01)00937-8, 2002.
Matschullat, J., Ottenstein, R., and Reimann, C.: Geochemical background – Can we calculate it?, Environ. Geol., 39, 990–1000, https://doi.org/10.1007/s002549900084, 2000.
Meire, P., Ysebaert, T., Van Damme, S., Van Den Bergh, E., Maris, T., and Struyf, E.: The Scheldt estuary: A description of a changing ecosystem, Hydrobiologia, 540, 1–11, https://doi.org/10.1007/s10750-005-0896-8, 2005.
Migon, C. and Sandroni, V.: Phosphorus in rainwater: Partitioning inputs and impact on the surface coastal ocean, Limnol. Oceanogr., 44, 1160–1165, https://doi.org/10.4319/lo.1999.44.4.1160, 1999.
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., and Veith, T. L.: Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations, T. ASABE, 50, 885−-900, https://doi.org/10.13031/2013.23153, 1983.
Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models part I – A discussion of principles, J. Hydrol., 10, 282–290, https://doi.org/10.1016/0022-1694(70)90255-6, 1970.
Nürnberg, G. K.: Quantifying anoxia in lakes, Limnol. Oceanogr., 40, 1100–1111, https://doi.org/10.4319/LO.1995.40.6.1100, 1995.
Pethick, J. S.: Long-term accretion rates on tidal salt marshes, J. Sediment. Petrol., 51, 571–577, https://doi.org/10.1306/212F7CDE-2B24-11D7-8648000102C1865D, 1981.
Poppelmonde, D.: Organic carbon dynamics in tidal marshes
of the Scheldt estuary A combined field and modelling approach, Master Thesis research, KU Leuven, VUB, 2017.
R Core Team: R: A language and environment for statistical computing, available at: https://www.r-project.org/ (last access: 8 November 2021), 2020.
Reimann, C. and Garrett, R. G.: Geochemical background – Concept and reality, Sci. Total Environ., 350, 12–27, https://doi.org/10.1016/j.scitotenv.2005.01.047, 2005.
Reynolds, C. S.: Phosphorus recycling in lakes: Evidence from large limnetic enclosures for the importance of shallow sediments, Freshwater Biol., 35, 623–645, https://doi.org/10.1111/j.1365-2427.1996.tb01773.x, 2000.
Rönspieß, L., Dellwig, O., Lange, X., Nausch, G., and Schulz-Bull, D.: Spatial and seasonal phosphorus dynamics in a eutrophic estuary of the southern Baltic Sea, Estuar. Coast. Shelf S., 233, 106532, https://doi.org/10.1016/J.ECSS.2019.106532, 2020.
RStudio Team: RStudio: Integrated Development for R, available at: http://www.rstudio.com/ (last access: 8 November 2021), 2015.
Salminen, R., Batista, M. J., Bidovec, M. D.,
Demetriades, A., De Vivo, B., De Vos, W., Duris, M., Gilucis, A.,
Gregorauskiene, V., Halamic, J., Heitzmann, P., Lima, A., Jordan,
G., Klaver, G., Klein, P., Lis, J., Locutura, J., Marsina, K.,
Mazreku, A., O'Connor, P. J., Olsson, S. Å., Ottesen, R.-T.,
Petersell, V., Plant, J. A., Reeder, S., Salpeteur, I.,
Sandström, H., Siewers, U., Steenfelt, A., and Tarvainen, T.:
Part 1 – Background information, methodology and maps, in: Geochemical Atlas of Europe, Espoo, Finland: Geological Survey of Finland, ISBN 951-690-913-2, 2005.
ScheldeMonitor Team and Vlaams-Nederlandse Schelde Comissie (VNSC), research and monitoring: Data downloaded
from ScheldeMonitor: a data portal with information, data and
products on the Scheldt Estuary, Data downloaded from ScheldeMonitor
a data portal with information, data Prod. Scheldt Estuary,
available at:
https://rshiny.scheldemonitor.org/waterniveauschelde/ (last
access: 12 April 2021), 2020.
Schönfelder, I. and Steinberg, C. E. W.: How did the
nutrient concentrations change in northeastern German lowland rivers
during the last four millennia? – A paleolimnological study of floodplain sediments, Mathematisch-Naturwissenschaftliche Fakultät I, https://doi.org/10.18452/9393, 2004.
Schoumans, O. F. and Chardon, W. J.: Phosphate saturation degree and accumulation of phosphate in various soil types in The Netherlands, Geoderma, 237, 325–335, https://doi.org/10.1016/j.geoderma.2014.08.015, 2015.
Schoumans, O. F. and Groenendijk, P.: Modeling Soil Phosphorus Levels and Phosphorus Leaching from Agricultural Land in the Netherlands, J. Environ. Qual., 29, 111–116, https://doi.org/10.2134/jeq2000.00472425002900010014x, 2000.
Schulz, M. and Herzog, C.: The influence of sorption processes on the phosphorus mass balance in a eutrophic German lowland river, Water Air Soil Pollut., 155, 291–301, https://doi.org/10.1023/B:WATE.0000026535.27164.56, 2004.
Schwertmann, U.: Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat-Lösung, Zeitschrift für Pflanzenernährung, Düngung, Bodenkd., 105, 194–202, https://doi.org/10.1002/jpln.3591050303, 1964.
Simpson, Z. P., McDowell, R. W., Condron, L. M., McDaniel, M. D., Jarvie, H. P., and Abell, J. M.: Sediment phosphorus buffering in streams at baseflow: A meta-analysis, J. Environ. Qual., 50, 287–311, https://doi.org/10.1002/JEQ2.20202, 2021.
Smolders, E., Baetens, E., Verbeeck, M., Nawara, S., Diels, J., Verdievel, M., Peeters, B., De Cooman, W., and Baken, S.: Internal Loading and Redox Cycling of Sediment Iron Explain Reactive Phosphorus Concentrations in Lowland Rivers, Environ. Sci. Technol., 51, 2584–2592, https://doi.org/10.1021/acs.est.6b04337, 2017.
Struyf, E., Temmerman, S., and Meire, P.: Dynamics of biogenic Si in freshwater tidal marshes: Si regeneration and retention in marsh sediments (Scheldt estuary), Biogeochemistry, 82, 41–53, https://doi.org/10.1007/s10533-006-9051-5, 2007.
Svendsen, L. M. and Kronvang, B.: Retention of nitrogen
and phosphorus in a Danish lowland river system: implications for
the export from the watershed, in: Developments in Hydrobiology, edited by: Martens, K., Nutr. Dyn. Retent. Land/Water
Ecotones Lowl. Temp. Lakes Rivers, Springer Publishing, 123–135,
https://doi.org/10.1007/978-94-011-1602-2_15, 1993.
Temmerman, S., Govers, G., Meire, P., and Wartel, S.: Modelling long-term tidal marsh growth under changing tidal conditions and suspended sediment concentrations, Scheldt estuary, Belgium, Mar. Geol., 193, 151–169, https://doi.org/10.1016/S0025-3227(02)00642-4, 2003a.
Temmerman, S., Govers, G., Wartel, S., and Meire, P.: Spatial and temporal factors controlling short-term sedimentation in a salt and freshwater tidal marsh, scheldt estuary, Belgium, SW Netherlands, Earth Surf. Proc. Land, 28, 739–755, https://doi.org/10.1002/esp.495, 2003b.
Temmerman, S., Govers, G., Wartel, S., and Meire, P.: Modelling estuarine variations in tidal marsh sedimentation: Response to changing sea level and suspended sediment concentrations, Mar. Geol., 212, 1–19, https://doi.org/10.1016/j.margeo.2004.10.021, 2004a.
Temmerman, S., Govers, G., Meire, P., and Wartel, S.: Simulating the long-term development of levee-basin topography on tidal marshes, Geomorphology, 63, 39–55, https://doi.org/10.1016/j.geomorph.2004.03.004, 2004b.
van Dael, T., De Cooman, T., Verbeeck, M., and Smolders, E.: Sediment respiration contributes to phosphate release in lowland surface waters, Water Res., 168, 115168, https://doi.org/10.1016/j.watres.2019.115168, 2020.
Van de Broek, M., Temmerman, S., Merckx, R., and Govers, G.: Controls on soil organic carbon stocks in tidal marshes along an estuarine salinity gradient, Biogeosciences, 13, 6611–6624, https://doi.org/10.5194/bg-13-6611-2016, 2016.
Van de Broek, M., Vandendriessche, C., Poppelmonde, D.,
Merckx, R., Temmerman, S., and Govers, G.: Long-term organic carbon
sequestration in tidal marsh sediments is dominated by old-aged
allochthonous inputs in a macrotidal estuary, Global Change Biol.,
24, 2497–2512, https://doi.org/10.1111/gcb.14089, 2018.
Van de Broek, M., Baert, L., Temmerman, S., and Govers, G.: Soil organic carbon stocks in a tidal marsh landscape are dominated by human marsh embankment and subsequent marsh progradation, Eur. J. Soil Sci., 70, 338–349, https://doi.org/10.1111/ejss.12739, 2019.
Van Der Molen, D. T., Portielje, R., Boers, P. C. M., and Lijklema, L.: Changes in sediment phosphorus as a result of eutrophication and oligotrophication in Lake Veluwe, The Netherlands, Water Res., 32, 3281–3288, https://doi.org/10.1016/S0043-1354(98)00117-1, 1998.
van der Zee, S. E. A. T. M.: Transport of reactive contaminants in heterogeneous soil systems, Doctoral thesis, Agricultural University, Wageningen, the Netherlands, available at: http://edepot.wur.nl/212029 (last access: 14 July 2020), 1988.
van der Zee, S. E. A. T. M., van Riemsdijk, W. H., and de Haan, F. A. M.: Het Protokol Fosfaatverzadigde Gronden, Research Report Wageningen university & research, sub-department of Soil Qualtiy, available at:
https://edepot.wur.nl/394250 (last access: 30 September 2020), 1990.
van der Zee, C., Roevros, N., and Chou, L.: Phosphorus speciation, transformation and retention in the Scheldt estuary (Belgium/The Netherlands) from the freshwater tidal limits to the North Sea, Mar. Chem., 106, 76–91, https://doi.org/10.1016/j.marchem.2007.01.003, 2007.
Van Huet, H. J. W. J.: Phosphorus eutrophication research
in the lake district of south western Friesland, The
Netherlands. Preliminary results of abiotic studies, in: Developments in Hydrobiology, edited by: Martens, K., Trophic
Relationships Inl. Waters, Springer Publishing, 75–85, https://doi.org/10.1007/978-94-009-0467-5_10, 1990.
Van Meel, L.: hydrobiology of the Sea-Scheldt near
Liefkenshoek, available at:
http://www.vliz.be/en/imis?module=dataset&dasid=1412
(last access: 28 September 2020), 1958.
Van Puijenbroek, P. J. T. M., Cleij, P., and Visser, H.: Aggregated indices for trends in eutrophication of different types of fresh water in the Netherlands, Ecol. Indic., 36, 456–462, https://doi.org/10.1016/J.ECOLIND.2013.08.022, 2014.
Van Putte, N., Temmerman, S., Verreydt, G., Seuntjens, P., Maris, T., Heyndrickx, M., Boone, M., Joris, I., and Meire, P.: Groundwater dynamics in a restored tidal marsh are limited by historical soil compaction, Estuar. Coast. Shelf Sci., 244, 106101, https://doi.org/10.1016/j.ecss.2019.02.006, 2020.
van Raaphorst, W. and Kloosterhuis, H. T.: Phosphate sorption in superficial intertidal sediments, Mar. Chem., 48, 1–16, https://doi.org/10.1016/0304-4203(94)90058-2, 1994.
van Raaphorst, W., de Jonge, V. N., Dijkhuizen, D., and
Frederiks, B.: Natural background concentrations of phosphorus and
nitrogen in the Dutch Wadden Sea, Rapp. voor Kust en Zee, Netherlands Institute for Sea Research (NIOZ),
53 pp., available at: https://edepot.wur.nl/174247 (last access: 24 December 2020), 2000.
Vanhaute, E.: En arbeid in België in de `lange negentiende eeuw', Bijdr. Meded. Geschied. Ned., 118, 153–178, 2003.
VMM: Milieurapport Vlaanderen – Systeembalans 2017, available at: http://www.milieurapport.be/Upload/main/0_topicrapporten/361312_Systeembalans2017_nieuw.pdf (last access: 24 December 2020), 2017.
VMM: Nutriënten – Vlaamse Milieumaatschappij, available at: https://www.vmm.be/water/kwaliteit-waterlopen/chemie/nutrienten#section-0 (last access: 10 February 2020), 2018.
VMM: Fysisch-chemische kwaliteit oppervlaktewater 2018 – Vlaamse Milieumaatschappij, available at: https://www.vmm.be/publicaties/fysisch-chemische-kwaliteit-oppervlaktewater-2018 (last access: 27 February 2020), 2019.
Wang, Y., Shen, Z., Niu, J., and Liu, R.: Adsorption of phosphorus on sediments from the Three-Gorges Reservoir (China) and the relation with sediment compositions, J. Hazard. Mater., 162, 92–98, https://doi.org/10.1016/j.jhazmat.2008.05.013, 2009.
Warrinnier, R., Goossens, T., Braun, S., Gustafsson, J. P., and Smolders, E.: Modelling heterogeneous phosphate sorption kinetics on iron oxyhydroxides and soil with a continuous distribution approach, Eur. J. Soil Sci., 69, 475–487, https://doi.org/10.1111/ejss.12549, 2018.
Warrinnier, R., Goossens, T., Amery, F., Vanden Nest, T., Verbeeck, M., and Smolders, E.: Investigation on the control of phosphate leaching by sorption and colloidal transport: Column studies and multi-surface complexation modelling, Appl. Geochem., 100, 371–379, https://doi.org/10.1016/j.apgeochem.2018.12.012, 2019.
Watson, S. J., Cade-Menun, B. J., Needoba, J. A., and
Peterson, T. D.: Phosphorus Forms in Sediments of a River-Dominated
Estuary, Front. Mar. Sci., 5, 302, https://doi.org/10.3389/FMARS.2018.00302, 2018.
Zak, D., Kleeberg, A., and Hupfer, M.: Sulphate-mediated phosphorus mobilisation in riverine sediments at increasing sulphate concentration, River Spree, NE Germany, Biogeochemistry, 80, 109–119, https://doi.org/10.1007/s10533-006-0003-x, 2006.
Zhou, A., Tang, H., and Wang, D.: Phosphorus adsorption on natural sediments: Modeling and effects of pH and sediment composition, Water Res., 39, 1245–1254, https://doi.org/10.1016/j.watres.2005.01.026, 2005.
Short summary
Surface waters in lowland regions have a poor surface water quality, mainly due to excess nutrients like phosphate. Therefore, we wanted to know the phosphate levels without humans, also called the pre-industrial background. Phosphate binds strongly to sediment particles, suspended in the river water. In this research we used sediments deposited by a river as an archive for surface water phosphate back to 1800 CE. Pre-industrial phosphate levels were estimated at one-third of the modern levels.
Surface waters in lowland regions have a poor surface water quality, mainly due to excess...
Altmetrics
Final-revised paper
Preprint