Articles | Volume 20, issue 1
https://doi.org/10.5194/bg-20-1-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-1-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ice nucleating properties of the sea ice diatom Fragilariopsis cylindrus and its exudates
Lukas Eickhoff
Faculty of Chemistry, Bielefeld University,
33615 Bielefeld, Germany
Maddalena Bayer-Giraldi
Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, 20354 Hamburg, Germany
formerly at: Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27568 Bremerhaven, Germany
Naama Reicher
Department of Earth and Planetary Sciences, Weizmann Institute of
Science, 76100 Rehovot, Israel
Yinon Rudich
Department of Earth and Planetary Sciences, Weizmann Institute of
Science, 76100 Rehovot, Israel
Faculty of Chemistry, Bielefeld University,
33615 Bielefeld, Germany
Related authors
No articles found.
Battist Utinger, Alexandre Barth, Andreas Paul, Arya Mukherjee, Steven John Campbell, Christa-Maria Müller, Mika Ihalainen, Pasi Yli-Pirilä, Miika Kortelainen, Zheng Fang, Patrick Martens, Markus Somero, Juho Louhisalmi, Thorsten Hohaus, Hendryk Czech, Olli Sippula, Yinon Rudich, Ralf Zimmermann, and Markus Kalberer
Aerosol Research, 3, 205–218, https://doi.org/10.5194/ar-3-205-2025, https://doi.org/10.5194/ar-3-205-2025, 2025
Short summary
Short summary
The oxidative potential (OP) of air pollution particles might be a metric explaining particle toxicity. This study quantifies the OP of fresh and aged car and wood burning emission particles and explores how the OP changes over time, using novel high-temporal-resolution instruments. We show that emissions from wood burning are more toxic than car exhaust per unit particle mass, especially as they age in the atmosphere. We also calculate emission factors for the OP, which could help to improve air pollution policies.
Dandan Zhang, Randall V. Martin, Xuan Liu, Aaron van Donkelaar, Christopher R. Oxford, Yanshun Li, Jun Meng, Danny M. Leung, Jasper F. Kok, Longlei Li, Haihui Zhu, Jay R. Turner, Yu Yan, Michael Brauer, Yinon Rudich, and Eli Windwer
EGUsphere, https://doi.org/10.5194/egusphere-2025-438, https://doi.org/10.5194/egusphere-2025-438, 2025
Short summary
Short summary
This study develops the fine mineral dust simulation in GEOS-Chem by: 1) implementing a new dust emission scheme with further refinements; 2) revisiting the size distribution of emitted dust; 3) explicitly tracking fine dust for emission, transport and deposition in 4 size bins; 4) updating the parametrization for below-cloud scavenging. All revisions significantly reduce the overestimation of surface fine dust from 73% to 21% while retaining comparable skill in representing columnar abundance.
Barbara Ervens, Ken S. Carslaw, Thomas Koop, and Ulrich Pöschl
EGUsphere, https://doi.org/10.5194/egusphere-2025-419, https://doi.org/10.5194/egusphere-2025-419, 2025
Short summary
Short summary
Over the past two decades, the European Geosciences Union (EGU) has demonstrated the success, viability and benefits of interactive open access (OA) publishing with public peer review in its journals, its publishing platform EGUsphere and virtual compilations. The article summarizes the evolution of the EGU/Copernicus publications and of OA publishing with interactive public peer review at large by placing the EGU/Copernicus publications in the context of current and future global open science.
Mark D. Tarn, Bethany V. Wyld, Naama Reicher, Matan Alayof, Daniella Gat, Alberto Sanchez-Marroquin, Sebastien N. F. Sikora, Alexander D. Harrison, Yinon Rudich, and Benjamin J. Murray
Aerosol Research, 2, 161–182, https://doi.org/10.5194/ar-2-161-2024, https://doi.org/10.5194/ar-2-161-2024, 2024
Short summary
Short summary
Ambient ice-nucleating particle (INP) concentrations were measured in Israel, which experiences air masses from a variety of sources. We found that the INP activity is typically dominated by K-feldspar mineral dust but that air masses passing over regions of fertile soils correlated with high INP concentrations and indicators of biological activity. This suggests that these fertile regions could be sporadic sources of warm-temperature biogenic INPs and warrants further study of these areas.
Rolf Müller, Ulrich Pöschl, Thomas Koop, Thomas Peter, and Ken Carslaw
Atmos. Chem. Phys., 23, 15445–15453, https://doi.org/10.5194/acp-23-15445-2023, https://doi.org/10.5194/acp-23-15445-2023, 2023
Short summary
Short summary
Paul J. Crutzen was a pioneer in atmospheric sciences and a kind-hearted, humorous person with empathy for the private lives of his colleagues and students. He made fundamental scientific contributions to a wide range of scientific topics in all parts of the atmosphere. Paul was among the founders of the journal Atmospheric Chemistry and Physics. His work will continue to be a guide for generations of scientists and environmental policymakers to come.
Caroline C. Womack, Steven S. Brown, Steven J. Ciciora, Ru-Shan Gao, Richard J. McLaughlin, Michael A. Robinson, Yinon Rudich, and Rebecca A. Washenfelder
Atmos. Meas. Tech., 15, 6643–6652, https://doi.org/10.5194/amt-15-6643-2022, https://doi.org/10.5194/amt-15-6643-2022, 2022
Short summary
Short summary
We present a new miniature instrument to measure nitrogen dioxide (NO2) using cavity-enhanced spectroscopy. NO2 contributes to the formation of pollutants such as ozone and particulate matter, and its concentration can vary widely near sources. We developed this lightweight (3.05 kg) low-power (<35 W) instrument to measure NO2 on uncrewed aircraft vehicles (UAVs) and demonstrate that it has the accuracy and precision needed for atmospheric field measurements.
Zhi-Hui Zhang, Elena Hartner, Battist Utinger, Benjamin Gfeller, Andreas Paul, Martin Sklorz, Hendryk Czech, Bin Xia Yang, Xin Yi Su, Gert Jakobi, Jürgen Orasche, Jürgen Schnelle-Kreis, Seongho Jeong, Thomas Gröger, Michal Pardo, Thorsten Hohaus, Thomas Adam, Astrid Kiendler-Scharr, Yinon Rudich, Ralf Zimmermann, and Markus Kalberer
Atmos. Chem. Phys., 22, 1793–1809, https://doi.org/10.5194/acp-22-1793-2022, https://doi.org/10.5194/acp-22-1793-2022, 2022
Short summary
Short summary
Using a novel setup, we comprehensively characterized the formation of particle-bound reactive oxygen species (ROS) in anthropogenic and biogenic secondary organic aerosols (SOAs). We found that more than 90 % of all ROS components in both SOA types have a short lifetime. Our results also show that photochemical aging promotes particle-bound ROS production and enhances the oxidative potential of the aerosols. We found consistent results between chemical-based and biological-based ROS analyses.
Quanfu He, Zheng Fang, Ofir Shoshanim, Steven S. Brown, and Yinon Rudich
Atmos. Chem. Phys., 21, 14927–14940, https://doi.org/10.5194/acp-21-14927-2021, https://doi.org/10.5194/acp-21-14927-2021, 2021
Short summary
Short summary
Rayleigh scattering and absorption cross sections for CO2, N2O, SF6, O2, and CH4 were measured between 307 and 725 nm. New dispersion relations for N2O, SF6, and CH4 in the UV–vis range were derived. This study provides refractive index dispersion relations, scattering, and absorption cross sections which are highly needed for accurate instrument calibration and for improved accuracy of Rayleigh scattering parameterizations for major greenhouse gases in Earth's atmosphere.
Jingchuan Chen, Zhijun Wu, Jie Chen, Naama Reicher, Xin Fang, Yinon Rudich, and Min Hu
Atmos. Chem. Phys., 21, 3491–3506, https://doi.org/10.5194/acp-21-3491-2021, https://doi.org/10.5194/acp-21-3491-2021, 2021
Short summary
Short summary
Asian mineral dust is a crucial contributor to global ice-nucleating particles (INPs), while its size-resolved information on freezing activity is extremely rare. Here we conducted the first known INP measurements of size-resolved airborne East Asian dust particles. An explicit size dependence of both INP concentration and surface
ice-active-site density was observed. The new parameterizations can be widely applied in models to better characterize and predict ice nucleation activities of dust.
Cited articles
Ackley, S. F. and Sullivan, C. W.: Physical controls on the development and
characteristics of Antarctic sea ice biological communities – a review and
synthesis, Deep Sea Res. Pt. I, 41,
1583–1604, https://doi.org/10.1016/0967-0637(94)90062-0, 1994.
Alpert, P. A., Aller, J. Y., and Knopf, D. A.: Ice nucleation from aqueous NaCl droplets with and without marine diatoms, Atmos. Chem. Phys., 11, 5539–5555, https://doi.org/10.5194/acp-11-5539-2011, 2011.
Aslam, S. N., Strauss, J., Thomas, D. N., Mock, T., and Underwood, G. J. C.:
Identifying metabolic pathways for production of extracellular polymeric
substances by the diatom Fragilariopsis cylindrus inhabiting sea ice,
ISME J., 12, 1237–1251, https://doi.org/10.1038/s41396-017-0039-z, 2018.
Aslam, S. N., Cresswell-Maynard, T., Thomas, D. N., and Underwood, G. J. C.:
Production and Characterization of the Intra- and Extracellular
Carbohydrates and Polymeric Substances (EPS) of Three Sea-Ice Diatom
Species, and Evidence for a Cryoprotective Role for EPS, J. Phycol., 48, 1494–1509, https://doi.org/10.1111/jpy.12004, 2012a.
Aslam, S. N., Underwood, G. J. C., Kaartokallio, H., Norman, L., Autio, R.,
Fischer, M., Kuosa, H., Dieckmann, G. S., and Thomas, D. N.: Dissolved
extracellular polymeric substances (dEPS) dynamics and bacterial growth
during sea ice formation in an ice tank study, Polar. Biol., 35, 661–676,
https://doi.org/10.1007/s00300-011-1112-0, 2012b.
Augustin, S., Wex, H., Niedermeier, D., Pummer, B., Grothe, H., Hartmann, S., Tomsche, L., Clauss, T., Voigtländer, J., Ignatius, K., and Stratmann, F.: Immersion freezing of birch pollen washing water, Atmos. Chem. Phys., 13, 10989–11003, https://doi.org/10.5194/acp-13-10989-2013, 2013.
Bar Dolev, M., Braslavsky, I., and Davies, P. L.: Ice-Binding Proteins and
Their Function, Annu. Rev. Biochem., 85, 515–542,
https://doi.org/10.1146/annurev-biochem-060815-014546, 2016.
Bartsch, A.: Sea lce Algae of the Weddell Sea (Antarctica): Species
Composition, Biomass, and Ecophysiology of Selected Species, Ber.
Polarforsch., 63, p. 89, 1989.
Bayer-Giraldi, M., Uhlig, C., John, U., Mock, T., and Valentin, K.:
Antifreeze proteins in polar sea ice diatoms: diversity and gene expression
in the genus Fragilariopsis, Environ. Microbiol., 12, 1041–1052,
https://doi.org/10.1111/j.1462-2920.2009.02149.x, 2010.
Bayer-Giraldi, M., Sazaki, G., Nagashima, K., Kipfstuhl, S., Vorontsov, D.
A., and Furukawa, Y.: Growth suppression of ice crystal basal face in the
presence of a moderate ice-binding protein does not confer hyperactivity,
P. Natl. Acad. Sci. USA, 115, 7479–7484, https://doi.org/10.1073/pnas.1807461115, 2018.
Bayer-Giraldi, M., Weikusat, I., Besir, H., and Dieckmann, G.:
Characterization of an antifreeze protein from the polar diatom
Fragilariopsis cylindrus and its relevance in sea ice, Cryobiology, 63,
210–219, https://doi.org/10.1016/j.cryobiol.2011.08.006, 2011.
Brown, R. M., Larson, D. A., and Bold, H. C.: Airborne Algae: Their
Abundance and Heterogeneity, Science (New York, N.Y.), 143, 583–585,
https://doi.org/10.1126/science.143.3606.583, 1964.
Budke, C. and Koop, T.: BINARY: an optical freezing array for assessing temperature and time dependence of heterogeneous ice nucleation, Atmos. Meas. Tech., 8, 689–703, https://doi.org/10.5194/amt-8-689-2015, 2015.
Burrows, S. M., Hoose, C., Pöschl, U., and Lawrence, M. G.: Ice nuclei in marine air: biogenic particles or dust?, Atmos. Chem. Phys., 13, 245–267, https://doi.org/10.5194/acp-13-245-2013, 2013.
Cefarelli, A. O., Ferrario, M. E., Almandoz, G. O., Atencio, A. G.,
Akselman, R., and Vernet, M.: Diversity of the diatom genus Fragilariopsis
in the Argentine Sea and Antarctic waters: morphology, distribution and
abundance, Polar. Biol., 33, 1463–1484, https://doi.org/10.1007/s00300-010-0794-z, 2010.
Collins, D. J., Neild, A., deMello, A., Liu, A.-Q., and Ai, Y.: The Poisson
distribution and beyond: methods for microfluidic droplet production and
single cell encapsulation, Lab Chip, 15, 3439–3459,
https://doi.org/10.1039/c5lc00614g, 2015.
Creamean, J. M., Hill, T. C. J., DeMott, P. J., Uetake, J., Kreidenweis, S.,
and Douglas, T. A.: Thawing permafrost: an overlooked source of seeds for
Arctic cloud formation, Environ. Res. Lett., 15, 84022,
https://doi.org/10.1088/1748-9326/ab87d3, 2020.
Creamean, J. M., Ceniceros, J. E., Newman, L., Pace, A. D., Hill, T. C. J., DeMott, P. J., and Rhodes, M. E.: Evaluating the potential for Haloarchaea to serve as ice nucleating particles, Biogeosciences, 18, 3751–3762, https://doi.org/10.5194/bg-18-3751-2021, 2021.
Cui, S., Zhang, W., Shao, X., and Cai, W.: Do Antifreeze Proteins Generally
Possess the Potential to Promote Ice Growth?, Phys. Chem. Chem. Phys., 24, 7901–7908,
https://doi.org/10.1039/D1CP05431G, 2022.
Davies, P. L.: Ice-binding proteins: a remarkable diversity of structures
for stopping and starting ice growth, Trends Biochem. Sci., 39,
548–555, https://doi.org/10.1016/j.tibs.2014.09.005, 2014.
DeMott, P. J., Hill, T. C. J., McCluskey, C. S., Prather, K. A., Collins, D.
B., Sullivan, R. C., Ruppel, M. J., Mason, R. H., Irish, V. E., Lee, T.,
Hwang, C. Y., Rhee, T. S., Snider, J. R., McMeeking, G. R., Dhaniyala, S.,
Lewis, E. R., Wentzell, J. J. B., Abbatt, J., Lee, C., Sultana, C. M., Ault,
A. P., Axson, J. L., Diaz Martinez, M., Venero, I., Santos-Figueroa, G.,
Stokes, M. D., Deane, G. B., Mayol-Bracero, O. L., Grassian, V. H., Bertram,
T. H., Bertram, A. K., Moffett, B. F., and Franc, G. D.: Sea spray aerosol
as a unique source of ice nucleating particles, P. Natl. Acad. Sci. USA, 113, 5797–5803,
https://doi.org/10.1073/pnas.1514034112, 2016.
DeMott, P. J., Möhler, O., Cziczo, D. J., Hiranuma, N., Petters, M. D., Petters, S. S., Belosi, F., Bingemer, H. G., Brooks, S. D., Budke, C., Burkert-Kohn, M., Collier, K. N., Danielczok, A., Eppers, O., Felgitsch, L., Garimella, S., Grothe, H., Herenz, P., Hill, T. C. J., Höhler, K., Kanji, Z. A., Kiselev, A., Koop, T., Kristensen, T. B., Krüger, K., Kulkarni, G., Levin, E. J. T., Murray, B. J., Nicosia, A., O'Sullivan, D., Peckhaus, A., Polen, M. J., Price, H. C., Reicher, N., Rothenberg, D. A., Rudich, Y., Santachiara, G., Schiebel, T., Schrod, J., Seifried, T. M., Stratmann, F., Sullivan, R. C., Suski, K. J., Szakáll, M., Taylor, H. P., Ullrich, R., Vergara-Temprado, J., Wagner, R., Whale, T. F., Weber, D., Welti, A., Wilson, T. W., Wolf, M. J., and Zenker, J.: The Fifth International Workshop on Ice Nucleation phase 2 (FIN-02): laboratory intercomparison of ice nucleation measurements, Atmos. Meas. Tech., 11, 6231–6257, https://doi.org/10.5194/amt-11-6231-2018, 2018.
Dreischmeier, K., Budke, C., Wiehemeier, L., Kottke, T., and Koop, T.:
Boreal pollen contain ice-nucleating as well as ice-binding “antifreeze”
polysaccharides, Sci. Rep., 7, 41890, https://doi.org/10.1038/srep41890, 2017.
Edd, J. F., Humphry, K. J., Irimia, D., Weitz, D. A., and Toner, M.:
Nucleation and solidification in static arrays of monodisperse drops, Lab Chip, 9, 1859–1865, https://doi.org/10.1039/b821785h, 2009.
Eicken, H.: The role of sea ice in structuring Antarctic ecosystems, Polar
Biol., 12, 3–13, https://doi.org/10.1007/BF00239960, 1992.
Eickhoff, L., Dreischmeier, K., Zipori, A., Sirotinskaya, V., Adar, C.,
Reicher, N., Braslavsky, I., Rudich, Y., and Koop, T.: Contrasting Behavior
of Antifreeze Proteins: Ice Growth Inhibitors and Ice Nucleation Promoters,
J. Phys. Chem. Lett., 10, 966–972,
https://doi.org/10.1021/acs.jpclett.8b03719, 2019.
Ekman, A. M. and Schmale, J.: Aerosol processes in high-latitude
environments and the effects on climate, in: Aerosols and climate, edited by: Carslaw,
K. S., Elsevier, Amsterdam, Kidlington, Cambridge, MA, 651–706, 2022.
Garrison, D. and Buck, K.: The biota of Antarctic pack ice in the Weddell
sea and Antarctic Peninsula regions, Polar Biol., 10, 211–219, https://doi.org/10.1007/BF00238497,
1989.
Gaudichet, A., Lefèvre, R., Gaudry, A., Ardouin, B., Lambert, G., and
Miller, J.: Mineralogical composition of aerosols at Amsterdam Island,
Tellus B, 41, 344–352, https://doi.org/10.1111/j.1600-0889.1989.tb00313.x, 1989.
Gersonde, R. and Zielinski, U.: The reconstruction of late Quaternary
Antarctic sea-ice distribution – the use of diatoms as a proxy for sea-ice,
Palaeogeogr. Palaeocl., 162, 263–286,
https://doi.org/10.1016/S0031-0182(00)00131-0, 2000.
Govindarajan, A. G. and Lindow, S. E.: Size of Bacterial Ice-Nucleation
Sites Measured in situ by Radiation Inactivation Analysis, P. Natl. Acad. Sci. USA, 85,
1334–1338, 1988.
Guillard, R. R. L. and Ryther, J. H.: Studies of marine planktonic diatoms:
I. Cyclotella nana hustedt, and Detonula convervacea (cleve) gran, Can. J.
Microbiol., 8, 229–239, https://doi.org/10.1139/m62-029, 1962.
Günther, S. and Dieckmann, G. S.: Vertical zonation and community
transition of sea-ice diatoms in fast ice and platelet layer, Weddell Sea,
Antarctica, Ann. Glaciol., 33, 287–296, https://doi.org/10.3189/172756401781818590,
2001.
Guo, S., Stevens, C. A., Vance, T. D. R., Olijve, L. L. C., Graham, L. A.,
Campbell, R. L., Yazdi, S. R., Escobedo, C., Bar-Dolev, M., Yashunsky, V.,
Braslavsky, I., Langelaan, D. N., Smith, S. P., Allingham, J. S., Voets, I.
K., and Davies, P. L.: Structure of a 1.5-MDa adhesin that binds its
Antarctic bacterium to diatoms and ice, Sci. Adv., 3, e1701440,
https://doi.org/10.1126/sciadv.1701440, 2017.
Hartmann, M., Gong, X., Kecorius, S., van Pinxteren, M., Vogl, T., Welti, A., Wex, H., Zeppenfeld, S., Herrmann, H., Wiedensohler, A., and Stratmann, F.: Terrestrial or marine – indications towards the origin of ice-nucleating particles during melt season in the European Arctic up to 83.7° N, Atmos. Chem. Phys., 21, 11613–11636, https://doi.org/10.5194/acp-21-11613-2021, 2021.
Herbert, R. J., Murray, B. J., Whale, T. F., Dobbie, S. J., and Atkinson, J. D.: Representing time-dependent freezing behaviour in immersion mode ice nucleation, Atmos. Chem. Phys., 14, 8501–8520, https://doi.org/10.5194/acp-14-8501-2014, 2014.
Hiranuma, N., Augustin-Bauditz, S., Bingemer, H., Budke, C., Curtius, J., Danielczok, A., Diehl, K., Dreischmeier, K., Ebert, M., Frank, F., Hoffmann, N., Kandler, K., Kiselev, A., Koop, T., Leisner, T., Möhler, O., Nillius, B., Peckhaus, A., Rose, D., Weinbruch, S., Wex, H., Boose, Y., DeMott, P. J., Hader, J. D., Hill, T. C. J., Kanji, Z. A., Kulkarni, G., Levin, E. J. T., McCluskey, C. S., Murakami, M., Murray, B. J., Niedermeier, D., Petters, M. D., O'Sullivan, D., Saito, A., Schill, G. P., Tajiri, T., Tolbert, M. A., Welti, A., Whale, T. F., Wright, T. P., and Yamashita, K.: A comprehensive laboratory study on the immersion freezing behavior of illite NX particles: a comparison of 17 ice nucleation measurement techniques, Atmos. Chem. Phys., 15, 2489–2518, https://doi.org/10.5194/acp-15-2489-2015, 2015.
Hiranuma, N., Adachi, K., Bell, D. M., Belosi, F., Beydoun, H., Bhaduri, B., Bingemer, H., Budke, C., Clemen, H.-C., Conen, F., Cory, K. M., Curtius, J., DeMott, P. J., Eppers, O., Grawe, S., Hartmann, S., Hoffmann, N., Höhler, K., Jantsch, E., Kiselev, A., Koop, T., Kulkarni, G., Mayer, A., Murakami, M., Murray, B. J., Nicosia, A., Petters, M. D., Piazza, M., Polen, M., Reicher, N., Rudich, Y., Saito, A., Santachiara, G., Schiebel, T., Schill, G. P., Schneider, J., Segev, L., Stopelli, E., Sullivan, R. C., Suski, K., Szakáll, M., Tajiri, T., Taylor, H., Tobo, Y., Ullrich, R., Weber, D., Wex, H., Whale, T. F., Whiteside, C. L., Yamashita, K., Zelenyuk, A., and Möhler, O.: A comprehensive characterization of ice nucleation by three different types of cellulose particles immersed in water, Atmos. Chem. Phys., 19, 4823–4849, https://doi.org/10.5194/acp-19-4823-2019, 2019.
Hobbs, P. V.: 1. Introduction to atmospheric chemistry a companion text to
Basic physical chemistry for the atmospheric sciences: A companion text to
Basic physical chemistry for the atmospheric sciences, Cambridge University
Press, Cambridge, 262 pp., 2000.
Hudait, A., Qiu, Y., Odendahl, N., and Molinero, V.: Hydrogen-Bonding and
Hydrophobic Groups Contribute Equally to the Binding of Hyperactive
Antifreeze and Ice-Nucleating Proteins to Ice, J. Am. Chem. Soc., 141, 7887–7898, https://doi.org/10.1021/jacs.9b02248, 2019.
Huebner, A., Srisa-Art, M., Holt, D., Abell, C., Hollfelder, F., deMello, A.
J., and Edel, J. B.: Quantitative detection of protein expression in single
cells using droplet microfluidics, Chem. Commun., 12, 1218–1220, https://doi.org/10.1039/b618570c, 2007.
Ickes, L., Porter, G. C. E., Wagner, R., Adams, M. P., Bierbauer, S., Bertram, A. K., Bilde, M., Christiansen, S., Ekman, A. M. L., Gorokhova, E., Höhler, K., Kiselev, A. A., Leck, C., Möhler, O., Murray, B. J., Schiebel, T., Ullrich, R., and Salter, M. E.: The ice-nucleating activity of Arctic sea surface microlayer samples and marine algal cultures, Atmos. Chem. Phys., 20, 11089–11117, https://doi.org/10.5194/acp-20-11089-2020, 2020.
Irish, V. E., Elizondo, P., Chen, J., Chou, C., Charette, J., Lizotte, M., Ladino, L. A., Wilson, T. W., Gosselin, M., Murray, B. J., Polishchuk, E., Abbatt, J. P. D., Miller, L. A., and Bertram, A. K.: Ice-nucleating particles in Canadian Arctic sea-surface microlayer and bulk seawater, Atmos. Chem. Phys., 17, 10583–10595, https://doi.org/10.5194/acp-17-10583-2017, 2017.
Irish, V. E., Hanna, S. J., Xi, Y., Boyer, M., Polishchuk, E., Ahmed, M., Chen, J., Abbatt, J. P. D., Gosselin, M., Chang, R., Miller, L. A., and Bertram, A. K.: Revisiting properties and concentrations of ice-nucleating particles in the sea surface microlayer and bulk seawater in the Canadian Arctic during summer, Atmos. Chem. Phys., 19, 7775–7787, https://doi.org/10.5194/acp-19-7775-2019, 2019.
Kang, S.-H. and Fryxell, G.: Fragilariopsis cylindrus (Grunow) Krieger: The
most abundant diatom in water column assemblages of Antarctic marginal
ice-edge zones, Polar Biol., 12, 609–627, https://doi.org/10.1007/BF00236984, 1992.
Knopf, D. A., Alpert, P. A., Wang, B., and Aller, J. Y.: Stimulation of ice
nucleation by marine diatoms, Nat. Geosci, 4, 88–90,
https://doi.org/10.1038/ngeo1037, 2011.
Kondo, H., Mochizuki, K., and Bayer-Giraldi, M.: Multiple binding modes of a
moderate ice-binding protein from a polar microalga, Phys. Chem. Chem. Phys., 20, 25295–25303, https://doi.org/10.1039/c8cp04727h, 2018.
Koop, T.: Homogeneous Ice Nucleation in Water and Aqueous Solutions,
Z. Phys. Chem., 218, 1231–1258,
https://doi.org/10.1524/zpch.218.11.1231.50812, 2004.
Köster, S., Angilè, F. E., Duan, H., Agresti, J. J., Wintner, A.,
Schmitz, C., Rowat, A. C., Merten, C. A., Pisignano, D., Griffiths, A. D.,
and Weitz, D. A.: Drop-based microfluidic devices for encapsulation of
single cells, Lab Chip, 8, 1110–1115, https://doi.org/10.1039/b802941e, 2008.
Krembs, C. and Engel, A.: Abundance and variability of microorganisms and
transparent exopolymer particles across the ice-water interface of melting
first-year sea ice in the Laptev Sea (Arctic), Marine Biology, 138,
173–185, https://doi.org/10.1007/s002270000396, 2001.
Krembs, C., Eicken, H., Junge, K., and Deming, J.: High concentrations of
exopolymeric substances in Arctic winter sea ice: implications for the polar
ocean carbon cycle and cryoprotection of diatoms, Deep Sea Res. Pt. I,
49, 2163–2181,
https://doi.org/10.1016/S0967-0637(02)00122-X, 2002.
Krembs, C., Eicken, H., and Deming, J. W.: Exopolymer alteration of physical
properties of sea ice and implications for ice habitability and
biogeochemistry in a warmer Arctic, P. Natl. Acad. Sci. USA, 108, 3653–3658,
https://doi.org/10.1073/pnas.1100701108, 2011.
Kunert, A. T., Pöhlker, M. L., Tang, K., Krevert, C. S., Wieder, C., Speth, K. R., Hanson, L. E., Morris, C. E., Schmale III, D. G., Pöschl, U., and Fröhlich-Nowoisky, J.: Macromolecular fungal ice nuclei in Fusarium: effects of physical and chemical processing, Biogeosciences, 16, 4647–4659, https://doi.org/10.5194/bg-16-4647-2019, 2019.
Leck, C. and Bigg, E. K.: Biogenic particles in the surface microlayer and
overlaying atmosphere in the central Arctic Ocean during summer, Tellus B, 57, 305–316,
https://doi.org/10.3402/tellusb.v57i4.16546, 2005.
Leck, C. and Bigg, E. K.: Comparison of sources and nature of the tropical
aerosol with the summer high Arctic aerosol, Tellus B, 60, 118–126,
https://doi.org/10.1111/j.1600-0889.2007.00315.x, 2008.
Lizotte, M. P.: The Contributions of Sea Ice Algae to Antarctic Marine
Primary Production, Am Zool., 41, 57–73, https://doi.org/10.1093/icb/41.1.57, 2001.
Lundholm, N. and Hasle, G. R.: Are Fragilariopsis cylindrus and
Fragilariopsis nana bipolar diatoms? – Morphological and molecular analyses
of two sympatric species, Nova Hedwigia, Beiheft, 133, 231–250, 2008.
McCluskey, C. S., Hill, T. C. J., Humphries, R. S., Rauker, A. M., Moreau,
S., Strutton, P. G., Chambers, S. D., Williams, A. G., McRobert, I., Ward,
J., Keywood, M. D., Harnwell, J., Ponsonby, W., Loh, Z. M., Krummel, P. B.,
Protat, A., Kreidenweis, S. M., and DeMott, P. J.: Observations of Ice
Nucleating Particles Over Southern Ocean Waters, Geophys. Res. Lett., 45,
11989–11997, https://doi.org/10.1029/2018GL079981, 2018.
Mock, T., Otillar, R. P., Strauss, J., McMullan, M., Paajanen, P., Schmutz,
J., Salamov, A., Sanges, R., Toseland, A., Ward, B. J., Allen, A. E.,
Dupont, C. L., Frickenhaus, S., Maumus, F., Veluchamy, A., Wu, T., Barry, K.
W., Falciatore, A., Ferrante, M. I., Fortunato, A. E., Glöckner, G.,
Gruber, A., Hipkin, R., Janech, M. G., Kroth, P. G., Leese, F., Lindquist,
E. A., Lyon, B. R., Martin, J., Mayer, C., Parker, M., Quesneville, H.,
Raymond, J. A., Uhlig, C., Valas, R. E., Valentin, K. U., Worden, A. Z.,
Armbrust, E. V., Clark, M. D., Bowler, C., Green, B. R., Moulton, V., van
Oosterhout, C., and Grigoriev, I. V.: Evolutionary genomics of the
cold-adapted diatom Fragilariopsis cylindrus, Nature, 541, 536–540,
https://doi.org/10.1038/nature20803, 2017.
Murray, B. J., O'Sullivan, D., Atkinson, J. D., and Webb, M. E.: Ice
nucleation by particles immersed in supercooled cloud droplets, Chem.
Soc. Rev., 41, 6519–6554, https://doi.org/10.1039/c2cs35200a, 2012.
Olenina, I., Hajdu, S., Edler, L., Andersson, A., Wasmund, N., Busch, S.,
Göbel, J., Gromisz, S., Huseby, S., Huttunen, M., Jaanus, A., Kokkonen,
P., Ledaine, I., and Niemkiewicz, E.: Biovolumes and size-classes of
phytoplankton in the Baltic Sea, HELCOM Balt. Sea Environ. Proc., 106, 144 pp., 2006.
O'Sullivan, D., Murray, B. J., Ross, J. F., Whale, T. F., Price, H. C.,
Atkinson, J. D., Umo, N. S., and Webb, M. E.: The relevance of nanoscale
biological fragments for ice nucleation in clouds, Sci. Rep., 5,
8082, https://doi.org/10.1038/srep08082, 2015.
Pinti, V., Marcolli, C., Zobrist, B., Hoyle, C. R., and Peter, T.: Ice nucleation efficiency of clay minerals in the immersion mode, Atmos. Chem. Phys., 12, 5859–5878, https://doi.org/10.5194/acp-12-5859-2012, 2012.
Poulin, M., Daugbjerg, N., Gradinger, R., Ilyash, L., Ratkova, T., and
Quillfeldt, C.: The pan-Arctic biodiversity of marine pelagic and
sea-ice unicellular eukaryotes: a first-attempt assessment, Mar. Biodiv., 41,
13–28, https://doi.org/10.1007/s12526-010-0058-8, 2011.
Pummer, B. G., Bauer, H., Bernardi, J., Bleicher, S., and Grothe, H.: Suspendable macromolecules are responsible for ice nucleation activity of birch and conifer pollen, Atmos. Chem. Phys., 12, 2541–2550, https://doi.org/10.5194/acp-12-2541-2012, 2012.
Pummer, B. G., Budke, C., Augustin-Bauditz, S., Niedermeier, D., Felgitsch, L., Kampf, C. J., Huber, R. G., Liedl, K. R., Loerting, T., Moschen, T., Schauperl, M., Tollinger, M., Morris, C. E., Wex, H., Grothe, H., Pöschl, U., Koop, T., and Fröhlich-Nowoisky, J.: Ice nucleation by water-soluble macromolecules, Atmos. Chem. Phys., 15, 4077–4091, https://doi.org/10.5194/acp-15-4077-2015, 2015.
Rasmussen, D. H. and MacKenzie, A. P.: Effect of Solute on Ice-Solution
Interfacial Free Energy; Calculation from Measured Homogeneous Nucleation
Temperatures, in: Water Structure at the Water-Polymer Interface, Springer,
Boston, MA, 126–145, 1972.
Raymond, J. A., Sullivan, C. W., and DeVries, A. L.: Release of an
ice-active substance by Antarctic sea ice diatoms, Polar Biol., 14, 71–75,
https://doi.org/10.1007/BF00240276, 1994.
Reicher, N., Segev, L., and Rudich, Y.: The WeIzmann Supercooled Droplets Observation on a Microarray (WISDOM) and application for ambient dust, Atmos. Meas. Tech., 11, 233–248, https://doi.org/10.5194/amt-11-233-2018, 2018.
Reicher, N., Budke, C., Eickhoff, L., Raveh-Rubin, S., Kaplan-Ashiri, I., Koop, T., and Rudich, Y.: Size-dependent ice nucleation by airborne particles during dust events in the eastern Mediterranean, Atmos. Chem. Phys., 19, 11143–11158, https://doi.org/10.5194/acp-19-11143-2019, 2019.
Riechers, B., Wittbracht, F., Hütten, A., and Koop, T.: The homogeneous
ice nucleation rate of water droplets produced in a microfluidic device and
the role of temperature uncertainty, Phys. Chem. Chem. Phys., 15, 5873–5887, https://doi.org/10.1039/c3cp42437e, 2013.
Roy, P., Mael, L. E., Hill, T. C. J., Mehndiratta, L., Peiker, G., House, M.
L., DeMott, P. J., Grassian, V. H., and Dutcher, C. S.: Ice Nucleating
Activity and Residual Particle Morphology of Bulk Seawater and Sea Surface
Microlayer, ACS Earth Space Chem., 5, 1916–1928,
https://doi.org/10.1021/acsearthspacechem.1c00175, 2021.
Roy-Barman, M. and Jeandel, C.: Marine Geochemistry, Oxford University
Press, ISBN 9780198787495, 2016.
Šantl-Temkiv, T., Lange, R., Beddows, D., Rauter, U., Pilgaard, S.,
Dall'Osto, M., Gunde-Cimerman, N., Massling, A., and Wex, H.: Biogenic
Sources of Ice Nucleating Particles at the High Arctic Site Villum Research
Station, Environ. Sci. Technol., 53, 10580–10590,
https://doi.org/10.1021/acs.est.9b00991, 2019.
Šantl-Temkiv, T., Sikoparija, B., Maki, T., Carotenuto, F., Amato, P.,
Yao, M., Morris, C. E., Schnell, R., Jaenicke, R., Pöhlker, C., DeMott,
P. J., Hill, T. C. J., and Huffman, J. A.: Bioaerosol field measurements:
Challenges and perspectives in outdoor studies, Aerosol Sci. Tech., 54, 520–546, https://doi.org/10.1080/02786826.2019.1676395, 2020.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric chemistry and physics: From
air pollution to climate change, Third edition, Wiley, Hoboken, New Jersey,
1120 pp., 2016.
Steinke, I., DeMott, P. J., Deane, G. B., Hill, T. C. J., Maltrud, M., Raman, A., and Burrows, S. M.: A numerical framework for simulating the atmospheric variability of supermicron marine biogenic ice nucleating particles, Atmos. Chem. Phys., 22, 847–859, https://doi.org/10.5194/acp-22-847-2022, 2022.
Stohl, A. and Sodemann, H.: Characteristics of atmospheric transport into
the Antarctic troposphere, J. Geophys. Res., 115, D02305, https://doi.org/10.1029/2009JD012536,
2010.
Tarn, M. D., Sikora, S. N. F., Porter, G. C. E., Shim, J.-U., and Murray, B.
J.: Homogeneous Freezing of Water Using Microfluidics, Micromachines, 12, 223,
https://doi.org/10.3390/mi12020223, 2021.
van Leeuwe, M. A., Tedesco, L., Arrigo, K. R., Assmy, P., Campbell, K.,
Meiners, K. M., Rintala, J.-M., Selz, V., Thomas, D. N., and Stefels, J.:
Microalgal community structure and primary production in Arctic and
Antarctic sea ice: A synthesis, Elementa, 6, 4,
https://doi.org/10.1525/elementa.267, 2018.
Vance, T. D. R., Bayer-Giraldi, M., Davies, P. L., and Mangiagalli, M.:
Ice-binding proteins and the “domain of unknown function” 3494 family,
FEBS J., 286, 855–873, https://doi.org/10.1111/febs.14764, 2019.
Wagner, R., Ickes, L., Bertram, A. K., Els, N., Gorokhova, E., Möhler, O., Murray, B. J., Umo, N. S., and Salter, M. E.: Heterogeneous ice nucleation ability of aerosol particles generated from Arctic sea surface microlayer and surface seawater samples at cirrus temperatures, Atmos. Chem. Phys., 21, 13903–13930, https://doi.org/10.5194/acp-21-13903-2021, 2021.
Welti, A., Bigg, E. K., DeMott, P. J., Gong, X., Hartmann, M., Harvey, M., Henning, S., Herenz, P., Hill, T. C. J., Hornblow, B., Leck, C., Löffler, M., McCluskey, C. S., Rauker, A. M., Schmale, J., Tatzelt, C., van Pinxteren, M., and Stratmann, F.: Ship-based measurements of ice nuclei concentrations over the Arctic, Atlantic, Pacific and Southern oceans, Atmos. Chem. Phys., 20, 15191–15206, https://doi.org/10.5194/acp-20-15191-2020, 2020.
Wex, H., Augustin-Bauditz, S., Boose, Y., Budke, C., Curtius, J., Diehl, K., Dreyer, A., Frank, F., Hartmann, S., Hiranuma, N., Jantsch, E., Kanji, Z. A., Kiselev, A., Koop, T., Möhler, O., Niedermeier, D., Nillius, B., Rösch, M., Rose, D., Schmidt, C., Steinke, I., and Stratmann, F.: Intercomparing different devices for the investigation of ice nucleating particles using Snomax® as test substance, Atmos. Chem. Phys., 15, 1463–1485, https://doi.org/10.5194/acp-15-1463-2015, 2015.
Wilson, T. W., Ladino, L. A., Alpert, P. A., Breckels, M. N., Brooks, I. M.,
Browse, J., Burrows, S. M., Carslaw, K. S., Huffman, J. A., Judd, C.,
Kilthau, W. P., Mason, R. H., McFiggans, G., Miller, L. A., Nájera, J.
J., Polishchuk, E., Rae, S., Schiller, C. L., Si, M., Temprado, J. V.,
Whale, T. F., Wong, J. P. S., Wurl, O., Yakobi-Hancock, J. D., Abbatt, J. P.
D., Aller, J. Y., Bertram, A. K., Knopf, D. A., and Murray, B. J.: A marine
biogenic source of atmospheric ice-nucleating particles, Nature, 525,
234–238, https://doi.org/10.1038/nature14986, 2015.
Wolber, P. K., Deininger, C. A., Southworth, M. W., Vandekerckhove, J., van
Montagu, M., and Warren, G. J.: Identification and Purification of a
Bacterial Ice-Nucleation Protein, P. Natl. Acad. Sci. USA, 83, 7256–7260, 1986.
Xi, Y., Mercier, A., Kuang, C., Yun, J., Christy, A., Melo, L., Maldonado,
M. T., Raymond, J. A., and Bertram, A. K.: Concentrations and properties of
ice nucleating substances in exudates from Antarctic sea-ice diatoms,
Environ. Sci., 23, 323–334,
https://doi.org/10.1039/d0em00398k, 2021.
Short summary
The formation of ice is an important process in Earth’s atmosphere, biosphere, and cryosphere, in particular in polar regions. Our research focuses on the influence of the sea ice diatom Fragilariopsis cylindrus and of molecules produced by it upon heterogenous ice nucleation. For that purpose, we studied the freezing of tiny droplets containing the diatoms in a microfluidic device. Together with previous studies, our results suggest a common freezing behaviour of various sea ice diatoms.
The formation of ice is an important process in Earth’s atmosphere, biosphere, and cryosphere,...
Altmetrics
Final-revised paper
Preprint